平方根知识讲解

合集下载

初中平方根知识讲解

初中平方根知识讲解

平方根知识点一、平方根和算术平方根的概念1.算术平方根的定义如果一个正数x 的平方等于a ,即2x a =,那么这个正数x 叫做a 的算术平方根(规定0的算术平方根还是0);a,读作“a 的算术平方根”,a 叫做被开方数.要点诠释:a≥0,a ≥0.2.平方根的定义如果2x a =,那么x 叫做a 的平方根.求一个数a 的平方根的运算,叫做开平方.平方与开平方互为逆运算. a (a ≥0)的平方根的符号表达为0)a ≥a 的算术平方根.知识点二、平方根和算术平方根的区别与联系1.区别:(1)定义不同;(2)结果不同:2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.知识点三、平方根的性质0||000a a a a a a >⎧⎪===⎨⎪-<⎩()20a a =≥知识点四、平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.250=25=2.5=0.25=.【典型例题】类型一、平方根和算术平方根的概念1、下列说法错误的是( )A.5是25的算术平方根B.l 是l 的一个平方根C.()24-的平方根是-4D.0的平方根与算术平方根都是0举一反三:【变式】判断下列各题正误,并将错误改正:(1)9-没有平方根.( )(24=±.( )(3)21()10-的平方根是110±.( ) (4)25--是425的算术平方根.( ) 2、 填空:(1)4-是 的负平方根.(2表示 的算术平方根,= .(3的算术平方根为 .(43=,则x = ,若3=,则x = .举一反三:【变式1】下列说法中正确的有( ):①3是9的平方根. ② 9的平方根是3.③4是8的正的平方根.④ 8-是64的负的平方根.A .1个B .2个C .3个D .4个【变式2】求下列各式的值:(1) (2(3(43x 的取值范围是______________.类型二、利用平方根解方程4、求下列各式中的x .(1)23610;x -= (2)()21289x +=; (3)()2932640x +-= 类型三、平方根的应用5、要在一块长方形的土地上做田间试验,其长是宽的3倍,面积是1323平方米.求长和宽各是多少米?类型一、平方根和算术平方根的概念1、若2m -4与3m -1是同一个正数的两个平方根,求m 的值.举一反三:【变式】已知2a -1与-a +2是m 的平方根,求m 的值.类型二、平方根的运算3、求下列各式的值.-类型三、利用平方根解方程4、求下列各式中的x . (1)23610;x -= (2)()21289x +=; (3)()2932640x +-= 举一反三:【变式】求下列等式中的x :(1)若2 1.21x =,则x =______; (2)2169x =,则x =______;(3)若29,4x =则x =______; (4)若()222x =-,则x =______. 类型四、平方根的综合应用5、已知a 、b |0b -=,解关于x 的方程2(2)1a x b a ++=-.举一反三:0=,求20112012x y +的值.。

平方根与算术平方根(知识解读)(原卷版)

平方根与算术平方根(知识解读)(原卷版)

平方根与算术平方根知识点 1 :平方根1.算术平方根的定义如果一个正数的平方等于,即,那么这个正数叫做的算术平方根(规定0的算术平方根还是0);,读作“的算术平方根”,叫做被开方数. 注意:有意义时,≥0,≥0. 2.平方根的定义如果,那么叫做的平方根.求一个数的平方根的运算,叫做开平方.平方与开平方互为逆运算. (≥0)的平方根的符号表达为是的算术平方根.知识点2:平方根和算术平方根的区别与联系1.区别:(1)定义不同;(2)结果不同: 2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.注意:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.知识点3:平方根的性质知识点4:平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位..x a 2x a =x a a a a a a a a a 2x a =x a a a a (0)a a ≥a a a ±a 20||000a a a a a a a >⎧⎪===⎨⎪-<⎩()20aaa =≥62500250=62525= 6.25 2.5=0.06250.25=【典例分析】【考点1:算术平方根】【典例1】求下列各数的算术平方根:(1)100;(2);(3)0.0001.【变式1-1】求下列各数的算术平方根.(1)196 (2)(3)0.04 (4)100 (5)(﹣6)2.【变式1-2】求下列各式的值:(1);(2);(3)【考点2:算术平方根的性质】【典例2】(2022秋•崇川区校级月考)已知a,b满足(a﹣1)2+=0,则a+b的值是()A.﹣2B.2C.﹣1D.0【变式2-1】(2021秋•滨海县期末)已知实数x,y满足+(y+1)2=0,则x﹣y等于()A.1B.﹣1C.﹣3D.3【变式2-2】(2022春•绥江县期中)若(a﹣1)2+=0,则(a﹣b)2022=()A.1B.﹣1C.0D.2022【考点3:算术平方根的估算】【典例3】(2022•东丽区二模)估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【变式3-1】(2022•河西区模拟)估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【变式3-2】(2020秋•福田区期末)设n为正整数,且n<<n+1,则n的值为()A.7B.8C.9D.10【变式3-3】(2018•台州)估计+1的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【典例4】(2015秋•萧山区期中)已知,则0.005403的算术平方根是()A.0.735B.0.0735C.0.00735D.0.000735【变式4-1】(2019春•港口区期中)若=5.036,则=.【变式4-2】(2022春•渝中区校级月考)若≈7.149,≈22.608,则的值约为()A.71.49B.226.08C.714.9D.2260.8【考点4:平方根】【典例5】求下列各数的平方根(1)49;(2);(3);(4)0.0016.【变式5-1】(2021秋•卫辉市月考)求下列各数的平方根(1)49 (2);(3)2;(4)0.36;(5)(﹣)2.【变式5-2】(2022秋•青羊区校级期中)若m2=4,则m=()A.2B.﹣2C.±2D.±【考点5 :利用平方根的定义解方程】【典例6】(2022秋•莲湖区校级月考)求下列各式中x的值.(1)9x2﹣25=0;(2)(x﹣1)2=36.【变式6-1】(2022秋•江阴市校级月考)求下列各式中x的值:(1)x2﹣4=0;(2)(x﹣1)2﹣9=0.【变式6-2】(2022秋•新城区期中)已知2x2﹣8=0,求x的值.【考点6:利用平方根的定义求参数】【典例7】(2021春•昭阳区校级月考)若一个正数的平方根是2m﹣4与3m﹣1,求这个正数的算术平方根.【变式7-2】(2022春•仁怀市校级月考)若m是169的正的平方根,n是121的负的平方根,求:(1)m+n的值;(2)(m+n)2的平方根.【变式7-3】(2021秋•河南月考)已知一个数m的两个不相等的平方根分别为a+2和3a﹣18.(1)求a的值;(2)求这个数m.【变式7-3】(2022秋•朝阳区校级月考)已知一个正数m的平方根为2n+1和4﹣3n.(1)求m的值;(2)|a﹣1|++(c﹣n)2=0,a+b+c的平方根是多少?【考点7:平方根的实际应用】【典例8】(2022秋•南岗区校级期中)小李同学想用一块面积为400cm2的正方形纸片,沿着边的方向裁出一块面积为300cm2的长方形纸片,使它的长宽之比为2:3,他不知道能否裁得出来,正在发愁,这时小于同学见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”(1)长方形纸片的长和宽是分别多少cm?(2)你是否同意小于同学的说法?说明理由.【变式8】(2022秋•市北区期中)某新建学校计划在一块面积为256m2的正方形空地上建一个面积为150m2的长方形花园(长方形花园的边与正方形空地的边平行),要求长方形花园的长是宽的2倍.请你通过计算说明该学校能否实现这个计划.。

平方根知识详解

平方根知识详解

平方根【知识扫描】知识点一 算术平方根的定义及表示方法1. 算术平方根的定义如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 叫做a 的算术平方根;a 的算术平方根记作a ,读作“根号a ”或“二次根号a ”,a 叫做被开方数。

规定0的算术平方根还是0,即0=0。

当式子a 有意义时,一定表示一个非负数,即a ≥0,a ≥0。

而当a <0时,a 没有意义。

2. 平方根的定义如果一个数x 的平方等于a ,即a x =2,那么这个数x 叫做a 的平方根。

正数a 的平方根有两根,分别是它的算术平方根“a ”和算术平方根的相反数“-a ”,记作“a ±”,读作“正、负根号a ”。

0的平方根为0。

任何一个数的平方都不会是负数,所以负数没有平方根。

归纳:平方根的性质①一个正数有两个平方根,它们互为相反数;②0的平方根是0;③负数没有平方根知识点二 平方根与算术平方根的区别和联系1. 区别(1)定义不同:如果a x =2,那么x 叫做a 的平方根;如果a x =2(x ≥0),那么x 叫做a 的算术平方根;(2)表示方法不同:正数a 的平方根表示为a ±,正数a 的算术平方根表示为a(3)平方根等于它本身的数是0,算术平方根等于它本身的数是0和1。

2. 联系:平方根包含算术平方根,算术平方根是平方根中的非负的那一个。

知识点三 平方根的性质(0)||0(0)(0)a a a a a a >⎧⎪===⎨⎪-<⎩()20a a =≥【典型例题】 考点一 算术平方根和平方根的定义和性质【例1】求下列各数的算术平方根(1)81的算术平方根是________;(2)425的算术平方根是________; (3)0.0016的算术平方根是________【变式】下列说法正确的是( ) A. 3是9的算术平方根 B. -2是4的算术平方根C. (-2)2的算术平方根是-2D. -9的算术平方根是3【例2】求下列各数的算术平方根(1)49的平方根是________;(2)8164的平方根是________; (3)0.36的平方根是______。

平方根知识点

平方根知识点

平方根知识点平方根作为数学中的一个重要概念,在我们的日常生活和学习中经常会遇到。

它是数学中的一种特殊运算,用来求解一个数的平方根。

在本文中,我们将介绍平方根的定义、性质以及一些实际应用。

1. 平方根的定义平方根是指某个数的平方等于给定数的非负实数解。

例如,对于非负数a和b,如果b^2=a,那么b就是a的平方根。

表示为√a。

2. 平方根的性质(1)非负数的平方根是非负实数。

也就是说,如果a是一个非负数,那么√a大于或等于0。

(2)对于非负实数a和b,如果b^2=a,那么-b也是a的平方根。

这是因为(-b)^2=b^2=a。

(3)平方根的运算性质。

对于非负实数a和b,有以下运算规则:a. √(a*b) = √a * √b,即两个数的乘积的平方根等于它们的平方根的乘积。

b. √(a/b) = √a / √b,即一个数除以另一个数的平方根等于它们的平方根的商。

c. √(a^n) = a^(n/2),即一个数的n次方的平方根等于这个数的n/2次方。

(4)平方根的大小。

对于非负实数a和b,如果a<b,那么√a < √b。

也就是说,较小的数的平方根更小。

3. 平方根的表示方法平方根可以用根号符号表示,也可以用指数表示。

例如,√a可以等价地表示为a^(1/2)。

4. 平方根的应用平方根在实际生活和学习中有广泛的应用。

下面是一些例子:(1)几何学:在计算图形的周长、面积或体积时,常常需要用到平方根。

例如计算一个正方形的对角线长度,可以利用平方根来求解。

(2)物理学:在物理学中,平方根用于计算速度、加速度等与运动相关的物理量。

(3)金融学:在利息计算中,常常需要用到平方根。

例如,在复利计算中,平方根可以帮助计算复利的时间间隔。

(4)计算机科学:在编程中,平方根函数常用于数值计算和算法设计中。

总结:平方根是数学中一个重要的概念,用来求解一个数的平方根。

我们介绍了平方根的定义、性质以及一些实际应用。

平方根在几何学、物理学、金融学和计算机科学等领域都有广泛的应用,是我们日常生活和学习中必不可少的数学概念之一。

平方根与立方根知识点总结

平方根与立方根知识点总结

平方根与立方根知识点总结1. 平方根平方根是指一个数的平方等于给定数的正数解。

以√a表示a的平方根,其中a为非负实数。

1.1 平方根的概念对于非负实数a,如果存在一个非负实数x,使得x的平方等于a,则这个非负实数x被称为a的平方根。

平方根的记号为√a。

1.2 平方根的性质- 平方根不一定是一个整数,可以是一个无理数或者有理数。

- 非负实数的平方根有两个解,一个是正数,另一个是负数,但我们在常见的情况下只讨论正数平方根。

- 非负实数的平方根可以通过求解方程x^2 = a得到。

2. 立方根立方根是指一个数的立方等于给定数的正数解。

以³√a表示a的立方根,其中a为实数。

2.1 立方根的概念对于实数a,如果存在一个实数x,使得x的立方等于a,则这个实数x被称为a的立方根。

立方根的记号为³√a。

2.2 立方根的性质- 立方根不一定是一个整数,可以是一个无理数或者有理数。

- 实数的立方根有两个复数解和一个实数解,其中实数解为正数立方根。

- 实数的立方根可以通过求解方程x^3 = a得到。

3. 计算平方根与立方根3.1 通过近似方法计算- 对于非完全平方数和非完全立方数,可以通过近似方法利用计算器或者数学软件计算得到一个接近真实值的结果。

3.2 通过公式计算- 对于完全平方数,可以利用公式进行计算。

例如,对于一个完全平方数a,其平方根可以通过√a = a的1/2次方得到。

- 对于完全立方数,可以利用公式进行计算。

例如,对于一个完全立方数a,其立方根可以通过³√a = a的1/3次方得到。

4. 应用场景平方根和立方根在日常生活和科学领域中有广泛的应用。

4.1 数学- 在代数中,求解方程的过程中常常需要计算平方根和立方根。

- 在概率统计中,方差和标准差的计算中,需要使用平方根。

- 在计算几何中,勾股定理的应用需要计算平方根。

4.2 自然科学- 物理学中,运动速度、加速度等的计算中,需要使用平方根。

初中数学易考知识点平方根的计算方法

初中数学易考知识点平方根的计算方法

初中数学易考知识点平方根的计算方法初中数学易考知识点:平方根的计算方法平方根是数学中的常见概念,它在初中数学中也是一个非常重要的知识点。

在学习平方根的计算方法之前,我们首先需要了解平方根的定义。

一、平方根的定义平方根是指一个数的平方等于另一个数的运算。

设a为一个非负实数,若存在一个非负实数x,使得x²=a,则称x为a的平方根。

二、开方运算开方运算是平方根的一种常见运算方式,用符号√表示。

1. 正数的正平方根对于一个正数a,它的正平方根可以通过以下方式计算:- 如果a是一个完全平方数,则√a = a的平方根。

- 如果a不是一个完全平方数,则可以使用近似方法或手算方法计算。

近似方法是通过查表法,找到离a最近的平方数的平方根作为近似值。

2. 零的平方根对于0这个特殊的数,在实数范围内,它的平方根为0。

即√0 = 0。

3. 负数的平方根对于负数a,它的平方根在实数范围内是不存在的。

因为无论取任何非负数的平方根,都不能使平方的结果等于一个负数。

因此,负数的平方根通常用虚数单位i来表示。

三、平方根的计算方法1. 试除法试除法是一种常见且简便的计算平方根的方法。

具体步骤如下:(1) 首先,将待开方的数进行分解,每两个数字一组,由右至左,不足两位的补零。

(2) 找出一个最大的整数d,使得d乘以自己不超过当前的两位数,将d作为商的整数部分。

(3) 将上一步得到的商与商下边的数字相连,作为新的被除数。

(4) 在商下边的数字后面添加一个未用数字作为新的被除数。

(5) 将上一步得到的商与新的被除数相连,作为新的除数。

2. 短除法短除法是试除法的简化版,适用于只有两位数的平方根计算。

具体步骤如下:(1) 将待开方的数分为若干个组,每组两个数字,由右至左依次编号。

(2) 从左向右地找出各组的平方根的个位数,并将它们按顺序排列在一起,即得到平方根的个位数。

(3) 判断待开方数能否再分一组,如果可以,则继续进行下一组的计算。

解平方根的常见方法与技巧

解平方根的常见方法与技巧

解平方根的常见方法与技巧在数学中,平方根是一种常见的运算,求解平方根的方法与技巧是非常重要的数学基础知识。

本文将介绍一些常见的方法与技巧,以帮助读者更好地理解和运用平方根的概念。

1. 直接开平方直接开平方是最常见的方法之一,简单直接。

对于一个正实数a,其平方根记作√a,即a的平方根等于b。

举个例子,√25=5,因为5的平方等于25。

2. 分解质因数法当我们需要求解非完全平方数的平方根时,可以运用分解质因数的方法。

首先,将原数分解成质因数的乘积形式,并对每个质因数的指数进行除2操作。

最后将所得的结果相乘,并开方,即可得到原数的平方根。

例如,对于数100,先将其分解成2^2乘以5^2,然后进行除2操作,结果为2乘以5,即10,最后开方得到√100=10。

3. 二分查找法二分查找法是一种高效的找根方法,特别适用于近似解的求解过程。

该方法基于数值的中间值,通过不断缩小范围来逼近平方根的值。

具体步骤如下:- 确定平方根的上下限,例如对于求解根号2,可以将上限a设置为2,下限b设置为1。

- 求取平方根的中间值c,即(a+b)/2。

- 判断中间值的平方是否接近原数,若平方值大于目标数,将上限a 设置为c,若平方值小于目标数,将下限b设置为c。

- 重复以上步骤,不断缩小范围直至所求的平方根满足要求。

4. 迭代法迭代法是一种逐步逼近平方根的方法,通过不断迭代优化来达到精确解。

该方法使用下面的迭代公式:(x + a / x) / 2,其中x为初始近似解,a为原数。

通过不断迭代,不断更新x的值,最终得到原数的平方根。

迭代法适用于对较大的正实数进行近似求根。

5. 牛顿迭代法牛顿迭代法是一种数值分析中常用的方法,也适合用来解决平方根的问题。

其基本思想是通过切线逼近曲线来求解函数的根。

对于求解根号a,可以选取初始近似解x,然后通过不断迭代优化来逼近平方根。

具体迭代公式如下:x = (x + a / x) /2。

不断迭代,直到满足精度要求。

平方根知识点总结讲义

平方根知识点总结讲义

平方根知识点总结【学习目标】1•了解平方根、算术平方根的概念,会用根号表示数的平方根.2•了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.【要点梳理】要点一、平方根和算术平方根的概念1•算术平方根的定义如果一个正数x的平方等于a,即x2= a,那么这个正数x叫做a的算术平方根(规定0的算术平方根还是0);a的算术平方根记作■. a,读作“ a的算术平方根”,a叫做被开方数.要点诠释:当式子.a有意义时,a一定表示一个非负数,即>0,a >0.2•平方根的定义如果x2=a,那么x叫做a的平方根.求一个数a的平方根的运算,叫做开平方.平方与开平方互为逆运算.a(a > 0)的平方根的符号表达为_-、a(a_O),其中,a是a的算术平方根.要点二、平方根和算术平方根的区别与联系1•区别:(i)定义不同;(2)结果不同:和a2•联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写岀它的另一个平方根.因此,我们可以利用算术平方根来研究平方根要点三、平方根的性质要点四、平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.例如:,62500 =250,、、宓=25,,625 =2.5,0.062^0.25 .【典型例题】类型一、平方根和算术平方根的概念1、若2m —4与3m —1是同一个正数的两个平方根,求m的值.【思路点拨】由于同一个正数的两个平方根互为相反数,由此可以得到2m —4=—(3m —1),解方程即可求解.【答案与解析】解:依题意得2 m —4 = —(3m —1 ),解得m = 1;••• m的值为1.【总结升华】此题主要考查了平方根的性质:一个正数有两个平方根,它们互为相反数.举一反三:【变式】已知2a —1与一a + 2是m的平方根,求m的值.【答案】2a —1与—a + 2是m的平方根,所以2 a —1与—a + 2相等或互为相反数.2 2解:①当2a —1 = —a + 2时,a = 1,所以m =(2a —1) =(2x 1 —1)=1②当2 a —1+(—a + 2)= 0时,a =—1,2 2 2所以m =(2a—1 ) =[2x(—1)—1]2=(七)=92、X为何值时,下列各式有意义?(1)X2; (2)、X 一4 ; (3)、、X • 1 • ■ 1 一X ; (4) ― 1 -x —3【答案与解析】解:(1)因为X2_0,所以当X取任何值时,X2都有意义.(2)由题意可知:x-4亠0,所以x亠4时,x-4有意义.「x+1^0 >(3)由题意可知:解得:一1乞X岂1 •所以「1冬X岂1时•• X • 1 • 1 - X有意义.J -x X0「x—1 兰0(4)由题意可知:,解得X _ 1且X = 3 .x -3 式0:(X -1所以当X _1且x=3时,有意义.x —3【总结升华】(1)当被开方数不是数字,而是一个含字母的代数式时,一定要讨论,只有当被开方数是非负数时,式子才有意义.(2)当分母中含有字母时,只有当分母不为0时,式子才有意义.举一反三:【变式】已知b =4. 3a -2 2 . 2 -3a 2,a b【答案】^3a—2 二0 2113 1解:根据题意,得'则a ,所以b = 2,二2,2-3^0.3 a b 2 21 1二的算术平方根为a b类型二、平方根的运算3、求下列各式的值.1 ___________ 1 ____ -、.话 - .900.3 5【思路点拨】 (1)首先要弄清楚每个符号表示的意义 •( 2)注意运算顺序.【答案与解析】解:⑴、.252 -242 LI 「32 42 二「49 L 一无=7 5 = 35 ; ⑵,201 一1预一 1「81 一〕0.6 一〕30 =9—0.2 一6 —1.7 . ^43 5 V 4 3 5 2【总结升华】(1)混合运算的运算顺序是先算平方开方,再乘除,后加减,同一级运算按先后顺序进行. (2)初学可以根据平方根、算术平方根的意义和表示方法来解,熟练后直接根据Ja 2=a(a .0)来解.类型三、利用平方根解方程4、求下列各式中的 X .2 2(1) x -361 =0; (2) x 1 289 ;(3) 9(3x+2 f —64 =0 【答案与解析】 解:(1)丁 x 2 -361 =0••• x 2 =361••• x = 一 361 = 192(2)丁(x +1 ) =289 • x 1 二.289 • x + 1 = ± 17x = 16 或 x =- 18.K{ A 2(3)••• 9(3x+2 丫-64 = 064• 3x 2 2二98•- 3x 2 = 32十149 9【总结升华】本题的实质是一元二次方程,开平方法是解一元二次方程的最基本方法.(2) ( 3)小题中运用了整体思想分散了难度.举一反三:【变式】求下列等式中的X :(1 )若X2=1.21,则x = ________ ;(2) X2=169,则x = __________ ;2 2 2(3)若X ,则X = ___________ ;(4)若X 2 ,贝U X = ____________ .43【答案】(1 )± 1.1 ; ( 2)± 13;( 3) ; ( 4)± 2.2类型四、平方根的综合应用5、已知a、b 是实数,且..2a 6 |b _=0,解关于X的方程(a • 2)x • b2二a _ 1 .【答案与解析】解:••• a、b 是实数,.2a 6 |b —|=0,2a 6 _ 0, |b-辽|_0,••• 2a 6 = 0 , b「.2 二0 .a = — 3,b = •. 2 .把a =—3, b-2 代入(a+2)x+b2= a-1,得—X + 2 = —4,二X = 6.【总结升华】本题是非负数的性质与方程的知识相结合的一道题,应先求岀a、b的值,再解方程•此类题主要是考查完全平方式、算术平方根、绝对值三者的非负性,只需令每项分别等于零即可.举一反三:【变式】若X2—1 •y 1 =0,求X2011- y2012的值.【答案】解:由x2「1y • 1 = 0,得x2「1 = 0 , y T = 0,即X= 1 , y = -1 .2011 2012 ,2011 / 八2012①当X = 1, y =—1 时,X y =1 (—1) =2 .②当X =—1, y =—1 时,X y =(一1) (一1) =0 .2 26、小丽想用一块面积为400 cm的正方形纸片,沿着边的方向裁出一块面积为300 cm 的长方形纸片,使它长宽之比为3:2,请你说明小丽能否用这块纸片裁出符合要求的长方形纸片【答案与解析】解:设长方形纸片的长为3X ( X >0) cm,则宽为2 X cm,依题意得3X 2X =300.6X2-300 .x2=50.X >0,x 二空50.长方形纸片的长为3, 50 cm .•/ 50 > 49,/• .50 7.••• 3・.50 .21,即长方形纸片的长大于20cm .2由正方形纸片的面积为400 cm ,可知其边长为20 cm ,•长方形的纸片长大于正方形纸片的边长答:小丽不能用这块纸片裁岀符合要求的长方形纸片20 cm的正方形纸片裁【总结升华】本题需根据平方根的定义计算岀长方形的长和宽,再判断能否用边长为岀长方形纸片.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平方根
【学习目标】
1. 了解平方根、算术平方根的含义;
2. 会表示、计算一个数的平方根、算术平方根.
【要点梳理】
【高清课堂:平方根、算术平方根知识要点】
知识点一、算术平方根的定义
一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.a的算术平方根记为√a,读作“根号a”.a叫做被开方数.
要点诠释:①算术平方根一定是正数.
②负数没有算术平方根.
③0的算术平方根是0.
知识点二、算术平方根的性质
特征:被开方数越大,对应的算术平方根也越大.
知识点三、平方根的定义
一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根.这就是说,如果x2=a,那么x叫做a的平方根.求一个数a的平方根的运算,叫做开平方.
要点诠释:①正数有两个平方根,它们互为相反数.
② 0的平方根是0.
③负数没有平方根
【典型例题】
类型一、算术平方根的概念
1、求下列各数的算术平方根
(1)100 (2)49
64
(3)
2. 计算下列各式的值
(1)√1(2)√9
25
(3)−√0.49
3. 判断下列各式是否有意义?为什么?
(1)-√3(2)√−3(3)√(−3)2
(4)√0
练1、求下列各数的算术平方根
(1)(2)81 (3)32
2.计算下列各式的值
(1)√9(2)√22(3)±√64
81 3.求下列x的取值范围,使得式子有意义. (1)√x(2)√x−1(3)√x2
类型二、算术平方根的比较大小
1、比较下列各组数的大小:
(1)与 (2)与8 类型三、平方根的概念
1、 求下列各数的平方根.
(1)100 (2)4964 (3) (4)32
2.判断下列说法是否正确
(1)0的平方根是0;
(2)1的平方根是1;
(3)-1的平方根是-1;
(4)是的一个平方根.
练 1. 求下列各数的平方根.
(1)49 (2)425 (3) (4)0
2. 判断下列说法是否正确
(1)5是25的算术平方根;
(2)56是2536的一个平方根;
(3)(−4)2的平方根是-4;
(4)0的平凡根与算术平方根都是0. 类型四、解方程
(1)x 2=25;(2)x 2−81=0;(3)25x 2=36.。

相关文档
最新文档