非线性分数阶微分方程组奇异对偶系统正解的存在性

合集下载

整数阶与分数阶非线性微分方程边值问题正解的存在性

整数阶与分数阶非线性微分方程边值问题正解的存在性

整数阶与分数阶非线性微分方程边值问题正解的存在性摘要:本文主要讨论了整数阶和分数阶非线性微分方程边值问题正解的存在性。

首先介绍了整数阶微分方程边值问题的解法,包括格林函数、变分法、等等。

而对于分数阶微分方程边值问题,基于Caputo导数的求解方法被广泛应用于各种实际问题中。

然后,通过在边值问题的严格数学框架下,该文证明了整数阶和分数阶非线性微分方程边值问题的解在一定条件下存在,这些条件包括边值问题的充分性和DFC(differential inequality of finite difference)条件的满足。

最后,多个实例说明了该文所证明的理论结论的实用性和有效性。

关键词:整数阶微分方程;分数阶微分方程;边值问题;正解存在性;格林函数;变分法;Caputo导数1. 引言微分方程在物理、工程、生物、经济等众多领域中都有重要应用。

边值问题是求解微分方程的一种常用方法,它使用一些限制条件来约束解的特性。

而关于整数阶和分数阶微分方程边值问题正解的存在性,一直是微分方程理论中的经典研究问题。

本文旨在探讨这个问题,并通过实例说明所得结论的实用性和有效性。

2. 整数阶微分方程边值问题的解法对于一般的整数阶微分方程边值问题,我们通常采用格林函数、变分法等方法,来求解其正解存在性。

格林函数是一种特殊的解析函数,在微分方程理论中扮演着重要角色。

变分法是另一种常见的求解方法,它可以转化为极值问题,得到问题的最优解。

3. 分数阶微分方程边值问题的求解方法分数阶微分方程边值问题的求解方法虽然和整数阶微分方程有相似之处,但依然有其特殊之处。

此处我们介绍一种基于Caputo导数的求解方法,它广泛应用于各种实际问题中。

该方法将原问题转化为一个无约束问题,并使用Laplace变换和拉普拉斯逆变换求解。

4. 整数阶和分数阶非线性微分方程边值问题正解的存在性在边值问题的严格数学框架下,我们证明了整数阶和分数阶非线性微分方程边值问题的解在一定条件下存在。

分数阶微分方程两点边值问题正解的存在性

分数阶微分方程两点边值问题正解的存在性

分数阶微分方程两点边值问题正解的存在性如何理解分数阶微分方程两点边值问题正解的存在性正解,正解是指题目的正确答案或者正确的解决方案,通常用于测验、考试等场景。

正解边值问题,最小边值问题(Minimum Cut Problem)指在一个连通的加权图G(V,E)中找到一个切割S,使得S中包含的边的总权重最小。

G表示一个有向图或无向图,V代表其节点集合,E表示其边集合,边e的权重用w(e)表示。

S是V的子集合,S-S表示S的补集,切割S定义为从V到S-S的路径中的边的集合。

要得到最小的切割,我们就要求出最小的边权重和。

正解边值问题微分方程,边值问题微分方程定义是指一类常微分方程,给出了在某个区间的未知函数及其一阶导数的某些边界条件,要求求出该函数在这个区间内的解。

正解边值问题微分方程分数,式为:∂u/∂t + a∂u/∂x = b(∂²u/∂x²) + c(∂u/∂x)其中,u是函数的值,a、b、c是常量参数。

其中:∂u/∂t表示函数u随时间的变化率;∂u/∂x表示函数u随空间的变化率;∂²u/∂x²表示函数u随空间的二阶变化率。

分数阶微分方程两点边值问题正解的存在性,答:一阶分数阶微分方程两点边值问题的正解存在性取决于给定边值问题的可解性。

一般来说,当方程有足够的初值解的连续性或足够的连续性以及给定的两点边值条件,正解就存在。

为什么需要分数阶微分方程两点边值问题正解的存在性1.意义意味着当各种不同的初始/边界条件及其未知函数给定时,它能找到合适的解决方法。

2.它说明了求解此问题的算法的可靠性,从而保证了其精确性和有效性。

3.它能帮助科学家和工程师更好地了解其实际应用中出现的一系列问题的原因和解决方案,从而可以更有效地解决问题。

怎么进一步推进完成分数阶微分方程两点边值问题正解的存在性1. 利用Kirchhoff积分变换,尝试将微分方程转化为微分不等式来证明有限解的存在性。

非线性奇异微分方程及方程组解的存在性的开题报告

非线性奇异微分方程及方程组解的存在性的开题报告

非线性奇异微分方程及方程组解的存在性的开题报告一、选题缘起微分方程作为数学中的一个重要分支,在数学研究中有着举足轻重的地位。

线性微分方程的解法已经比较完备,而非线性微分方程则是研究的热点。

奇异微分方程是非线性微分方程研究中的重点之一,它不仅具有独特的特征,而且应用极广。

因此,本选题选择奇异微分方程及方程组解的存在性进行研究,旨在深入探究奇异微分方程的理论和应用。

二、研究内容本研究的主要内容是奇异微分方程及方程组解的存在性问题。

具体包括以下方面:1. 奇异微分方程的定义及性质:首先对奇异微分方程进行定义,并探讨其基本性质,以便深入地研究其解的存在性问题。

2. 奇异微分方程解的存在性问题:针对奇异微分方程的解的存在性问题进行研究,探讨相应的定理及证明过程。

3. 奇异微分方程组的解的存在性问题:针对奇异微分方程组的解的存在性问题进行研究,探讨相应的定理及证明过程。

4. 应用实例分析:通过对一些实际问题的分析,探讨奇异微分方程及方程组在实际中的应用。

三、预期目标本研究的主要目标是探究奇异微分方程及方程组解的存在性问题,解决实际问题,为生产实践提供理论支撑。

具体目标如下:1. 深入研究奇异微分方程及方程组解的存在性问题,掌握奇异微分方程及方程组的解法和求解方法。

2. 对实际问题进行分析,探讨奇异微分方程及方程组在实际中的应用。

3. 形成完整的理论体系和解决实际问题的方法。

4. 提高数学研究和应用水平,为经济、工业、科学和技术的发展提供一定的理论和技术支撑。

四、研究方法和步骤本研究采用文献资料法、理论分析法、实例分析法等研究方法进行探究,具体步骤如下:1. 收集奇异微分方程解的存在性问题的相关文献资料,系统地了解奇异微分方程的基本定义、性质、解法等相关知识。

2. 研究奇异微分方程解的存在性问题的主要定理及证明过程,并检验其适用性。

3. 探究奇异微分方程组解的存在性问题,研究相应的定理及证明过程。

4. 分析一些实际问题,并应用奇异微分方程及方程组解的存在性问题研究方法进行解决。

非线性分数阶微分方程耦合系统解的存在性

非线性分数阶微分方程耦合系统解的存在性

㊀第52卷第3期郑州大学学报(理学版)Vol.52No.3㊀2020年9月J.Zhengzhou Univ.(Nat.Sci.Ed.)Sep.2020收稿日期:2020-03-16基金项目:国家自然科学基金项目(11501232);湖南省自然科学基金面上项目(2017JJ2213);湖南省教育厅科学研究项目(19B450;19C1474)㊂作者简介:周珏良(1993 ),女,辽宁丹东人,助教,主要从事非线性泛函分析研究,E-mail:188****3659@;通信作者:何郁波(1979 ),男,湖南岳阳人,副教授,主要从事微分方程解的理论分析及数值研究,E-mail:heyinprc@㊂非线性分数阶微分方程耦合系统解的存在性周珏良,㊀何郁波,㊀谢乐平(怀化学院数学与计算科学学院㊀湖南怀化418008)摘要:研究无限区间[0,+ɕ)上非线性Caputo 型分数阶微分方程耦合系统解的存在性和唯一性㊂运用Banach 压缩映射原理,得到了该耦合系统解的存在性和唯一性的充分条件㊂关键词:非线性分数阶微分方程;Banach 压缩映射原理;存在性中图分类号:O177.91㊀㊀㊀㊀㊀文献标志码:A㊀㊀㊀㊀㊀文章编号:1671-6841(2020)03-0087-05DOI :10.13705/j.issn.1671-6841.20200790㊀引言分数阶微分系统的初边值问题具有深刻的科学背景㊂与整数阶微分系统相比,分数阶微分系统能够更加精确地描述动态的变化过程[1-3],主要体现在对生物㊁物理㊁化学反应等方面㊂近几十年,分数阶微分系统作为非线性分析的一个重要分支开始广泛应用于水动力学㊁生物力学㊁量子力学㊁控制论等领域,并取得了许多重要成果[4-11]㊂与单个分数阶微分系统相比,耦合系统的研究条件更加复杂,因此关于分数阶微分耦合系统初边值问题的研究结果相对较少㊂据我们所知,文献[12]利用格林函数和不动点定理在实空间中研究了非线性Riemann-Liouville 型分数阶微分方程耦合系统边值问题解的存在性,之后又继续在实空间中研究下面非线性分数阶微分方程耦合系统边值问题解的存在性[13],D α0+u (t )=f (t ,v (t )),0<t <1,D β0+v (t )=g (t ,u (t )),0<t <1,u (0)=u (1)=v (0)=v (1)=0,ìîíïïïï(1)其中:1<α,βɤ2;D α0+㊁D β0+是Caputo 型分数阶导数;f ,g :[0,1]ˑR ңR 连续,并且假设f ,g 满足增长性条件㊂2010年,Wang 等利用Banach 不动点定理在实空间中讨论了一类分数阶微分方程耦合系统边值问题正解的存在唯一性[14],D αu (t )+f (t ,v (t ))=0,0<t <1,D βv (t )+g (t ,u (t ))=0,0<t <1,u (0)=v (0)=0,u (1)=au (ξ),v (1)=bv (ξ),ìîíïïïïïï(2)其中:1<α,β<2;0ɤa ,b ɤ1;0<ξ<1;D α㊁D β是Riemann-Liouville 型分数阶导数;f ,g :[0,1]ˑ[0,+ɕ)ң[0,+ɕ)连续㊂关于非线性分数阶微分方程耦合系统初边值问题的其他相关结论参阅文献[15-16]及其中的相关文献㊂最近关于耦合系统的成果有董佳华等利用不动点定理在实空间中研究了一类非线性隐式分数阶微分方程耦合系统初值问题解的存在性和唯一性[17]㊂受以上研究成果的启发,本文主要研究如下无限区间[0,+ɕ)上非线性Caputo 型分数阶微分方程耦合系统在Banach 空间中解的存在性和唯一性,郑州大学学报(理学版)第52卷C D α0+u (t )=f (t ,v (t ),C D β0+v (t )),t ɪJ =[0,+ɕ),C D αᶄ0+v (t )=g (t ,u (t ),C D β0+u (t )),t ɪJ =[0,+ɕ),u (0)=u 0,v (0)=v 0,ìîíïïïï(3)其中:0<α,αᶄ<1,0ɤβ<1,并且0ɤβ<α,αᶄ<1;C D α0+㊁C D β0+㊁C D αᶄ+是Caputo 型分数阶导数;u 0,v 0ɪY ,Y 是Banach 空间;t r f (t ,x ,y ),t r g (t ,x ,y )ɪC (J ˑY ˑY ,Y ),r ɪ[0,1)㊂1㊀基本假设给定本文所用到的空间X ={x x (t )ɪC (J ,Y ),C D β0+x (t )ɪC (J ,Y ),supt ɪJx (t )1+t λ<ɕ,supt ɪJC D β0+x (t )1+t λ<ɕ},其中:λ>1,定义其范数x X =max{supt ɪJx (t )1+t λ,supt ɪJC D β0+x (t )1+t λ}㊂㊀㊀为了证明本文的结果,还需给定空间X ˑX ={(x ,y )x ɪX ,y ɪX },定义其范数为(x ,y ) X ˑX =max x X , y X {}㊂易证(X , ㊃ X )和(X ˑX , ㊃ X ˑX )都是Banach 空间[18-20]㊂下面将给出本文所用到的假设条件㊂H1)连续函数x ,y ,t r f (t ,x ,y ):J ˑX ˑX ңX ,t r g (t ,x ,y ):J ˑX ˑX ңX 满足t r [f (t ,(1+t λ)x ,(1+t λ)y )-f (t ,(1+t λ)xᶄ,(1+t λ)yᶄ)] ɤL 1(t ) x (t )-xᶄ(t ) +L 2(t ) y (t )-yᶄ(t ) ,t r [g (t ,(1+t λ)x ,(1+t λ)y )-g (t ,(1+t λ)xᶄ,(1+t λ)yᶄ)] ɤL 3(t ) x (t )-xᶄ(t ) +L 4(t ) y (t )-yᶄ(t ) ,其中:非负连续函数L 1(t )㊁L 2(t )㊁L 3(t )㊁L 4(t )满足1Γ(η1)(1+t λ)ʏt(t -s )η1-1s r(L 1+L 2)(s )d s ɤρ1,t ɪ[0,+ɕ),ρ1ɪ(0,1),η1=α或α-β,1Γ(η2)(1+t λ)ʏt 0(t -s )η2-1s r(L 3+L 4)(s )d s ɤρ2,t ɪ[0,+ɕ),ρ2ɪ(0,1),η2=αᶄ或αᶄ-β㊂H2)存在常数M ,N >0,使得f (t ,0,0),g (t ,0,0)满足(t +1)βΓ(α-β)(1+t λ)ʏt(t -s )α-β-1s -r s r f (s ,0,0) d s ɤM <ɕ,t ɪ[0,+ɕ),(t +1)βΓ(αᶄ-β)(1+t λ)ʏt(t -s )αᶄ-β-1s -r s r g (s ,0,0) d s ɤN <ɕ,t ɪ[0,+ɕ)㊂2㊀存在性结果下面运用Banach 压缩映射原理,证明初值问题(3)解的存在性和唯一性㊂定理1㊀假设条件H1)和H2)成立,则初值问题(3)的解存在且唯一㊂证明㊀定义算子T ʒX ˑX ңX ˑX ,T (u ,v )(t )=(u 0+I α0+f (t ,v (t ),C D β0+v (t )),v 0+I αᶄ0+g (t ,u (t ),C D β+u (t )))≙(T 1v (t ),T 2u (t ))㊂㊀㊀显然算子T ʒX ˑX ңX ˑX ㊂事实上,对任意的(u ,v )ɪX ˑX ,即u ɪX ,v ɪX ,有T 1v (t )1+t λɤu 01+t λ+1Γ(α)ʏt(t -s )α-11+t λs -r s r f (s ,v (s ),C D β0+v (s )) d s ɤ u 0 +1Γ(α)(1+t λ)ʏt 0(t -s )α-1s r(L 1(s )v (s )1+s λ+L 2(s )C D β0+v (s )1+s λ)d s +88㊀第3期周珏良,等:非线性分数阶微分方程耦合系统解的存在性Γ(α-β)Γ(α)Γ(α-β)(1+t λ)ʏt 0(t -s )α-β-1(t -s )βsrs r f (s ,0,0) d s ɤu 0 +ρ1 v X +Γ(α-β)Γ(α)M <ɕ,t ɪ[0,+ɕ)㊂T 2u (t )1+t λɤ v 0 +1Γ(αᶄ)(1+t λ)ʏt 0(t -s )αᶄ-1s r(L 3(s )u (s )1+s λ+L 4(s )C D β0+u (s )1+s λ)d s +Γ(αᶄ-β)Γ(αᶄ)N ɤ v 0 +ρ2 u X +Γ(αᶄ-β)Γ(αᶄ)N <ɕ,t ɪ[0,+ɕ)㊂㊀㊀另一方面,CD β0+T 1v (t )1+t λɤ u 0 +v XΓ(α-β)(1+t λ)ʏt 0(t -s )α-β-1sr(L 1+L 2)(s )d s +M(t +1)βɤu 0 +ρ1 v X +M <ɕ,t ɪ[0,+ɕ)㊂CD β0+T 2u (t )1+t λɤ v 0 +u XΓ(αᶄ-β)(1+t λ)ʏt 0(t -s )αᶄ-β-1s r(L 3+L 4)(s )d s +N(t +1)βɤv 0 +ρ2 u X +N <ɕ,t ɪ[0,+ɕ)㊂㊀㊀因此可知T (u ,v )ɪX ˑX ,故算子T ʒX ˑX ңX ˑX ㊂下面证明算子T ʒX ˑX ңX ˑX 是严格压缩的㊂事实上,对任意的u 1,u 2,v 1,v 2ɪX ,有T 1v 1(t )-T 1v 2(t )1+tλɤ1Γ(α)ʏt(t -s )α-11+tλf (s ,v 1(s ),C D β0+v 1(s ))-f (s ,v 2(s ),C D β+v 2(s )) d s ɤ1Γ(α)(1+t λ)ʏt 0[(t -s )α-1s r(L 1(s )v 1(s )-v 2(s )1+s λ+L 2(s )C D β0+v 1(s )-C D β+v 2(s )1+s λ)]d s ɤv 1-v 2 XΓ(α)(1+t λ)ʏt 0(t -s )α-1sr(L 1+L 2)(s )d s ɤρ1 v 1-v 2 X , T 2u 1(t )-T 2u 2(t )1+t λɤu 1-u 2 XΓ(αᶄ)(1+t λ)ʏt 0(t -s )αᶄ-1sr(L 3+L 4)(s )d s ɤρ2 u 1-u 2 X ㊂㊀㊀另一方面,我们有C D β0+T 1v 1(t )-C D β0+T 1v 2(t ) 1+t λɤ v 1-v 2 XΓ(α-β)(1+t λ)ʏt 0(t -s )α-β-1sr(L 1+L 2)(s )d s ɤρ1 v 1-v 2 X , C D β0+T 2u 1(t )-C D β0+T 2u 2(t ) 1+tλɤu 1-u 2 XΓ(αᶄ-β)(1+t λ)ʏt 0(t -s )αᶄ-β-1sr(L 3+L 4)(s )d s ɤρ2 u 1-u 2 X ㊂㊀㊀由此可知,对任意的(u 1,v 1),(u 2,v 2)ɪX ,有 T (u 1,v 1)-T (u 2,v 2) X ˑX ɤρ (u 1,v 1)-(u 2,v 2) X ˑX ,ρ=max{ρ1,ρ2}ɪ(0,1),即算子T ʒX ˑX ңX ˑX 是严格压缩的㊂综上,根据Banach 压缩映射原理得到算子T ʒX ˑX ңX ˑX 在Banach 空间X ˑX 中存在唯一的(u ,v ),使得T (u ,v )=(u ,v ),即问题(3)在Banach 空间X ˑX 中存在唯一解㊂3 结论本文通过构造特殊的Banach 空间,运用Banach 压缩映射原理得到了保证一类非线性分数阶微分方程耦合系统(3)在无限区间[0,+ɕ)上解的存在唯一性的充分条件㊂参考文献:[1]㊀郭大钧.非线性泛函分析[M].济南:山东科学技术出版社,2001.9809郑州大学学报(理学版)第52卷GUO D J.Nonlinear functional analysis[M].Jinan:Shandong Science&Technology Press,2001.[2]㊀KILBAS A A,SRIVASTAVA H M,TRUJILLO J J.Theory and applications of fractional differential equations[M].BeslotenVennootschap:Elsevier Press,2006.[3]㊀RAY S S.Fractional calculus with applications for nuclear reactor dynamics[M].Boca Raton:CRC Press,2017.[4]㊀续焕英.分数阶微积分在反常输运过程中的应用研究[D].济南:山东大学,2017.XU H Y.Research on the applications of fractional calculus in anomalous transport[D].Jinan:Shandong University,2017.[5]㊀陈玉霞,高金峰.一个新的分数阶混沌系统[J].郑州大学学报(理学版),2009,41(4):45-48.CHEN Y X,GAO J F.A new fractional-order chaotic system[J].Journal of Zhengzhou university(natural science edition), 2009,41(4):45-48.[6]㊀聂玉峰,胡嘉卉,王俊刚.求解三维空间分数阶对流扩散方程的Douglas-Gunn格式[J].郑州大学学报(理学版),2019,51(1):44-50.NIE Y F,HU J H,WANG J G.Douglas-Gunn finite difference scheme for three-dimensional space fractional advection diffusion equation[J].Journal of Zhengzhou university(natural science edition),2019,51(1):44-50.[7]㊀虎晓燕,韩惠丽.重心插值配点法求解分数阶Fredholm积分方程[J].郑州大学学报(理学版),2017,49(1):17-23.HU X Y,HAN H L.Barycentric interpolation collocation method for solving Fredholm integral equation of fractional order[J].Journal of Zhengzhou university(natural science edition),2017,49(1):17-23.[8]㊀SUN H G,CHEN W,CHEN Y Q.Variable-order differential operator in anomalous diffusion modeling[J].Physica A:statisti-cal mechanics and its applications,2009,388(21):4586-4592.[9]㊀ZHANG L H,AHMAD B,WANG G T,et al.Nonlinear fractional integro-differential equations on unbounded domains in aBanach space[J].Journal of computational and applied mathematics,2013,249(6):51-56.[10]SINGH J,GUPTA P K,RAI K N.Solution of fractional bioheat equations by finite difference method and HPM[J].Mathemat-ical and computer modelling,2011,54(9/10):2316-2325.[11]周学勇,杨皦蓉,齐龙兴.一类分数阶SIQS传染病模型的稳定性分析[J].信阳师范学院学报(自然科学版),2018,31(1):1-4.ZHOU X Y,YANG J R,QI L X.Analysis of stability for a fractional order SIQS mode[J].Journal of Xinyang normal university (natural science edition),2018,31(1):1-4.[12]SU X W.Boundary value problem for a coupled system of nonlinear fractional differential equations[J].Applied mathematicsletters,2009,22(1):64-69.[13]苏新卫.分数阶微分方程耦合系统边值问题解的存在性[J].工程数学学报,2009,26(1):133-137.SU X W.The existence of solution to boundary value problems for a coupled system of nonlinear fractional differential equations [J].Chinese journal of engineering mathematics,2009,26(1):133-137.[14]WANG J,XIANG H,LIU Z.Positive solution to nonzero boundary value problem for a coupled system of nonlinear fractionaldifferential equations[J].International journal of differential equations,2010,2010(1):1-12.[15]薛益民,刘洁,戴振祥,等.一类非线性分数阶微分方程耦合系统边值问题解的存在性[J].四川师范大学学报(自然科学版),2018,41(5):614-620.XUE Y M,LIU J,DAI Z X,et al.Existence of solutions of the boundary value problem for a coupled system of nonlinear frac-tional differential equations[J].Journal of Sichuan normal university(natural science),2018,41(5):614-620. [16]刘梦婷,杨军,彭丹,等.一类无穷区间上分数阶耦合系统边值问题解的存在性[J].数学的实践与认识,2017,47(16):171-180.LIU M T,YANG J,PENG D,et al.Existence solutions for a coupled system of fractional boundary value problems on unbounded domains[J].Mathematics in practice and theory,2017,47(16):171-180.[17]董佳华,冯育强,蒋君.非线性隐式分数阶微分方程耦合系统初值问题[J].应用数学学报,2019,42(3):356-370.DONG J H,FENG Y Q,JIANG J.Initial value problem for a coupled system of nonlinear implicit for fractional differential equations[J].Acta mathematicae applicatae sinica,2019,42(3):356-370.[18]SU X W,ZHANG S Q.Unbounded solutions to a boundary value problem of fractional order on the half-line[J].Computers&mathematics with applications,2011,61(4):1079-1087.[19]SU X W.Solutions to boundary value problem of fractional order on unbounded domains in a Banach space[J].Nonlinear anal-ysis,2011,74(8):2844-2852.[20]KOU C H,ZHOU H C,YAN Y.Existence of solutions of initial value problems for nonlinear fractional differential equations onthe half-axis[J].Nonlinear analysis,2011,74(17):5975-5986.19㊀第3期周珏良,等:非线性分数阶微分方程耦合系统解的存在性Existence of Solutions for the Coupled System of NonlinearFractional Differential EquationZHOU Jueliang,HE Yubo,XIE Leping(School of Mathematics and Computer Science,Huaihua University,Huaihua418008,China) Abstract:The existence and uniqueness of solutions for a coupled system of nonlinear Caputo fractional differential equation on infinite interval[0,+ɕ)were studied.The sufficient conditions for existence and uniqueness of solutions by using Banach contraction mapping principle were obtained.Key words:nonlinear fractional differential equation;Banach contraction mapping principle;existence(责任编辑:王浩毅)(上接第79页)[16]曹咪,王继刚,王伟,等.基于静态分析的TVOS恶意应用检测方法研究[J].郑州大学学报(理学版),2018,50(3):27-33.CAO M,WANG J G,WANG W,et al.Vetting TVOS applications and detecting malicious applications[J].Journal of Zheng-zhou university(natural science edition),2018,50(3):27-33.Android Malware Family Classification Method Based on SensitivePermissions and APIYU Yuaner1,2,ZHANG Linlin1,2,ZHAO Kai1,2,FANG Wenbo3,HU Yingjie3,SONG Xin1,2,WANG Chenyue3(1.College of Information Science and Engineering,Xinjiang University,Urumqi830046,China;2.School of Cyber Science and Engineering,Xinjiang University,Urumqi830046,China;3.College of Software,Xinjiang University,Urumqi830091,China) Abstract:A method of Android malware family classification based on sensitive permissions and APIs was proposed.After extracting sensitive permissions and sensitive APIs,the two features were fused to build a feature database.Finally,a random forest algorithm was used to classify malware families.Exper-imental results showed that the detection accuracy of this method reached98.40%,which was significant-ly better than other baseline algorithms,and both the similarity and homology of malware were reflected. Key words:Android;malware family;classification;random forest(责任编辑:王浩毅)。

非线性分数阶微分方程边值问题正解的存在性

非线性分数阶微分方程边值问题正解的存在性

非线性分数阶微分方程边值问题正解的存在性
非线性分数阶微分方程边值问题正解的存在性:
1、问题概述
非线性分数阶微分方程(nonlinear fractional differential equation)边值问题(boundary value problem)指定考虑函数在一定区域内满足一个分数阶微分方程系统以及该区域边界一些条件的问题。

它的研究与现实中相关的问题有很大的关联,拟和计算的精度主要取决于该正解的存在性和唯一性。

2、开展研究
由于非线性分数阶微分边值问题的存在性和唯一性的研究关系到研究的实际意义,因此,近年来,微分方程学家围绕该问题开展了深入探讨和研究。

根据数学技巧和研究结果,针对非线性分数阶微分边值问题,提出了一系列有效方法,形成一套完整的存在性理论,以帮助解决非线性分数阶微分边值问题。

3、理论研究
在理论研究中,研究者首先提出了分数阶系统周期或非周期微分边值问题的存在性,发现分数阶系统微分边值问题的存在性密切依赖于其边值条件的满足程度,并利用契约技术确定具体的边界条件。

研究者又进一步提出了重叠解和多重解的存在性,提出了不等式定理来证明其在有限区域内存在正解,以及足够条件以确定分数阶系统存在唯一正解,在研究遇到激烈反对的情况下,提出非线性的存在性,以帮助研究者准确直观地确定问题的解等。

两类奇异的非线性微分方程边值问题解的存在性分析

两类奇异的非线性微分方程边值问题解的存在性分析

摘要分数阶微积分已有很长的历史. 早在1695年,在Leibniz 和L’Hospital 的往来书信中就已经提到了分数阶微分的概念. 在近三个世纪内,人们对分数阶微积分理论的研究主要集中在数学的纯理论领域. 然而在最近几十年内,许多学者纷纷指出分数阶微积分非常适合于刻画具有记忆和遗传性质的材料和过程,这些性质在经典模型中是常常被忽视的.如今,分数阶微分方程模型越来越多地被用于描述声学、热学系统、材料力学、信号处理、系统辨识、控制理论、机器人科学以及其它应用领域中的问题.本文的工作如下:第一部分是绪论,主要简要介绍了分数阶微积分和分数阶微分方程的研究历史和发展现状,以及分数阶微分方程正解存在性方面的研究工作.第二部分研究了一类奇异的非线性semipositone Sturm-Liouville 边值问题正解的存在性. 我们的主要方法是对非线性部分()f y 进行重新定义,使其转化成非奇异的p ositone 边值问题, 然后应用锥上的不动点定理以及泛函分析的知识证明该奇异非线性s emipositone Sturm-Liouville 边值问题的正解的存在性.第三部分讨论了一类奇异的非线性分数阶微分方程Dirichlet 边值问题正解的存在性. 我们的主要思想是重新研究非线性部分0(,(),())f t x t D x t β+,使其转化为非奇异的分数阶微分方程边值问题,然后再对每一个重新定义的非线性部分为0(,(),())n f t x t D x t β+(N n ∈)的边值问题,证明其存在正解n x ,最后通过紧集上函数列极限的性质给出原奇异非线性分数阶微分方程Dirichlet 边值问题的正解的存在性.关键词:微分方程,分数阶微分方程,边值问题,正解,奇异性,不动点.AbstractFractional calculus has a long history. As early as in 1695, the concept of fractional differential was already mentioned in the correspondence of Leibniz and L'Hospital. During the past three centuries, the research of fractional calculus theory was mainly concentrated in the pure theoretical field of mathematics. However, in the recent several decades many scholars in succession pointed out that fractional calculus is very suitable to characterize materials and processes with memory and hereditary properties, which were often neglected in the classical models .Nowadays, fractional differential equation models are increasingly used to describe the problems in acoustics, thermal systems, material mechanics ,signal processing, system identification, control theory, robotics and other applied fields .This thesis is divided as follows:The first part is an introduction, briefly presents the research history and development status of the fractional calculus and fractional differential equations, and some past research works about the existence of positive solutions of the fractional differential equations.The second part studies a singular nonlinear semipositone Sturm-Liouville boundary value problem. We redefine the nonlinear part ()f y , and make the singular boundary value problem transform into a nonsingular positone boundary value problem, and then prove the existence of a positive solution for the original singular nonlinear boundary value problem by using the cone fixed point theorem as well as knowledge of functional analysis.The third part discusses the positive solution existence for Dirichlet boundary value problem of a singular nonlinear fractional differential equation. We study itsnonlinear part 0(,(),())f t x t D x t β+, and have it transform into a nonsingular boundaryvalue problem, and then prove the existence of a positive solution n x for eachboundary value problem with redefined nonlinear part 0(,(),())n f t x t D x t β+(N n ∈), andfinally we give the existence of a positive solution for the original Dirichlet boundary value problem via the limit properties of a sequence of functions on compact sets. Keywords: Differential equation, fractional differential equation, boundary value problem, positive solution, singularity, fixed point.目录摘要 (1)Abstract........................................................................................................I I 第一章绪论 (1)1.1分数阶微积分的历史 (1)1.2分数阶微分方程的研究现状 (2)第二章带有奇异的非线性Semipositone Sturm-Liouville边值问题解的存在性52.1 引言 (5)2.2 预备知识 (6)2.3 主要结果 (7)第三章带有奇异的非线性分数阶微分方程Dirichlet边值问题正解的存在性 173.1 引言 (17)3.2 预备知识 (19)3.3 主要结果 (29)参考文献 (31)攻读硕士期间发表的论文 (34)后记 (35)第一章 绪论1.1分数阶微积分的历史牛顿和莱布尼茨发明的微积分是现代数学和古典数学的分水岭,数学的发展和应用自此发生了根本性的变化,分析、几何和代数一同成为数学的三个基本研究方向和工具.对大多数研究人员和工程师而言,分数阶微积分也许还是一个新奇的概念和数学工具,但它实际上早在300多年前就已被提出,和传统的整数阶微积分有着一样久远的历史.莱布尼茨最先引入/n n d y dx 来表示导数,也正是因为这个符号的出现,促使了L’Hospital 对分数阶导数问题的思考.1695年9月,L’Hospital 在写给莱布尼茨的信中问到:“一个函数()f x 的n 阶导数可以表示为()n n d f x dx ,如果当12n =时会有怎样的结果.” 莱布尼茨在回信中写道:“这显然是一个悖论,但总有一天会得出有用的结论.”由此,分数阶微积分诞生了,在之后300多年的学习研究过程中,莱布尼茨的这句话已经得到了验证,至少他说对了一半,尤其是在二十世纪,大量有关分数阶微积分的应用被人们所发现.尽管分数阶微积分有了这些应用以及一些数学背景,然而它的物理意义却很难把握,分数阶微积分的定义也不像整数阶微积分那样完善.历史上,莱布尼茨、欧拉、拉普拉斯、Lacroix 和傅里叶都曾对分数阶导数做出过重要贡献,其中,欧拉迈出了关键的第一步.他注意到,当n 时非整数时,幂函数a x 的导数na n d x dx在数学上有意义.1812年,拉普拉斯提出了积分形式的的函数()x T t t dt -⎰的分数阶导数的思想.1819年,Lacroix 第一次给出了1/21/21/2d x dx =1823年,Abel 在求解等时曲线的积分方程时,第一次使用分数阶算子并用分数阶微积分来表示该方程的解.1832年,Liouville 成功的应用了自己提出的分数阶导数的定义,解决了势理论问题,此后,Liouvile 发表的一系列文章使他成为分数阶微积分理论的创始人.19世纪末,物理学家Heaviside发表的一系列文章表明,分数阶算子可以应用于求解特定的整数阶微分方程,从数学角度看,他的方法并不严格,但被证明对电缆中电流的传输这类问题非常有效.后来Heaviside的结果被证明是正确的,但他的处理过程在数学上并不完善,直到1919年Bromwich才把这一工作完善,Heaviside的想法极大的促进了分数阶算子的发展,但当时分数阶微积分还没有被应用于科学和工程的物理和力学建模.20世纪40年代,力学家Scott和Gerasimov分别独立的提出了介于牛顿流体和胡克定律表征的分数阶导数模型.地理学家Caputo和Mainardi将分数阶微积分方法运用到复杂黏弹性和流变介质,发展了若干的力学模型,更为重要的是,Caputo发展了一个不同于传统的Riemann-Liouville分数阶导数的新定义(被人们称为Caputo定义),克服了前者的强奇异性,并且自然的将初始条件含在定义中,在解决实际问题时得到了非常广泛的应用.1965年,美国耶鲁大学的Mandelbrot教授提出分形的概念,并首次指出自然界和工程中存在大量分数维的事实,并且整体与部分之间存在自相似现象,他认为分数阶布朗运动与Riemann-Liouville提出的分数阶微积分定义有紧密的内在联系.从此,作为分形几何和分形动力学的基础,分数阶算子理论特别是分数阶微分方程的研究开始得到广泛关注,分数阶微积分的研究重点也逐渐从纯数学领域转移到其它学科领域.20世纪末至今,由于反常扩散、多孔介质力学、非牛顿流体力学、黏弹性力学等研究的需要,分数阶导数的研究和应用再度引起广泛重视,成为多个领域学者研究的热点.1.2分数阶微分方程的研究现状现实的世界本质上是分数阶的.过去用整数阶微积分描述自然界中的事物,但自然界中许多现象依靠传统的整数阶微积分是不能精确描述的,必须对传统的微积分进行拓展才能更好的描述与研究这样的现象.分数阶微分方程是扩展传统微积分学的一种直接方式,即允许微分方程中对函数的导数阶次选择分数,而不是现有的整数.目前,分数阶算子的定义主要有Riemann-Liouville型、Caputo型、Grunwald-Letnikov型,Weyl型、Erdelyi-Kober型、Riesz型以及Marchaud-Hadamard型分数阶微积分[]23,前面三种定义用的最为广泛,同时这三种定义还存在着一定关系:Riemann-Liouville型分数阶微分定义和Caputo型分数阶微分定义都是在Grunwald-Letnikov型分数阶微分定义的基础上进行改进而得到的,但是它们同时又有各自的侧重点,其中对于Riemanna-Liouville 型定义是从数学角度出发,在计算时初始条件是必要的,但这个定义在应用方面缺乏物理背景,是得它在很大程度上不能适用于具体模型;而对于Caputo 型定义,它正好弥补了Riemanna-Liouville 型定义可以很好的应用到数学模型中去,因为此时的初始条件恰好是整数阶的导数,这样连带的初始条件就可以很好的描述一些物理现象的特征,并能准确的对它进行计算,它还比较适用于拉普拉斯变换,有利于分数阶微分方程的进一步讨论随着分数阶微积分定义的出现,分数阶微分方程的求解就成为数学家至今仍在研究的主要课题,在分数阶微分方程的解析解研究方面:Agarwal []26,29,30研究了分数常微分方程解的存在性、唯一性;Miller 和Ross []21给出了一种分数阶微分方程的求解方法;Wyss []36等人给出了分数阶Black-Scholes 方程的一个完整解;Zhanbin Bai []40,41, Chuanzhi Bai []11等研究了分数微分方程正解的存在性;然而,由于分数阶微分方程的解析解以及基本解大多带有特殊函数(如多变量的Mittag-Lemer 函数),这些特殊函数的计算是相当困难的,而且并非所有的分数阶微分方程都能得到其解析解.因此,建立分数阶微分方程的数值方法是非常必要的,在分数阶微分方程的数值解研究方面:Diethelm []1314,等人对于Adams类型的分数阶微分方程,提出用预测校正法来得到微分方程的数值解并且讨论了分数阶非线性微分方程的求解问题,在特定初值和Riemann-Liouville 型分数阶微积分定义的条件下求解分数阶微分方程的数值解;Diethelm 和Ford []15在分数阶微积分的Caputo 定一下给出了给出了一种求解分数阶微积分的数值算法;Sayed []33等人对于线性分数阶微分方程给出了一种计算其近似的数值解的算法,该算法需要很大的计算量来得到计算权数;Agrawal []4等人在Caputo 型分数阶微积分的基础上,求解了分数阶漫射波方程,数值解在实际问题中得到了广泛的应用,数学家们给出了自己的解法,每种解法都随着计算机技术的快速发展得到了验证.在最近的十多年里,有关分数阶微分方程的论文和著作相继出现,在这些论文和著作当中,也有很大一部分文章是关注不同边值条件和不同阶数取值范围下的分数阶微分方程正解存在性和唯一性问题,在不同的边值条件和阶数条件范围下,可以采用不同方法来求解分数阶微分方程的解以及证明其正解的存在性.已知的求解方法中较多是采用各种推广的特殊函数来直接求解,其中Green 函数是研究的重点内容,不同的边值条件和阶数的取值范围会产生不同的Green函数以及相应的Green函数值的有所不同,进而导致在后续估计分数阶微分方程正解的存在的条件以及在证明正解存在性的方法上出现显著差别.本文主要利用非线性泛函分析中的不动点理论,把解的存在性转化为某个非线性算子不动点的存在性.研究了一类分数阶微分方程在边值条件下正解的存在性.第二章 带有奇异的非线性SemipositoneSturm-Liouville 边值问题解的存在性2.1 引言近年来,带有奇异的或非奇异的positone 问题(其中非线性项()f y 为非负值)的研究已引起了很多的学者的关注,详见文献[17,25,26,28].最近,文章[19,20]开始讨论了Semipositone 非奇异问题. 这里Semipositone 问题指的是非线性项()f y 可能在0y =处奇异并且f 可以取负值.本章主要研究了带有奇异的非线性Semipositone Sturm-Liouville 边值问题(2.1.1)解的存在性.0μ>这里是常数,1[0,1],q L ∈:(0,)f R ∞→连续并且在0y =处奇异, ,,,0:0.αβγδργβαγαδ≥=++>及在文献[27]中作者研究了带有奇异的Semipositone Dirichlet 边值问题 ()()(())0,01(0)(1)0;y t q t f y t t y y μ''+=<<⎧⎨==⎩解的存在性.受以上文献启发,本文讨论了带有奇异的Semipositone Sturm-Liouville 边值问题(2.1.1)解的存在性.本章主要利用锥上的不动点理论来建立边值问题解的存在性,本章第二部分首先介绍了一些基本定义和引理,给出我们后面用到的基本定理,第三部分是我们的主要定理并给出了(2.1.1)式当==1αγ,==0βδ特殊情形时的一个例子,边值问题(1)0,01(0)(1)0,0,0p q y y y t y y p q μ-''⎧++-=<<⎨==>>⎩ 当μ充分小时,有一个解()2[0,1](0,1),()0,0,1y C C y t t ∈⋂>∈且有()()(())0,01(0)(0)0,(1)(1)0;y t q t f y t t y y y y μαβγδ''+=<<⎧⎪'-=⎨⎪'+=⎩2.2 预备知识定理 2.2.1[]27(,)E E K E =⋅∈设是一个Banach 空间,是一个锥,,r R 都是常数且有r R <<0.{}(=:)R R A K K x E x R Ω⋂→Ω∈<假设:这里,A 是一个连续的紧映射并且假设下列条件成立:(1) (),[0,1)E r x A x x K λλ≠∈∈∂Ω⋂且, (2) ,E R Ax x x K >∈∂Ω⋂, 那么算子{}:A K x E r x R ⋂∈≤≤在集合上有一个不动点.引理 2.2.1[]27设{}[0,1]()0,[0,1]()[0,1]K y C y t t y t ∈≥∈=:并且是上的凸函数,如果y ,K ∈那么 01()(1),[0,1];=max ()t y t t t y t y y t ≤≤≥-∈这里. 引理2.2.2 1[0,1],()0,(0,1),q L q t t ∈>∈假设那么边值问题()()=0,01(0)(0)0,(1)(1)0;y t q t t y y y y αβγδ''+<<⎧⎪'-=⎨⎪'+=⎩(2.2.1) 的解0()(),[0,1]w t w t G t t C t ≤∈满足(,);G t t 其中(,)为边值问题 =0,(0)(0)0,(1)(1)0;y y y y y αβγδ''⎧⎪'-=⎨⎪'+=⎩其中1()(),01,1()(),01,t s s t G t s s t t s γδγβαργδγβαρ⎧+-+≤≤≤⎪⎪⎨⎪+-+≤≤≤⎪⎩(,)= 100[0,1]11max ()()()()()()t t t C s q s ds s q s ds t t ψϕψϕ∈⎧⎫=+⎨⎬⎩⎭⎰⎰ 记 ():,():,01t t t t t ϕγδγψβα=+-=+≤≤.证明:因为(2.2.1)式的解Green G t s 的函数(,)当t=s 的情形,1011()()()()()()()t t w t t s q s ds s t q s ds γδγβαγδγβαρρ=+-+++-+⎰⎰10()()1()()()()t t t t s q s ds s q s ds ϕψβαγδγρρρ=+++-⎰⎰ 10()()()()()()t t t t t t q s ds q s ds ϕψϕψρρ≤+⎰⎰ 所以有00()()()(,)t t w t C G t t C ϕψρ≤=. 引理2.2.3 :(0,)f R M ∞→>设的连续函数并且存在一个常数0,使得 ()0,f u M +≥(0,)u ∀∈∞,若边值问题*()()(()())0,01(0)(0)0,(1)(1)0;y t q t f y t t t y y y y μφαβγδ''⎧+-=<<⎪'-=⎨⎪'+=⎩(2.2.2) 211[0,1](0,1)()(),(0,1),y C C y t t t φ∈⋂>∈有一解且 ()=(),t Mw t φμ这里 *()(),0f v f v M v =+>.1()()()u t y t t φ=-那么 为(1.1.1).式的一个非负解证明:因为1()()()u t y t t φ''''''=-=*1()(()())()q t f y t t Mq t μφμ--+ []1()(()())()q t f y t t M Mq t μφμ=--++1()(()())()(())q t f y t t q t f u t μφμ=--=-所以有()u t ''=()(())q t f u t μ-,即1()()()u t y t t φ=-是(2.1.1).式的一个非负解2.3 主要结果假设下列条件成立:(H1):(0,)f R M ∞→>的连续函数并且存在一个常数0,使得()0,f u M +≥ (0,)u ∀∈∞.(H2)()()()f u M g u h u +=+,(0,)u ∀∈∞,其中0g ∞为(,)上正的连续递减函数 并且存在000()()(),0,0K g ab K g a g b a b >≤∀>>使得. h ∞为[0,)上的连续非负函数并且有0hg∞为(,)上的递增函数. (H3) 存在常数,(,)(1),L G t t Lt t ≤-使得 存在0,r MLC μ>使得00001,()11()r du K b gu MLC h r g r g r μμ>⎛⎫⎛⎫-+ ⎪⎪⎝⎭⎝⎭⎰ 1021002max 2(1)(),2(1)(),b t t q t dt t t q t dt ⎧⎫=--⎨⎬⎩⎭⎰⎰其中,100[0,1]11max ()()()()()()t t t C s q s ds s q s ds t t ψϕψϕ∈⎧⎫=+⎨⎬⎩⎭⎰⎰. (H4)11((1))(0,),()(,)2()((1))((1))a a Rg a a R a R r q s G s ds g R g a a R h a a R εμσεε--∈>≤-+-⎰存在有这里 00MLC Rμεε>≥是任意常数且满足1-,11[0,1]01()(,)sup ()(,)a aaat q s G s ds q s G t s ds ξξ--∈≤≤=⎰⎰满足.定理2.3.1 假设条件(H1)、(H2)、(H3)和 (H4)成立,那么边值问题(2.1.1) 式有一个解2[0,1](0,1)(0,1)()0.y C C t y t ∈⋂∈>且有当时证明:记0*0001:(1)m N m N a a R m ηηε⎧⎫=∈<<-⎨⎬⎩⎭且. 我们首先证明边值问题0,()()(()())0,011(0)(0),1(1)(1),m y t q t f y t t t y y m y y m N m μφαβγδ⎧''⎪+-=<<⎪⎪'-=⎨⎪⎪'+=∈⎪⎩(2.3.1) 对0m N ∀∈有一个解m y ,()0,()(),[0,1],,m m m y t y t t t r y R φ≥≥∈≤≤这里1()()(),()11()(),0.m f v M g v h v v mf vgh v v mm ⎧+=+≥⎪⎪=⎨⎪+≤≤⎪⎩欲证(2.3.1)式,我们接下来看下式*0,()()(()())0,011(0)(0),1(1)(1),m y t q t f y t t t y y m y y m N m μφαβγδ⎧''⎪+-=<<⎪⎪'-=⎨⎪⎪'+=∈⎪⎩(2.3.2) *1()()(),11()()(),01()(0),0.m f v M g v h v v m f v g h v v mm g h v m ⎧+=+≥⎪⎪⎪=+≤≤⎨⎪⎪+≤⎪⎩这里所以我们有*()0,(,).m f v v ≥∀∈-∞∞0,([0,1],){[0,1]()0,[0,1]()[0,1]}.m N E C y C y t t y t ∈=∈≥∈固定并且K=:且是上的凸函数()():[0,1]y t y t A K C →是边值问题(2.3.2)式的解当且仅当是算子1*01()()(()())(()())m Ay t G t s q s f y s s ds t t mμφϕψρ=-++⎰(,) (2.3.3)的不动点.:[0,1]A K C →由文献[27]知算子是连续的并且是全连续算子.:A K K →接下来验证*()0,(,)()0.m u K f v v Au t ∀∈≥∀∈-∞∞≥对,因为,所以有同时也容易看出()0A u t ''≤,(0,1),.t ∈ {}{}12=[0,1]:,[0,1]:.u C u r u C u R Ω∈<Ω=∈<设1,[0,1).y Ay y K λλ≠∈∈⋂∂Ω我们首先证明且=0.(0,1)=y Ay y Ay λλλλ≠∈当时,显然成立当时,假设成立,我们有*()()(()())0,01m y t q t f y t t t λμφ''+-=<< (2.3.4)00[0,1](0,1),(0,)()0,y t t t y t '∈∈≥由是凸函数可知,在区间上存在点使得当时有000(,1)()0,().t t y t t y t y r '∈≤==时有并且在处有0(,)()(1)=()(1)()(,),0,1(1)G t t y t t t y y t t t r w t G t t C L t t t ≥-≥-≤≤∈-因为以及,()0()()()=()1()1()MLC Mw t y t t y t y t y t r μμφ⎡⎤⎡⎤--≥-⎢⎥⎢⎥⎣⎦⎣⎦所以 0,r MLC μ>由于所以有0()()()10,0,1MLC y t t y t t r μφ⎡⎤-≥->∈⎢⎥⎣⎦() (2.3.5) *11()=()()()0m v f v g v h v v v m m≥+∞≤≤当时,,因为g 在(0,)上递减,所以当时,*1()()()()()m f v g h v g v h v m=+≤+,*(()())(()())(()()),(0,1)m f y t t g y t t h y t t t φφφ-≤-+-∈故有(0,1)(2.3.4)x ∈因此当时,由式我们有()()(()())(()())y x q x g y x x h y x x μφφ''≤-+--(()())()(()())1(()())h y x x q x g y x x g y x x φμφφ⎧⎫-=-+⎨⎬-⎩⎭(2.3.5)由式,我们有0(()())()()()11(()())MLC h y x x y x q x g y x r g y x x μφμφ⎧⎫-⎡⎤''≤-+⎨⎬⎢⎥-⎣⎦⎩⎭-() 00()1)1()())(MLC h r K gq x g y x rg r μμ⎧⎫≤-+⎨⎬⎩⎭(() (2.3.6) 不等式00()t t t t ≤两边从到积分得,00()()(())1)1()(t t MLC h r y t K g y t g q x dx rg r μμ⎧⎫'≤-+⎨⎬⎩⎭⎰() (2.3.7) =y Ay λ由知,1*01()()(,)()(()())(()())m y t Ay t G t s q s f y s s ds t t mμφϕψρ≤=-++⎰ 1*1(,)()(()())(()())m G t t q s f y s s ds t t mμφϕψρ≤-++⎰1*1(1)()(()())(()())m Lt t q s f y s s ds t t mμφϕψρ≤--++⎰ 因此++(0)(1)y y m mγδβαδβρρ++≤≤有,. 取++=max ,m mm γδβαδβηρρ⎧⎫++⎨⎬⎩⎭0(2.3.7)t ,对式两边从0到积分,以及由分部积分得00+00()1)1()()(rt mMLC duh r K g xq x dx g u r g r γδβρμμ+⎧⎫≤-+⎨⎬⎩⎭⎰⎰() 有 0000()11)11)()()(1mrt MLC duh r K g x x q x dx g u r g r t ημμ⎧⎫≤-+-⎨⎬-⎩⎭⎰⎰(()000(2.3.6()1t t t t t ≥类似的,如果我们对)式两边先从到积分,然后再对不等式两边从到积分得m1000()11)11)()()(rt MLC duh r K g x x q x dx g u r g r t ημμ⎧⎫≤-+-⎨⎬⎩⎭⎰⎰(()有 000()1)1()(mrMLC duh r K b g g u r g r ημμ⎧⎫≤-+⎨⎬⎩⎭⎰() (2.3.8) 其中0b 为条件(H3)中所定义,又因为由条件(H3)有00001()11()r du K b gu MLC h r g r g r μμ>⎛⎫⎛⎫-+ ⎪⎪⎝⎭⎝⎭⎰ 所以当η充分小时有0001()11()r du K b gu MLC h r g r g r ημμ>⎛⎫⎛⎫-+ ⎪⎪⎝⎭⎝⎭⎰ 与(2.3.8)式产生矛盾.接下来我们证明,当 2y K Ay y ∈⋂∂Ω>时,有,2K ⋂∂Ω因为当时, 有()(1),[0,1]y t t t R t ≥-∈.0(0,1)()()()1()(1)MLC t y y t t y t y t t t R r μφεε⎡⎤∈∈-≥-≥≥-⎢⎥⎣⎦当时, [],1t a a ∈-因此,当时,我们有 ()()(1),y t t a a R φε-≥-1()()(1)y t t a a R m φε-≥->由 有 []*(()())=(()())(()()),,1mf y t tg y t th y t t t a a φφφ--+-∈- 1*01()()(()())(()())m Ay G s q s f y s s ds mξμξφϕξψξρ=-++⎰(,) 1*()(()())a m a G s q s f y s s dsμξφ-≥-⎰(,)1(()())()(()())1(()())a ah y s s G s q s g y s s ds g y s s φμξφφ-⎧⎫-=-+⎨⎬-⎩⎭⎰(,)1((1))()1()((1))aa h a a R g R G q s ds g a a R εμξε-⎧⎫-≥+⎨⎬-⎩⎭⎰(,s)(),(2.9).Ay R y ξ≥=由条件(H4)知因此式成立211.2.1(\),(1),[0,1]m m m A y r y R y t t r t ∈ΩΩ≤≤≥-∈由定理知有不动点并且有.0(1)(1)()()m y t t r MLC t t Mw t t μμφ≥->-≥=因为m y 所以是边值问题(2.3.1)式的解.{}0[0,1].m m N y ∈下证是定义在区间上的有界,等度连续的函数族因为 *(()())(()())(()()),(0,1).m m m m f y t t g y t t h y t t t φφφ-≤-+-∈(()())()()(()())1(()())m m m m h y t t y x q x g y t t g y t t φμφφ⎧⎫-''≤-+⎨⎬-⎩⎭所以我们有-00()()1)1()())()m m MLC h R y x K g q x gy x rg R μμ⎧⎫''≤-+⎨⎬⎩⎭-(( (2.3.9) 0(),()()()1()1,(0,1)()m m m m m MLC Mw s r y R y s s y s y s s y s r μμφ⎡⎤⎡⎤≤≤-=-≥-∈⎢⎥⎢⎥⎣⎦⎣⎦又因为,(0,1),(0,)()0,(,1)()0,m m m m m t t y t t y t ''∈≥≤同时存在使得在区间上在区间上 (2.3.9)()m m t t t t ≤对式两边从到积分得00()()1)1()())(mt m t m y t MLC h R K g q x dx g y t r g R μμ'⎧⎫≤-+⎨⎬⎩⎭⎰(() (2.3.10)(2.1.9)()m m t t t t ≥另一方面式两边从到积分得00()()1)1()())(m tm t m y t MLC h R K g q x dx g y t r g R μμ'⎧⎫-≤-+⎨⎬⎩⎭⎰(()(2.3.11) 由(2.3.10)、(2.3.11)式可知'00()()1)1(),(0,1)())(m m y t MLC h R K g v t t g y t rg R μμ⎧⎫≤-+∈⎨⎬⎩⎭(()(2.3.12) 其中{}{}10max ,min ,()()t a t a v t q x dx =⎰,{}{}00010inf :sup :1m m a t m N t m N a <<∈≤∈<<.注:这里0,1()0m m m t y t '=是区间()上唯一的一点,满足,有{}0inf :0m t m N ∈>. 倘若不成立,那么存在0N 的子列,使得0m m t →∞→当时,有. 对(2.3.10)式两边从0m t 到积分可得()00000()1)1()()(()m m m m y t t MLC duh R du K g xq x dx g u r g R g u ημμ⎧⎫≤-++⎨⎬⎩⎭⎰⎰⎰() (2.3.13) 因为0,0m m m t η→∞→→当时,有,由(2.3.13)式可知m →∞当时有()0m m y t →,然而因为()m m y t 在区间[0,1]的最大值在m t 处取得,所以当0m m y →∞→当时,有这与()(1),[0,1]m y t t t r t ≥-∈矛盾 故有{}0:m 0m inf t N ∈>.类似的可以证明{}0sup :1m t m N ∈<. 定义映射0:[0,)[0,),()()y duI I y g u ∞→∞=⎰,显然{}0)m m N I y ∈(是有界的.(())(())m m I y t I y s -()()()()(())m m y t t my s sm y x dudx g u g y x '==⎰⎰00()1)1()(ts MLC h R K g v x dx rg R μμ⎧⎫≤-+⎨⎬⎩⎭⎰() 可知{}0)m m N I y ∈(是等度连续的. 由,[]1()I I R -在区间0,上的一致连续性以及11())(()=((()))((()))m m m m y t I y s I I y t I I y s ----知{}0[0,1]m m N y ∈是定义在区间上的有界,等度连续的函数族.由Arzela Ascoli -定理知,存在0[0,1],N N y C ∈的子列以及函数 m →∞当时m y y 有在区间[0,1]上一致收敛到同时有(0)(0)0y y αβ'-=(1)(1)0y y γδ'+=,r y R ≤≤,()(1),[0,1]y t t t r t ≥-∈,且有0()(1)(1)()()y t t t r MLC t t Mw t t μμφ≥->-≥=. 固定(0,1)t ∈,不失一般性,我们假设12t >,固定(0,1),x x t ∈>满足,对1[,]2s x ∀∈ 0()()()()1()1()MLC Mw s y s s y s y s y s r μμφ⎡⎤⎡⎤-=-≥-⎢⎥⎢⎥⎣⎦⎣⎦00(1)(1)112MLC MLC x s s r r r r μμ-⎡⎤⎡⎤≥--≥-⎢⎥⎢⎥⎣⎦⎣⎦选择0001(1)12MLC x n N r n r μ-⎡⎤∈<-⎢⎥⎣⎦使得,,设{}10:.N m N m n =∈≥ 当1,m y m N ∈时,由泰勒公式有12111()()()222x m m m y x y y x f s x s ds⎛⎫⎛⎫⎛⎫'''=+-+- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎰=[]12111()(()())(()()()222x m m m m y y x q s g y s s h y s s s x ds μφφ⎛⎫⎛⎫⎛⎫'+-+-+-- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎰因为(1)()m rs s y s R -≤≤,所以11,2my m N ⎧⎫⎛⎫'∈⎨⎬ ⎪⎝⎭⎩⎭为有界序列,[]0,1s ∈. 故112m m N y ∈⎧⎫⎛⎫'⎨⎬ ⎪⎝⎭⎩⎭有一个收敛的子列,不妨设子列的极限收敛到0r R ∈, 在1N 中当m →∞时,我们有,[]10211()()(()())(()()()22x y x y r x q s g y s s h y s s s x ds μφφ⎛⎫⎛⎫=+-+-+-- ⎪ ⎪⎝⎭⎝⎭⎰(2.3.14)对(2.3.14)式两边求二阶导有[]()()(()())(()())0y x q x g y x x h y x x μφφ''+-+-=所以有 [][]()()(()())(()())0,0,1y t q t g y t t h y t t t μφφ''+-+-=∈*()()(()())0,01y t q t f y t t t μφ''+-=<<.因此y 为(2.2.2)式的解并且有()()y t t φ>,(0,1)t ∈. 下面我们通过一个实例来给出了定理2.3.1的一个应用. 例:考虑边值问题(1)0,01(0)(1)0,p q y y y t y y μ-''⎧++-=<<⎨==⎩ (2.3.15) 这里0(0,)μμ∈且满足()100(1)12pp μμ++≤. (2.3.16)那么边值问题(1.3.15)式有一个解()0,(0,1)y y t t ≥∈且.我们将应用定理 2.3.1来证明,边值问题(2.3.15)式是(2.1.1)式当==1αγ,==0βδ的特殊情形. 设01,(),(),1p q M g y y h y y K -====,1L =,14a =,其中 100[0,1]11max ()()()()()()t t t C s q s ds s q s ds t t ψϕψϕ∈⎧⎫=+⎨⎬⎩⎭⎰⎰10[0,1]111max 112t t t sds sds t t ∈⎧⎫=+-=⎨⎬-⎩⎭⎰⎰. 11210021max 2(1),2(1)6b t t dt t t dt ⎧⎫=--=⎨⎬⎩⎭⎰⎰.01122r MLC r μμμ==<≤=取时有,,()1001112121121()11()ppp r p q du r gu r rp p MLC h r g r g r μμμ++⎛⎫- ⎪⎛⎫⎝⎭=-= ⎪+++⎛⎫⎛⎫⎝⎭-+ ⎪⎪⎝⎭⎝⎭⎰ (2.3.16)由式有()()00000011122222121()11()p pr du K b p p gu MLC h r g r g r μμμμμμ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭≤<≤≤=++⎛⎫⎛⎫-+ ⎪⎪⎝⎭⎝⎭⎰ 取01111222MLC R R R μμε=>=-≥,当时有,1- . 最后当,1R q →∞>时有,13((1))320()((1))((1))333232pq p qp qR Rg a a R g R g a a R h a a R Rεεε-+-+⎛⎫⎪-⎝⎭=→-+-⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭. 因此定理2.3.1的条件(H1)、(H2)、(H3)、(H4)均满足,故边值问题(2.3.15)式有一个解()0,(0,1)y y t t ≥∈且.第三章 带有奇异的非线性分数阶微分方程D i r i c h 边值问题正解的存在性3.1 引言近年来,人们开始并越来越多的关注、研究分数阶微分方程,主要是因为分数阶微积分自身理论的发展以及在多种学科中的应用,例如物理学,化学,工程学等等,详见文献[8,23,30,31].分数阶微分方程的Dirichlet 边值问题是很多学者研究是的焦点,在文献[40]中作者研究了边值问题()(),()0(0)(1)0D y t f t y t y y α+===正解的存在性和多解性,这里[][]()12,0,1,0,f C α<≤∈∞为非负函数,Bai Zhanbin 通过Krasnosel’skii 不动点定理和Leggett-Williams 不动点定理得到了相关结论.在文献[32]中,Zhang 研究了边值问题()(2)()(),,0,01,1n D u t q t f u u u t n n αα-'+=<<-<≤, (3.1.1)(2)(2)(0)(0)(0)(1)0,n n u u u u --'===== (3.1.2)这里0D α+是标准的Riemann-Liouville 分数阶导数,q 可能在t=0处奇异,f 可能在(2)0,0,0n u u u -'===处奇异.在此基础上Goodrich 在文献[42]中研究了边值问题()0(),(),01,1,vD y t f t y t t n v n +-=<<-<≤ (3.1.3) ()0,02,i y i n =≤≤-(0) (3.1.4)00()0,12,t D y t n αα+=⎡⎤=≤≤-⎣⎦ (2.1.5)这里的3n >,可以看出边值条件(3.1.2)式是边值条件(3.1.4)和(3.1.5)式的特殊情形,文献[42]在Zhang 研究的基础上进一步阐述了Green 函数的有关性质Harnack-like 不等式,这是在锥上寻找正解存在性的一个重要性质.文献[28]中Agarwal 等研究了边值问题()(),(),()0,D u t f t u t D u t αμ+= (3.1.6) (0)(1)0,u u == (3.1.7)正解的存在性,这里12,0,1αμαμ<<>-≥,0D α+是标准的Riemann-Liouville 分数阶导数.f 是正的Caratheodory 函数并且(,,)0f t x y x =在处奇异,通过锥上的不动点定理以及函数列的相关性质证明了边值问题(3.1.6)、(3.1.7)式正解的存在性.本章主要在文献[28,42]的基础上研究下面的带有奇异的非线性分数阶微分方程Dirichlet 边值问题00()(,(),())0,01D x t f t x t D x t t αβ+++=<< (3.1.8) ()(0)0,02i x i n =≤≤- (3.1.9)01()0,02t D x t n μμ+=⎡⎤=≤≤-⎣⎦ (3.1.10)正解的存在性.这里1n n α-<≤,01βα<≤-,f 是正的Caratheodory 函数并且在[0,1],(0,)B B ⨯=∞⨯上满足Caratheodory 条件(([0,1]f C a r B ∈⨯,(,,)0f t x y x =在处奇异,0D α+是标准的Riemann-Liouville 分数阶导数.我们说函数f 在集合[0,1],(0,)B B R ⨯=∞⨯上满足Caratheodory 条件,如果函数f 满足下面三个条件:[]()(,,):0,1(,)a f x y x y B →∀∈是可测函数,成立, [](b)(,,):0,1f t B t →∈是连续的,a.e.成立, []1()0,1,c B L κκϕ∈对中的任一紧集,存在函数使得[](,,),0,1(,)f t x y t x y B κϕ≤∈∀∈a.e.,成立,函数[]0,1u C ∈称为边值问题(2.1.8)-(2.1.10)的一个正解,如果x 在区间(0,1)上有0x >,[]00,1D x C β+∈,[]100,1D x L μ+∈且满足边值条件(3.1.9)、(3.1.10)式和等式(3.1.8),对几乎所有的[]0,1t ∈成立.本文中假设函数f 满足下列条件:[]()1():0,1,(0,),H f Car C B B ∈⨯=∞⨯[]0lim (,,),..0,1,x f t x y a e t y +→=∞∈∀∈(3.1.11)并存在正整数m 满足(,,)(1)f t x y m t μ≥-,[]..0,1,(,)a e t x y ∈∈∀∈(3.1.12)()[]2():(,,)()()()(),..0,1,(,)H f t x y t q x p x y a e t x y B γω≤++∈∈∀∈这里[]()[)1()0,1,0,1,,0,1t L q C p C γω∈∈∈都是正的函数,其中q 单调递减,,p ω单调递增,且有[]10()((1))s q K s s ds αγ-<∞⎰,()1mK α=Γ+ (3.1.13)()()lim0x p x x xω→∞+= (3.1.14)因为(3.1.8)式是一个奇异方程,故我们定义1(,,)11(,,)0n f t x y x n f f t y x n n⎧≥⎪⎪=⎨⎪≤<⎪⎩有[]()[)**0,1,0,n f Car C B B ∈⨯=∞⨯,n ∈,由条件1()H 和2()H 可得[]*1(,,)()()()(),..0,1,(,)n f t x y t q p x y a e t x y B n γω⎛⎫≤++∈∈∀∈ ⎪⎝⎭ (3.1.15)[]1(,,)()()()(),..0,1,(,)n f t x y t q p x y a e t x y B n γω⎛⎫≤++∈∈∀∈ ⎪⎝⎭(3.1.16)接下来我们首先讨论一般的分数阶微分方程00()(,(),())0,01n D x t f t x t D x t t αβ+++=<< (3.1.17) 3.2预备知识定义2.1[]40空间[]0,1C 上的范数[]{}max ():0,1x x t t =∈,空间[]10,1L 上的 的范数1()Lxx t dt =⎰.定义 3.2[]40函数:(0,)(0)y R Riemann Liouville α∞→>-,阶数为的分数阶积分由以下公式给出:1001I ()()()()ty t t s y s ds ααα-+=-Γ⎰ (3.2.1) 上式右端在(0,)∞上有定义,其中10()s e s ds αα∞--Γ=⎰.定义3.3[]40函数:(0,)(0)y R Riemann Liouville α∞→>-,阶数为的分数阶微分由以下公式给出:0101()()()()n tn d y s D y t ds n dt t s ααα+-+⎛⎫= ⎪Γ--⎝⎭⎰ (3.2.2)上式右端在(0,)∞上有定义,其中[]1n α=+,[]α表示实数α的整数部分.引理3.1[]28关于分数阶微积分有如下性质:(1)00I ()()D y t y t αα++=,..(0,1]a e t ∈, 1(0,1)y L ∈, 0α>(2)如果0α>,0λ>,那么110()()D ttαλλαλλα---+Γ=Γ- (3) []10()(,1),0,1tt s s ds t B t βααβαβ----=-∈⎰,其中B 为Beta 函数1110(,)(1),0,0p q B p q x x dx p q --=->>⎰,()()(,)()p q B p q p q ΓΓ=Γ+(4) [][]1()(),0,1,()0,1.I I f t I f t t f t L αβαβ+=∈∈ 由性质(4)可知()111()()()(,)()()t s tt s s f d ds B t s f s ds αβαβττταβ+-----=-⎰⎰⎰引理3.2[]40设0α>,如果(0,1)(0,1)y C L ∈⋂,那么分数高阶微分方程0()0D y t α+=有唯一解1212()N N y t C t C t C t ααα---=+++,,1,2,,i C R i N ∈=,其中N 是大于或等于α的最小整数.引理 3.3[]40设0α>,如果(0,1)(0,1)y C L ∈⋂且关于α的分数阶导数0()(0,1)(0,1)D yt C L α+∈⋂,那么120012I ()()N N D u t u t C tC t C t ααααα---++=++++ (3.2.3)其中,,1,2,,i C R i N ∈=,N 是大于或等于α的最小整数.引理3.4[]42设[]0,1f L ∈,那么边值问题0()()0,01,1D u t f t t n n αα++=<<-<≤, ()(0)0,02i u i n =≤≤-01()0,02t D u t n ββ+=⎡⎤=≤≤-⎣⎦有唯一的解1()(,)()y t G t s y s ds =⎰,其中11111(1)(),01()(,)=(1),01()t s t s s t G t s t s t s ααμαααμαα-------⎧---≤≤≤⎪Γ⎪⎨-⎪≤≤≤⎪Γ⎩证明:由引理2.3知,边值问题的解为12120()I ()n n u t C t C t C t f t αααα---+=+++- (3.2.4)由边值条件(1.4)式知230n C C C ====,对上式两边求μ阶导数,由引理2.1以及边值条件(2.1.5)式知11010()1()()()()()tD u t C t t s y s ds μαμαμααμαμ----+Γ=--Γ-Γ-⎰ 当1t =时有,1110()10(1)()()()C s y s ds αμααμαμ--Γ=--Γ-Γ-⎰,故有 11101(1)()()C s y s ds αμα--=-Γ⎰ 1111001()(1)()()()()()t t y t s y s ds t s y s ds ααμααα----=---ΓΓ⎰⎰111111011((1)())()(1)()()()t tt s t s y s ds t s y s ds ααμαααμαα-------=---+-ΓΓ⎰⎰ 设[][]{}0,1:0,1X x C D x C β=∈∈,给空间X 赋以范数{}*max ,x x D x β=,由文献[14]知X 是Banach 空间.定义空间X 中的锥P ,[]{}:()0,0,1.P x X x t t =∈≥∈为了证明边值问题(3.1.9)、(3.1.10)、(3.1.17)有一个正解,我们首先通过公式定义锥上的算子n T ,10()(,)(,(),())n n T x G t s f s x s D x s ds β=⎰ (3.2.5)引理3.5如果条件1()H 和2H ()成立,那么:n T P P →是一个全连续算子. 证明:设x P ∈,因为[]*(0,1)n f Car B ∈⨯,所以[]10,1n f L ∈,故有10()(,)(,(),())n n T x G t s f s x s D x s ds β=⎰1110(1)(,(),())()n t s f s x s D x s ds ααμβα---=-Γ⎰ 101()(,(),())()t n t s f s x s D x s ds αβα---Γ⎰ []10()(,(),())0,1(,)0tn t s f s x s D x s ds C G t s αβ--∈≥⎰由以及,可知()()[]()()0,1,0n n T x t C T x t ∈≥ (3.2.6)接下来由引理3.1的性质(3)、(4)可知()()()()()()101nn tn n d D T x t t s T x s ds n dt βββ--⎛⎫=- ⎪Γ-⎝⎭⎰()()()111(,)(,(),())nn t nd t s G s f x D x d ds n dt ββτττττβ--⎛⎫=- ⎪Γ-⎝⎭⎰⎰=()()1111001s (1)(,(),())()nn tn d t s f x D x d ds n dt αβαμβτττττβα-----⎛⎫-- ⎪Γ-Γ⎝⎭⎰⎰()()110011()(,(),())()nn t s n d t s s f x D x d ds n dt βαβτττττβα---⎛⎫--- ⎪Γ-Γ⎝⎭⎰⎰()()111101s (1)(,(),())()nn t n d t s ds f x D x d n dt βααμβττττταβ-----⎛⎫=-- ⎪ΓΓ-⎝⎭⎰⎰ ()()()+101,(,(),())()nn t n d B n t f x D x d n dt αββαβττττταβ--⎛⎫--- ⎪ΓΓ-⎝⎭⎰()()1+1101,(1)(,(),())()nn n d t B n f x D x d n dt αβαμβαβττττταβ----⎛⎫=-- ⎪ΓΓ-⎝⎭⎰ ()()()+101,(,(),())()n n t n d B n t f x D x d n dt αββαβττττταβ--⎛⎫--- ⎪ΓΓ-⎝⎭⎰ ()()(11101,(1)(,(),())()i n n B n it f x D x d n αβαμβαβαβττττταβ----≤≤--∏-+=-ΓΓ-⎰()10(,(),())tn t f x D x d αββτττττ--⎫--⎪⎭⎰所以有()()()(11101(1)(,(),())i n nn iD T x t ts f s x s D x s ds n βαβαμβαβαβ----≤≤-∏-+=-Γ+-⎰()1(,(),())tn t s f s x s D x s ds αββ--⎫--⎪⎭⎰ (3.2.7)因此有[]0,1,:n n D T x C T P P β∈→.为了证明n T 是一个连续算子,设{}m x P ⊂是一个收敛序列而且有*lim 0m m x x →∞-=,可知*,m x M m ≤∀∈对,M 是一个正的常数,因为[]*(0,1)n f Car B ∈⨯,我们有[]lim (,(),())(,(),()),..0,1n m m n m f t x t D x t f t x t D x t a e t ββ→∞=∈由(2.1.15)、(2.1.16)式可知,10(,(),())()()()()n m m f t x t D x t t q p M M n βγω⎛⎫<≤++ ⎪⎝⎭(3.2.8)由Lebesgue 控制收敛定理有1lim (,(),())(,(),())0n m m n m f t x t D x t f t x t D x t dt ββ→∞-=⎰ (3.2.9)()10()()()()(,)(,(),())(,(),())n m n n m m n T x t T x t G t s f s x s D x s f s x s D x s ds ββ-=-⎰ ()1(1,)(,(),())(,(),())n m m n G s f s x s D x s f s x s D x s ds ββ≤-⎰10(,(),())(,(),())n m m n f s x s D x s f s x s D x s ds ββ≤-⎰()()()11101()()()()(1)(,(),())(,(),())i n n m n n m m n iD T x t D T x t ts f s x s D x s f s x s D x s dsn ββαβαμββαβαβ----≤≤-∏-+-≤--Γ+-⎰()()()101(,(),())(,(),())ti n nmm n it s f s xs D x s f s x s D x s dsn αβββαβαβ--≤≤-∏-++--Γ+-⎰()1012(,(),())(,(),())i n n m m n if s x s D x s f s x s D x s ds n ββαβαβ≤≤-∏-+≤-Γ+-⎰故有lim 0n m n m T x T x →∞-=,所以n T 是连续算子.最后,设P X Ω⊂是中的有界集,*,x x L ∀∈Ω≤有,L 是一个正的常数,由于[]*(0,1)n f Car B ∈⨯,所以存在[]10,1L ϕ∈使得()[]0(,(),())..0,1,n f t x t D x t t a e t x βϕ<≤∈∀∈Ω对[],0,1x t ∀∈Ω∈有,11()()(,)(,(),())(,(),())n n n L T x t G t s f s x s D x s ds f s x s D x s ds ββϕ=≤≤⎰⎰()11101()()(1)(,(),())i n n n iD T x t t s f s x s D x s ds n βαβαμβαβαβ----≤≤-∏-+=-Γ+-⎰()1(,(),())tn t s f s x s D x s ds αββ----⎰()012i n L i n αβϕαβ≤≤-∏-+≤Γ+-故()n T Ω是X 中的有界集,下证n T 是等度连续的,设1201t t ≤<≤,1111212101()()()()()(1)(,(),())()n n n T x t T x t t t s f s x s D x s ds αααμβα-----=--Γ⎰111120(()())(,(),())t n t s t s f s x s D x s dsααβ--+---⎰2112()(,(),())t n t t s f s x s D x s dsαβ---⎰1111111211201()(1)()(()())()()t t t s s ds t s t s s ds αααμααϕϕα------≤--+---Γ⎰⎰。

具有变号非线性项的分数阶微分方程边值问题正解的存在性

具有变号非线性项的分数阶微分方程边值问题正解的存在性

具有变号非线性项的分数阶微分方程边值问题正解的存在性1. 引言1.1 背景介绍分数阶微分方程是一种介于整数阶和整数阶之间的微分方程,其在描述复杂系统动力学行为和非线性现象方面具有独特的优势。

随着分数阶微积分的发展和应用,人们对分数阶微分方程的研究也越来越深入。

在实际问题中,往往会涉及到非线性项,而非线性项的特性决定了微分方程解的性质。

具有变号非线性项的分数阶微分方程是研究中的一个重要课题。

变号非线性项的引入会使得微分方程的解集合更加复杂,从而增加了研究的难度和挑战性。

边值问题是求解微分方程时常常遇到的问题之一,对于具有变号非线性项的分数阶微分方程来说,边值问题的正解存在性成为了研究的焦点之一。

正解的存在性理论不仅对深入理解微分方程的性质具有重要意义,还具有广泛的实际应用价值。

在本文中,我们将讨论具有变号非线性项的分数阶微分方程边值问题正解的存在性问题,并探讨相关的证明方法和存在性结论。

通过对这一问题的研究,我们希望能够为分数阶微分方程的理论研究和实际应用提供一定的参考和指导。

【2000字】1.2 研究意义分数阶微分方程是近年来研究的热点之一,由于其在描述复杂系统中的行为具有更好的适应性和精确性,因此受到了广泛关注。

具有变号非线性项的分数阶微分方程是一类更为复杂和具有挑战性的问题,对其性质和解的存在性进行研究具有极大的理论和应用价值。

在实际问题中,很多现象和过程并不能完全用传统的整数阶微分方程来描述,而需要引入分数阶微积分来更准确地刻画。

研究具有变号非线性项的分数阶微分方程可以更好地解释现实中复杂系统的行为,为相关领域的研究提供理论支持和指导。

正解的存在性问题一直是数学研究的重要课题之一,对于分数阶微分方程边值问题正解的存在性理论的研究不仅可以深化对这类方程的理解,还可以提高数学领域对于非线性问题的分析能力,拓展数学的应用范围和解决实际问题的能力。

研究具有变号非线性项的分数阶微分方程边值问题正解的存在性对于推动分数阶微分方程领域的发展具有重要的意义,对于理论研究和实际应用都具有积极的推动作用。

高阶非线性分数阶微分方程解的存在性和唯一性

高阶非线性分数阶微分方程解的存在性和唯一性

第55卷第1期2021年2月华中师范大学学报(自然科学版)JOURNAL OF CENTRAL CHINA NORMAL UNIVERSITY (Nat Sci.)Vol55 No1Feb&2021DOI :10. 19603/j. cnki. 1000-1190. 2021 01 002 文章编号:1000-1190(2021)01-0007-08高阶非线性分数阶微分方程解的存在性和唯一性韩伟!,原战琴(中北大学理学院,太原030051)摘要:研究了一类高阶非线性分数阶三点边值问题非平凡解的存在性和唯一性,主要是通过有 序的实Banach 空间上的非线性算子方程# = A (,#) +E(##)十e 来研究的.其中@,B 为混合单调算子,利用锥上的不动点定理,得到了非平凡解的存在性和唯一性,又构造了两个迭代序列来近似的逼近解.此外,作为主要的结果应用,给出了一个例子来说明.关键词:算子方程;不动点原理;非平凡解;三点边值问题中图分类号:O175.25 文献标志码:A 开放科学(资源服务)标志码(OSID ):众所周知,分数阶微分方程已经广泛应用到微 分方程的各个领域:物理,化学,工程,生物学'T.本文主要 实Banach E 中关于方程u = A(u,u ) + B(u,u ) + e 解的存在性和唯一 性.其中A 'A 是 单,e #P 且P 是E 中的一个正规锥.事实上,文献[R-5]中解的存在性和唯一性都是局部的,考虑的算子方程是在P j,e 中研究的.接下来得到D 0+G(,s )的取值范围应的 , 到问题(1)非平凡解的存在性和唯一性.本文 研究的问题是—D "+ u () = ftt , u(t ) , D 0+u(t ) )+g(t , utt ) , utt ) )—2, t # (0,1);u (e >(0) = 0 , i = 0 , 1, 2 , 3 ,■•• ,0 ― 2 ;(1)[[D 0+u(t )(=1 =BD 0+u(**), 0 — 2收稿日期:2019-09-01.基金项目:山西省高等学校科技创新项目(201802085);山西省自然科学基金项目(201901D211276);中北大学科研创新团队支持计划(TD201901);山西省高等学校优秀青年学术带头人支持计划项目.* 通信联系人.E-mail : sh _hanweiweil @126. com.其中,D 0+是 的 - 尔分数a 阶导数,0—1<a %0(" # N , 0 7 2). D 0+ 是标准的黎曼-刘维尔分数)阶导数且0 — 2 <)% 0 —1 ,D 0+是标准的 -刘维尔分数0阶导数且)>0> 0,且0% b *—— <1,0%B %1,0<*<1,a —)—170,是#的第i 阶导数.满足如下条件:① f : [0 ,叮 + '一 e * , + S ) X [0,+ S "&(—S , + S ) ;e * = max{e(t ) :t # [0 , 1(;② g : [0 ,「X [一e * , + S ) X [一e * , + S ) &(—S , + S );且f , g 都是连续函数.当 2 < a < 3,0= 3, f (t,u(t) ,D 0+u(t ))=0, b = 0 , i = 3时,问题(1)归结为如下的带有正半线性的非线性分数阶微分方程问题(2),文献 [6(得到了问题(2)正解的存在性.|D 0+u(t )+ ftt , u(t))= 0,0 < t < 1,()[u (0) = u '(0) = u "(0) = 0,其中,2<a <3,D 0+是标准的黎曼-刘维尔分数a% ) % 0 一 1 ,阶导数, 并且 f [0,叮X [0,+ S ) &(—S , + S ),他们使用Krasnosel'skill 不动点定理来证明正解的存在性•更多相关文献可 见[7-10].1预备知识设(E , , • || )是一个实Banach 空间■是E 的零 元素,锥P 5E , # % 5当且仅当5一# # P 和# -5,则可得#<5或者# >5.锥P 满足两个条件①## P , # 7 08# # P ;② # # P , ― # # P 8# =+.若存在正常数N >0 ,使得对于# , 5# E , +%#% 5,都有% N|5II ,则称P 为正规锥.定义1[11] 设A :P j , e +P j ” & E 是一个混合 算子,A# ,5)关于#单,关于5单调递减.其中 u , :, # P j , e (i = 1 , 2) , "1 % u z , :1 7 可彳寻 A ("1 , :1 ) % A ("2 , :2 ).右兀素 # # P h ,是 A的一个不动点,则有A #, #)= #.8华中师范大学学报(自然科学版)第55卷引理1'12( 设P 是E 中的一个正规锥,算子 A , B :P k = X P j = & E 是两个混合算子.满足以下条件:1) 对于 V $ # (0, 1), V x , 5 # P h =,9,($$# !, 1)使得A (x + $$ 一 1) = , $—15+($—1 一 1) = )7,$$)A. (x , 5)+(.,(.$)_ 1)=.2) 对于 V $ # (0, 1)V x , 5 # P j ,有B ($x + ( $ 一 1), $—15+( $—1 一 1) = )7B (x , 5)+ ( $ 一 1)=3) A ( J, J )# P j ,且B( J, J )# P j ,.R )存在常数-3 0,V x , 5 # P j ,,有A ( x , 5 ) 7 -B ( x , 5)+ ( -_1)=.则算子方程x = A ( xx) +B (x,x ) +=在P j ,上有唯一解x *,对于任给的初值x 0, 50 # P h ,有以下 的d r (a 一 0)2)当 0%*%s %$% 1 时,0<d = 1 — *十% 1,1+ (1 — s ) *、071,0%d (1+ (1 —s )*、0(%x n = A x n —1 , 5n —1 ) +B x n —1 , 5n —1 ) +=,5n= A 5n—1 , x n—1 ) +B 5n—1 , x n—1 ) +=,n = 1,2, 3 …则在空间E 中有x n &x * , 5n &x * ( n &s )成立.引理2'(设(是一个连续函数-#C[0,叮是分数阶微分方程边值问题(3)的一个解,(—D +u ( $ ) = (( $) ,0 < $ < 1, n _ 1 < a %n )'u -E (0)=0,E = 0,1,…,一2;)D ^+ u ( $ ) = bD 0+ ( *), n 一 2<)%n — 1.3)这里,n 72, 0%b <1, 0 < *< 1, a _)_ 17 0,0 %b *_i < 1当且仅当u 满足积分方程u( $ )=[g ( $, s ) ( s )ds .其中G !$,s )1d r !a)t —1 (1 -s )a —*—1 —-bt"-1!*—s )$_ (1 -s )a —*—1 —d !$—s )a —1'$_ (1 -s )a —*—1 —-ba !$—s )t —1 (1 -s )a —*—1,—d $—s ) —10 % s % min{$, *} < 1, 0 <* % s % $ % 1,0 % $ % s % * < 1,0 % max{$, *} % s % 1,d = 1_ b *0—1—1〉0,G ( $, s )作为(3)的格林函数在 [0, 1(X [0, 1(上连续.引理3[( 函数G ( $, s )是如上引理2中所定义,则其满足如下性质:① G ( $, s )3 0, V ( $ , s )# (0, 1)X (0,1).② 对于 V ( $ , s )# [0, 1(X [0, 1]有$i (1 — s)1 (1 _ (1 _ s ))才r a%G $,s ) %d r )引理4 在引理3中所定义的G ( $ ,)有以下性质:0 %$ —1 1 —s ) —)—1 1 — 1 —s )) ) %r (a )G ( $ ,s )% $(1-s) 1$, s # [0, 1],(R )0 % $_ (1 — s ) e 1 (1 —d (1 + (1 _ s )*、0 ))%d r (a _ 0) D 0+G ( $, s)% $1—°-1 (1 _ s)L *、1,$, s # [0, 1]. (5)证明 首先不等式(R)已证,现在需要用(R)来证不等式(5).有$cif —1 (1 — s )1 —bt L 0-1 ( *_ s )1— d $ $_ s)1—1—1 ,0 % s % min &, *}< 1;D 0+G !$, s )1 1—01 (1 — s )1 — dt$ — s) 01 ,0 < * % s % $% 1;d r ( a — p )"、0-1 (1 — s )1_bt 1—1—1 (*_ s ) LT ,0 % $% s % * < 1;$1—1—1 (1 — s )1 , % max &, *}% s % 1,其中,d = 1 _ b *、、1 3 0.1)当 0 % s % min & , s }< 1 时,* < 1, s * <s 8 十 3 s 8 (1 _ s 厂1 < (1 —s )1、、1,则有D 0+Gt $,"d r O —T yL 1(―一t 1、、1 (*_ s )"、、1 _ dt$_ s)a —!—1)= d rSi )((1 — s )^ _b <*_s )-1 _d (1_s 厂「「((1-s )—d$a —^((1—s )^1 _d (1-s)i 1-d (1 _ s )"、、】)=$■_、1 (1 — s )"、、1d r (a 一 0)t "0 (1 — S )"、、1(1 一 d 一 d (1 一 s ) l 0 )(1 _ d (1 + (1_s )*、0 )).第1期韩 伟等:高阶非线性分数阶微分方程解的存在性和唯一性91,则有d "a —0)(0—1(1—s )$a —0—1D 0+G !$ s "d(t — s"c —0—1"> (1 —sd"(a — 0)(<:1-s )a—0—1$a —0—1d "(a —0)((1 —s )d (1 — s )c —0—1)=a —0—1 ( ( — )a —t —1;————(1 — d (1 —s )L 0 )7r>"(a 一 0"严0一1 ( ( 一 e"0—t 」—氓—(1—>(1+ (1 —s )r )).% 1,1+ (1 — s ) —71,0%d (1+ (1 —s ) — )%1,则有D 0+G (,s )=d "101(1-s )—1-八!-s)^1) = d t —5((1-s)^1 -b *—-1(1-s 厂L J 7严—0—1( ( 一 e ) a —)—1t d "1-s 0) (1-d (1-s )0)7a—0—1 ! )a —)—1t d "1-s 0) (1-d (1+(1-s ))-0)).R )当 0 % max{t ,}% s % 1 时,0<d = 1 一*一旷1%1,1+(1 —s )1-0710%d (1+ (1 —s )心)% 1,则有1D 0+G (t ,s "t L/—1d " (a 一 0)(1 —s "________1_______t0——1d " (a —0 "从而D 0+G (t , # "7(1-s )"—'—1 (1 —d (1+ (1 —s )*-0 )).-7-—^― t" (1 — s )"-l —1 (1 — d (1 + (1 — H.d " a —0显然可得D 0+Gts )% d "b >—综上所述,0 % t l ——1 (1 — s )"-l 1 (1 — d (1 + (1 — s )'—0)) %d "(a —0) G(t , s ) % 厂尸1 (1 一 s )--1 ,t , s # [0, 1(.引理 5[13(令 a >—1,) > 0, t > 0,则D 0+t"(a )厂1"(a —)—1)'有关于分数微积分的更多细节请参考文 献[13(.2主要结论这部分主要利用引理1〜5,来证明问题(1) 解的存在性与唯一性.设E = # I # # C[0, 1(,D 0+# # C[0,叮}是实Banach 空间,范数为#(t ) II = max { max #()〔 , D 0+ max I #()t #(0,1) t # (0,1)I }.P 是一个正规锥,设P # E,P = # # E :#(t )7 0, D 0+#t t )7 0, 2 t # [0,1(}且 P h 5E .其中空间E 赋予一种新的半序关系u V:;u ( t )% : ( t ) , D 0+ u ( t )% D 0+ : ( t ).定理1 假设① f : ', 1( X [一 e * , + s ) X [0, + s ) &(—S , + S ))*= max{e ( t ) : t # [0,1(};g :[0 , 1 ( X [一 e * , + s ) X [一 e * , + s ) &(—S , + S ).它们都是连续函数.② 当t # (0, 1)时,f(t , # 5)关于第二变元#单调递增,关于第三变元5单调减.g (, #, 5)关于第二变元#单调递增,关于第三变元5 单 减③ 对于 2t # (0, 1)9,() # (, 1)有f (t $## + (#— 1 )e $#—15+ (#—1 — 1 )e ) 7 ,(#)f (, #, 5);g (t $## + (# — 1 )e $#—15+ (#—1 — 1 )e ) 7#g (t , # , 5 )④存在-> 0,g (s, H , 0) — 0,H 71 + b *a ~v + (1 一 ~ )d 洋 /曰(/ 、、c ______________( 仅丿 •使得 f(t , #, 5) 7)d " (a ) )a —))-g (, #, 5),且 t # (0 , 1)#, 5 # [0,+ s ).则有以下结论.1)存在u ° , :0 # P h ,和一个足够小的L #(0, 1)使得::0 V u V :0.有L :0 ( t )% u ( t ) % :0 ( t ),rD 0+:0 ( t ) % D 0+ u ( t ) % D 0+:0 ( t ).u ( t ) %* G ( t , s)f ( s , u ( s ) , D 0+:0 ( s))ds +* G ( t , s)g ( s , u 0 ( s ) , :0 ( s))ds +c (1 十一 2(1 — *)-)) 1 + U 仅)c 严d " ( a )( a — :)d " ( a )( a — :)'""D 0+u 0 t ) %* D 0+G ( t , s')f ( s , u °( s ) , D 0+ :0 ( s))ds +* D 0+G ( t , s) g ( s , u ( s s , :0 ( s ))ds +c (1+*L “一2(1 —*)「")叶1 +d " ( ) — 0)( a — :)10华中师范大学学报(自然科学版)第55卷_________________________________"~0d r ( _ 0) )a _ :)1 — *ad r(a ) (a _%:0!$) %*0G !$$s )f !s $:0!s )$ D 0+u 0!s ))d s +c (1+ b *"—))Gtt , s')g (s $ :0 (s) $ u ° (s))ds +0$"一1d r !a )!a —:)1 — *ad r(a ) )a _ v')$c (1+ * — 2(1—*)"、*)$c (1 + b *°^v)+ (1 一 * \dc$d r (a ) (a _ :)$d r (a )(a —:)D 0+:0 ($) %d r(a) (a _ :)c (1+*+(1—* )d )_t iD 0+ G($ $ s ) f (s $ :0(s), D 0+u 0(s))ds + 0D 0+G !$ $ s )g !s $ :0 !s )$ u 0 !s ))d s +c (1 + — 2(1 — g )0-*)$—— + \ a ) $—!d r * _0) (a _ :) d r ( * _ 0) (a _:) *其中,J ( $) = H " ,$ # [0 $ 1(.2) 算子方程 x = A ( x ,x ) + B(x,x ) + e 有一 个非平凡解u *,-* # P j $.3) 对任意初始值K 0$ /0 #P j $$构造迭代序列{K n } $ {/n } $ 其极限值为 x * K n & x * $ /n &x * ( n & s ),有K n $ ) =d r a ) a —:)$a —1 =J $ ) .因此0 %=( $ )% J ( $ )使得P j $ = {u # C[0$ 叮 $ 由引理2和问题(1)积分可得u + = # P j }.u ($"=*0G ($ $ s "(f (s $ u (s "$ D 0+u (s ""+g (s $ u (s "$ u (s ""—c d s =G ($ $ s "f (s $ u (s "$ D 0+u (s ""d s +G !$ $ s )g !s $ u !s )$ 02*0G !$ $ s )d s u !) ) ds 一G ($ s)f (s $ K n —1 (s ) $ D 0+—1 (s ) )ds +0G ($ $ s "f (s $ u (s "0D 0+u (s ))d s +J q G ( $ $ s)g ( s $ K n —1 ( s ) $ /n —1 ( s ))ds +c (1+ * _2(1 —*)"、* )1 +d r ( a ) (a _ :)G !$ $ s )g !s $ u !s )$0c (1+ * _ 2(1 —*)"、*)$、] +u !) ) ds 一d r(a) (a _ :)1 — *a .$" $ Gd r(a ) (a _ :)'1( $ n = 1 $ 2, •…d r(a) (a _ :)/n ( $ ) =G ( $ $ s)f ( s $ /—1 ( s s $ D 0+K —1 ( s s )ds + 0G($0s )f !s $ u !s )D 0+u (s ))d s +G $$ s )g s $ /n —1 s )$ K n —1 s ))d s +c (1+ * 一2(1—*)"、* )1 +d r ( a ) (a _ :)G($0G($0s )g !s $ u !s )$s )f !s $ u !s )u (s))ds — =()D 0+ uO ) ds —1_ *a1$ 2,…,r(、( ),$ # '$ 1(,"d r ( a ) ( a _ :)V $ # (0$ 1)有c (1+ b *「一 _2(1—*)"、* )1 +d r (a )(a _:)证明e($')1—a八() 7 0$ # '$ 1(.d r a ) a —:)因为e # P $ $ # [0$ 1(,所以有e ( $ )=(】+ 打 一21、*)"、* $—1 +d r (a )(a —:)=!$ ) +G !$ $ s )g !s $ u !s )$ u !s ))d s —0=!$) +=!$) .对V u $ : # P j $$ $ # '$ 1(需考虑以下算子,$ ,A (u $ :"($"=G ($ $ s "f (s $ u (s "$ D 0+:(s "d s —=($"$B !u $ :)!$) =*0G !$$ s )g !s $ u !s )$ :!s ))d s —=!$)D 0+A !u $ :)!$) =D 0+G ($$s )f (s $ u (s )$ D 00+:(s ))d s —D 0+=($)$第1期韩伟等:高阶非线性分数阶微分方程解的存在性和唯一性11D0+B(u,:)!)=*D0+Gt$$s)g(s$u(s)$:(s))ds_D0+e().所以ut$)是问题(1)的解当且仅当u=A(_u$u)+ B(u,u)+e.首先,需要证明算子A,B:P h,e X P h,&E是一个混合单调算子,取u,:#P j,e(=1,2),u] %u2,:17:2.由条件②及G($,s)30可得A u1,:1)$)=*G$,s)f s,u1s),D0)+:1s))d s—e$)7 1G$,s)f s,u2s),D0)+:2s))d s—e$)=J0A u2,:2)$),D0)+A u1,:1)$)=1D0)+G$,s)f s,u1s),D0)+:1s))d s—D0)+e$)7 1D0)+G$,s)f s,u2s),:2s))d s—D0)+e$)= J0D0)+A u2,:2)$),因此A(u1,:1))$)>A(u2,:2))$),同理B(u1,:1)($)>B(u2,:2)($).其次,由条件③,V##(0,1)和$#(0,1) 9,(t)#($,1)使得u,:#P je就可得A(+(#一1)e,厂1:+(#一1一1)e)($)= *G($,s)f(s,#u(s)+(#一1)e,A_1D0+:(s)+(厂1一1)e)ds—e($)7,$*)G$,s)f s,u s),D0)+:s))d s—e$)=,$*)1G$,s)f s,u s),D0)+:s))d s—e$)+,$)e$)—,$)e$)=G$,s)f s u s),D0)+:s))d s—e$))+ ,$)—1)e$)接下来证明A(u,u)#P j,,B(u,u)# P j,e.只需证A(u,u)+e#P j,B(u,u)+e#Pj.即可根据引理3和条件①,③得A J,J)$)+e$)=*1G$,s)f s,J s),D0)+J s))d s=「G($,ssf(s,Hs a—1,HD0+s—)ds%J01$a—11—1)a—*—1L$d—s f(s,?5=越:(1—s)-1f(s?,0)d"=丿口1(、)(1_s)"—T f(s,H,0)ds・H"= dH r a0丿口1(、)(1—s)"—1—1f(s,H,0)ds・J($).dH r a)0A J,J)$)+e$)=[G($,s')f(s,J(s),D0+J(s))ds7茁0(1-—)・f(s,0,H)ds・$i=h"*?1-—)・f s,0,H)d s・H$a—""—s)a—*—""—"—s)*)f(s,0,H)ds・J($).根据条件②,④和a30,"(a)〉0可得f(s,H,0)7f(s,0,H)7-g(s,0,H),s#',1(.设L1=H W0(_s)"i—1f(s,H,0)s,L=?1())0(1-s)"、、1(1-(1-s)*)X$)A u,:)$)+,$)—1)e$),B(#u+(#一1)e,#1:+(#1一1)e)($) [G($,ssg(s,#u(s)+(#_1)e,#t:(s)+ J0(#—1一1)e)ds—e($)7#G($s')g(s,-(s)(s))ds_e($)=J o#G($,)g(s,-(s)(s))ds_e($)+J0f(s,0,H)ds.又因为0<(1_s)*<1,那么0<1_(1—s)*< 1,0<b<1则显然1dH r(a)1Hr(a)f s,0,e($)_#e($)=#G$,s)g s,u s),:s))d s/H)%f(s?0、可推出L17L230,所以LJ($)%A(J,J)($)+e($)%L1J($),$#',1(.B J,J)$)+e$)="G$,s)g s,J s),J s))d s%e($))+(#_1)($)=\B(u:($)+(#_1)($).$i(1—s)"、、1d r a)g s,Hs a—"Hs a—")d s12华中师范大学学报(自然科学版)第55卷d"*—$0)s ・t "-1 =萌"*(1—s )-"H ,0)d ・H a>h"( )) ( — s)c —l —1g(s$ H $ 0)ds ・h ().A (h $ h )(t ) +e (t ) =* G(t $ s)g (s $ h (s), h(s))ds 7 ~1)1(1 — s )"-'—1(1 — (1 —s )"). "a)g(s$ 0 $ H )ds . t -1 =——1——[(1 一 s )"-厂1 (1 — (1 — s)v )・ H "(a )0k 丿''八g(s $ 0 $ H )ds ・ h(t).设L 「萌"*—$0)d sL Rg (s $ )$ H )d s ,同理可得7 L r > 0 ,则 L r J () % B(h$ h ) () +ett) % Lh C) $ t # [0 $ 1(.另一方面由条件①,②和引理3可推出D 0)+ (A (h $ h "(t "+e (t ""=1D 0)+G (t $ s "f (s $ h (s "$ D 0)+h (s "d s %J o------------1-------------「t ——1 (1 一 s )d "(a —0)hf (s $ h (s )$ D 0)+h (s ))d s %1d "(a —0)扎(-s )f ・ f($ ?,严八讥宀11E°) (,1 — s )-1f(s$ H , 0)ds ・ t 0-d " "—0 )D 0)+ (A (h $ h )(t ) +e (t )) =)D 0)+G (t $ s )f (s $ h (s )$ D 0)+h (s ))d s 7d "1—1+(-…. f (s $ Hs "—1 $ HD 0)+s "—1 d s ・t "—0—1 7d W —>" s )a —T 1-d ( + (-…. f (s $ )$ H d s ・ t a —0—1 ,D 0)+B (h $ h (t +e (t =1D 0)+G (t $ s g (s $ h (s $ h (s d s %1d "(a 一 0)t a —0—1(1 —s a —)—11g (s $ h (s $ h (s d s %d "1—*(-s )Eg (s $ H w 1D 0+B (h $ h "(t "+e (t "=*1D 0+G (t $ s "g (s $ h (s "$ h (s ""F s 7d W —>" s )a —T 1-d ( + (-….g (s $ Hs a —1 $ Hs a —1 "F s ・t a —0—1 7-7—1_「(1 — S )ll d (1 + (1— S )—))・ d " a —! 0g (s $ 0 $ H "F s ・ t a —!—1 ,其中$b 1 = d "a —0)\1(1 — s )^1f (s $ H $ 0)s $ b = d "(1—0)!1(1 —s )0—)-1(1—d (1 +(1 —s )—))f (s, 0$ H )ds,b = d r (—0)!1(1 —s )0—)-1g (s $ H $ 0)s $b = d "a — *(-1 — sS ^1(-1 — d(-1 +(1 —s ))—!))g (s $ 0 $ H ) s ,由条件②,④可得b 7 b 7 B r > 0 $ b 7 b 4 > 0, 因此 A(u$ u) +e # P h B (u $ u) +e # P j ,对任意u $ : # P j $ $ t # [0 $ 1( $根据条件④可得A(u $ :)()=* G ($ sS f(s$ u(s') $ D 0+:(s))ds —e () 7-* G(t $ s)g (s $ u(sS $ :(s))ds —e ()+e () — e ()=-((Gtt $ s)g (s $ u(sS $ :(s))ds —e(t ) +(-一 1)() = -B (u $ :)() + (- — 1)().则满足引理1的条件,从而定理1得证.3举例论证作为应用,给出以下例子来说明主要结论.1)考虑以下分数阶微分方程711—D 03+#(i) = 2#())R + #())一5 +(#'())-1 —1 $R#(o) = O (o) = P (o) = 0 $D R +#() =■2-Dj +#(R ).设 a = 7 $ ) = R $ b = 2 $ * =R ,0= y 满足 a第1期韩伟等:高阶非线性分数阶微分方程解的存在性和唯一性"39_*_170,0<0<*$b*、、1=3,令'f!$x$,5$"=(x!))"+(5($)一3$v g(t$x!),5($)=(x!)))+(5(.$))—5$1c=R.则有f($$x!)+!—1)!)$#_15!)+一1)!))=!x!)+(#——1)!))r+(#_15(^)+一1)!))一37(#x!))R+(#、5!))-3=#R(x!))R+#3(5!))一37#3((x!))R+(5!))一3)7,!#f!$x!)$5!)).其中,,(#)=#3.g!$#兄!)+(#—1)!)$#一5!)+(#、一1)!))=!x!)+!一1)!))R+!一5!)+!—1—1)!))—57(丄!))+!-S!))-5=#R(x($))+#5(5!))—57#5!x!))R+(5!))-5)7#((x!))R+(5!))—5)=#g!$$x!$$5!$满足条件③,将上述边界条件代入可得e!$c!+*"、*-2!-*)"、*)$"―1+d r(a))a_:)191"!1!+3+3x343唔)1Q1Q则----7<----.从而0%e($)%J($)$满56r(y)1R r(3)足条件①$e*=e!)=—%56r!则满足定理1的条件①,②,其中_13f$g:'$1(X|_56"(|)$+s X$+sS>$+)_13)56r(7是连续函数,并且关于第二变量单调递增,关于第三变量单调递减.显然g(s$0$H)=0R+H-5—0$f!$$x!$)$5!$))=11(x($))R+(5($))一37-((x($))R+(5($))一3)7-((x($))R+(5($))—5)=g!$$x!$$5!$取-=3时结论仍然成立.综上所述,就证明了定理1的所有条件,从而可以找到一个非平凡解x*4#P j$J!)=$$$#'$1(.!一*)dcd r(a)(a_:)可得e!$=因为1+b*_*+(1—*)dd"(a)(a一*)参考文献:'(KILBAS A A$SRIVASTAVA H M.Theoryandapplicationsoffractionaldi f erentialequations'M(.Amsterdam#Elsevier$2006. '2(BALEANU D$MACHADOJ L.Fractionaldynamicsand control'M(.Berlin#Springer$20"2.'3(WEITZNER H$ZASLAVSKY.Someapplicationsoffractionalequations]〕].Communications in Nonlinear Science&Numerical Simulation$2003$8!3-R"#273-281&[4(ZHAI C$WANG F.Properties of positive solutions for the operator equation Ax=#x and applications to fractional differential equations with integral boundary conditions H J].Advances in Difference Equations,2015$2015(1):1-10.'(ZHAI C B$YANG C$ZHANG X Q.Positive solutions for nonlinear operator equations and several classes of applications'].Mathematische Zeitschrift,2010,266(1):R3-63&[6(BAI Z$LU H.Positive solutions for boundary value problem of nonlinear fractional differential equation'].Journal of Mathematical Analysis and Applicati$ns.2005$311:1R华中师范大学学报(自然科学版)第55卷495-505.[7(LIANG S,ZHANG J.Existence and uniqueness of strictly nondecreasing and positive solution for a fractional three-point boundary value problem'].Computers&Mathematics wth Applications,2011,62(3):1333-1340.'(EL-SHAHED M,SHAMMAKH W M.Existence ofp$sitive s$luti$ns$f the b$undary value pr$blem f$r nonlinear fractional differential equations'].Abstract and Applied Analysis,2011,2011(25) :1363-1375.ZHANG L,TIAN H.Existence and uniqueness of positive solutions for a class of nonlinear fractional di f erentialequations'].Advances in Difference Equations,2017(1):11R-132&[10]WANG H,ZHANG L L,WANG X Q.New uniqueexistence criteria for higher-order nonlinear singularfractional differential equations[J].Nonlinear Analysis:Mode l ingandControl$2019$24:95-120&[11]GUO D.Method of partial ordering in nonlinear analysis'].JournalofNingxiaUniversity(NaturalScienceEdition)$1999$20(1).'12]SANG Y$REN Y.Nonlinearsum operatorequationsand applications to elastic beam equation and fractionaldifferential equation'].Boundary Value Problems,2019,2019(1):49.'13]PODLUBNY I.Fractional differential equations[M].New York:Academic Press,1999.Higher order nonlinear fractional differential equationexistence and uniqueness of solutionsHAN Wei,YUAN Zhanqin(SchoolofScience$North UniversityofChina$Taiyuan030051$China)Abstract:The existence and uniqueness of nontrivial solutions for a class of higher-order nonlinear fractional order three-point boundary value problems are studied,mainly through nonlinear operator equations#=A##)+B##)+e in ordered real Banach spaces A B aWe mixed ingthefixedpointtheoWem onconesthe existence and uniqueness of nontWivial solutions aWe obtained and two iteWative sequencesaWeconstWuctedtoappWoximatetheappWoximatesolutions.Inaddition asouW mainWesultapplication anexampleisgiventoi l ustWate.Key words:operator equation;fixed point principle;nontrivial solution;three point boundaryvalueproblem(上接第6页)where D a is the Caputo fractional derivative of order a,F:[0,1]O X&P(X)is a mult<valued map$#<saconstant.By meansofsomestandardfxed po<nttheorems$ su f c<ent cond<t<ons for the ex<stence of solut<ons for the fract<onal d<f erent<al inclusions are presented.Our results generalize the single known results to the multi-valuedones.Key words:Langevin differential inclusions;fractional order;anti-periodic boundary value problem;fixed-point theorem。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

个鳃的存在性 ( 其中 , 0< s <1 且I 厂 : [ 0 , a ] × R —R, 0< a<+。 。 为 已知 函数 , 且在( 0 , a )×R 上 连续 ) .
他们 应用 S c h a u d e r 不 动点 定 理 和 B a n a c h压 缩 映射
作为前言的结尾 , 给出本文将用到的 2 个不动
且厂 : [ 0 , 1 ]×[ 0 , +∞) 一[ 0 , +∞) 是 已知 的连续 函数 ) . 文献[ 6 ] 分别 用 K r a s n o s e l s k i i ’ S 不 动点 定 理
和锥上 L e r a y—S c h a u d e r 非 线性 抉 择 定 理 考 虑 奇 异
No v ., 2 0 1 3 Vo 1 . 3 6. No . 6
非 线性分 数阶微分方程组奇异对偶 系统正解的存在性
张稳 根 , 胡卫 敏 , 刘 刚
( 伊 犁师范学院 数学与统计学 院, 新疆 伊 宁 8 3 5 0 0 0 )
摘要 : 分别应用锥上 L e r a y —S c h a u d e r 非线性抉择定理 和 K r a s n o s e l s k i i ’ S 不动点定理证 明了非线 性分数
点 定理 . 一个 是 K r a s n o s e l s k i i ’ S 不 动 点定理 , 另 一个
是 锥上 L e r a y—S c h a u d e r 非 线性 抉择 定理 .
原理得到了解 的存在性. 文献 [ 5 ] 用上下解方法考 虑方程 D / / , = 厂 ( t , U ) 正解 的存在性 ( 其 中, 0 < S <1 ,
阶微分方程奇异对偶 系统正解的存在性.
关键词 : 奇异 ; 非线性分数 阶微 分方程 ;正解 ; 锥不 动点定理 中圈分类 号 : O 1 7 5 . 1 4 文 献标 志码 : A 文章 编号 : 1 0 0 1 —8 3 9 5 ( 2 0 1 3 ) 0 6—0 8 8 7— 0 6
d o i : 1 0 . 3 9 6 9 / j . i s s n . 1 0 0 1— 8 3 9 5 . 2 0 1 3 . 0 6 . 0 1 6
近 些年 , 出现 了很 多关 于分数 阶微 分 方 程及 其 应用 的论 文 和专 著 , 其 中大部分 指 出 了一 些特 殊线 性分 数 阶方 程 的 可 解 性 . 然而 , D .D e l b 0 s c o 等 考 虑 非线性 分 数 阶微分 方程 D : t , ) 的一
l i a r f ( t ,・ )= l i mg ( t ,・ ) =+∞.
关 于 分 数 阶 微分 方 程 存 在定 理 的发 展 和 实 际 应 用方 程 的文献 , 参考 文献 [ 7 ] . 文 中涉及 的分 数 阶 积 分和 微分 的定 义及 其 相 关 基 本性 质 , 参考 S .G . S a m k o等 或者 D.D e l b o s c o 【 .
全 连续 . 若 ’ ( i )对 于 / / , ∈KN a 蜴 有 J I A “f l ≤【 I I l 且对 于
i D : g ( ),

Hale Waihona Puke 0 <f< 1 / 2 , ∈ KN a 有 I I 4 l l ≥I I l l , 或 ( i i )对 于 ∈K n a 有 I I 于 ∈KN a 有 J l A I l ≤I I I I , 则 A在 KN( \ 翰) 上有 一个 不动 点 . 引理 1 . 2 假设 E为 一 B a n a c h空间 , 且 C是 E的闭 凸子集 . 是 C的开子 集且 0∈U , A: 一 C是 连续 的紧映射 , 那 么如下 结论至少有一 个成立 : 1 )A在 U上 有一个 不 动点 ; 2 )存 在 “E O U和 A E( 0, 1 ) 使 得 Ⅱ= h A u . I l ≥ I I l I 且 对
0奇异 ) . 本 文分 别 用 K r a s n o s e l s k i i ’ S不 动点 定 理 和 锥上 L e r a y— S c h a u d e r 非 线 性抉 择 定 理 证 明如 下 奇
异 对偶 系统 的正 解 存在性 : f D 。 = t , ) , 0 <t<2, ‘ [ O v=g D ( t , ) , 0 < t<2 , , I 、 l
的正解 存在 性 ( 其中, 0< s <1 , 0< P<1 , D 、 为2 个 标准 的 R i e m a n n—L i o u v i l l e分 数 阶微 分 , f , g : ( 0 ,
1 ]×[ 0 , +∞) 一[ 0 , +∞) 是 2个 已知连续 函数 , 且l i m f ( t ,・ )=l i mg ( t , ・)=+∞ ( 即厂和 g在 t =
2 0 1 3年 1 1 月
第3 6卷
第 6期
四川 师范大学学报 ( 自然科学 版) J o u na r l o f S i c h u a n N o r ma l U n i v e r s i t y ( N a t u r a l S c i e n c e )
对 偶 系统
f D M= t , ) , 0 <t< 1 ,
引理 1 . 1
设 E=( E,l 1・』 I ) 为一 B a n a c h
空间, KcE为 上 的一个 锥. 且 是 E 的开子
集且 0∈ 1 c c , A: Kn( \ 力 ) 一 连 续 且
相关文档
最新文档