2012年线性代数考卷

合集下载

线性代数概率统计2012A卷答案

线性代数概率统计2012A卷答案

滁州学院2012/2013学年度第二学期期末考试试卷答案经济管理类(本科)专业 2012级《线性代数与概率统计C 》A 卷(时间120分钟)一、选择题(每小题3分,共15分)1、若1112132122233132332a a a a a a a a a =,则212223111213313233222a a a a a a a a a =( C )。

(A) 2- (B) 2 (C) 4- (D) 42、1234A ⎛⎫= ⎪⎝⎭,2001P ⎛⎫= ⎪⎝⎭,2434B ⎛⎫= ⎪⎝⎭,则( C )。

(A) B AP = (B) 1B AP -= (C) B PA = (D) 1B P A -= 3、在向量组1234αααα,,,中,若123ααα,,线性相关,则( B )。

(A) 3α可以由12, αα线性表示 (B) 1234αααα,,,线性相关 (C)4α可以由123ααα,,线性表示 (D) 12, αα线性无关4、若线性方程组m n A x b ⨯=无解,则下列结论正确的是( C )。

(A) (,)()R A b R A n =< (B) (,)()R A b R A n == (C) (,)()1R A b R A =+ (D) (,)()2R A b R A =+5、设123,,X X X ()为来自总体2(X N ,) m s 的样本,则下列估计量为m 的无偏估计的是( A )。

(A)123(23)6X X X ++ (B)123(432)X X X ++ (C)123(433)12X X X ++ (D)123(534)15X X X ++二、填空题(每小题3分,共15分)1、已知三阶方阵A 的特征值为1,2,3, 则23A A += 720 。

2、已知()()0.4,()0.5P A P B P A B ===U ,则(|)P A B = 3/4 。

3、3个球随机放入4个盒子中,每个盒内最多只有1球的概率为 3/8 。

2012年1月(A卷解答)

2012年1月(A卷解答)

2012年1月(A卷解答)2011~2012学年秋季学期线性代数(B )(A 卷)课程考试试题(解答)一、填空题(本题满分15分,共有5道小题,每道小题3分,请将合适的答案填在每题的空中)1. 设,A B 都是n 阶矩阵,且它们的行列式分别为3 2 A B ==-,,则AB 2= 62 n-⨯.2.若向量组T T T123(1,2,3),(2,3,4),(3,4,)t ααα===线性相关,则t = 5 .3. 设n 阶矩阵A 与B 相似,且3A E +不可逆,则B 的一个特征值为 3 -.4.设3阶矩阵A 的特征值互不相同, 若行列式||0=A , 则A 的秩为 2 .5. 若二次型()()222212312332f x ,x ,x x t x t x =+--是正定的,那么t 取值范围为 20 t <.二、 选择题(本题满分15分,共有5道小题,每道小题3分.在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内) 1.已知四阶行列式312D 201321=-,则13332A A +的值为【 C 】.(其中ijA 为行列式D 中元素a ij 的代数余子式.)(A) 2; (B) 1; (C) 0; (D) 3. 2. 设12,,,sa a a 均为n 维列向量,下列选项不正确的是【 B 】.(A) 对于任意一组不全为0的数12,,,sk k k 都有s s k a k a k a 1122,0+++≠,则12,,,sa a a 线性无关;(B) 若12,,,sa a a 线性相关,则对于任意一组不全为0数12,,,sk k k 都有s s k a k ak a 1122,0+++=;(C) 12,,,sa a a 线性无关的充分必要条件是此向量组的秩为s ;(D) 若12,,,sa a a 线性无关的必要条件是其中任意两个向量线性无关. 3. 设3阶矩阵A 的特征值为123221λλλ==-=,,,对应的特征向量依次为123,,p p p ,令()123,,P =p p p ,则1-PAP =【 D 】.(A) 200020001-⎛⎫⎪ ⎪ ⎪⎝⎭; (B) 100020002⎛⎫⎪ ⎪ ⎪-⎝⎭; (C)200010002⎛⎫⎪ ⎪ ⎪-⎝⎭;(D)200020001⎛⎫⎪- ⎪ ⎪⎝⎭.4. 已知12,ββ是非齐次线性方程组Ax b =的两个不同的解,12,αα是其对应的齐次线性方程组0Ax =的一个基础解系,则Ax b=的通解为【 A 】. (A)k k k k R 112212121()(,)2ααββ+++∈; (B)k k k k R 112212121()(,)2ααββ++-∈;(C)k k k k R 1122112(,)ββα++∈; (D)11!ni n i==∑10分四、(本题满分10分)设矩阵300011014A ⎛⎫⎪=- ⎪⎪⎝⎭,361123B ⎛⎫⎪= ⎪ ⎪-⎝⎭,且满足B X AX +=2,求矩阵X .解答:由BX AX +=2得,(2)A E X B-=4分1100(2)021011A E -⎛⎫⎪-=-- ⎪⎪⎝⎭8分1(2)X A E B -=-=100021011⎛⎫⎪-- ⎪ ⎪⎝⎭361123⎛⎫⎪= ⎪ ⎪-⎝⎭364132⎛⎫ ⎪- ⎪ ⎪-⎝⎭10分 或1003610036(2,)01111 010410122300132A E B r ⎛⎫⎛⎫⎪⎪-=--- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭,X =364132⎛⎫ ⎪- ⎪⎪-⎝⎭.五、(本题满分14分,第1题10分,第2题4分)1. 已知非齐次线性方程组121312311x x x x x ax x b+=⎧⎪-=⎨⎪++=⎩ ;(1)求参数的值为何值时,方程组无解,有无穷多解,有惟一解;(2)并在有解时,求其解. 2. 设矩阵1234(,,,)αααα=A ,矩阵A的秩()3R =A ,且234,ααα=+12βαα=-+3α4α-,求方程β=Ax 的通解.解答:1. 对增广矩阵进行行初等变换,得 11011101(,)1011 0110110021A b r a b a b ⎛⎫⎛⎫ ⎪ ⎪=- ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭,3分 (1)21a b =≠,时,方程组无解; 4分2a ≠时,方程组有惟一解;5分21a b ==,时,方程组有无穷多解解;6分 (2)惟一解为1231121212b x a b x a b x a -⎧=+⎪-⎪-⎪=⎨-⎪-⎪=⎪-⎩8分21a b ==,时,11011011(,)1011 0110110000A b r a b -⎛⎫⎛⎫ ⎪ ⎪=- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭通解为1110()10x k k R ⎛⎫⎛⎫ ⎪ ⎪=-+∈ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.10分2.由()3R A =知,齐次线性方程组0Ax =的基础解系中含一个非零的解向量.由于234,ααα=+,则有123401(,,,)011⎛⎫ ⎪ ⎪= ⎪- ⎪ ⎪-⎝⎭αααα,于是0111⎛⎫ ⎪ ⎪= ⎪- ⎪ ⎪-⎝⎭ξ是齐次线性方程组Ax =基础解系. 2分由12βαα=-+3α4α-,则有123411(,,,)11⎛⎫ ⎪- ⎪= ⎪ ⎪ ⎪-⎝⎭ααααβ,3分于是1111η*⎛⎫ ⎪- ⎪= ⎪ ⎪ ⎪-⎝⎭是方程β=Ax 的特解,故β=Ax 的通解为()x k k R ξη*=+∈. 4分六、(本题满分14分)已知二次型T 21221232313(,,)222(0)f x x x x Ax =ax x x bx x b =+-+>,其中f 的矩阵A 的特征值之和为1,特征值之积为-12.(1) 求a ,b 的值;(2) 利用正交变换将二次型f 化为标准形,并写出所用的正交变换和对应的正交矩阵.解答:(1) 二次型f的矩阵为002002a b A b ⎛⎫⎪= ⎪⎪-⎝⎭2分设A 的特征值为iλ(1, 2, 3i =). 由题设条件,有1232(2)1a λλλ++=++-=,21230020421202a ba b b λλλ==--=-,解得1, 2a b ==.4分(2) 矩阵A 的特征多项式()21020202(3)22A E λλλλλλ--=-=--+--,所以A的特征值122λλ==,33λ=-. 7分对于122λλ==,解齐次线性方程组(2)0A E x -=,得对应的特征向量T1(2,0,1)a =, T2(0,1,0)a =.9分 对于33λ=-,解齐次线性方程组(3)0A+E x =,得对应的特征向量T3(1,0,2)a=-. 10分由于1a ,2a ,3a 已是正交向量组,只需将1a ,2a ,3a 单位化,由此得T155β=,T2(0,1,0)β=,T355β=.令矩阵()123055,,010055Q βββ⎛⎫ ⎪⎪==⎪⎪ ⎝,则Q 为正交矩阵.在正交变换=X QY 下,有T 200020003Q AQ ⎛⎫ ⎪= ⎪⎪-⎝⎭,13分且二次型f的标准形为222123223f y y y =+-.14分七、(本题满分12分,每小题各6分)证明下列各题: 1. 若向量1234,,,ξξξξ是n 元非齐次线性方程组Ax b =的解向量,那么它们的线性组合11223344k k k k ξξξξ+++也是该方程组解向量的充分必要条件是12341k kk k +++=;2. 设A 是n 阶矩阵,1λ和2λ是A 的两个不同的特征值,12,ηη是A的属于特征值1λ的两个线性无关的特征向量,3η是A的属于特征值2λ的特征向量,证明:123,,ηηη线性无关.证:1. 向量1234,,,ξξξξ是n 元非齐次线性方程组Ax b =的解向量,则(1,2,3,4)iA b i ξ==, 2分于是,11223344112233441234() (),A k k k k k A k A k A k A k k k k b ξξξξξξξξ+++=+++=+++4分 故11223344k k k k ξξξξ+++也是该方程组解向量的充分必要条件是12341k k k k +++=. 6分 2. 令1122330k k k ηηη++=. (1)2分用A 左乘上式得1122330k A k A k A ηηη++=,由111212323,,A A A ηληηληηλη===得,1112123230k k k ληληλη++=. (2)1(1)(2)λ⨯-得3123()0k λλη-=,由12λλ≠,30η≠,知30k =,代入(1)得11220k k ηη+=,4分 再由12,ηη线性无关知,120k k ==,故123,,ηηη线性无关. 6分八、(本题满分6分)设A 为3阶实对称矩阵,且A 的秩()2R A =,已知111100001111A -⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,求: A 的所有特征值及每一个特征第 11 页 共 11 页 11 值所对应的特征向量.解答:由111100001111A -⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭得,111100, 001111A A ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭, 则11λ=-是A 的特征值,p k k 110(0)1⎛⎫ ⎪=≠ ⎪ ⎪-⎝⎭是与之对应的特征向量, 2分21λ=是A 的特征值,p k k 210(0)1⎛⎫ ⎪=≠ ⎪ ⎪⎝⎭是与之对应的特征向量. 4分 由()2R A =知,30λ=是A 的特征值.设与30λ=对应的特征向量为1323x p x x ⎛⎫ ⎪= ⎪ ⎪⎝⎭,由于A 为3阶实对称矩阵,故3p 分别与12, p p 正交,于是有121200x x x x -=⎧⎨+=⎩,则p k k 301(0)0⎛⎫ ⎪=≠ ⎪ ⎪⎝⎭ .6分。

线性代数2012-2013历年(攀枝花学院,附答案)

线性代数2012-2013历年(攀枝花学院,附答案)

2012~2013 学年度第 二 学期《线性代数》试卷( A 卷)适用年级专业:2012级理工、经管类本科教学班 考 试 形 式:( )开卷、( √ )闭卷二级学院: 行政班级: 学 号: 教 学 班: 任课教师: 姓 名: 注:学生在答题前,请将以上内容完整、准确填写,填写不清者,成绩不计。

一、填空题(每小题 2 分,共 10 分):1、排列5173642的逆序数为_________________.2、已知四阶行列式D 的第二行元素分别为 1,0,2,1-,他们的代数余子式分别为2,2,1,1-,则 行列式D =____________.3、设A 为4阶方阵,且2A =,则*A -= .4、设A 是43⨯矩阵,且线性方程组Ax b =有唯一解,则A 的列向量组线性 .5、如果一个二次型的标准型为2221235x x x -+,则此二次型的秩为 . 二、选择题(每题 2分,共 10 分,每题只有一个正确答案):1、若n 阶矩阵A 互换第一, 二行后得矩阵B , 则必有( ).()0=+B A A ; ()0=AB B ; ()0=+B A C ; ()0=AB D .2、设,,A B C 为同阶方阵,E 为单位矩阵,若E ABC =,则下列各式中总成立的是( ).()A BCA E =; ()B A C B E =; ()C BAC E =; ()D CBA E =.3、 设0Ax =是非齐次线性方程组b Ax =对应的齐次线性方程组, 那么下列叙述正确的是( ).()A 如果0Ax =只有零解,那么b Ax =有唯一解; ()B 如果0Ax =有非零解,那么b Ax =有无穷多个解;()C 如果b Ax =有无穷多个解, 那么0Ax =只有零解; ()D 如果b Ax =有无穷多个解, 那么0Ax =有非零解.4、设4阶矩阵A 的特征值为2、2、3、-1,则A =( ).()A 6; ()B -6; ()C 12; ()D -12.5、设矩阵A 为正交阵,下列说法错误的是( ).()A T A A =; ()B E AA T =; ()C A 的列向量为单位向量;()D 11A =-或.三、计算题(每题8分,共 32分):1、计算行列式 1123112312131231D --=--.2、已知11112121,3321111A B ⎛⎫⎛⎫ ⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭, 求TB A .3、已知2110112132X ⎛⎫⎛⎫= ⎪ ⎪--⎝⎭⎝⎭,求矩阵X .4、已知齐次线性方程组0Ax =有非零解, 其中142t A -⎛⎫= ⎪⎝⎭, 求t 的值.四、证明题(共8分)已知向量组321,,βββ线性无关,若向量组321,,ααα满足:3211βββα+-= ,3212βββα-+= ,3213βββα++-= ;判断向量组321,,ααα的线性相关性.五、(共 10分)求矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛-------=6063324208421221A 对应的列向量组的秩,并 求一个最大无关组 .六、(共 10分)设三元非齐次线性方程组b Ax =,若()2R A =,且12(1,1,2,0),(0,1,1,0)T T ηη=-=是两个已知解向量,求b Ax =的通解.七、(共 10分)已知方阵0111110a A b ⎛⎫⎪=- ⎪ ⎪⎝⎭的特征值为1231, 2.λλλ===-1)求b a ,的值;2)判断A 是否可以对角化.八、(共 10分)已知二次型:323121232221321662355),,(x x x x x x x x x x x x f -+-++= ,用正交变换化此二次型为标准型,并求正交变换矩阵Q .一、填空题[三基类] [教师答题时间: 2分钟](每小题 2分,共 10 分)1、12;2、1;3、8;4、无关;5、3.二、选择题[三基类] [教师答题时间: 2分钟](每题2分,共 10分)1、C ;2、A;3、D ;4、D ;5、A ;三、计算题[三基类][教师答题时间: 15 分钟](每题8分,共32分),1、解:由1123112312131231D --=--=11231123512131231--- …………(2分)……………(6分)2、解: TB A =111131*********⎛⎫-⎛⎫ ⎪- ⎪ ⎪⎝⎭ ⎪-⎝⎭…………(3分)283770-⎛⎫=⎪⎝⎭. …………(5分)3、解: 12110112132X -⎛⎫⎛⎫= ⎪ ⎪--⎝⎭⎝⎭…………(3分) 211011121323-⎛⎫⎛⎫= ⎪⎪---⎝⎭⎝⎭…………(3分) 41135123⎛⎫- ⎪= ⎪ ⎪-- ⎪⎝⎭. ……………(2分)4、解: 由 1042t A -==, …………(5分)即 240t +=, …………(2分)得 2t =-. ……………(1分)四、证明题[三基类] [教师答题时间: 5分钟](8分)证明:由123123111(,,)(,,)111111αααβββ-⎛⎫ ⎪=- ⎪ ⎪-⎝⎭, ……(2分) 由04≠=A ,A 可逆,故两个向量组可相互线性表出,因此两个向量组等价. ………(3分) 由向量组321,,βββ线性无关,得123(,,)3R βββ=,有123123(,,)(,,)3R R αααβββ==, ………(2分) 故向量组321,,ααα线性无关 . ………(1分)五、 [一般综合型] [教师答题时间: 5分钟](10分)解:由⎪⎪⎪⎪⎪⎭⎫⎝⎛--−→−0000000012001221rA ,……(4分)故向量组的秩为2, ……(3分)最大无关组为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-3221和⎪⎪⎪⎪⎪⎭⎫⎝⎛-0282. ……(3分)六、 [一般综合型] [教师答题时间: 5分钟](10分)解: 由()2R A =得0Ax =的基础解系含一个非零向量, ......(4分)故T T T(4分) (2分)七、 [一般综合型] [教师答题时间: 5分钟](10分)解:1)由已知, 0;1 2.b A a b =⎧⎪⎨=--=-⎪⎩……………(3分)得 1,0.a b =-= ………(2分)2)当1λ=时,由111111111000111000A E λ---⎛⎫⎛⎫⎪⎪-=-- ⎪⎪ ⎪ ⎪-⎝⎭⎝⎭, ……(2分) 得 ()1R A E -=,故1λ=对应两个线性无关的特征向量,……(2分) 故 A 可以对角化. …………(1分)八、 [综合型] [教师答题时间:10分钟](10分)解: 由⎪⎪⎪⎭⎫⎝⎛----=333351315A ………………………………(2分)令0)9)(4(=--=-λλλλE A 得9,4,0321===λλλ。

2012年1月自学考试02198线性代数试题和答案

2012年1月自学考试02198线性代数试题和答案

线性代数---2012年1月1.若矩阵A满足Aˆ2-5A=E,则矩阵(A-5E)ˆ-1=A、A-5EB、A+5EC、AD、-A正确答案:C解析:2.设矩阵A是2阶方阵,且det(A)=3,则det(5A)=A、3B、15C、25D、75正确答案:D解析:3.设矩阵A,B,X为同阶方阵,且A,B可逆,若A(X-E)B=B,则矩阵X=A、E+Aˆ-1B、E+AC、E+Bˆ-1D、E+B正确答案:A解析:4.A、图中AB、图中BC、图中CD、图中D正确答案:D解析:5.设αˇ1,αˇ2,…,αˇk是n维列向量,则αˇ1,αˇ2,…αˇk线性无关的充分必要条件是A、向量组αˇ1,αˇ2,…,αˇk中任意两个向量线性无关B、存在一组不全为0的数lˇ1,lˇ2,…,lˇk,使得lˇ1αˇ1+lˇ2αˇ2+…+lˇkαˇk≠0C、向量组αˇ1,αˇ2,…,αˇk中存在一个向量不能由其余向量线性表示D、向量组αˇ1,αˇ2,…,αˇk中任意一个向量都不能由其余向量线性表示正确答案:D解析:6.设α=(aˇ1,aˇ2,aˇ3),β=(bˇ1,bˇ2,bˇ3),其中aˇ1,aˇ2,aˇ3不全为0,且bˇ1,bˇ2,bˇ3不全为0,则αˇTβ的秩为B、1C、2D、3正确答案:B解析:7.A、图中AB、图中BC、图中CD、图中D正确答案:B解析:8.设三阶方阵A的特征值分别为1/2,1/4,3,则Aˆ-1的特征值为A、2,4,1/3B、1/2,1/4,1/3C、1/2,1/4,3D、2,4,3正确答案:A解析:9.A、图中AB、图中BC、图中CD、图中D正确答案:C解析:10.以下关于正定矩阵叙述正确的是A、正定矩阵的特征值一定大于零B、正定矩阵的行列式一定小于零C、正定矩阵的乘积一定是正定矩阵D、正定矩阵的差一定是正定矩阵正确答案:A解析:11.设det(A)=-1,det(B)=2,且A,B为同阶方阵,则det((AB)ˆ3)=_____。

自学考试线性代数2007-2012历年真题及答案

自学考试线性代数2007-2012历年真题及答案

全国2012年10月自学考试线性代数试题请考生按规定用笔将所有试题的答案涂、写在答题纸上。

说明:在本卷中,A T 表示矩阵A 的转置矩阵,A *表示矩阵A 的伴随矩阵,E 是单位矩阵,A表示方阵A 的行列式,r(A )表示矩阵A 的秩。

选择题部分一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题 纸”的相应代码涂黑。

错涂、多涂或未涂均无分。

1.设行列式1122=1a b a b ,11221a c a c -=--,则行列式111222=a b c a b c -- A .-1 B .0C .1D .22.设矩阵123456709⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,则*A 中位于第2行第3列的元素是A .-14B .-6C .6D .143.设A 是n 阶矩阵,O 是n 阶零矩阵,且2-=A E O ,则必有 A .1-=A A B .=-A E C .=A ED .1=A4.已知4×3矩阵A 的列向量组线性无关,则r (A T )= A .1 B .2 C .3 D .45.设向量组T T12(2,0,0),(0,0,-1)αα==,则下列向量中可以由12,αα线性表示的是A .(-1,-1,-1)TB .(0,-1,-1)TC .(-1,-1,0)TD .(-1,0,-1)T6.齐次线性方程组134234020x x x x x x ++=⎧⎨-+=⎩的基础解系所含解向量的个数为A.1B.2C.3D.47.设12,αα是非齐次线性方程组Ax =b 的两个解向量,则下列向量中为方程组解的是A .12αα-B .12αα+C .1212αα+D .121122αα+8.若矩阵A 与对角矩阵111-⎛⎫ ⎪=- ⎪ ⎪-⎝⎭D 相似,则A 2= A.EB.AC.-ED.2E9.设3阶矩阵A 的一个特征值为-3,则-A 2必有一个特征值为 A.-9 B.-3 C.3 D.910.二次型222123123121323(,,)222f x x x x x x x x x x x x =+++++的规范形为A .2212z z -B .2212z z + C .21zD .222123z z z ++二、填空题(本大题共10小题,每小题2分,共20分)11.行列式123111321的值为______. 12.设矩阵011001000⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,则A 2=______.13.若线性方程组12323323122(1)x x x x x x λλ++=⎧⎪-+=-⎨⎪+=-⎩无解,则数λ=______.14.设矩阵43012110⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,=A P ,则PAP 2=______.15.向量组T T 12,-2,2,(4,8,8)k αα==-()线性相关,则数k =______. 16.已知A 为3阶矩阵,12,ξξ为齐次线性方程组Ax =0的基础解系,则=A ______. 17.若A 为3阶矩阵,且19=A ,则-1(3)A =______. 18.设B 是3阶矩阵,O 是3阶零矩阵,r (B )=1,则分块矩阵⎛⎫⎪⎝⎭E O B B 的秩为______.19.已知矩阵211121322⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,向量11k ⎛⎫ ⎪= ⎪ ⎪⎝⎭α是A 的属于特征值1的特征向量,则数k =______.20.二次型1212(,)6f x x x x =的正惯性指数为______. 三、计算题(本大题共6小题,每小题9分,共54分)21.计算行列式a ba b D a a b b aba b+=++的值.22.设矩阵100112210,022222046A B ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,求满足方程AX =B T 的矩阵X .23.设向量组123411212142,,,30614431αααα-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭,求该向量组的秩和一个极大线性无关组.24.求解非齐次线性方程组123412341234124436x x x x x x x x x x x x +--=⎧⎪+++=⎨⎪+--=⎩.(要求用它的一个特解和导出组的基础解系表示).25.求矩阵200020002⎛⎫ ⎪= ⎪ ⎪⎝⎭A 的全部特征值和特征向量.26.确定a ,b 的值,使二次型22212312313(,,)222f x x x ax x x bx x =+-+的矩阵A 的特征值之和为1,特征值之积为-12. 四、证明题(本题6分)27.设矩阵A 可逆,证明:A *可逆,且*11*--=()()A A .全国2012年7月高等教育自学考试一、单项选择题(本大题共10小题,每小题2分,共20分)1.设A 为三阶矩阵,且13A -=,则 3A -( )A.-9B.-1C.1D.92.设[]123,,A a a a =,其中 (1,2,3)i a i = 是三维列向量,若1A =,则[]11234,23,a a a a - ( )A.-24B.-12C.12D.243.设A 、B 均为方阵,则下列结论中正确的是( ) A.若AB =0,则A=0或B=0 B. 若AB =0,则A =0或B =0 C .若AB=0,则A=0或B=0 D. 若AB ≠0,则A ≠0或B ≠04. 设A 、B 为n 阶可逆阵,则下列等式成立的是( ) A. 111()AB A B ---=B. 111()A B A B ---+=+ C .11()AB AB-= D. 111()A B A B ---+=+5. 设A 为m ×n 矩阵,且m <n ,则齐次方程AX=0必 ( ) A.无解B.只有唯一解 C .有无穷解 D.不能确定6. 设12311102103A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦则()r A = A.1 B.2 C.3 D.47. 若A 为正交矩阵,则下列矩阵中不是正交阵的是( ) A. 1A -B.2A C .A ²D. T A8.设三阶矩阵A有特征值0、1、2,其对应特征向量分别为123ξξξ、、,令[]312,,2P ξξξ= 则1P AP -=( ) A. 200010000⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ B. 200000001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦C .000010004⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ D. 200000002⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦9.设A 、B 为同阶方阵,且()()r A r B =,则( ) A.A 与B 等阶 B. A 与B 合同 C .A B =D. A 与B 相似10.设二次型22212312123(,,)22f x x x x x x x x =+-+则f 是( ) A.负定 B.正定 C .半正定 D.不定二、填空题(本大题共10小题,每小题2分,共20分) 11.设A 、B 为三阶方阵,A =4,B =5, 则2AB = 12.设121310A ⎡⎤=⎢⎥⎣⎦ , 120101B ⎡⎤=⎢⎥⎣⎦ ,则TA B 13.设120010002A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦则1A - =14.若22112414A t ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦且()2r A =,则t= 15.设1231120,2,2110a a a -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦则由 123,,a a a 生成的线性空间123(,,)L a a a的维数是16. 设A 为三阶方阵,其特征值分别为1、2、3,则1A E --=17.设111,21t a β-⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,且a 与β正交,则t = 18.方程1231x x x +-=的通解是19.二次型212341223344(,,,)5f x x x x x x x x x x x =+++所对应的对称矩阵是20.若00100A x =⎢⎥⎢⎥⎥⎥⎦是正交矩阵,则x =三、计算题 (本大题共6小题,每小题9分,共54分)21.计算行列式1112112112112111⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ 22.设010111101A ⎡⎤⎢⎥-⎢⎥⎢⎥--⎣⎦= 112053-⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦B = ,且X 满足X=AX+B,求X23.求线性方程组的123412345221.53223x x x x x x x x +=⎧⎪+++=⎨⎪+++=⎩12x x 的通解,24.求向量组 (2,4,2),(1,1,0),(2,3,1),(3,5,2)====1234a a a a 的一个极大线性无关组,并把其余向量用该极大线性无关组表示。

2012年10月 线代

2012年10月 线代
4.设向量组 =(2,0,0)T, =(0,0,—1)T,则下列向量中可以由 , 线性表示的是
A.(—1,—1,—1)TB.(0,—1,—1)T
C.(—1,—1,0)TD.(—1,0,—1)T
5.已知4×3矩阵A的列向量组线性无关,则r(AT)=
A.1B.2
C.3D.4
6.设 , 是非齐次线性方程组Ax=b的两个解向量,则下列向量中为方程组解的是
5.C
解:A的列向量组线性无关,即r(A)=3,
考点:考察向量组的秩,书p100,定理3.3.5
6.D
解:由题知 ,故选D
考点:考察非齐次线性方程组的解得结构,书p119,性质1
7.B
解:齐次线性方程组的系数矩阵A= ,r(A)=2
考点:考察齐次线性方程组基础解系所含解向量个数,书p112,定理4.1.1
……6分
……9分
22.解因 ,故 可逆, ……4分
……9分
23.解 ……2分
……5分
向量组的秩为3……7分
为一个极大线性无关组(答案不惟一)……9分
24.解由
……2分
……5分
得到 ,故方程组有无穷多解……7分
通解为 , 为任意常数……9分
25.解由
得 的3个特征值为 ……4分
当 时,由 ……6分
得基础解系
三、计算题(本大题共6小题,每小题9分,共54分)
21.计算行列式D= 的值.
22.设矩阵A= ,B= ,求满足方程AX=BT的矩阵X.
23.设向量组 , , , ,求该向量组的秩和一个极大线性无关组.
24.求解非齐次线性方程组 .(要求用它的一个特解和导出组的基础解系表示)
25.求矩阵A= 的全部特征值和特征向量.

全国2012年7月高等教育自学考试线性代数试题

全国2012年7月高等教育自学考试线性代数试题

全国2012年7月高等教育自学考试线性代数试题课程代码:02198说明:本卷中,A T 表示矩阵A 的转置,T α表示向量α的转置,E 表示单位矩阵,|A |表示方阵A 的行列式,A -1表示方阵A 的逆矩阵,秩(A )表示矩阵A 的秩.一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设A =032030257⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦,则|A |=( )A .-12B .0C .12D .212.设A =123[,,]ααα,其中(1,2,3)i i =α是三维列向量,若|A|=1,则1123[4,23,]-=αααα () A .-24 B .-12C .12D .243.设A 、B 均为方阵,则下列结论中正确的是( )A .若|AB |=0,则A =0或B =0 B .若|AB |=0,则|A |=0或|B |=0C .若AB =0,则A =0或B =0D .若AB ≠0,则|A |≠0或|B |≠04.设A 、B 为n 阶可逆阵,则下列等式成立的是( )A .(AB )-1=A -1B -1 B .(A +B )-1=A -1+B -1C .11|()|||-=AB AB D .|(A +B )-1|=|A -1|+|B -1|5.设A 为m ×n 矩阵,且m <n ,则齐次方程AX =0必( )A .无解B .只有唯一解C .有无穷解D .不能确定6.设A =123111021003⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,则秩(A )=( )A .1B .2C .3D .47.若A 为正交矩阵,则下列矩阵中不是..正交阵的是( )A .A -1B .2AC .A 2D .A T8.设三阶矩阵A 有特征值0、1、2,其对应特征向量分别为ξ1、ξ2、ξ3, 令P =[ξ3,ξ1,2ξ2],则P -1AP =( )A .200010000⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦B .200000001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦C .000010004⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦D .200000002⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦9.设A 、B 为同阶方阵,且秩(A )=秩(B ),则( )A .A 与B 等阶 B .A 与B 合同C .|A |=|B |D .A 与B 相似10.实二次型22212312123(,,)22f x x x x x x x x =+-+则f 是( ) A .负定 B .正定C .半正定D .不定二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案,错填、不填均无分。

2012(秋)《线性代数A》期末试题B卷及参考解答

2012(秋)《线性代数A》期末试题B卷及参考解答

π
4

(C)
π
3

π
2

则矩阵 B 的特征值和特征向量分别是 5, 设 P 为可逆矩阵, Ax = λ x ≠ 0 ,B = P A P ,
−1 −1

(A) λ 和 x ; 解: (C) .
(B) λ −1 和 x ;
(C) λ −1 和 P −1 x ;
(D) λ 和 Px .
1 + a1
三、 (本题 10 分)计算下列行列式 Dn =
⎛ ⎞ = ⎜ ∏ ai ⎟ ⎝ i =1 ⎠
n
0 0 # 0
n 0 ⎛ n ⎞⎛ 1⎞ = ⎜ ∏ ai ⎟ ⎜1 + ∑ ⎟ 0 ⎝ i =1 ⎠ ⎝ i =1 ai ⎠ 0 1
四、 (本题 10 分)设 A 为 n 阶可逆矩阵,且每一行元素之和都等于常数 a ( a ≠ 0) ,证明 A 的逆矩阵 的每一行元素之和为 a −1 . 证明:由题意有
1
"
1 1 #
, ( a1 a 2 " a n ≠ 0 ) .
1 # 1
1 + a2 " # 1
" 1 + an
解:将第 2 行、第 3 行、 " 、第 n 行都减去第 1− a1 Dn = − a1 # − a1
1 a2 0 # 0
1 0 a3 # 0 1+ ∑
i =1 n
⎛ 1⎞ ⎛ a ⎞ ⎛ 1⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ 1⎟ ⎜ a ⎟ ⎜ 1⎟ A⎜ ⎟ = ⎜ ⎟ = a⎜ ⎟ , # # # ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ 1⎟ ⎜ a ⎟ ⎜ 1⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
因此,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、单项选择题(共10题,每小题3分,共30分) 1.下列矩阵不一定...
为方阵的是( c ) (A )对称矩阵 (B )可逆矩阵 (C )系数矩阵 (D )对角矩阵
2.设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2
列得C ,记110010001P ⎛⎫ ⎪
= ⎪ ⎪⎝⎭
,则( B )
(A )1C PAP -= (B )1C P AP -= (C )T C P AP = (D )T C PAP = 3.设A 、B 是n 阶矩阵,下列结论正确的是( D ) (A )AB BA =; (B )T ()T T AB =A B (C )A B A B +=+ (D )AB A B =
4.设A 是n 阶矩阵,关于A 的伴随矩阵*A 的描述,错误的是( B ) (A )*
*
AA A A A I == (B )*
A A A = (C )1
*
n A A
-= (D )*
1
A A A
-=
5.设1111111111
1
1
k k A k k ⎛⎫ ⎪ ⎪
= ⎪ ⎪⎝⎭
,且()3R A =,则k =( B ) (A )1 (B )-3 (C )-2 (D )-1 6.设r A R =)(,则下列描述正确的是( C )
(A )没有等于零的r-1阶子式; (B ) 有等于零的r 阶子式; (C )至少有一个r 阶子式不为零; (D )任何r 阶子式不等于零. 7.设A 为n 阶可逆矩阵,则下列结论错误的是( A ) (A )0A = (B )A 的列向量组线性无关 (C )()R A n = (D )A 的行向量组线性无关
8.设向量组,123,ααα线性无关,则下列向量组线性相关的是( B ) (A ) ,,122331αααααα+++ (B ) ,,122331αααααα--- (C ) ,,122331222αααααα--- (D ),,122331222αααααα+++
9. 关于向量组s ααα,,,21 的线性无关,错误的是( C ) (A )其中任何向量都不能由其余向量线性表出; (B )向量组s ααα,,,21 的秩等于向量的个数s ;
(C )存在一组不全为零的数s k k k ,,,21 ,使得02211=+++s s k k k ααα ; (D )对任何一组不全为零的数s k k k ,,,21 ,都有02211≠+++s s k k k ααα . 10.下列结论正确的是( D )
(A)若()R A n <,则n 元非齐次线性方程组AX b =有无穷多个解; (B)若()R A n <,则n 元非齐次线性方程组AX b =无解; (C)若()R A n =,则n 元非齐次线性方程组AX b =有唯一解;
(D)若()R A n <,则n 元非齐次线性方程组AX b =有无穷多个解或无解。

二、填空题(共10题,每小题3分,共30分)
1.设矩阵23A ⨯、m n B ⨯,若AB 有意义,则m = 3 ;
2.设1111,1111A B -⎛⎫⎛⎫
== ⎪ ⎪---⎝⎭⎝⎭,则AB = 0 ;
3. 设A 为3阶方阵,且det 4A =,则1T det(2)A -= 2 ;
4.设673048000A ⎛⎫ ⎪=- ⎪ ⎪⎝⎭,100020003B ⎛⎫ ⎪
= ⎪ ⎪⎝⎭
,则 ()R AB = 2 ;
5.若(1,0,1),(0,1,1),2,x αβαβ==---=且 则x = (1,2,3) ;
6.若向量组123(1,0,0),(2,1,0),(1,3,9)k ααα===-线性相关,则k = 9 ;
7.设2A A =,则1()I A -+= ;
8.设A 是45´矩阵,且()R A =3,则齐次线性方程组0AX =的基础解系中所含向量为 2 个;
9.设A ,B 是6阶矩阵,且AB O =,则 ()()R A R B +≤ 6 ;
10.设α为3维列向量,T α是α的转置. 若111111111T αα-⎛⎫ ⎪
=-- ⎪ ⎪-⎝⎭
,则ααT = 。

三、(8分)计算行列式
1
2222
22223222224
四、(12分)设123412111,3,2,00111αααα骣骣骣骣-鼢鼢珑珑鼢鼢珑珑鼢鼢珑珑鼢鼢====珑珑鼢鼢珑珑鼢鼢珑珑鼢鼢鼢鼢珑珑桫桫桫桫
,判断向量组的线性相关性,求它的秩和一个最大无关组,并将其余向量用该最大无关组线性表出。

五、(14分)求非齐次线性方程组123412341
2341
024241
x x x x x x x x x x x x +--=⎧⎪
--+=⎨⎪--+=-⎩的通解。

六、(6分)设向量β可由向量组1α,2α,3α线性表出,且表示式唯一,证明向量组1α,
2α,3α线性无关。

标准答案及评分细则:(A
卷)
一、单项选择题(共10题,每小题3分,共30分)
1.C ;
2.A ;
3.D ;
4. B ;
5.B ;6. C ;7. A ;8. B ;9. C ;10. D 二、填空题(共10题,每小题3分,共30分)
1. 3;
2.O ;
3. 2;
4. 2;
5. (1,2,3);
6. 9;
7. 1
(2)2
I A -8. 2;9. 6;10.3
三、(8分)
解:
21
2221000222222
(1,3,4)223200102200i r r i --+=222402
4分 12
10000
22200100
0r r -+20
2
4=- 8分 四、(12分)
解:12341211(,,,)13200111A αααα骣-÷ç÷ç÷ç÷==ç÷ç÷ç÷÷ç桫 121112111013011101110111011100000000骣骣骣----鼢 珑 鼢 珑 鼢 珑 鼢 珑 鼢 珑 鼢 珑 鼢 鼢 珑 桫
桫桫
8分 由()24R A =<,向量组的线性相关;
1234(,,,)2R αααα=; 一个最大无关组:12,αα;
312ααα=-+,4123ααα=-+。

12分
五、(14分)
解:(1)1111
11111
024241A --⎛⎫

=-- ⎪ ⎪---⎝⎭
111111111
10202
10202
1060630000
0----⎛⎫⎛⎫


→--→-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭
1212
1010010100000-⎛⎫

→- ⎪ ⎪⎝

9分 (2)写出同解方程组
132412
12x x x x ⎧
=+⎪⎪⎨
⎪=+⎪⎩ (3)求特解 011
(,
,0,0)2
2
T η= (4)求导出组的基础解系 12(1,0,1,0),(0,1,0,1)ξξ== (5)通解 0112212,,X k k k k ηξξ=++∈ 14分
六、(6分)
证明:由β可由1α,2α,3α线性表出123(,,)X αααβ⇒=有解
再由表示式唯一123(,,)X αααβ⇒=唯一解 4分
123123(,,,)(,,)3R R αααβααα⇒==,
⇒1α,2α,3α线性无关。

6分。

相关文档
最新文档