Synthesis and Crystal Structure of a Dinuclear Cu(Ⅱ) Complex Based on a Carboxyl-sub

合集下载

3-锂电池基础科学问题(III)--相图与相变

3-锂电池基础科学问题(III)--相图与相变

252 年
储能科 学与 Nhomakorabea技 术
2013 年第 2 卷
LiNiO2 结构相似,用于制备 Li(M,Al)O2(M=Co、 [11] Ni)固溶体,提高结构稳定性 ;LiAlO2 也被用作 。 正极、负极的包覆材料 b 已知 LiAlO2 有、、() 、、、六个相,见 [17] b 表 1 。研究表明,其中 、 、 () 、 为高压结 [18-21] 。在常压下,加温可以使相不可逆转变为 构
Crystal data for modification of LiAlO2[17]
注:1Å=0.1nm。
图 2 LiAlO2 温-压相图的预估[27] Fig. 2 Estimated temperature pressure phase diagram for LiAlO2[27]
(1 bar=105 Pa)
2
2.1


相变的热力学描述
相变往往经历不同有序结构之间以及有序与无 序结构的相互转化。一般而言,相互作用导致有序 和组织,热运动引起无序和混乱。保罗·埃伦费斯特 [7-8] (Paul Ehrenfest) 首先对相变进行了分类,其分 类标志是热力学势以及其导数的连续性。热力学势 定义为=F+PV,其中 F 为自由能。 热力学势连续、一阶导数不连续的状态突变称 为一级相变,这类相变伴随着明显的体积变化和热 量的吸放(潜热)。例如,密度是吉布斯自由能对 化学势的一阶偏微分, 而密度的不连续变化导致固液-气三相变化, 因而三相变化是一级相变。 自由能 对热力学参量一阶微分连续的相变称为 “连续相变” 或“临界现象”。对于热力学势及其第一阶导数都 连续变化而二阶导数不连续的情形, 称为二级相变, 此时没有体积变化和潜热,但是比热容、压缩率、 磁化率等物理量随温度变化曲线出现跃变,如图 1

IPT工作法

IPT工作法

IPT工作法张玉麟【期刊名称】《航空科学技术》【年(卷),期】1998(000)005【摘要】介绍国外飞机制造公司在新机研制过程中的并行工程实施模式(IPT工作法),探讨我国航空企业实施并行工程的具体方法。

【总页数】4页(P23-26)【作者】张玉麟【作者单位】西安飞机工业(集团)有限责任公司【正文语种】中文【中图分类】F416.5【相关文献】1.Hydrothermal Synthesis and Crystal Structure of a Novel Isophthalate-bridged Copper(Ⅱ) Polymer with Two-dimensional Network Structure: [Cu2(phen)(ipt)2]2n·nH2O (ipt = isophthalate, phen = 1,10-phenanthroline) [J], CUI Yun-Cheng;LI Xiu-Mei;LI Chuan-Bi;WANG Qing-Wei;LIU Bo;LI Guo-Feng2.Hydrothermal Synthesis, Crystal Structure and Photoluminescent Property of a New Isophthalatebridged Zinc(Ⅱ) Polymer with One-dimensional Chain Structure: [Zn(ipt)(im)2]2n·3nH2O(ipt = Isophthalate, im = Imidazole) [J], 李秀梅; 崔运成; 王庆伟; 李传碧; 王仁章; 高广刚3.Hydrothermal Synthesis, Crystal Structure and Photoluminescent Property of a New Isophthalatebridged Zinc(Ⅱ) Polymer with One-dimensional Chain Structure: [Zn(ipt)(im)2]2n·3nH2O(ipt = Isophthalate, im = Imidazole) [J],4.“十佳工作法”之一:“党建+村办企业”双引擎工作法“党建+”加出村强民富[J],5.“十佳工作法”之二:主动发展+援建帮扶“1234”工作法借力扬帆好远航 [J],因版权原因,仅展示原文概要,查看原文内容请购买。

Synthesis,crystal structure and fluorescence property of 1-D europium complex with 2,3-difluorob

Synthesis,crystal structure and fluorescence property of 1-D europium complex with 2,3-difluorob

JOURNAL OF RARE EARTHS,Vol.27,No.6,Dec.2009,p.1092Fou ndation it em:Project supported by t he Science and Technology Program,Beijing Municipal Education Commission (09224010010)Cor respondin g aut hor:LI Xia (E-mail:xiali@;Tel.:+86-10-68903033)DOI 6S ()6356Synthesis,crystal structur e and fluorescence proper ty of 1-D eur opium complex with 2,3-difluorobenzoateSONG Jinhao (宋金浩),WU Xiaoshuo (吴小说),LI Xia (李夏)(Department of Chemistry,Capital N ormal Univers ity,B eijing 100048,China)Received 31March 2009;revised 29April 2009Abstract:A new chain europium complex [Eu(2,3-DFBA)3(H 2O)2]n (2,3-DFBA=2,3-difluorobenzoate)was synthesized by solvent method.X-ray single-crystal diffraction analysis revealed that Eu 3+ions were linked through 2,3-DFBA groups via alternate bidentate-bridging and tridentate chelating-bridging coordination modes to form a one-dimensional (1-D)polymeric chain.Each Eu 3+ion is eight-coordinated by six O atoms of five 2,3-DFBA ligands and two water molecules.The abundant hydrogen bonds between chains resulted in a two-dimensional (2-D)network structure.The titled complex crystallizes in monoclinic system,space group P21/c,with a=0.79977(2)nm,b=2.99156(7)nm,c=0.93260(2)nm,and β=100.691(1)°.The complex exhibited strong red fluorescence under ultraviolet light,and the 5D 0→7F j (j=0~4)transi-tions ofEu 3+ion were observed in its emission spectrum.Keywords:europium complex;2,3-difluorobenzoic acid;crystal structure;fluorescence;rare earthsIn recent years,luminescent lanthanide complexes have attracted much attention due to their excellent photophysical properties and potential applications in different interestingareas [1–4].The research has been focused on lanthanide com-plexes with carboxylic acid because they show various in-teresting molecular structures and luminescence for practicalapplications [5–16].Benzoic acid and its derivatives have been widely used in the coordination complexes of rare earth be-cause they are rigid ligands with various coordination modes and can form π-πstacking or hydrogen bonds to stabilize the complexes.By reducing the fluorescence quenching effect of the vibrational C –H bond [17,18],fluorinated organic ligands can significantly strengthen the luminescence inten-sity of complexes.We chose 2,3-difluorobenzoic acid to prepare a new chain europium complex,namely [Eu(2,3-DFBA )3(H 2O)2]n (2,3-DFBA=2,3-difluorobenzoate).The crystal structure,thermal stability and fluorescence emission spectrum were reported in this paper.1Experimental1.1Reagents and instruments All analytical grade re-agents and solvents were purchased commercially and used without further purification.EuCl 36H 2O was pre-pared by the reaction of Eu 2O 3(99.90%)and hydrochloric acid.Solid-state excitation and emission spectra were recorded on an F-4500fluorescence spectrophotometer at room tem-perature.The TG-DTA analysis experiment was carried out on a WCT-1A Thermal Analyzer.1.2Synthesis of the title complex A stoichiometric amount of 2,3-difluorobenzoic acid and EuCl 36H 2O were dissolved in 95%ethanol,respectively.The pH of the 2,3-difluorobenzoic acid was adjusted to the range of 5–6with 2mol/L NaOH solution.Then the ethanol solution of EuCl 36H 2O was added dropwise to the mixed solution.The mixture was heated under reflux with stirring for 2h.Single crystals suitable for X-ray investigation were obtained from the mother liquor after a week (Yield:42.25%).1.3Single-crystal structure determination A single crystal of the titled complex with dimensions of 0.15mm ×0.20mm ×0.20mm was carefully selected and mounted on a glass fi-ber.Data were collected at 296(2)K on a Bruker Smart 1000CCD diffractometer equipped with a graphite mono-chromatized Mo K αradiation (λ=0.071073nm).Semi-em-pirical absorption corrections were applied using the SADABS program.The structure was solved by direct method.The coordinates of all non-hydrogen atoms and the anisotropical parameters were refined by full-matrix least-squares method.The hydrogen atoms were placed in calculated positions.All calculations were carried out on a:10.101/1002-07210809-SONG Jinhao et al.,Synthesis,crystal structure and fluorescence property of1-D europium complex with2,3-difluorobenzoate1093computer by using SHELXS-97and SHELXL-97programs. The crystallographic data and structure refinement of the ti-tled complex are summarized in Table1.The selected bond lengths and bond angles of the titled complex are listed in Table2.2Results and discussion2.1Crystal structure The crystal structure and atomic numbering of the titled complex are shown in Fig.1.The complex is regarded as a polymeric chain composed of [Eu(2,3-DFBA)3(H2O)2]units.In the asymmetric unit,each Eu3+ion is coordinated to eight atoms,of which one oxygen atom is from the monodentate carboxylate group,two oxy-gen atoms from bidentatebridging carboxylate groups,three oxygen atoms from tridentate chelating-bridging carboxylate groups,and two oxygen atoms from two water molecules. The coordination geometry of Eu3+ion can be described as a distorted square-antiprism.The upper and lower planes of the square-antiprism are structured by O1,O2,O7,O8and O2A,O3,O5,O6,respectively,with a dihedral angle of4.6°between them.And the mean deviation from the upper and lower planes is0.02678and0.03874nm,respectively.The Table1Crystal data and structure refinement for the title complexEmpirical formula C21H13EuF6O8Formula weight659.27Crystal s ize/mm0.15×0.20×0.20Temperature/K296(2)Wavelengt h/nm0.071073Crystal s ystem MonoclinicSpace group P21/ca/nm0.79977(2)b/nm 2.99156(7)c/nm0.93260(2)α/(°)90.00β/(°)100.691(1)γ/(°)90.00V/nm3 2.19257(9)Z4Dc/(mg/m3) 1.997/mm–1 2.959F(000)1280θ/(o) 2.7~25.5Limiting indices-9≦h≦9,-36≦k≦29,-11≦l≦9 Reflections collected/unique11536/4036[R(int)=0.035]Data/restraints/parameters4036/4/341Goodness-of-fit on F2 1.564Final R indices[I>2sigma(I)]R1=0.659,wR2=0.1468R indices(all dat a)R1=0.0699,wR2=0.1481Eu–O(carboxylate)distances are in a range of0.2267(7)to 0.2583(6)nm with the average bond length of0.2402nm. The Eu1–O(water)distances are0.2460(8)and0.2430(8) nm,respectively,with the average bond distance of0.2445 nm.The O–Eu1–O bond angles range from51.8(2)to 156.3(3)°.In the titled complex,Eu3+ions are bridged by 2,3-DFBA groups in two modes:Eu1…Eu1A are bridged Table2Selected bond lengths(nm)and angles(°)for the titled complex*Eu1–O10.2440(7)Eu1–O20.2583(6)Eu1–O2A0.2430(7)Eu1–O30.2371(7)Eu1–O50.2319(7)Eu1–O60.2267(7)Eu1–O70.2460(8)Eu1–O80.2430(8)O1–Eu1–O776.9(3)O1–Eu1–O251.8(2)O2A–Eu1–O1118.2(2)O2A–Eu1–O7140.2(3)O2A–Eu1–O266.5(2)O3–Eu1–O8144.7(2)O3A–Eu1–O274.4(2)O3–Eu1–O196.8(3)O3–Eu1–O7143.7(3)O3–Eu1–O279.6(2)O5–Eu1–O371.9(2)O5–Eu1–O8141.8(3)O5A–Eu1–O2142.8(2)O5–Eu1–O181.3(3)O5–Eu1–O771.8(3)O5–Eu1–O2121.0(2)O6–Eu1–O591.1(3)O6–Eu1–O3101.9(3)O6–Eu1–O889.9(3)O6A–Eu1–O280.8(2)O6–Eu1–O1156.6(3)O6–Eu1–O779.6(3)O6–Eu1–O2145.8(2)O7–Eu1–O2119.3(2)O8A–Eu1–O274.8(2)O8–Eu1–O182.8(3)O8–Eu1–O770.8(3)O8–Eu1–O272.5(2)*Symmet ry transformat ions used to generate equivalent atoms:A:-1+x,y,z Fig.1Asymmetric unit of the titled complex1094J OURNAL OF RARE EARTHS,Vol.27,No.6,Dec.2009by two tridentate chelating-bridging2,3-DFBA groups, Eu1…Eu1B are bridged by two bidentate-bridging 2,3-DFBA groups.Eu3+ions are linked by alternate biden-tate-bridging and tridentate chelating-bridging2,3-DFBA groups to form a one-dimensional(1-D)polymeric chain. The titled complex is different from the lanthanide com-plexes with2-fluorobenzoate(2-FBA).The complexes [Tb(2-FBA)3(2-HFBA)H2O]2[5]and H o2(2-FC6H4COO)64H2O[6] are centrosymmetric dimers,in which two central Ln3+ (Ln3+=Tb3+,Ho3+)ions are linked together by four bridging carboxylate groups.Lanthanide complexes with mono-carboxylate show1-D polymeric chain structure through COO–groups via biden-tate-bridging or tridentate bridging-chelating coordination modes,such as1-D chain[{Tb(MeCH-CHCO2)3 (H2O)}MeCH-CHCO2H]n through only tridentate chelat-ing-bridging COO–groups[9],1-D[{Sm(OBz)3(MeO)2}2]n (Obz=benzoate)through two bidentate-bridging COO–groups[10],1-D[Eu(2,4-DMBA)3]n(2,4-DMBA=2,4-di-methylbenzoate)by alternate one bidentate-bridging and two tridentate-bridging and two bidentate-bridging and one triden-tate-bridging COO–groups[11],[Eu(p-MBA)3]n(p-MBA=4-methylbenzoate)through three bridging-chelating CO O–groups[12],[Gd(HF2CCOO)3(H2O)2.H2O]n through four biden-tate-bridging COO–groups[13],and[Eu(HCl2CCO O)3.2H2O]n through two bidentate-bridging and two bridging-chelating COO–groups[14].However,the titled complex is formed through alternate two bidentate-bridging and two tridentate chelating-bridging COO–groups,which isdifferent from many other1-D lanthanide complexes with mono-carboxylate. Fig.2shows two-dimensional(2-D)network structure of the titled complex along b axis,which is formed by abun-dant hydrogen bonds between chains.Three types of strong hydrogen bonds exist in the titled complex.One is the O-H…O hydrogen bonds between coordinated water mole-cules and uncoordinated carboxylate oxygen atoms, O8-H8A…O4A(A:–1+x,y,z),0.2803(11)nm,149(11)°;O7–H7B…O4C(C:1–x,-y,–z)0.2930(12)nm,154(14)°; and O7–H7A…O4A(A:–1+x,y,z),0.2789(11)nm,155(9)°; the second is the O–H…O hydrogen bonds between coordi-nated water molecules and coordinated carboxylate oxygen atoms,O8–H8B…O3B(B:1–x,–y,1–z),0.2745(10)nm, 167(16)°;the last one is between coordinated water mole-cules and uncoordinated fluorine atoms,O7–H7A…F4A(A:–1+x,y,z),0.3066(14)nm,132(8)°.2.2Fluorescence property Fluorinated organic ligands can remarkably improve the luminescence intensity of com-plexes by reducing the fluorescence quenching effect of the vibrational C–H bond[17,18].The titled complex emits a bright red fluorescence under ultraviolet light,and the solid-state excitation and emission spectra of the complex were investigated at room temperature.In the excitation spectrum,a large broad band in the range of200–300nm is observed,corresponding to the S0→S1transition of the ligands.A series of sharp lines in the excitation spectrum are attributed to the characteristic of the Eu3+energy levels,such as318,361,376-383,395,417and465nm,corresponding to7F0→5H4,7F0→5D4,7F0→5G0-4,7F0→5L6,7F0→5D3and 7F0→5D2transition emissions of Eu3+ion,respectively.The emission spectrum of the titled complex was recorded in the range from500–700nm under excitation wavelength of395nm.Fig.22-D network by hydrogen bonds along b-axisFig.3Fluorescence spectra of the title complex(a)Excitation spectrum(λ=613nm);(b)Emission spectrum(λx=395nm)em eSONG Jinhao et al.,Synthesis,crystal structure and fluorescence property of 1-D europium complex with 2,3-difluorobenzoate 1095There are five main peaks at 580,592,613,649,and 698nm,corresponding to 5D 0→7F 0,5D 0→7F 1,5D 0→7F 2,5D 0→7F 3,and 5D 0→7F 4transitions of Eu 3+ion.The splits observed in the emission bands at 589and 592nm are corresponding to 5D 0→7F 1transition.The strongest emission is centered at 613nm (5D 0→7F 2),which is responsible for the brilliant red emission.2.3Thermogravimetric analysis The DTA-TG analysis was studied in air atmosphere from 20to 1000°C with a heating rate of 10°C/min.The TG curve shows the titled complex decomposes by two steps.The TG curve is consistent with DTA curve.In the DTA curve,a small endothermic peak at 150.0°C with the first weight loss of 5.37%,which responds to the re-moval of two coordinated water molecules (calculated,5.46%).Then a large exothermic peak at 477.0°C is ob-served in the DTA curve.The second weight loss in the TG curve corresponds to the loss of the 2,3-DFBA ligands.The final residue is Eu 2O 3,and the total weight loss is 67.18%(calculated 73.31%).3ConclusionsReaction of EuCl 36H 2O with 2,3-difluorobenzoic acid produced the complex [Eu(2,3-DFBA)3(H 2O)2]n .The crys-tallographic feature of the complex was that 2,3-DFBA ligands adopted the alternate bidentate-bridging and triden-tate chelating-bridging coordination modes to link Eu 3+ions,forming 1D chain structure and a 2D supramolecular struc-ture via hydrogen bonds.The complex exhibited strong fluo-rescence due to the intra-4f n transitions of Eu 3+between the first excited state and the ground multiplet.References:[1]Faulkner S,Pope S J nthanide-sensitized lanthanide lu-minescence:terbium-sensitized ytterbium luminescence in a trinuclear complex.J.A m.Chem.Soc.,2003,125(35):10526.[2]Xu G,Wang Z M,He Z,L üZ,Liao C S,Yan C H.Synthesis and structural characterization of nonanuclear lanthanide complexes.Inorg.Chem.,2002,41(25):6802.[3]Patroniak Violetta,Baxter Paul N W,Lehn Jean-Marie,Hnate-jko Zbigniew,Kubicki Maciej.Synthesis and luminescence properties of new dinuclear complexes of lanthanide(III)ions.Eur.J.Inorg.Chem.,2004,11:2379.[4]Quici S,Marzanni G,Forni A,Accorsi G,Barigelletti F.New lanthanide complexes for sensitized visible and near-IR light emission:synthesis,1H NMR,and X-ray structural investiga-tion and photophysical properties.Inorg.Chem.,2004,43(4):1294.[5]Li X,Zhang Z Y,Zou Y Q.Synthesis,structure and lumines-cence properties of four novel terbium 2-fluorobenzoate com-plexes.Eur.J.Inorg.Chem.,2005,14:2909.[6]Li X,Zhang,Z Y.Synthesis and crystal structure of binuclear molecule Ho 2(2-FC 6H 4COO)6.4H 2O.J.Chem.Crystallogr.,2005,35(11):871.[7]Li X,Ju Y L,Zou Y Q.Synthesis,crystal structure and lumi-nescence of three europium complexes with 2-iodobenzoic acid.J.Coord.Chem.,2007,60(14):1513.[8]Goher M A S,Mautner F A.Synthesis and structure of two lanthanide complexes with isonicotinic acid N-oxide (HL):[Ln(L)2(H 2O)4]n (NO 3)n n(H 2O)(Ln=Sm or Tb).J.Mol.Struct.,2007,846:153.[9]Barja B,Aramendia P,Baggio R,Garland M T,Pe a O,Perec M.Europium(III)and terbium(III)trans-2-butenoates:syn-theses,crystal structures,and properties.Inorg.Chim Acta,2003,355:183[10]Singh U P,Kumar R,Upreti S.Synthesis,structural,photo-physical and thermal studies of benzoate bridged Sm(III)com-plexes.J.Mol.Struct.,2007,831:97.[11]Li X,Zhang Z Y,Zhang T T,Ju Y L.Synthesis,structure andluminescence of three europium complexes with 2,4-di-methylbenzoic acid.J.Coord.Chem.,2007,60(3):301.[12]Jin Q H,Li X,Zou Y Q,Yu K B.Catena-poly[europium-tri-mu-4-methyl-benzoato].A cta Cryst.,2001,57:676.[13]Rohde A,Hatscher S T,Urland W.Crystal structure and mag-netic behaviour of a new lanthanide acetate Gd(HF 2CCOO)3(H 2O)2H 2O in comparison to Gd(H 3CCOO)3(H 2O)22H 2O.J.A lloys Compd.,2004,374:137.[14]Oczko G,Starynowicz parison of optical propertiesand crystal structures of the praseodymium and europium chloroderivatives of acetates.J.Mol.Struct.,2005,740:237.[15]Wang C Y,Ju,Y L,Li Y Q,Zhang Y B,Li X.Hydrothermalsynthesis,crystal structure and luminescence of a europium complex with phenylmalonic acid and 1,10-phenanthroline.J.Rare Earths,2008,26(1):22.[16]Wang R F,Li L S,Jin L P,Lu S Z.Crystal Structure and lu-minescence of 1,10-phenanthroline-tris(4-methoxybenzoato)europium.J.Rare Earths,1998,16(2):149.[17]Chen B L,Yang Y,Zapata F,Qian G D,Luo Y S,Zhang J,Emil B.Enhanced near-infrared-luminescence in an erbium tetrafluoroterephthalate framework.Inorg.Chem.,2006,45(22):8882.[18]Gaetano Mancino,Andrew J Ferguson,Andrew Beeby,Nicho-las J Long,Tim S Jones.Dramatic increases in the lifetime of the Er 3+ion in a molecular complex using a perfluorinated imidodiphosphinate sensitizing ligand.J.A m.Chem.Soc.,2005,127(2):524.。

锌配合物的合成及晶体结构

锌配合物的合成及晶体结构

锌配合物的合成及晶体结构The Synthesis and Crystal Structure of a Zinc Complex摘要本文报道了一种新型锌配合物的合成及晶体结构。

该配合物是由2,2-二甲基-1,3-二嗪(DMD)和锌(II)离子组成,其结构由X射线衍射法(XRD)和质谱分析(MS)测定。

XRD结果表明,该配合物的晶体结构为空间群P21/c,其中锌离子以八面体形式存在,与四个DMD分子形成稳定的配位键。

MS结果显示,该配合物的分子式为C6H12N2Zn,分子量为150.5。

AbstractThis paper reports the synthesis and crystal structure of a novelzinc complex. The complex is composed of 2,2-dimethyl-1,3-diazine (DMD) and zinc (II) ion and its structure was determinedby X-ray diffraction (XRD) and mass spectrometry (MS). TheXRD results showed that the crystal structure of the complex wasP21/c space group, in which the zinc ion existed in octahedral form and formed stable coordination bonds with four DMD molecules. The MS results showed that the molecular formula of the complex was C6H12N2Zn with a molecular weight of 150.5.。

Synthesis and crystal structures of LaⅢ,YⅢ complexes of homoveratric acid with 1,10-phenanthro

Synthesis and crystal structures of LaⅢ,YⅢ complexes of homoveratric acid with 1,10-phenanthro

J OURNAL OF RARE EARTHS,Vol.28,No.1,Feb.2010,p.7Z O G (y53@zj ;T +653633)DOI 6S ()63Synthesis and cr ystal structures of La(III),Y(III)complexes of homoveratric acid with 1,10-phenanthrolineLI Huaqiong (李花琼)1,2,XIAN Huiduo (咸会朵)1,2,ZHAO Guoliang (赵国良)1,2(1.Zhejiang Key Laboratory for R eact ive Chemistry on Solid S urfaces,Institute of Physical C hemistry,Zhejiang Normal University,Jinhua 321004,China;2.College of Chemis try and Life S cience,Zhejiang Normal Univers ity,Jinhua 321004,China)Received 23April 2009;revised 27September 2009Abstract:Two three-dimensional complexes [Ln(DMPA)3phen]2(HDMPA=3,4-dimet hoxyphenylacetic acid,homoveratric acid;Ln=La,Y;phen=1,10-phenanthroline)were synthesized under hydrothermal conditions and characterized with IR and emission spectra.The crystal structures were determined with single crystal X-ray diffraction method.The two compounds were isostructural,and 3D supramolecule ar-chitectures were formed by hydrogen bonds and π–πstacking interactions.They strongly emitted upon excitation due to π*→πtransition of the ligands.Keywords:lanthanide;homoveratric acid;supramolecule architectures;luminescence;rare earthsThere is great interest in the design and synthesis of coor-dination polymers in supramolecule and materials chemistry,dues to their intriguing network topologies and promising applications in fields such as catalysis,ion exchange,gas storage,molecular magnets,optoelectronic devices,sensors,and so on [1–8].By choosing appropriate metal ions and versa-tile bridging organic ligands,numerous 1D [9],2D [10]and 3D [11]coordination polymers have been synthesized so far.The supramolecule architectures can be formed by non-co-valent forces of their components,including coordination bonding,hydrogen bonding,aromatic π–πstacking interac-tions,electrostatic and charge-transfer attractions [12].From the point of view of coordination chemistry,the interactions of ligands in a mixed-ligand complex can lead to a su-pramolecule formation [13].In this regard,much attention has been focused on the selecting of ligands with different struc-ture.In general,the architectures of such supramolecule net-works are built-up using multidentate organic ligands con-taining O –and/or N –donors,such as polyacid with suitable spacers and 4,4’-bipyridine,to link metal centers to form polymeric structures [14].It is well known that the coordina-tion ability of aromatic carboxylic acids towards rare earth complexes has received considerable attention because of the strong coordination ability and varieties of the bridging modes of the carboxylate group with regard to the formation of extended frameworks [15,16].Considering the high coordi-nation number of lanthanide ions,ancillary ligands can be employed to occupy some coordination sites and prevent the interpenetration of frameworks.1,10-phenanthroline(phen),which has a rigid framework and two chelate positions,is anappropriate ligand for lanthanide ions and can construct sta-ble supramolecule structures via C –H O or C –H N hydro-gen bonds and π–πstacks [17–20].In addition,phen can en-hance the luminescent properties of lanthanide complexes due to the antenna effect.For this purpose,we have chosen 3,4-dimethoxy-phenylacetic acid (HDMPA,homoveratric acid)as the O-donor ligand,1,10-phenanthroline as the N-donor ligand while La(III)and Y(III)as metal centers.Herein,we presented the synthesis and structures of two new three-dimensional coordination polymers [La(DMPA)3phen]2(1)and [Y(DMPA)3phen]2(2).The spectroscopic and thermal properties of the two compounds were discussed and com-pared.1Experimental1.1Materials and physical measur ementsAll chemicals were used as received without further puri-fication.3,4-dimethoxyphenylacetic acid was purchased from Alfa Aesar,while 1,10-phenanthroline and Ln 2O 3(Ln=La,Y)from Sinopharm Chemical Reagent Co.,Ltd.Elemental analysis was performed on an Elemental Vario EL III CHN analyzer.The IR spectra were obtained withKBr pellets in the range of 4000–400cm –1on a Nicolet NEXUS 670FT-IR spectrometer.UV-Visible spectra were recorded in solid state on a Thermoelectron Nicolet Evolu-tion 500spectrometer.Luminescence spectra in solid state were recorded on an Edinburgh Instruments FS920Steady State Fluorimeter.Corre sponding a uthor :HA uoliang E-m ail :sk el.:8-79-8747:10.101/1002-072109009-98JOURNAL OF RARE EARTHS,Vol.28,No.1,Feb.20101.2Synt hesisA mixture of3,4-dimethoxyphenylacetic acid(0.5886g, 3mmol),Ln2O3(0.5mmol),1,10-phenanthroline(0.1982g, 1mmol)and water(16ml)was sealed in a25ml stainless steel reactor with a Telflon liner and heated at433K for3d. The reactor was cooled slowly to room temperature over3d. Then the mixture was filtered,giving rise to colorless single crystals suitable for X-ray analysis.Anal.Calcd.for [La(DMPA)3phen]2(1):C,55.71%;H,4.53%;N,3.09%. Found:C,55.46%;H,4.24%;N,3.22%.IR data(KBr pellet,ν/cm–1):710(w),849(w),1022(m),1230(m),1400(s),1517 (s),1595(s),2834(w),2996(m),3130(s).Anal.Calcd.for [Y(DMPA)3phen]2(2):C,58.97%;H, 4.80%;N, 3.28%. Found:C,58.56%;H,4.35%;N,3.43%.IR data(KBr pellet,ν/cm-1):727(w),847(w),1028(m),1140(m),1237(m),1400 (s),1515(s),1610(s),2830(w),3000(m),3130(s),3432(m).1.3X-ray crystallographyIntensity data of the complexes were measured at293K on a Bruker APEXII CCD diffractometer using graphite-monochromated Mo Kαradiation(λ=0.071073nm).Struc-tures were solved by direct methods using SHELXS-97[21] and refined on the F2by full-matrix least-square method with SHELXL-97[22].All non-hydrogen atoms were refined anisotropically.Hydrogen atoms were placed in geometri-cally calculated positions and fined as riding atoms with a common fixed isotropic thermal parameter.Experimental details for X-ray data collection of1and2are presented in Table1,and the selected bond lengths and angles are listed Table1Crystal data and details of the structure determination for1and2C omple xes12Emipi ri cal formula C84H82La2N4O24C84H82N4O24Y2 Formulawei ght1809.361709.36Temperature/K296(2)296(2)C ryst al s ys tem Tricli nic Tri clinicSpace group P-1P-1a/nm 1.24743(5) 1.2345(2)b/nm 1.25219(5) 1.2366(2)c/nm 1.48010(5) 1.4627(3)α/(°)90.582(2)103.350(12)β/(°)103.252(2)91.255(14)γ/(°)117.443(2)115.271(12)Volume/nm3 1.97912(14) 1.9462(7)Z11C alcul ated densi ty/(mg/m3) 1.518 1.459Absorpti on coefficient/mm–1 1.146 1.566C ryst al s ize/mm0.212×0.142×0.0620.282×0.186×0.090F(000)920884θrangefor datacoll ection/(°) 1.85to27.47 1.84to27.64R efl ections collected/uni que33916/906733043/8906Goodne ss-of-fit on F20.8380.834F R[I>σ(I)]R=6R=R=5R=6R()R=6R=6R=R=36Δρ[3],–6333,–in DC No.675297and675298contain the sup-plementary crystallographic data for this paper.These data can be obtained free of charge from the Cambridge Crystal-lographic Data Centre.Table2Selected bond distances(10–1nm)and angles(°)for1and2 12Bond dis tances Bond distancesLa1–O12# 2.460(3)Y1–O4# 2.319(2)La1–O3# 2.485(3)Y1–O7# 2.333(2)La1–O4 2.494(3)Y1–O8 2.338(2)La1–O7 2.522(4)Y1–O11 2.360(3)La1–O8 2.577(3)Y1–O12 2.451(2)La1–O11 2.620(3)Y1–O3 2.461(2)La1–O12 2.652(3)Y1–O4 2.507(2)La1–N2 2.687(4)Y1–N4 2.538(3)La1–N1 2.745(4)Y1–N3 2.610(3)Bond angles B ond anglesO12#–La1–O3#76.25(11)O4#–Y1–O7#75.56(8)O12#–La1–O473.96(11)O4#–Y1–O875.78(8)O3#–La1–O4136.07(11)O7#–Y1–O8138.18(8)O12#–La1–O787.71(13)O4#–Y1–O1189.29(9)O3#–La1–O781.01(13)O7#–Y1–O1179.39(9)O4–La1–O7128.57(11)O8–Y1–O11129.79(8)O12#–La1–O876.53(11)O4#–Y1–O1275.42(8)O3#–La1–O8125.17(12)O7#–Y1–O12124.22(8)O4–La1–O877.58(11)O8–Y1–O1276.01(8)O7–La1–O851.28(11)O11–Y1–O1253.79(8)O12#–La1–O11122.78(11)O4#–Y1–O3124.31(8)O3#–La1–O1192.23(12)O7#–Y1–O393.31(8)O4–La1–O1177.93(11)O8–Y1–O378.59(8)O7–La1–O11146.41(12)O11–Y1–O3142.94(8)O8–La1–O11142.25(11)O12–Y1–O3142.13(7)O12#–La1–O1274.80(11)O4#–Y1–O472.93(8)O3#–La1–O1270.61(11)O7#–Y1–O471.30(8)O4–La1–O1270.9(1)O8–Y1–O471.56(8)O7–La1–O12149.36(12)O11–Y1–O4148.59(8)O8–La1–O12141.98(11)O12–Y1–O4139.05(7)O11–La1–O1249.00(9)O3–Y1–O452.18(7)O12#–La1–N2143.75(12)O4#–Y1–N4142.03(9)O3#–La1–N2137.56(13)O7#–Y1–N4139.45(9)O4–La1–N282.10(12)O8–Y1–N478.97(9)O7–La1–N286.37(14)O11–Y1–N485.49(9)O8–La1–N271.95(13)O12–Y1–N471.23(8)O11–La1–N276.59(12)O3–Y1–N476.72(8)O12–La1–N2122.44(11)O4–Y1–N4124.39(8)O12#–La1–N1152.67(12)O4#–Y1–N3150.35(8)O3#–La1–N177.57(12)O7#–Y1–N376.20(8)O4–La1–N1132.10(11)O8–Y1–N3132.96(8)O7–La1–N180.57(13)O11–Y1–N376.78(9)O8–La1–N1113.26(12)O12–Y1–N3114.26(8)O11–La1–N165.86(11)O3–Y1–N366.22(8)O12–La1–N1103.62(11)O4–Y1–N3106.09(8)N–L–N63(3)N–Y–N3633()L#–O–L5()Y#–O–Y()Sy(#)–x,–y,–z Sy(#)–x,–y,zi nal indices210.048w20.122810.044w20.110 i ndices al l data10.079w20.14410.0899w20.14 /e/nm1091192882a110.9141.79 a112a110.2011141107.078 mm.C ode11mm.Code11-LI Huaqiong et al.,Synthesis and crystal structures of La(III),Y (III)complexes of homoveratric acid with 1,10-phenanthroline 92Results and discussion2.1Str uct ural descript ionThe two complexes are isostructural,thus only the struc-ture of complex 1(Fig.1)is described in detail.Scheme 1shows the coordination modes of the anion of HDMPA ligand in complexes 1and 2.Scheme 1Coordination modes of DMPA –ligand in the two com-poundsAs shown in Fig.1,[La(DMPA)3phen]2is a binuclear lan-thanum complex with a center of symmetry,with La1La1A separation of 0.40631(5)nm.Its molecular struc-ture consists of two La(III)ions,six DMPA –anions and two phen (III)is nine-coordinated and surrounded by two nitrogen atoms from a phen molecule,seven carboxylate oxygen atoms from four homoveratric ligands.The La –O bond distances range from 0.2460(3)to 0.2652(3)nm,all of which are within the range of those observed for other nine-coordinated La(III)complexes with oxygen donor ligands [23,24].The La –N bond distances are 0.2687(4)and 0.2745(4)nm,which are similar to those in nine-coordinate complex [15,19,20].F ORT (3%y )f y f The coordination geometry of La(III)atom can be de-scribed as a distorted monocapped square antiprism with atom O12forming the cap (Fig.2).The average deviation of all atoms from their least-square plane of N1,N2,O6and O7is 0.00002nm and the deviation is 0.00078nm for the other square plane of other four oxygen atoms.To complete the coordination environment of the La center,atom O12is lo-cated as the cap.It is noteworthy that there exists three types of coordina-tion modes of homoveratric ligand in the complex:(1)che-lating bidentate [Scheme 1(a)]with distances of 0.2522(4)nm and 0.2577(3)nm for O7–La1and O8–La1,respectively;(2)bridging bidentate [Scheme 1(b)]through O3and O4with the O-La distances of 0.2485(3)nm and 0.2494(3)nm;(3)bridging tridentate [Scheme 1(c)]with distances of 0.2620(3)nm,0.2652(3)nm and 0.2460(3)nm for O11–La1,O12–La1and O12–La1A (1–x,–y,1–z),respectively,which are apparently important for a rational design and constitu-tion of new framework structures.In addition,there are no classical hydrogen bonds in the crystal structure,presumably because good hydrogen bond donors are absent.In complex 1,the most significant inter-molecular interactions are C –H O hydrogen bonds.The hydrogen bond geometry for 1is shown in Table 3.Simul-taneously,all the phen molecules are parallel,and the dis-tance between two adjacent phen molecules is 0.3441nm,the centroid-centroid separation is 0.38079(2)nm,and thus weak π–πaromatic interactions along the a-axis exist be-tween the phen molecules of neighboring sheets (Fig.3).All of the above hydrogen bonds and π–πstacking interactions contribute to the 3D supramolecular structure and stabilize it.2.2Optical spectroscopyThe emission spectra of the free HDMPA,phen and two complexes were investigated in the solid state at room tem-Fig.2Two sorts of environment of La atoms in complex 1Table 3Hydrogen bond geometry (10–1nm,°)for 1D –H A H A D –H D A ∠DHA Symmetrycode –O 53633()36x,–+y,z –B O 33636()6x,–+y,z 3–3O 533(6)5x,+y,–+zig.1EP repr esentation 0therm al probabilit ellipsoids o the c r stal str ucture o 1C11H11A 10 2.0.9.02817.1C21H217 2.0.9.20714.21C2H2A 72.20.9.40418.11110JOURNAL OF RARE EARTHS,Vol.28,No.1,Feb.2010Fig.33D frame of complex1Fig.4Plots of emission spectra of complex 1,2,phen and HDMPA(λex =256nm)perature upon excitation at 256nm,as shown in Fig.4.The free HDMPA exhibits a broad photoluminescence emissionat 386nm which may be due to π*→n and π*→πtransitions.The emission picks of phen at 362,280and 401nm are as-signed to π*→π(III)and Y(III)have no 4f electron and no excited states below the triplet state of the ligands.The energy absorbed by the ligands can not transfer to La(III)or Y(III),but relax through their own lower energy levels,which results in the fluorescence of the pared with the free ligands,each compound exhibits one red-shift emission peak (452nm for 1,434nm for 2),which may be attributed to the π*→πtransition.In the com-plexes,the perturbations of metal ions to the ligands strengthen the molecular rigidity,which,combined with theaccretion of π-electron conjugation,makes π*→πtransitionmuch easier [25].Compared with the fluorescence of the ligands,the fluorescence of 1and 2are greatly enhanced,as shown in Fig.4.3ConclusionsThe synthesis and structures of two new complexes [La(DMPA)3phen]2(1)and [Y(DMPA)3phen]2(2)were re-T DM T fπ–πHydrogen bonds and π–πstacking interactions contributed to the formation of lanthanide supramolecular compounds.References:[1]Leadbeater N E,Marco M.Preparation of polymer-supported ligands and metal complexes for use in catalysis.Chem.Rev .,2002,102(10):3217.[2]Berlinguette C P,Dragulescu-Andrasi A,Sieber A,Gal án-Mascar ós J R,G üdel H-U,Achim C,Dunbar K R.A charge-transfer-induced spin transition in the discrete cya-nide-bridged complex {[Co(tmphen)2]3[Fe(CN)6]2}.J.A m.Chem.Soc.,2004,126(20):6222.[3]Eddaoudi M,Moler D B,Li H,Chen B L,Reineke T M,O'Keeffe M,Yaghi O M.Modular chemistry:secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks.A cc.Chem.Res.,2001,34(4):319.[4]Ferlay S,Mallah T,Ouahes R,Veillet P,Verdaguer M.A room-temperature organometallic magnet based on Prussian blue.Nature,1995,378:701.[5]Coronado E,Gal án-Mascar ós J R,G ómez-Garc ía C J,G ómez-Garc ía C J,Laukhin V.Coexistence of ferromagnetism and me-tallic conductivity in a molecule-based layered compound.Na-ture,2000,408:447.[6]Kishida H,Matsuzaki H,Okamoto H,Manabe T,Yamashita M,Taguchi Y,Tokura Y.Gigantic optical nonlinearity in one-dimensional Mott-Hubbard insulators.Nature,2000,405:929.[7]Yagi O M,O ’Keeffe M,Ockwig N W,Chae H K,Eddaoudi M,Kim J.Reticular synthesis and the design of new materials.Nature,2003,423:705.[8]Kitagawa S,Kitaura R,Noro S.Functional porous coordina-tion polymers.A ngew .Chem.Int.Ed.,2004,43:2334.[9]Yi L,Yang X,Lu T B,Cheng P.Self-assembly of right-handed helical infinite Chain,one-and two-dimensional coordination polymers tuned via anions.Cryst.Growth Des.,2005,5(3):1215.[10]Mitsurs K,Shimamura M,Noro S L,Minakoshi S,Asami A,Seki J,Kitagawa S.Microporous materials constructed from the interpenetrated coordination networks.Structures and methane adsorption properties.Chem.Mater.,2000,12(5):1288.[11]Gao H L,Yi L,Ding B,Wang H S,Cheng P,Liao D,Yan S P.First 3D Pr(III)-Ni(II)-Na(I)polymer and A 3D Pr(III)open network based on pyridine-2,4,6-tricarboxylic acid.Inorg.Chem.,2006,45(2):481.[12]Moulton B,Zaworotko M J.From molecules to crystal engi-neering:Supramolecular isomerism and polymorphism in net-work solids.Chem.Rev.,2001,101(6):1629.[13]Lehn J M.Supramolecular chemistry-scope and perspectivesmolecules,supermolecules,and molecular devices (Nobel Lecture).A ngew.Chem.Int.Ed.,1988,27(1):89.[14]Liu C B,Sun C Y,Jin L P,Lu S Z.Supramolecular architec-ture of new lanthanide coordination polymers of 2-ami-noterephthalic acid and 1,10-phenanthroline.New J.Chem.,2004,28:1019.[5]L Y,Z F K,L X,Z W Q,G G ,L Z,S y f f x ported.he H PA ligands were coordinated to the metal ions with variable coordination modes.he introduction o 1i heng iu ou uo C u C Huang J.Cr stal structures and magnetic and luminescent properties o a series o homodinuclear lanthanide comple es withLI Huaqiong et al.,Synthesis and crystal structures of La(III),Y(III)complexes of homoveratric acid with1,10-phenanthroline114-cyanobenzoic ligand.Inorg.Chem.,2006,45(16):6308. [16]Fiedler T,Hilder M,Junk P C,Kynast U H,Lezhnina M M,Warzala M.Synthesis,structural and spectroscopic studies on the lanthanoid p-aminobenzoates and derived optically func-tional polyurethane composites.Eur.J.Inorg.Chem.,2007, 291.[17]González-BaróA C,Pis-Diez R,Piro O E,Parajón-Costa B S.Crystal structures,theoretical calculations,spectroscopic and electrochemical properties of Cr(III)complexes with dipi-colinic acid and1,10-phenantroline.Polyhedron,2008,27(2): 502.[18]He X,Bi M H,Ye K Q,Fang Q R,Zhang P,Xu J N,Wang Y.Self-assembly of a1D helical manganese coordination poly-mer and a tetranuclear lanthanum complex with1,10-phenan-throline and3,5-dinitrosalicylato -mun.,2006,9(12):1165.[19]Liu C B,Yu M X,Zheng X J,Jin L P,Gao S,Lu S Z.Structuralchange of supramolecular coordination polymers ofitaconic acid and1,10-phenanthroline along lanthanide series.Inorg.Chim.Acta,2005,358(9):2687.[20]Hu M L,Yuan J X,Morsali III complexes of uracil-1-acetic acid,[La(phen)X3]n,X=Uracil-1-Acetate(UA)and 5-Fluorouracil-1-Acetate(5-FUA),two2D coordination polymer,structural and thermal studies.Solid State Sci.,2006, 8(8):981.[21]Sheldrick G M.SHELXS-97.Program for the Solution ofCrystal Structures.University of G ttingen,Germany,1997. [22]Sheldrick G M.SHELXL-97.Program for the Refinement ofCrystal Structures.University of G ttingen,Germany,1997. [23]Pan L,Huang X Y,Li J,Wu Y G,Zheng N W.Novel single-and double-layer and three-dimensional structures of rare-earth metal coordination polymers:the effect of lanthanide contrac-tion and acidity control in crystal structure formation.A ngew.Chem.Int.Ed.,2000,39(3):527.[24]Qin C,Wang X L,Wang E B,Xu L.Synthesis,structures andthermal properties of three new two-dimensional coordination networks assembled by lanthanide salts and carboxylate ligand.Inorg.Chim.A cta,2006,359(2):417.[25]Yang Y S,An B L,Gong M L,Shi H H,Lei H Y,Meng J X.Progress on study of luminescence of rare earth organic Che-lates.Journal of the Chinese Rare Earth Society(in Chin.), 2001,19:298.。

解正峰简历-2011.9

解正峰简历-2011.9

解正峰:1972年12月生,1995年7月新疆大学化学系本科毕业,2003年新疆大学有机化学硕士毕业,2011年西安交通大学博士毕业。

2005年7月-2007年1月在中科院上海有机化学研究所做博士工作,2010年3月-7月在北京大学化学与分子工程学院挂职副院长。

主要研究方向为有机合成方法和石油化工精细化学品的合成。

主持三项国家自然科学基金、一项横向课题和一项校管青年教师启动基金项目,参加二项国家自然科学基金项目,一项教育部基金,一项自治区十一五重大专项基金,一项自治区火炬计划项目,一项科技支疆,一项校管教学改革课题。

承担项目(近5年)1.含多氮杂环席夫碱配合物的合成、活性测试及载氧性质研究,国家自然科学基金(20562011), 26万,2006-20082.新型多氮杂环席夫碱配合物的合成、活性测试及催化性能研究,国家自然科学基金(20862015),33万,2009-20113. 新型固载多氮杂环席夫碱介孔分子筛的制备及催化性能研究,国家自然科学基金(20962018),30万,2010-2012发表论文(近5年)1.Strecker-type reaction catalyzed by carboxylic acids in aqueous media, Synthesis, 2009,2035-20392.Three-component synthesis of homoallylic amines catalyzed by Phosphomolybdic acidin water, Chinese Journal of Chemistry, 2009, 27, 925-9293.Clean synthesis of adipic acid catalyzed by complexes derived from heteropoly acid andglycine. Catalysis Communications, 2009, 10, 464-4674. A convenient route to synthesize N-protected α,α-difluorohomoallylic amines bygem-difluoroallylation of α-amido sulfones, Synthesis, 2008, 3805-38095.Tandem Addition/Cyclization Reaction of Organozinc Reagents to 2-AlkynylAldehydes:Highly Efficient Regio- and Enantioselective Synthesis of 1,3-Dihydroisobenzofurans and Tetrasubstituted Furans, J. Org. Chem. 2008, 73, 2947-29506.Synthesis and Crystal Structure of 5-pyrazol-4,5-dihydropyrazoles Derivatives. Journal ofHeterocyclic Chemistry, 2008, 45, 1485-1488.7.新型双席夫碱类化合物的合成及晶体结构, 有机化学, 2008, 28(8), 1423-1427.8.含吡唑基的1,5-苯并硫氮杂卓衍生物的合成及晶体结构, 高等学校化学学报, 2008,29(3), 533-536.9.新型含吡唑基的查尔酮的合成、表征及晶体结构,有机化学,2008,28(3),506-510.10.新型双缩硫代对称二氨基脲类衍生物的合成和生物活性测试, 有机化学, 2008, 28(5),889-893.11.1-(5-Methyl-phenylisoxzaol-4 -yl)ethanone, Acta Crystallogaphica Section E. 2007, o301012.N,N’-Bis[(2-phenyl-2H-1,2,3-triazol-4-yl) methylidene]benzene-1,4-diamine, ActaCrystallogaphica Section E. 2007, o293413.1,5-Bis(4-chlorophenyl)-3-phenylpentane -1,5-dione Acta Crystallogaphica Section E. 2007,o280414.1,3-偶极环加成合成双-4,5-二氢-1,2,4-噁二唑啉衍生物,有机化学,2007, 27,1162-1166.15.联吡唑啉类化合物的合成及其荧光性能,应用化学,2007, 7, 765-769.16.5-(2-苯基-1,2,3-三唑基)-3-芳基吡唑啉衍生物的合成及其荧光性能, 高等学校化学学报,2006, 6, 1058-106117.Synthesis of New 3-(4-Oxo-4H-chromen-3-yl)-3a,6a-dihydro-pyrrolo[3,4-d]isoxazole-4,6-dione Derivatives by 1,3-Dipolar Cycloaddition Reaction, Journal of Heterocyclic Chemistry, 2005, 42, 695-697。

脒基硫脲和氯离子为主体晶格的四丁基铵包合物的制备与晶体结构

脒基硫脲和氯离子为主体晶格的四丁基铵包合物的制备与晶体结构

脒基硫脲和氯离子为主体晶格的四丁基铵包合物的制备与晶体结构吴元勇;杨媛【摘要】利用拥有质子给体和受体的脒基硫脲、稀盐酸和正四丁基氢氧化铵制备出了一种新型的包合物(C2 H7 N4 S)+·Cl-(n-C4 H9)N+,并使用X射线单晶衍射试验方法对其结构进行了测定,结果表明,晶体属单斜晶系,P21/c空间群,其中a=1.01038(1)nm,b=1.48052(2)nm,c=1.62384(2)nm,β=97.637(2)°,V=2.40754 (5)nm3,Z=4,R1=0.1648,wR=0.5007(I>2σ(I)).在标题化合物的晶体结构中,脒基硫脲除了存在一个N-H…S内氢键外,还和氯离子构成了两个N-H…Cl氢键,形成沿a 轴无限延伸的氢键宽链.正四丁基铵阳离子也以'头碰头'的形式构成了沿b轴无限延伸的'S'长链,并把主体分子包含其中,脒基硫脲、氯离子和正四丁基铵阳离子通过氢键和静电相互作用共同构建出了一个新颖的包合物结构.【期刊名称】《贵阳学院学报(自然科学版)》【年(卷),期】2017(012)004【总页数】5页(P6-9,22)【关键词】脒基硫脲;季铵盐;包合物;氢键;晶体结构【作者】吴元勇;杨媛【作者单位】贵州师范大学化学与材料科学学院,贵州贵阳 550001;贵州省功能材料化学重点实验室,贵州贵阳 550001;贵州师范大学化学与材料科学学院,贵州贵阳550001;贵州省功能材料化学重点实验室,贵州贵阳 550001【正文语种】中文【中图分类】O6411前言包合物作为超分子化学体系中的一种重要化合物,主要由构成包合物网格的主体部分(母体)和位于网格中的客体部分组成,所以也被称主-客体化合物[1]。

自1947年牛津大学的Powell发表了β-对苯二酚的笼型包合物的文章[2],并定义了“包合物”的概念到现在,化学研究者们对包合物晶体结构的研究已成为了包合物研究的重要内容[3-5]。

Synthesis, Crystal Structure, and Photoluminescence of Sr-α-SiAlON Eu2+

Synthesis, Crystal Structure, and Photoluminescence of Sr-α-SiAlON Eu2+

Synthesis,Crystal Structure,and Photoluminescenceof Sr-a -SiAlON:Eu 21Kousuke Shioi wSHOWA DENKO K.K.,Midori,Chiba 267-0056,JapanNaoto Hirosaki,*Rong-Jun Xie,*Takashi Takeda,and Yuan Qiang LiNational Institute for Materials Science,Tsukuba,Ibaraki 305-0044,JapanYoshitaka MatsushitaNational Institute for Materials Science,NIMS-SPring-8,Sayo,Hyogo 679-5148,JapanSr-containing a -SiAlON (Sr m /2Si 12-m –n Al m 1n O n N 16–n :Eu 21)phosphor was obtained as a major phase in compositions hav-ing small m and n values,by firing the powder mixture of SrSi 2,SrO,a -Si 3N 4,AlN,and Eu 2O 3at 20001C for 2h under 1MPa nitrogen atmosphere.The crystal structure of Sr-a -SiAlON was refined by the Rietveld analysis of the synchrotron X-ray powder diffraction pattern.The crystal structure showed that the Sr–N2bonding distance of Sr-a -SiAlON was fairly large compared with that of Ca-a -SiAlON.The displacement of N2sites prob-ably allow the interstices in a -SiAlON to accommodate the in-troduction of the large Sr ion.Sr-a -SiAlON:Eu 21phosphor has an excitation wavelength ranging from the ultraviolet region to 500nm and emits a strong yellow light.I.IntroductionWHITE light-emitting diodes (white LEDs)are considered as next-generation solid-state lighting systems because of their promising features such as low power consumption,high efficiency,long lifetime,and the lack of mercury.The availabil-ity of white-LEDs should open up a great number of new ex-citing application fields:white light sources to replace traditional incandescent and fluorescent lamps,backlights for portable elec-tronics,automobile headlights,medical,and architecture light-ing,etc.1–5Recently,rare earth-doped (oxy)nitride phosphors are gaining considerable attention due to their nontoxicity,and promising luminescence properties that enable them to be used in white-LEDs.Typical examples are red M 2Si 5N 8:Eu 21(M 5Ca,Sr,and Ba)6,7and CaAlSiN 3:Eu 21,8,9yellow Ca-a -SiAlON:Eu 21,10–13green b -SiAlON:Eu 21,14and yellow Ce-melilite.15Among these (oxy)nitride luminescence materials,Eu 21-doped a -SiAlON has a strong absorption in the range of 280–470nm and exhibits a broad yellow emission band covering the range of 550–590nm,11which is,therefore,expected to be used in white LEDs when combined with a blue LED chip.16In addition,due to its unique crystal structure,the a -SiAlON host lattice has the following advantages:(i)better flexibility of ma-terial design without changing the crystal structure,(ii)strong absorption in the visible light spectral region and long wave-length emissions,and (iii)chemical and thermal stability,as its basic structure is based on (Si,Al)–(O,N)4tetrahedral networks.a -SiAlON ceramics have been widely studied as structural materials because of their low linear expansion coefficients,high strength and hardness,and high thermal and chemical stabili-ties.It has an overall composition given by the formulaM m =v Si 12-m -n Al m þn O n N 16-n(1)where M is the modifying cations such as Li,Mg,Ca,Y,and rare earth (excluding La,Ce,Pr,and Eu),and v is the valency of the cation M.The crystal structure of a -SiAlON is derived from a -Si 3N 4by partial replacement of Si 41by Al 31and stabilized by trapping cations M into the interstices of the (Si,Al)–(O,N)4network.17It has been generally accepted that Sr 21ion alone cannot stabilize the a -SiAlON structure due to its large ionic size,but it can if codoped with calcium or yttrium.18Hwang addressed that the reaction product from the powder mixture with the com-position of Sr alone a -SiAlON without Y and Ca was the mixture of (a 1b )-SiAlON.Similar observations were also made by Man-dal 19and Liu et al .20A common feature of these reports is that the composition of Sr single-doped a -SiAlON has large m and n values.In this work,the synthesis of Sr-a -SiAlON:Eu 21with small m and n compositions is attempted,and the crystal structure of Sr-a -SiAlON is analyzed by the Rietveld refinement and then compared with that of Ca-a -SiAlON.Finally,the luminescent properties of Sr-a -SiAlON:Eu 21phosphor are reported.II.Experimental ProcedureSr-a -SiAlON:Eu 21samples were prepared from a -Si 3N 4(SN-E10,Ube Industries Ltd.,Tokyo,Japan),SrSi 2(KojyundoChemicalSr 1.5Al 3N 4Si 3N 4Fig.1.Schematic illustration of the a -SiAlON plane with the compo-sition numbers in Table I.D.Johnson—contributing editor*Member,The American Ceramic Society.wAuthor to whom correspondence should be addressed.e-mail:shioi.kousuke@nims.go.jpManuscript No.26102.Received April 7,2009;approved August 13,2009.J ournalJ.Am.Ceram.Soc.,93[2]465–469(2010)DOI:10.1111/j.1551-2916.2009.03372.x r 2009The American Ceramic Society465Laboratory Co.Ltd.,Saitama,Japan),SrO (Kojyundo Chemical Laboratory Co.Ltd.),AlN (Type F,Tokuyama Co.Ltd.,Shunan-shi,Japan),and Eu 2O 3(Shin-Etsu Chemical Co.Ltd.,Tokyo,Japan).SrSi 2was used as the Sr 21source to investigate small n compositions with an aim to eliminate the influence of the oxidation of raw materials in air,because SrSi 2is very stable against oxidation compared with metallic Sr or Sr 3N 2.The chemical compositions of the samples are plotted and listed in Fig.1and Table I.The powder mixtures were ground in the Si 3N 4mortar and pestle.The mixed powders were loaded in h-BN crucibles and then fired in a graphite resistance furnace at 20001C for 2h under 1MPa nitrogen atmosphere.The Eu 31ion in the starting powder Eu 2O 3is reduced to Eu 21under the nitrogen atmosphere during firing,which is confirmed by the absorption and emission spectra given later.Ca-a -SiAlON and Sr-a -SiAlON samples for the Rietveld refinement with nominal compositions Ca 0.375Si 11.25Al 0.75N 16and Sr 0.375Si 11.25Al 0.75N 16were also prepared by using the same firing conditions.The phase products of synthesized powders were identified by X-ray powder diffraction (XRD),operating at 40kV and 40mA and using Cu K a radiation (RINT2000,Rigaku,Tokyo,Japan).A step size of 0.0212y was used with a scan speed of 21/min.High-resolution synchrotron powder XRD data for Rietveldrefinements were recorded using wavelength l 50.65297Aat the NIMS beamline BL15XU of SPring-8synchrotron radiation facility.21The crystal structures were refined by the Rietveld method using the computer program RIETAN-FP,22and then visualized using the software package VESTA.23The photoluminescence spectra of the powder samples were mea-sured by a fluorescent spectrophotometer (Model F-4500,Hitachi Ltd.,Tokyo,Japan)at room temperature with a 150W Ushio xenon short-arc lamp.The emission spectrum was corrected for the spectral response of a monochromater and photomultiplier tube by a light diffuser (model R928P,Hamamatsu,Bridgewater,NJ)and tungsten lamp (10V,4A;Noma Electric Corp.,New York,NY).The excitation spectrum was also corrected for the spectral distribution of the xenon lamp intensity by measuring rhodamine-B as reference.III.Results and Discussion(1)SynthesisFigure 2shows the XRD patterns of samples with different m values (m 50.40–2.00)and a constant n value (n 50.02).As seen in Fig.2,the a -SiAlON phase is obtained as a major phase and SrSi 6N 8as a minor phase in samples with the m value varying from 0.70to 0.80,indicating that Sr 21can be dissolved in the a -SiAlON structure.The b -phase (b -Si 3N 4or b -SiAlON)is ob-served to coexist with a -SiAlON when m is below 0.70,the vol-ume of which increases with decreasing m value.With m values 40.80,the volume of SrSi 6N 8increases obviously,suggesting that the solubility limit of Sr 21in a -SiAlON is o 0.80.Figure 3presents XRD patterns of the samples with different n values (n 50–0.30)and a constant m value (m 50.75)As shown,the volume of the b -phase increases when n increases.As n stands for the oxygen content in the composition,a large n indicates an oxygen-rich composition.As mentioned previously,24the incre-Table I.Starting Compositions and Chemical Formula of the SamplesNo.m n Starting composition (wt%)Chemical formulaSrSi 2SrO a -Si 3N 4AlN Eu 2O 310.400.02 4.53091.84 3.010.62Sr 0.18Eu 0.02Si 11.58Al 0.42O 0.02N 15.9820.500.02 5.77089.90 3.720.61Sr 0.23Eu 0.02Si 11.48Al 0.52O 0.02N 15.9830.600.027.00087.97 4.420.61Sr 0.28Eu 0.02Si 11.38Al 0.62O 0.02N 15.9840.700.028.22086.05 5.110.61Sr 0.33Eu 0.02Si 11.28Al 0.72O 0.02N 15.9850.750.028.83085.10 5.460.61Sr 0.355Eu 0.02Si 11.23Al 0.77O 0.02N 15.9860.800.029.44084.15 5.810.61Sr 0.38Eu 0.02Si 11.18Al 0.82O 0.02N 15.987 1.100.0213.03078.527.850.60Sr 0.53Eu 0.02Si 10.88Al 1.12O 0.02N 15.988 1.500.0217.72071.1810.510.59Sr 0.73Eu 0.02Si 10.48Al 1.52O 0.02N 15.989 2.000.0223.40062.2713.750.58Sr 0.98Eu 0.02Si 9.98Al 2.02O 0.02N 15.98100.750.058.060.5485.13 5.660.61Sr 0.355Eu 0.02Si 11.20Al 0.80O 0.05N 15.95110.750.10 6.80 1.4285.19 5.990.60Sr 0.355Eu 0.02Si 11.15Al 0.85O 0.10N 15.90120.750.20 4.29 3.1885.29 6.640.60Sr 0.355Eu 0.02Si 11.05Al 0.95O 0.20N 15.80130.750.30 1.82 4.9185.407.280.60Sr 0.355Eu 0.02Si 10.95Al 1.05O 0.30N 15.70SSN,SrSi 6N 8;a ,Sr-a -SiAlON;AN-p,SrSi 10Àn Al 181n O n N 32Àn ;X,Unknown phase;s,strong;m,medium;w,weak.20I n t (a .u . ):β:αm=1.50m=1.10m=0.80m=0.75m=0.60m=0.70m=0.40m=0.50m=2.002530354045502θ (deg): SrSi 6N 8Fig.2.X-ray powder diffraction patterns of the compositions with different m values (n 50.02),a ,a -SiAlON;b ,b -SiAlON.20I n t (a .u .):α:βn=0.10n=0.20n=0.05n=0.02n=0.302530354045502θ ( deg )Fig.3.X-ray powder diffraction patterns of the compositions with different n values (m 50.75),a ,a -SiAlON;b ,b -SiAlON.466Journal of the American Ceramic Society—Shioi et al.Vol.93,No.2ment of b -phase with increasing n values is attributable to the excess formation of liquid phase during firing,and in turn pro-motes the formation of b -phase.Therefore,we demonstrate that Sr-a -SiAlON can be formed as the major phase in compositions with small m and n values (m 50.70–0.80and n 50–0.05).As mentioned above,Sr solely doped a -SiAlON was not avail-able in previous studies.It is due to the fact that the m and n values are too large in those investigations (Hwang et al .,18m 51and n 51;Mandal,19m 51.25and n 51.15;Liu et al .,20m 51.6,n 51.6),which make Sr unable to stabilize the a -SiAlON.(2)Crystal StructureThe diffraction data obtained by synchrotron powder X-ray of Sr-a -SiAlON and Ca-a -SiAlON with the nominal compositionsSr 0.375Si 11.25Al 0.75N 16and Ca 0.375Si 11.25Al 0.75N 16were used for structural refinement.Because the Sr-a -SiAlON sample contains a small amount of SrSi 6N 8,a two-phase structural refinement was conducted on Sr-a -SiAlON.As shown in Fig.4(a),a fairly good result was obtained,and the final refinement converged with the reliability indexes:R wp 51.31%,R p 50.89%.R I and R F are 4.85%,2.66%for Sr-a -SiAlON and 4.18%,1.54%for SrSi 6N 8,respectively.The mole fraction of Sr-a -SiAlON to SrSi 6N 8is 0.96–0.04.Figure 4(b)shows the refinement result of Ca-a -SiAlON.The reliability indexes obtained are:R wp 52.39%,R p 51.43%,R I 52.39%,and R F 51.29%.The refined fractional coordinates of Sr-a -SiAlON and Ca-a -Si AlON are listed in Table II.The occupancy of each Ca and Sr were 0.1825(7)and 0.1380(7),respectively.The smaller occupancy of Sr1is due to the formation of SrSi 6N 8.The calculated occupancy of Ca-a -SiAlON is smaller than that derived from the nominal composition:0.1875.The deviation of the occupancy of Ca-a -SiAlON can be ascribed to the vol-atilization of Ca at the high firing temperature of 20001C.It is seen that Ca-a -SiAlON and Sr-a -SiAlON have similar latticeconstants,and they are a 57.79277(3)A ,c 55.65325A for Ca-a -SiAlON and a 57.79189(5)A ,and c 55.65377A forSr-a -SiAlON.As mentioned previously,the lattice constants decrease with decreasing m value,13indicating that the lattice constants of Sr-a -SiAlON are influenced by the formation of SrSi 6N 8.The crystal structure of Sr-or Ca-a -SiAlON is shown in Fig.5(a).The a -SiAlON structure has the expanded a -Si 3N 4structure built up of the (Si,Al)–(O,N)network.17The intro-duction of Ca or Sr in the sevenfold coordination sites stabi-lizes the a -SiAlON structure.The local structure of the Ca or Sr site in the a -SiAlON structure is shown in Fig.5(b).Selected bonding distances and bonding angles are listed in Table III.The first nearest Ca/Sr–N2bond is much shorter than the other six Ca/Sr–N bonds.Ca–N2and Sr–N2bondingdistances are 2.367(5)Aand 2.412(7)A ,respectively,and the difference of the bonding distances between Ca–N2and Sr–N2is large compared with the other six bonds.Si/Al1–N2–Si/Al1bond angles of Ca-a -SiAlON and Sr-a -SiAlON are 116.7(2)1and 117.5(3)1,respectively.This means that the displacement of N2sites parallel to the c axis probably allow the interstices in a -SiAlON to accommodate the introduction of the large Sr ion.(3)Photoluminescence PropertiesFigure 6shows the typical excitation and emission spectra:of (a)Sr-a -SiAlON:Eu 21,(b)Ca-a -SiAlON:Eu 21phosphors.The excitation and emission spectra of Sr-a -SiAlON:Eu 21are comparable with those of Ca-a -SiAlON:Eu 21.The exci-52015302540351060555045I n t e n s i t y (b)52015302540351060555045I n t e n s i t y(a)2θ / deg2θ / degFig.4.Observed and calculated X-ray powder diffraction patterns for nominal compositions:(a)Sr 0.375Si 11.25Al 0.75N 16,(b)Ca 0.375Si 11.25Al 0.75N 16.Solid line is the pattern calculated from the refined crystal structure.Residual errors are drawn at the bottom of the figure.Vertical short lines are the permitted peak positions satisfying the Bragg condi-tion.The first row is Sr-a -SiAlON,and the second row is SrSi 6N 8in (a).Table II.The Refined Atomic Coordinates,Occupancies,and Isotropic Atomic Displacement Parameters for Ca-and Sr-a -SiAlONAtomWykoff positionOccxyzB (A2)Ca-a -SiAlONCa 2b 0.1825(7)1/32/30.23604(4)0.460(67)Si/Al16c 0.8175/0.18250.51156(6)0.0824(6)0.21097(48)0.424(8)Si/Al26c 0.8175/0.18250.16813(5)0.2527(5)0.00271(48)0.256(7)N12a 10000.34N22b 11/32/30.65475(55)0.34N36c 10.34473(12)À0.04598(15)À0.00922(63)0.34N46c 10.31852(13)0.31533(14)0.25714(56)0.34Sr-a -SiAlON Sr 2b 0.1380(7)1/32/30.2357(9)0.77(8)Si/Al16c 0.862/0.1380.51122(10)0.08219(9)0.2110(8)0.40(1)Si/Al26c 0.862/0.1380.16817(8)0.25288(7)0.0015(8)0.21(1)N12a 10000.34N22b 11/32/30.6624(9)0.34N36c 10.3453(2)À0.0426(2)À0.0037(11)0.34N46c10.3209(2)0.3139(2)0.2582(9)0.34Space group:P 31c (no.159).Refined lattice parameters are Ca-a -SiAlON:a 57.79277(3)A,c 55.65325(1)A ,Sr-a -SiAlON:a 57.79189(5)A ,c 55.65377(2)A .February 2010Synthesis,Crystal Structure,and Photoluminescence of Sr-a -SiAlON:Eu 21467tation spectrum of Sr-a -SiAlON:Eu 21covers the spectral re-gion from the UV to the visible part.Two broad bands are observed in the excitation spectrum with the maxima at about 288and 399nm corresponding to 4f 7-4f 65d transition of Eu 21.It is consistent with previous study on Ca-a -Si AlON:Eu 21.13The emission spectrum shows a single intense broad emission band ranging from 470to 750nm,peaking at about 575nm,which is attributable to the permitted 4f 65d -4f 7transition of Eu 21.The emission intensities of Sr-a -Si AlON:Eu 21(583nm)and Ca-a -SiAlON:Eu 21(575nm)were about 122%and 116%of YAG:Ce 31(P46-Y3).The emission peak of Sr-and Ca-a -SiAlON:Eu 21were longer than that of YAG:Ce 31(560nm).It means that the Sr-and Ca-a -Si AlON:Eu 21phosphors could be good yellow phosphor can-didates for creating warm white light when combined with blue LED.A very weak emission band centered at 450nm is ascribed to the luminescence of the small amount of SrSi 6N 8:Eu 21.25The characteristic Eu 31luminescence,which ex-hibits sharp and line-shaped spectrum between 600and 630nm is not observed.This suggests that the europium ion in Sr-a -SiAlON phosphor is in the divalent state.In comparisonwith Ca-a -SiAlON:Eu 21,the positions of the excitation and emission spectra are very similar (Fig.6),because the PL spectra are fixed by the network of (Si,Al)–(O,N)in a -Si AlON and nearly independent of the local structure around Sr (Eu 21)or Ca (Eu 21)ions.IV.ConclusionsNovel Sr-a -SiAlON:Eu 21phosphors have been successfully syn-thesized by gas-pressure sintering at 20001C for 2h under 1MPa nitrogen atmosphere.Nearly single phase of Sr-a -SiAlON:Eu 21sample was obtained with small m and n values (m 50.70–0.80and n 50–0.05).The Rietveld refinements have revealed that the displacement of N2site parallel to the c -axis could be the main reason for the introduction of Sr atom into the a -SiAlON struc-ture.This phosphor shows the wide excitation spectrum cover-ing from the ultra violet region to 500nm and emits a strong yellow light.It is expected that Sr-a -SiAlON:Eu 21phosphor can also be a good wavelength-conversion yellow phosphor for use in white LEDs based on a blue (Ga,In)N chip.AcknowledgmentsWe thank Drs.M.Tanaka,H.Yoshikawa,and K.Kobayashi of the National Institute for Materials Science for their suggestions and encouragements.We thank Dr.Y.Katsuya and Ms.J.Uchida of SPring-8service for their support in the diffraction experiments.References1S.Nakamura and G.Fasol,The Blue Laser Diode:GaN Based Light Emitters and Lasers .Springer-Verlag,Berlin,1997.2Y.Sato,N.Takahashi,and S.Sato,‘‘Full-Color Fluorescent Display Devices Using a Near-UV Light-Emitting Diode,’’Jpn.J.Appl.Phys.,35[7A]838–9(1996).3Y.Narukawa,I.Niki,K.Izuno,M.Yamada,Y.Murazaki,and T.Mukai,‘‘Phosphor-Conversion White Light Emitting Diode Using InGaN Near-Ultra-violet Chip,’’Jpn.J.Appl.Phys.,41[4A]371–3(2002).4Y.D.Huh,J.H.Shim,Y.Kim,and Y.R.Do,‘‘Optical Properties of Three-Band White Light Emitting Diodes,’’J.Electrochem.Soc.,150[2]H57–60(2003).5C.W.Tang,S.A.Van Slyke,and C.H.Chen,‘‘Electroluminescence of Doped Organic Thin Films,’’J.Appl.Phys.,65[9]3610–6(1989).ca(b)(a)bSi/Al1iiiN4vN4viN2ivN3ivCa/Sr ivN3viN3vN4ivSi/Al1iiSi/Al1iFig.5.(a)Crystal structures of a -SiAlON projected along the [110]direction.(b)The local structure of the Ca/Sr site in the a -SiAlON structure.Table III.Selected Bonding Distances and Angles in the LocalStructure of the Ca/Sr SiteCa-a -SiAlONSr-a -SiAlONDistance (A )M iv –N2iv 2.367(5) 2.412(7)M iv –N3vi 2.597(3) 2.600(4)M v –N3v 2.597(3) 2.600(4)M iv –N3iv 2.597(3) 2.600(4)M iv –N4v 2.6847(7) 2.7049(12)M iv –N4vi 2.6847(7) 2.7049(11)M iv –N4iv 2.6847(11) 2.705(2)Average 2.602 2.618Angle (deg)Si/Al1ii –N2iv –Si/Al1iii 116.7(2)117.5(3)Si/Al1i –N2iv –Si/Al1ii 116.7(2)117.5(2)Si/Al1iii –N2iv –Si/Al1i116.74(13)117.5(2)Symmetry operations are (i)x ,y ,z ;(ii)Ày ,x Ày ,z ;(iii)Àx 1y ,Àx ,z ;(iv)y ,x ,z 11/2;(v)x Ày ,Ày ,z 11/2;(vi)Àx ,Àx 1y ,z 11/2.M 5Ca and Sr.P L e m / e x -I n t ( a .u )(a)ExcitationEmission 200Wavelength ( nm )P L e m / e x -I n t ( a .u )(b)ExcitationEmission λem = 575 nm λem = 583 nm λex = 400 nmλex = 400 nmCa-α-SiAlON300400500600700200Wavelength ( nm )300400500600700Sr-α-SiAlONFig.6.Excitation and emission spectra of the samples with the nominal compositions:(a)Sr 0.355Eu 0.02Si 11.23Al 0.77O 0.02N 15.98,(b)Ca 0.355Eu 0.02Si 11.23Al 0.77O 0.02N 15.98.468Journal of the American Ceramic Society—Shioi et al.Vol.93,No.26H.A.Hoppe,H.Lutz,P.Morys,W.Schnick,and A.Seilmeier,‘‘Luminescence in Eu21-doped Ba2Si5N8:Fluorescence,Thermoluminescence,and Upconver-sion,’’J.Phys.Chem.Solids,61[12]2001–6(2000).7Y.Q.Li,J.E.J.van Steen,J.W.H.van Krevel,G.Botty,A.C.A.Delsing, F.J.DiSalvo,G.de With,and H.T.Hintzen,‘‘Luminescence Properties of Red-Emitting M2Si5N8:Eu21(M5Ca,Sr,Ba)LED Conversion Phosphors,’’pd.,417,273–9(2006).8K.Uheda,N.Hirosaki,Y.Yamamoto,A.Naito,T.Nakajima,and H.Yama-moto,‘‘Luminescence Properties of a Red Phosphor,CaAlSiN3:Eu21,for White Light-Emitting Diodes,’’Electrochem.Solid State Lett.,9,H22–5(2006).9K.Uheda,N.Hirosaki,and H.Yamamoto,‘‘Host Lattice Materials in the System Ca3N2-AlN-Si3N4for White Light Emitting Diode,’’Phys.Status Solid, A203,2712–7(2006).10J.W.H.van Krevel,J.W.T.van Rutten,H.Mandal,H.T.Hintzen,and R.Metselaar,‘‘Luminescence Properties of Terbium-,Cerium-,or Europium-Doped a-Sialon Materials,’’J.Solid State Chem.,165[1]19–24(2002).11R.-J.Xie,M.Mitomo,K.Uheda,F.-F.Xu,and Y.Akimune,‘‘Preparation and Luminescence Spectra of Calcium-and Rare-Earth(R5Eu,Tb,and Pr)-Codoped a-AiAlON ceramics,’’J.Am.Ceram.Soc.,85[5]1229–34(2002).12R.-J.Xie,N.Hirosaki,K.Sakuma,Y.Yamamoto,and M.Mitomo,‘‘Eu21-Doped Ca-a-SiAlON:A Yellow Phosphor for White Light-Emitting Diodes,’’Appl.Phys.Lett.,84[26]5404–6(2004).13R.-J.Xie,N.Hirosaki,M.Mitomo,Y.Yamamoto,T.Suehiro,and K. Sakuma,‘‘Optical Properties of Eu21in a-SiAlON,’’J.Phys.Chem.B,108[32] 12027–31(2004).14N.Hirosaki,R.-J.Xie,K.Kimoto,T.Sekiguchi,Y.Yamamoto,T.Suehiro, and M.Mitomo,‘‘Characterization and Properties of Green-Emitting b-SiAlON: Eu21Powder Phosphors for White Light-Emitting Diodes,’’Appl.Phys.Lett.,86, 211905,3pp(2005).15J.W.H.van Krevel,H.T.Hintzen,R.Metselaar,and A.Meijerink,‘‘Long Wavelength Ce31Emission in Y–Si–O–N Materials,’’pd.,268,272–7(1998).16K.Sakuma,N.Hirosaki,and R.-J.Xie,‘‘Red-Shift of Emission Wavelength Caused by Reabsorption Mechanism of Europium Activated Ca-a-SiAlON Ce-ramic Phosphor,’’J.Lumin.,126,843–52(2007).17G.Z.Cao and R.Metselaar,‘‘a0-Sialon Ceramics:A Review,’’Chem.Mater., 3[2]242–52(1991).18C.J.Hwang,D.W.Susnitzky,and D.R.Beaman,‘‘Preparation of Multi-cation a-SiAlON Containing Strontium,’’J.Am.Ceram.Soc.,78[3]588–92 (1995).19H.Mandal,‘‘New Developments in a-SiAlON Ceramics,’’J.Eur.Ceram. Soc.,19,2349–57(1999).20G.Liu,K.Chen,H.Zhou,K.Ren,C.Pereira,and J.F.M.Ferreira,‘‘Fab-rication of(Ca1Yb)-and(Ca1Sr)-Stabilized a-SiAlON by Combustion Synthe-sis,’’Mater.Res.Bull.,41,547–52(2006).21M.Tanaka,Y.Katsuya,and A.Yamamoto,‘‘A New Large Radius Imaging Plate Camera High-Resolution and High-Throughput Synchrotron X-ray Powder Diffraction by Multiexposure Method,’’Rev.Sci.Instrum.,79,075106, 6pp(2008).22F.Izumi and K.Momma,‘‘Three-Dimensional Visualization in Powder Diffraction,’’Solid State Phenom.,130,15–20(2007).23Momma and K.Izumi,‘‘VESTA:A Three-Dimensional Visualization System for Electronic and Structural Analysis,’’J.Appl.Crystallogr.,41,653–8(2008). 24H.L.Li,R.-J.Xie,N.Hirosaki,T.Suehiro,and Y.Yajima,‘‘Phase Purity and Luminescence Properties of Fine Ca-a-SiAlON:Eu Phosphors Synthesized by Gas Reduction Nitridation Method,’’J.Electrochem.Soc.,155[6]J175–9(2008).25K.Shioi,N.Hirosaki,R.-J.Xie,T.Takeda,and Y.Q.Li,‘‘Luminescence Properties of SrSi6N8:Eu2,’’J.Mater.Sci.,43[16]5659–61(2008).&February2010Synthesis,Crystal Structure,and Photoluminescence of Sr-a-SiAlON:Eu21469。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档