高等数学二常用公式

合集下载

高中数学二级结论公式

高中数学二级结论公式

高中数学二级结论公式
高中数学二级公式包括但不限于以下内容:
1. 圆的弦长公式:AB=2r2−d2r:圆的半径;d:弦心距,即弦长与圆心的距离。

2. 其他曲线的弦长公式:AB=1+k2x1−x2=1+k2(x1+x2)2−4x1x2二次项系数=1+k2⋅Δ二次项系数二次项系数:直线曲线联立后的二次项系数。

3. 圆上动点到圆外定点的距离最值口诀:最小值:穿心半径最小值:穿心-半径即圆外点到圆心的距离减去半径。

最大值:穿心半径最大值:穿心+半径即圆外点到圆心的距离加上半径。

以上信息仅供参考,建议查阅高中数学教材或咨询数学老师获取更准确的信息。

全部高等数学计算公式

全部高等数学计算公式

全部高等数学计算公式高等数学是数学的一个分支,包括微积分、线性代数、数理方程、概率论、复分析等多个内容。

每个分支都有大量的计算公式,下面将分别介绍这些分支中一些经典的计算公式。

一、微积分公式1.极限公式:(1)函数极限公式:$lim(f(x)±g(x))=limf(x)±limg(x)$$lim(f(x)g(x))=limf(x)·limg(x)$$lim\frac{{f(x)}}{{g(x)}}=\frac{{limf(x)}}{{limg(x)}}$(2)常见函数极限:$lim\frac{{sinx}}{{x}}=1$$lim(1+\frac{1}{{n}})^n=e$$lim(1+\frac{1}{{n}})^{n(p-q)}=e^{(p-q)}$2.导数公式:(1)基本导数公式:$(c)'=0$$(x^n)'=nx^{n-1}$$(e^x)'=e^x$$(a^x)'=a^xlna$$(lnx)'=\frac{1}{{x}}$$(sinx)'=cosx$$(cosx)'=-sinx$$(tanx)'=sec^2x$(2)导数的四则运算:$(f(x)\pm g(x))'=f'(x)\pm g'(x)$$(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)$$(\frac{{f(x)}}{{g(x)}})'=\frac{{f'(x)g(x)-f(x)g'(x)}}{{g^2(x)}}$(3)链式法则:$(f(g(x)))'=f'(g(x))g'(x)$3.积分公式:(1)基本积分公式:$\int{cx^n}dx=\frac{{cx^{n+1}}}{{n+1}}+C$$\int{e^x}dx=e^x+C$$\int{a^x}dx=\frac{{a^x}}{{lna}}+C$$\int{\frac{{1}}{{x}}}dx=ln,x,+C$$\int{sinx}dx=-cosx+C$$\int{cosx}dx=sinx+C$$\int{sec^2x}dx=tanx+C$(2)常用积分公式:$\int{u}dv=uv-\int{v}du$$\int{sin^2x}dx=\frac{{x}}{2}-\frac{{sin2x}}{4}+C$$\int{cos^2x}dx=\frac{{x}}{2}+\frac{{sin2x}}{4}+C$4.泰勒展开公式:$f(x)=f(a)+f'(a)(x-a)+\frac{{f''(a)}}{{2!}}(x-a)^2+...+\frac{{f^{(n)}}}{{n!}}(x-a)^n+R_n(x)$二、线性代数公式1.行列式公式:(1)二阶行列式:$D=\begin{vmatrix}a&b\\c&d\end{vmatrix}=ad-bc$(2)三阶行列式:$D=\begin{vmatrix}a&b&c\\d&e&f\\g&h&i\end{vmatrix}=aei+bfg+c dh-ceg-afh-bdi$2.矩阵运算公式:(1)两个矩阵的和:$A+B=\begin{bmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{bmatrix }+\begin{bmatrix}b_{11}&b_{12}\\b_{21}&b_{22}\end{bmatrix}=\begin{bmatrix}a_{11}+b_{11}&a_{12}+b_{12}\\a_{21}+b_{21}&a_{22}+b_{2 2}\end{bmatrix}$(2)两个矩阵的乘积:$AB=\begin{bmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{bmatrix} \begin{bmatrix}b_{11}&b_{12}\\b_{21}&b_{22}\end{bmatrix}=\begin{ bmatrix}a_{11}b_{11}+a_{12}b_{21}&a_{11}b_{12}+a_{12}b_{22}\\a_{ 21}b_{11}+a_{22}b_{21}&a_{21}b_{12}+a_{22}b_{22}\end{bmatrix}$3.特征值与特征向量公式:$A-\lambda I=0$其中,A为矩阵,$\lambda$为特征值,I为单位矩阵。

高数二公式大全

高数二公式大全

高等数学公式导数公式: 基本积分表:ax x aa a ctgx x x tgx x x x x x x a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(cot sec )(tan 22='='⋅-='⋅='-='='222211)cot (11)(arctan 11)(arccos 11)(arcsin x x arc x x x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx xdx x C x dx x x Cx xdx x dx C x xdx x dx xx)ln(ln csc cot csc sec tan sec cot csc sin tan sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xa x a dx Cx x xdx C x x xdx Cx xdx C x xdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 21arctan 1cot csc ln csc tan sec ln sec sin ln cot cos ln tan 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:三角函数公式: 〃诱导公式:xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxxxx x〃和差角公式: 〃和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαcot cot 1cot cot )cot(tan tan 1tan tan )tan(sin sin cos cos )cos(sin cos cos sin )sin(±⋅=±⋅±=±=±±=±〃倍角公式:〃半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cot cos 1sin sin cos 1cos 1cos 12tan2cos 12cos 2cos 12sin-=+=-+±=+=-=+-±=+±=-±= 〃正弦定理:R CcB b A a 2sin sin sin === 〃余弦定理:C ab b a c cos 2222-+=〃反三角函数性质:x arc arctgx x x cot 2arccos 2arcsin -=-=ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

专升本高等数学二笔记公式大全

专升本高等数学二笔记公式大全

第一章极限和连续第一节极限[复习考试要求] 1.了解极限的概念(对极限定义 3. 理解事件之间并(和)、交(积)、差运算的意义,掌握其运算规律。

4. 理解概率的古典型意义,掌握事件概率的基本性质及事件概率的计算。

1,0,1,0,… 有界:0, 12.数列极限的存在准则定理 1.3(两面夹准则)若数列{x n },{y n },{z n }满 等形式的描述不作要求)。

5.会求事件的条件概率;掌握概率的乘法公式及足以下条件:会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。

2. 了解极限的有关性质,掌握极限的四则运算法则。

3. 理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。

会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。

会运用等价无穷小量代换求极限。

4. 熟练掌握用两个重要极限求极限的方法。

第二节函数的连续性[复习考试要求]1.理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在之间的关系,掌握判断函数(含分段函数)在一点处连续性的方法。

2.会求函数的间断点。

3. 掌握在闭区间上连续函数的性质会用它们证明一些简单命题。

4. 理解初等函数在其定义区间上的连续性,会利用函数连续性求极限。

第二章一元函数微分学第一节导数与微分 事件的独立性。

6. 了解随机变量的概念及其分布函数。

7. 理解离散性随机变量的意义及其概率分布掌握概率分布的计算方法。

8. 会求离散性随机变量的数学期望、方差和标准差。

第一章极限和连续第一节极限[复习考试要求]1.了解极限的概念(对极限定义(1) ,(2) , 则定理 1.4 若数列{x n }单调有界,则它必有极限。

3.数列极限的四则运算定理。

定理 1.5(三)函数极限的概念 1. 当 x→x 0 时函数f (x )的极限 (1)当 x→x 0 时f (x )的极限 定义对于函数 y=f (x ),如果当 x 无限地趋于 x 0时,函数 f (x )无限地趋于一个常数A ,则称当x→x 0 时,函数 f (x )的极限是A ,记作或f (x )→A(当 x→x 0 时) 例 y=f (x )=2x+12. 当x→∞时,函数 f (x )的极限 (1) 当x→∞时,函数 f (x )的极限y=f(x)x→∞f(x)→?y=f(x)=1+x→∞f(x)=1+ →1定义对于函数y=f (x ),如果当 x→∞时,f (x )无限地趋于一个常数A ,则称当x→∞时,函数 f (x )的极限是A ,记作或 f (x )→A(当x→∞时)(2) 当x→+∞时,函数 f (x )的极限定义对于函数y=f (x ),如果当 x→+∞时,f (x )无限地趋于一个常数A ,则称当 x→+∞时,函数f (x )的极限是A ,记作这个定义与数列极限的定义基本上一样,数列极限的定义中n→+∞的 n 是正整数;而在这个定义[复习考试要求] 等形式的描述不作要求)。

考研数学二公式高数线代(整理)技巧归纳(精选.)

考研数学二公式高数线代(整理)技巧归纳(精选.)

高等数学公式一、常用的等价无穷小当x →0时x x x x x (1+x ) ~-11x a(1+x )α-1 ~ αx (α为任意实数,不一定是整数)1x ~21x 2增加x x ~61x 3 对应 x –x ~ 61x 3x –x ~ 31x 3 对应 x - x ~ 31x 3二、利用泰勒公式= 1 + x + +!22x o (2x ) ) (33 o !3sin x x x x +-=x 1 – +!22x o (2x ) (1+x )=x – +22x o (2x )导数公式: 基本积分表:三角函数的有理式积分:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·和差角公式: ·和差化积公式:·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹()公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(μμμαααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑ΛΛΛ中值定理与导数应用:拉格朗日中值定理。

大学高数第二册公式整理

大学高数第二册公式整理

dy
hx
g
xdx
最后得 Hx Gx c
dy Pxy 0
(2)一阶线性齐次微分方程: dx y ce Pxdx
dy Pxy Qx
(3)一阶线性非齐次微分方程: dx
y
ce
P
x
d
x
Qxe Pxdxdx c
(4)齐次微分方程:代换法:如果 dy y ,则令 y u
dx x
x

z
的一阶偏导
f x x0 , f y x0 ,
y0 y0
0 0
f xx x0 , y0 A

z
的二阶偏导
f xy x0 ,
y0
B
f
yy
x0
,
y0
C
①当 AC B2 0 时,且 A 0 时,有极大值; A 0 时,极小值
②当 AC B2 0时,无极值
③当 AC B2 0时,无法判定
1. 方向导数与梯度
方向导数: f f cos f cos
l x
y
cos,cos 是l的方向余弦



g r a d fx,
y
f x
,
f y
2.(1)曲线的切线与法平面
x xt
设曲
线方程:
y
yt
z zt
则切线方程:
x x0
x`t0
y y0
y`t0
z z0
z`t0
法平面方程: x`t0 x x0 y`t0 y y0 z`t0 z z0 0
(2)曲面的切平面与法线
设曲线方程为: Fx, y, z 0
则切线方程:
x x0

高等数学二知识点总结

高等数学二知识点总结

高等数学二知识点总结一、极限与连续1. 极限的概念- 数列极限的定义- 函数极限的定义- 无穷小与无穷大的概念2. 极限的性质- 唯一性、有界性- 四则运算法则- 夹逼定理和单调有界定理3. 极限的计算- 极限的四则运算- 链式法则、洛必达法则- 无穷小的比较与替换4. 连续函数- 连续性的定义- 间断点的类型- 连续函数的性质二、导数与微分1. 导数的概念- 导数的定义- 导数的几何意义与物理意义2. 导数的计算- 基本导数公式- 链式法则、乘积法则、商法则 - 隐函数求导、参数方程求导3. 高阶导数- 高阶导数的定义- 常见函数的高阶导数4. 微分的概念与应用- 微分的定义- 微分的几何意义与物理意义 - 微分在近似计算中的应用三、中值定理与导数的应用1. 中值定理- 罗尔定理- 拉格朗日中值定理- 柯西中值定理2. 泰勒公式- 泰勒公式的表达式- 泰勒公式的应用3. 函数的极值与最值- 极值存在的条件- 最大值与最小值的求解4. 曲线的凹凸性与拐点- 凹凸性的定义与判别- 拐点的求解四、积分1. 不定积分- 基本积分表- 换元积分法- 分部积分法2. 定积分的概念与性质- 定积分的定义- 定积分的性质- 微积分基本定理3. 定积分的计算- 定积分的计算方法- 利用微积分基本定理计算定积分4. 积分的应用- 平面图形的面积- 体积的计算- 平面曲线的弧长五、级数1. 级数的基本概念- 级数的定义- 收敛级数与发散级数2. 收敛性的判别- 比较判别法- 比值判别法与根值判别法- 积分判别法与交错级数判别法3. 幂级数- 幂级数的收敛半径与收敛区间- 幂级数的求和公式4. 傅里叶级数- 傅里叶级数的概念- 傅里叶级数的展开与还原以上是高等数学二的主要知识点总结。

每个部分都包含了关键的定义、性质、计算方法和应用,这些内容是理解和掌握高等数学二所必需的。

在实际应用中,需要结合具体问题来运用这些知识点,通过练习和深入理解来提高解题能力。

成考高等数学二必背公式

成考高等数学二必背公式

成考高等数学二必背公式一、极限与连续1. 重要极限:- $\lim_{x\to0}\frac{\sin x}{x}=1$- $\lim_{x\to\infty}(1+\frac{1}{x})^x=e$- $\lim_{n\to\infty}(1+\frac{1}{n})^n=e$- $\lim_{x\to0}(1+x)^{\frac{1}{x}}=e$- $\lim_{x\to\infty}\frac{\ln x}{x}=0$2. 无穷小量计算:- 当$x$是无穷小量时,$a^x-1\approx x\ln a$,其中$a>0$且$a\neq1$- 当$x$是无穷小量时,$(1+x)^n-1\approx nx$,其中$n$为常数- 当$x$是无穷小量时,$\sqrt[m]{1+x}-1\approx\frac{x}{m}$,其中$m$为常数3. 极限的四则运算:- $\lim_{x\to x_0}(f(x)+g(x))=\lim_{x\to x_0}f(x)+\lim_{x\to x_0}g(x)$- $\lim_{x\to x_0}(f(x)-g(x))=\lim_{x\to x_0}f(x)-\lim_{x\to x_0}g(x)$- $\lim_{x\to x_0}(f(x)\cdot g(x))=\lim_{x\to x_0}f(x)\cdot\lim_{x\to x_0}g(x)$- $\lim_{x\to x_0}(\frac{f(x)}{g(x)})=\frac{\lim_{x\to x_0}f(x)}{\lim_{x\to x_0}g(x)}$(其中$\lim_{x\to x_0}g(x)\neq0$)二、导数与微分1. 基本求导公式:- $(C)'=0$,其中$C$为常数- $(x^n)'=nx^{n-1}$,其中$n$为常数- $(e^x)'=e^x$- $(\ln x)'=\frac{1}{x}$,其中$x>0$- $(\sin x)'=\cos x$- $(\cos x)'=-\sin x$- $(\tan x)'=\sec^2 x$- $(\cot x)'=-\csc^2 x$- $(\sec x)'=\sec x\tan x$- $(\csc x)'=-\csc x\cot x$2. 常用求导法则:- $(u\pm v)'=u'+v'$- $(cu)'=cu'$,其中$c$为常数- $(uv)'=u'v+uv'$- $(\frac{u}{v})'=\frac{u'v-uv'}{v^2}$,其中$v\neq0$- $(f(g(x)))'=f'(g(x))\cdot g'(x)$3. 高阶导数:- 若$f'(x)$存在,则称$f(x)$可导,$f''(x)$为$f(x)$的二阶导数,以此类推- $f^{(n)}(x)$表示$f(x)$的$n$阶导数- $f^{(n)}(x)$可表示为$f^{(n)}(x)=\frac{d^n}{dx^n}f(x)$三、定积分与不定积分1. 基本积分公式:- $\int x^n dx=\frac{1}{n+1}x^{n+1}+C$,其中$n\neq-1$,$C$为常数- $\int e^x dx=e^x+C$- $\int \frac{1}{x} dx=\ln|x|+C$,其中$x\neq0$,$C$为常数- $\int \sin x dx=-\cos x+C$- $\int \cos x dx=\sin x+C$- $\int \tan x dx=-\ln|\cos x|+C$- $\int \cot x dx=\ln|\sin x|+C$- $\int \sec x dx=\ln|\sec x+\tan x|+C$- $\int \csc x dx=\ln|\csc x-\cot x|+C$2. 基本定积分公式:- $\int_a^b f(x)dx=F(b)-F(a)$,其中$F(x)$为$f(x)$的一个原函数3. 常用积分法则:- 第一换元法:设$u=g(x)$可导,则$\int f(g(x))g'(x)dx=\int f(u)du$- 第二换元法(逆函数法):设$u=f(x)$可导且$f'(x)\neq0$,则$\int f(x)dx=\int f(f^{-1}(u))du$四、级数1. 常见级数:- 等比数列:$S_n=a+ar+ar^2+\ldots+ar^{n-1}=\frac{a(1-r^n)}{1-r}$,其中$r\neq1$- 幂级数:$S_n=\sum_{k=0}^n a_k=\sum_{k=0}^n q^k=\frac{1-q^{n+1}}{1-q}$,其中$q\neq1$2. 收敛级数:- 若级数$\sum_{n=1}^\infty a_n$的部分和数列$S_n$有极限$S$,则称级数$\sum_{n=1}^\infty a_n$收敛于$S$,记作$\sum_{n=1}^\infty a_n=S$- 若级数$\sum_{n=1}^\infty a_n$收敛,则$\lim_{n\to\infty}a_n=0$3. 常见收敛级数:- 调和级数:$\sum_{n=1}^\infty\frac{1}{n}$收敛- 几何级数:$\sum_{n=1}^\infty q^n$收敛当且仅当$|q|<1$总结:本文介绍了成考高等数学二中的必背公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《高等数学二》考试常用方法和公式
一、 求极限 (一)形如)
()(lim x g x f a x → 1.代入法
把a x =代入)
()()()(a g a f x g x f = (0)(≠a g ) 2.因式分解法
若把a x =代入0
0)()()()(==a g a f x g x f 可分解分子或者分母,约去一个因式,再把a x =代入即可。

3.重要极限法
若把a x =代入0
0)()()()(==a g a f x g x f 且分子或分母中含有)sin(或)tan(,利用公式 1)()sin(lim 0)(=→ 1)
()tan(lim 0)(=→ 4.洛必达法则
若把a x =代入00)()()()(==a g a f x g x f 或∞
∞,可利用洛必达法则,即 )
()(lim )()(lim x g x f x g x f a x a x ''=→→,再把a x =代入即可。

(二)形如01110111lim b x b x
b x b a x a x a x a m m m m n n n n x ++++++++----∞→L L 方法:⎪⎪⎩
⎪⎪⎨⎧>∞<==++++++++----∞→m n m n m n b a b x b x b x b a x a x a x a m n m m m m n n n n x ,,0,lim 01110111L L
(三)形如e x =⎪⎪⎭⎫ ⎝⎛+∞→)()(11lim 或()e x =+→)(1
)(1lim 0 (四)形如)()
()())((lim 0)(a f a f a f '=-+→ 二、 分段函数分段点处连续或极限存在
(1)⎩⎨⎧>≤=b
x x f b x x f x f ),(),()(21在b x =处连续(或极限存在),求表达式中的待定常数 方法:把b x =代入两个表达式并令其相等,即令)()(21b f b f =,解出待定常数即可。

(2)求间断点:使得分母为零的点。

方法:令分母为0,解得x 值。

三、求导公式
)(x f dx
dy y '==' 1.0)(='a
2.1='x
3.2211--=-='⎪⎭
⎫ ⎝⎛x x x 4.212
121)(-=='x x x 5.()1-='a a ax x
,推广())()(1'='-a a (a 是任意常数,括号里面可以是任意函数) 6.()x
x e e =',推广())()()('='e e (括号里面可以是任意函数) 7.()a a a x x ln =',推广()a a a ln )()(=' (a 是任意正常数,括号里面可以是任意函数) 8.x
x 1)(ln =',推广)()(1))(ln('=' (括号里面可以是任意函数) 9.x x cos )(sin =',推广)()cos())(sin('⋅=' (括号里面可以是任意函数)
10. x x sin )(cos -=',推广)()sin())(cos('⋅-=' (括号里面可以是任意函数) 上面公式中的x 改成y 也成立。

四、求导法则
1.))(())(())()(('+'='+x g x f x g x f
2.))(())(('='x f k x kf
3.))(()()())(())()(('⋅+⋅'='⋅x g x f x g x f x g x f
4.2))(())(()()())(()()(x g x g x f x g x f x g x f '⋅-⋅'='⎪⎪⎭
⎫ ⎝⎛ 五、求导数值
)(0x f '表示先求出)(x f y '=',再把0x x =代入)(x f y '='。

六、微分(dy )求法
方法:先求出y ',则dx y dy '=
七、导数应用
1.判断)(x f 在),(b a 内的单调性
方法:求出)(x f ',判别)(x f '在),(b a 内的正负号。

若为正数,则),(b a 为单调增加函数;若为负数,则),(b a 为单调减少函数。

2.切线斜率和切线方程
曲线)(x f y =在),(00y x (或者0x x =)处的
切线斜率为:)(0x f k '=(即先求出导数,再把0x x =代入导数所得的值)
切线方程为:)(00x x k y y -=-
3.驻点求法
先求出)(x f ',再令)(x f '=0,求出驻点0x x =。

4.求单调区间
步骤:(1)求出函数定义域;
(2)求出一阶导数)(x f ';
(3)令)(x f '=0,求出驻点0x x =;
(4)利用0x 划分定义域,使其分为两个(或几个)区间;
(5)判断)(x f '在各区间内的正负号,求出单调区间。

5.拐点求法
先求出一阶导数)(x f ',再求出二阶导数)(x f '',然后令)(x f ''=0,求出拐点0x x =,再把0x x =代入原函数)(x f y =,求出0y y =,则),(00y x 即为拐点坐标。

6.求凹凸区间
步骤:(1)求出函数定义域;
(2)求出一阶导数)(x f '和二阶导数)(x f '';
(3)令二阶导数)(x f ''=0,求出拐点0x x =;
(4)利用0x 划分定义域,使其分为两个(或几个)区间;
(5)判断)(x f ''在各区间内的正负号,若为正号,则该区间为凹区间,若为负号,该区间为凸区间。

八、积分性质
1.())()()(x f dx x f dx d dx x f =='⎰⎰
2. )()()(x f dt t f dx d dt t f x a
x a =='⎪⎭⎫ ⎝⎛⎰⎰ 3. 0)()(=='⎪⎭⎫ ⎝⎛⎰⎰b a
b a dt t f dx d dt t f 4.
()⎰⎰='dx x f k dx x kf )()( 5.C x f dx x f +='⎰)()(
6.
()⎰⎰⎰+='+dx x g dx x f dx x g x f )()())()(( 7.0)(=⎰-dx x f a
a (若)(x f 是奇函数)
九、不定积分公式
1. C x dx +=⎰
1
2. C x xdx +=
⎰22
1 3. C x a dx x a a ++=+⎰111 推广C a d a a ++=+⎰1)(11)()( (1-≠a ) 4. C x dx x
+=⎰ln 1 推广C d +=⎰)(ln )()(1 5.C e dx e x x +=⎰ 推广C e d e +=⎰
)()()( 6.C x dx x +-=⎰cos sin 推广C d +-=⎰
)cos()()sin( 7. C x dx x +=⎰sin cos 推广C d +=⎰)sin()(
)cos( 十、定积分公式 )()()()(a F b F x F dx x f b a b
a -==⎰,其中⎰+=C x F dx x f )()(
十一、偏导数和全微分 一阶偏导数
()x y x f x z '=∂∂),( (利用导数公式求导,把y 看成常数) 一阶偏导数()y y x f y
z '=∂∂),( (利用导数公式求导,把x 看成常数) 二阶偏导数'⎪⎭⎫ ⎝⎛∂∂=∂∂x
x z x z 22 (利用导数公式求导,把y 看成常数) 二阶偏导数'⎪⎪⎭⎫ ⎝⎛∂∂=∂∂y
y z y z 22(利用导数公式求导,把x 看成常数) 二阶偏导数'⎪⎭⎫ ⎝⎛∂∂=∂∂∂y
x z y x z 2(利用导数公式求导,把x 看成常数) 全微分dy y
z dx x z dz ∂∂+∂∂= 十二、概率公式
1.基本概念:
(1)如果事件B A ,至少有一个发生(A 发生或者B 发生),表示为B A +
(2)如果事件B A ,都(同时)发生,表示为AB
(3)如果事件B A ,都不发生,表示为B A
(4)如果事件A 发生且B 不发生,表示为B A -
2.几个公式
加法公式:)()()()(AB P B P A P B A P -+=+
如果事件B A ,互不相容(互斥),则有)()()(B P A P B A P +=+
如果A 是A 的对立事件,则有)(1)(A P A P -=
乘法公式:如果事件B A ,相互独立,则有)()()(B P A P AB P =,)()()(B P A P B A P = 减法公式:)()()(AB P A P B A P -=-
)(1)(A P A P -=
3.古典概型
取法总数
的取法总数包含)(A A P = 从n 个物品中任取m 个出来的取法总数为:1
2)1()1()1(⋅-+--=ΛΛm m m n n n C m n 4.期望和方差计算
设离散型随机变量X 的概率分布为
1122n n 方差D(X)=E(X 2)-(E(X))2
=( x 12p 1+x 22p 2+……+x n 2p n )-(E(X))2。

相关文档
最新文档