江苏省2017届高三数学一轮复习专题突破训练:数列.doc

合集下载

江苏省2017届高三数学一轮复习专题突破训练:导数及其应用.doc

江苏省2017届高三数学一轮复习专题突破训练:导数及其应用.doc

江苏省2017年高考一轮复习专题突破训练导数及其应用一、填空题1、(无锡市2016届高三上期末)过曲线1(0)y x x x=->上一点00(,)P x y 处的切线分别与x 轴,y 轴交于点A 、B ,O 是坐标原点,若OAB ∆的面积为13,则0x =2、(2014年江苏高考)在平面直角坐标系xOy 中,若曲线),(y 2为常数b a xbax +=过点)5,2(P -,且该曲线在点P 处的切线与直线0327x =++y 平行,则b a +的值是 ▲ .3、(2013年江苏高考)抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含三角形内部与边界)。

若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范围是 。

4、(南通市2016届高三一模)在平面直角坐标系xOy 中,直线l 与曲线)0(2>=x x y 和)0(3>=x x y 均相切,切点分别为),(11y x A 和),(22y x B ,则21x x 的值是 5、函数f(x) =xe x 在点A(0,f(0))处的切线斜率为____ 6、已知函数321()13f x x x ax =+++,若函数()f x 在区间[2,]a -上单调递增,则实数a 的取值范围是7、过曲线C :y=x x ln 上点(1,()1f )处的切线方程为 。

8、设函数32()1f x x ax x =-+-在点(1,f (1))的切线与直线x + 2y -3 = 0垂直,则实数a 等于__9、(苏锡常镇四市2015届高三教学情况调研(一))若曲线321:612C y ax x x =-+与曲线2:e x C y =在1x =处的两条切线互相垂直,则实数a 的值为10、(2015届江苏苏州高三9月调研)函数()321122132f x ax ax ax a =+-++的图象经过四个象限的充要条件是 ▲11、(常州市2015届高三上期末)曲线cos y x x =-在点22p p ⎛⎫⎪⎝⎭,处的切线方程为 ▲12、(常州市武进区2015届高三上学期期中考试)函数()f x 是定义在R 上的偶函数,(2)0f -=,且0x >时,()()0f x xf x '+>,则不等式()0>xf x 的解集是 ▲二、解答题1、(2016年江苏高考)已知函数()(0,0,1,1)x x f x a b a b a b =+>>≠≠. (1)设a =2,b =12. ①求方程()f x =2的根;②若对任意x R ∈,不等式(2)f()6f x m x ≥-恒成立,求实数m 的最大值; (2)若01,1a b <<>,函数()()2g x f x =-有且只有1个零点,求ab 的值.2、(2015年江苏高考)已知函数32()f x x ax b =++(,)a b R ∈, (1)试讨论()f x 的单调性,(2)若b c a =-(实数c 是与a 无关的常数),当函数()f x 有3个不同的零点时,a 的取值范围恰好是33(,3)(1,)(,)22-∞-+∞U U ,求c 的值。

2017高考真题数列.doc

2017高考真题数列.doc

2017高考真题(数列部分)一.选填题1.(浙江2017)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.(北京2017)若等差数列和等比数列满足a 1=b 1=–1,a 4=b 4=8,则=_______.3.(江苏2017)等比数列{}n a 的各项均为实数,其前n 项的和为Sn ,已知36763,44S S ==,则8a =4.(全国卷二2017)等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11n k k S ==∑____________.5.(全国卷三2017)等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为A .24-B .3-C .3D .86.(全国卷三2017)设等比数列{}n a 满足a 1 + a 2 = –1, a 1 – a 3 = –3,则a 4 = ___________。

记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .87.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .8 二.解答题1.(浙江2017)已知数列{x n }满足:x 1=1,x n =x n +1+ln(1+x n +1)().证明:当时,(Ⅰ)0<x n +1<x n ;(Ⅱ)2x n +1− x n ≤; (Ⅲ)≤x n ≤. {}n a {}n b 22a b n N *∈n N *∈12n n x x +112n -212n -2.(天津2017)已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =.(Ⅰ)求{}n a 和{}n b 的通项公式;3.(山东2017)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2(Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2)…P n+1(x n+1, n+1)得到折线P 1 P 2…P n+1,KS5U 求由该折线与直线y =0,x =x i (x {x n })所围成的区域的面积n T .Ⅱ)求数列221{}n n a b -的前n 项和()n *∈N .4.(北京2017)设{}n a 和{}n b 是两个等差数列,记1122max{,,,}n n n c b a n b a n b a n =--⋅⋅⋅-(1,2,3,)n =⋅⋅⋅,其中12max{,,,}s x x x ⋅⋅⋅表示12,,,s x x x ⋅⋅⋅这s 个数中最大的数.(Ⅰ)若n a n =,21n b n =-,求123,,c c c 的值,并证明{}n c 是等差数列;(Ⅱ)证明:或者对任意正数M ,存在正整数m ,当n m ≥时,n c M n >;或者存在正整数m ,使得12,,,m m m c c c ++⋅⋅⋅是等差数列. 5.(江苏2017)对于给定的正整数k ,若数列l a n l 满足a a a a a a --+-++-++++++=1111......2n k n k n n n k n k n k =2ka n 对任意正整数n(n> k) 总成立,则称数列l a n l 是“P(k)数列”. (1)证明:等差数列l a n l 是“P(3)数列”; (2)若数列l a n l 既是“P(2)数列”,又是“P(3)数列”,证明:l a n l 是等差数列.赠送以下资料考试知识点技巧大全一、考试中途应饮葡萄糖水大脑是记忆的场所,脑中有数亿个神经细胞在不停地进行着繁重的活动,大脑细胞活动需要大量能量。

江苏省2017届高三数学一轮复习专题突破训练:函数Word版含答案.pdf

江苏省2017届高三数学一轮复习专题突破训练:函数Word版含答案.pdf
江苏省 2017 年高考一轮复习专题突破训练
函数
一、填空题
1 、( 2016 年江苏高考)设 f ( x)是定义在 R 上且周期为 2 的函数,在区间 - 1,1) 上,
x a, 1 x 0,
f (x) 2
其中 a
R. 若 f (
5 )
9 f ( ) ,则 f (5a) 的值是

.
x ,0 x 1,
当 λ+ 1≠0 时, F(x)的对称轴为 x=
=,
2( λ+ 1) λ+ 1
因为 F(x) 在 (- 1, 1]上是增函数,
1+ λ <,0
f ( x)
2x
m 2x ,设
g( x)
f ( x), x 1, 若 函 数 y g (x) t 有 且 只 有 一 个 零 点 , 则 实 数 t 的 取 值 范 围 是
f ( x), x 1,
▲ . 14、(泰州市 2016 届高三第一次模拟)设
f (x) 是 R 上的奇函数,当
x
0 时, f ( x)
12、(淮安、宿迁、连云港、徐州苏北四市
2016 届高三上期末)定义在 R 上的奇函数 f ( x) 满足当
x 0 时, f (x) log 2 (x 2) (a 1) x b ( a , b 为常数),若 f (2) 1,则 f ( 6) 的值为
13、(南京、盐城市
2016 届高三上期末)设
f ( x) 是定义在 R 上的奇函数,且
2a
2a 2
2
由 | f (x) |≥ 1,得
1 ln(2 a)
1 ≥1
e a ≥ .…………… 15 分
2
2
2
综上所述,实数 a 的取值范围为 a ≥ e . …………… 16 分 2

江苏省高考数学一轮复习 专题突破训练 数列

江苏省高考数学一轮复习 专题突破训练 数列

江苏省2016年高考一轮复习专题突破训练数列一、填空题1、(2015年江苏高考)数列{}n a 满足11a =,且11n n a a n +-=+,则数列1n a ⎧⎫⎨⎬⎩⎭的前10项和为____2011_____。

2、(2014年江苏高考)在各项均为正数的等比数列}{n a 中,若12=a ,2682a a a +=,则6a 的值是 ▲3、(2013年江苏高考)在正项等比数列}{n a 中,215=a ,376=+a a ,则满足n n a a a a a a 2121>+++的最大正整数n 的值为 。

4、(2015届南京、盐城市高三二模)记等差数列{}n a 的前n 项和为n S ,已知21=a,且数列{}n S 也为等差数列,则13a =5、(南通、扬州、连云港2015届高三第二次调研(淮安三模))已知等差数列{}n a 的首项为4,公差为2,前n 项和为n S . 若544k k S a +-=(k *∈N ),则k 的值为 ▲ .6、(苏锡常镇四市2015届高三教学情况调研(二))已知等差数列{}n a 满足:128,6a a =-=-.若将145,,a a a 都加上同一个数m ,所得的三个数依此成等比数列,则m 的值为 ▲7、(泰州市2015届高三第二次模拟考试)在等比数列{}n a 中,已知3754,2320a a a =--=,则7a = ▲8、(盐城市2015届高三第三次模拟考试)设n S 是等差数列{}n a 的前n 项和,若数列{}n a 满足2n n a S An Bn C +=++且0A >,则1B C A+-的最小值为 ▲ 9、(2015届江苏南京高三9月调研)记数列{a n }的前n 项和为S n .若a 1=1,S n =2(a 1+a n )(n ≥2,n ∈N *),则S n = ▲10、(2015届江苏南通市直中学高三9月调研)已知等比数列{}n a 的前n 项和为n S ,且1324412a a a a S +=++=,,则数列{}n a 的公比q 为 ▲ 11、(2015届江苏苏州高三9月调研)已知等比数列{}n a 的各项均为正数,3614,,2a a ==则45a a += ▲12、(苏州市2015届高三上期末)已知等差数列{}n a 中,4610a a +=,若前5项的和55S =,则其公差为13、(泰州市2015届高三上期末)等比数列{}n a 中,16320a a +=,3451a a a =,则数列的前6项和为 ▲14、(无锡市2015届高三上期末)已知数列{}n a 的首项11a =,前n 项和为n S ,且满足()*122n n a S n ++=?¥,则满足2100111100010n n S S <<的n 的最大值为 15、(扬州市2015届高三上期末)设数列{n a }的前n 项和为Sn ,且114()2n n a -=+-,若对任意*n N ∈,都有1(4)3n p S n ≤-≤,则实数p 的取值范围是____二、解答题1、(2014年江苏高考)设1234,,,a a a a 是各项为正数且公差为(0)d d ≠的等差数列, (1)证明:31242,2,2,2aaaa依次构成等比数列;(2)是否存在1,a d ,使得2341234,,,a a a a 依次构成等比数列?并说明理由; (3)是否存在1,a d 及正整数,n k ,使得231234,,,n n k n k n k a a a a +++依次构成等比数列?并说明理由。

2017版高考数学(江苏专用、理科)一轮复习习题:阶段回扣练(六) 数列 含答案

2017版高考数学(江苏专用、理科)一轮复习习题:阶段回扣练(六) 数列 含答案

一、填空题1.(2016·北京海淀区一模)在等差数列{a n}中,a1=1,a3=-5,则a1-a2-a3-a4=________。

解析在等差数列中,a3=a1+2d,即-5=1+2d,故d=-3,则a2=-2,a4=-8,所以a1-a2-a3-a4=16.答案162.(2015·淮安质检)在数列{a n}中,已知a1=1,a n+1=-错误!,记S n为数列{a n}的前n项和,则S2 015=________。

解析a2=-错误!=-错误!=-错误!,a3=-错误!=-错误!=-2,a4=-错误!=-错误!=1,可见a4=a1,由此可得,a n+3=a n,因此数列{a n}是以3为周期的周期数列,则S2 015=671×(a1+a2+a3)+a1+a2=671×错误!+1-错误!=-1 006。

答案-1 0063。

(2016·扬州调研)在等比数列{a n}中,a1=1,公比q=2,若{a n}的前n项和S n =127,则n的值为________.解析由题意知S n=错误!=2n-1=127,解得n=7。

答案74.(2015·合肥一模)以S n表示等差数列{a n}的前n项和,若a2+a7-a5=6,则S7=________.解析依题意得a2+a7-a5=(a5+a4)-a5=a4=6,S7=错误!=7a4=42。

答案425.若数列{a n}的通项公式是a n=(-1)n(3n-2),则a1+a2+…+a10等于________. 解析由题意知,a1+a2+…+a10=-1+4-7+10+…+(-1)10×(3×10-2)=(-1+4)+(-7+10)+…+[(-1)9×(3×9-2)+(-1)10×(3×10-2)]=3×5=15.答案156。

(2015·湖南卷)设S n为等比数列{a n}的前n项和,若a1=1,且3S1,2S2,S3成等差数列,则a n=________.解析由3S1,2S2,S3成等差数列知,4S2=3S1+S3,可得a3=3a2,∴公比q=3,故等比数列通项a n=a1q n-1=3n-1。

高考理科数学一轮复习专题训练:数列(含详细答案解析)

高考理科数学一轮复习专题训练:数列(含详细答案解析)

B . 3 2.在正项等比数列{a }中,已知 a 4 = 2 , a = ,则 a 5 的值为( 8= 2 , a = ,可得 8 q 4 = 8 = ,又因为 q > 0 ,所以 q = 1 2 2127B .35063C .28051D . 3502第 7 单元 数列(基础篇)第Ⅰ卷一、选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知等差数列{a n }的前 n 项和为 S n ,若 a 1=12,S 5=90,则等差数列{a n }公差 d =()A .2【答案】C2 C .3D .4【解析】∵a =12,S =90,∴ 5 ⨯12 + 1 5 5 ⨯ 4 2d = 90 ,解得 d=3,故选 C .n 8 1 )1 1 A . B . - C . -1 D .14 4【答案】D【解析】由题意,正项等比数列{a }中,且 a n 48 1 a 1 a 16 41,则 a = a ⋅ q = 2 ⨯ = 1 ,故选 D .5 43.在等差数列{a n}中, a 5+ a = 40 ,则 a + a + a = ( ) 13 8 9 10A .72B .60C .48D .36【答案】B【解析】根据等差数列的性质可知: a 5 + a 13 = 40 ⇒ 2a 9 = 40 ⇒ a 9 = 20 ,a + a + a = 2a + a = 3a = 60 ,故本题选 B .8 9109994.中国古代数学名著《张丘建算经》中记载:“今有马行转迟,次日减半,疾七日,行七百里”.其大意:现有一匹马行走的速度逐渐变慢,每天走的里程数是前一天的一半,连续走了7 天,共走了 700 里,则这匹马第 7 天所走的路程等于()A .700里里 里【答案】A127里【解析】设马每天所走的路程是 a 1, a 2 ,.....a 7 ,是公比为1的等比数列,a 1 - ( )7 ⎪a = a q 6= 7005.已知等差数列{a n } 的前 n 项和 S n 有最大值,且 a=10(a +a )2= 5(a + a ) = 5(a + a ) > 0 , S =2 = 11a < 0 , (a + 2d - 1)2 = (a + d - 1)(a + 4d - 1) ⎩ d = 2这些项的和为 700, S = 7 ⎛ 1 ⎫ 1 ⎝ 2 ⎭1 - 12 = 700 ⇒ a =1 64 ⨯ 700 127 ,7 1 127 ,故答案为 A .a 5< -1 ,则满足 S 6n> 0 的最大正整数 n 的值为()A .6B .7C .10D .12【答案】C【解析】设等差数列{a n } 的公差为 d ,因为等差数列{a n } 的前 n 项和 S n 有最大值,所以 d < 0 ,a又 a 5 < -1 ,所以 a 5 > 0 , a 6 < 0 ,且 a 5 + a 6 > 0 ,6 所以 S1 101 10 5 6 11 所以满足 S n > 0 的最大正整数 n 的值为 10.11(a + a )1 1166.已知等差数列{a n}的公差不为零, Sn为其前 n 项和, S 3 = 9 ,且 a 2 - 1 , a 3 - 1, a 5 - 1构成等比数列,则 S 5 = ( )A .15B . -15C .30D .25【答案】D【解析】设等差数列{a n}的公差为 d (d ≠ 0),⎧⎪3a + 3d = 9⎧a = 1 由题意 ⎨ 1 ,解得 ⎨ 1 ⎪⎩ 1 1 1.∴ S = 5 ⨯1 +5 5 ⨯ 4 ⨯ 22 = 25 .故选 D .7.在等差数列{a n } 中, a 3 , a 9 是方程 x 2 + 24 x + 12 = 0 的两根,则数列{a n } 的前 11 项和等于(A .66B .132C . -66D . -132【答案】D)S = 11⨯ (a + a ) 2 2 2 = 15 ,解得 n = 5 ,( )nC . a = 3n -1D . a =3n【解析】因为 a 3 , a 9 是方程 x 2 + 24 x + 12 = 0 的两根,所以 a 3 + a 9 = -24 ,又 a 3 + a 9 = -24 = 2a 6 ,所以 a 6 = -12 ,11⨯ 2a1 11 = 6 = -132 ,故选 D . 118.我国南宋数学家杨辉 1261 年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就,在“杨辉三角”中,第n 行的所有数字之和为 2n -1 ,若去除所有为 1 的项,依次构成数列 2,3,3,4,6,4,5,10,10,5,…,则此数列的前 15 项和为()A .110B .114C .124D .125【答案】B【解析】由题意, n 次二项式系数对应的杨辉三角形的第 n +1行, 令 x = 1 ,可得二项展开式的二项式系数的和 2n ,其中第 1 行为 2 0 ,第 2 行为 21 ,第 3 行为 22 ,L L 以此类推,即每一行的数字之和构成首项为 1,公比为 2 的对边数列,则杨辉三角形中前 n 行的数字之和为 S = n 1- 2n1- 2 = 2n - 1,若除去所有为 1 的项,则剩下的每一行的数字的个数为1,2,3, 4,L ,可以看成构成一个首项为 1,公差为 2 的等差数列,则T =n n (n + 1)2 ,令 n (n + 1)所以前 15 项的和表示前 7 行的数列之和,减去所有的 1,即 27 - 1 - 13 = 114 ,即前 15 项的数字之和为 114,故选 B .9.已知数列{a }的前 n 项和为 S nn,满足 2S n =3a n -1 ,则通项公式 a n 等于()A . a = 2n- 1n【答案】CB . a= 2nn n: , + , + + , + + + , ,那么数列 {b }= ⎧⎨ 1 ⎩ a an n +1 ⎭n + 1 ⎭C . 4 ⨯ ⎝ 2 n + 1 ⎭D .⎝ 1 + 2 + ⋅⋅⋅ + n n2 a an (n + 1) ⎝ n n + 1 ⎭ = = = 4 ⨯ - ⎪ , ∴ S = 4 ⨯ 1 - + - + - + ⋅⋅⋅ + - = 4 ⨯ 1 - ⎪ 2 2 3 3 4 n n + 1 ⎭ ⎝ ⎝⎪ , 1 1 ⎫【解析】当 n = 1 时, 2S 1 = 3a 1 -1 ,∴ a 1 = 1 ,当 n ≥ 2 且 n ∈ N * 时, 2S n -1 = 3a n -1 - 1 ,则 2S n - 2Sn -1 = 2a n = 3a n - 1 - 3a n -1 + 1 = 3a n - 3a n -1 ,即 a n = 3an -1,∴ 数列 {a }是以1 为首项, 3 为公比的等比数列∴ a nn= 3n -1 ,本题正确选项 C . 10.已知数列 满足,且 ,则( )A .B .C .D .【答案】B【解析】利用排除法,因为,当当当当时,时,时,时, ,排除 A ;,B 符合题意;,排除 C ;,排除 D ,故选 B .11.已知数列为()1 12 1 23 1 2 34 2 3 3 4 4 45 5 5 5⋯ n ⎫ ⎬ 前 项和A .1 - 1 ⎛ n + 1B . 4 ⨯ 1 - 1 ⎫ ⎛ 1 ⎪ - 1 ⎫⎪1 1-2 n + 1【答案】B【解析】由题意可知: a =nn (n + 1)= = , n + 1 n + 1 2∴ b = 1n n n +11 4 ⎛ 1 1 ⎫ n n + 1 ⋅2 2⎛ 1 1 1 1 1 ⎛ n本题正确选项 B .1 ⎫n + 1 ⎭12.已知数列{a }满足递推关系: a , a = ,则 a 2017= (12016B . 12018D . 1=a 2 -= 1 . ⎩ a∴ 1=1}满足 a 2 q ,可设三数为 , a , aq ,可得 ⎪⎨ a⎪ q 求出 ⎨ ,公比 q 的值为 1.=3an n +1 = a 1 n a + 12 n)A .12017C .12019【答案】C【解析】∵ ana + 1 n1, a = ,∴ 1 1 1 a a n +1 n⎧ 1 ⎫∴数列 ⎨ ⎬ 是等差数列,首项为 2,公差为 1.n ⎭a2017= 2 + 2016 = 2018 ,则 a2018 .故选 C .第Ⅱ卷二、填空题:本大题共4 小题,每小题5 分.13.已知等比数列{a n 1 = 12 ,且 a 2a 4 = 4(a3 - 1) ,则 a 5 = _______.【答案】8【解析】∵ a 2a 4 = 4(a 3 - 1) ,∴ a 3 = 4(a 3 -1) ,则 a 3 = 2 ,∴ a = 5 a 2 3 = a122 1 2= 8 ,故答案为 8.14.若三数成等比数列,其积为 8,首末两数之和为 4,则公比 q 的值为_______.【答案】1【解析】三数成等比数列,设公比为⎧a = 2⎩ q = 1⎧ a3 = 8 a q + aq =4 ⎩,15.在数列 {an}中,a 1= 1 , an 3 + a n(n ∈ N *)猜想数列的通项公式为________.=3a4 3 + a 53 + a 6 3a 3a 32 数列的通项公式为 a = 3n + 2 n + 2+ = (m + n) + ⎪ = 10 + + ⎪ ≥ 10 + 2 ⋅ ⎪⎪ = 2 , n m ⎭ 8 ⎝ n m ⎭【答案】3n + 2【解析】由 an 3 + a n, a = 1 ,可得 a = 1 2 3a 1 3 + a 13 3 3= , a = = , a == ,……,∴ 猜想 3 4 2 33,本题正确结果 .n16.已知正项等比数列{a n } 满足 2a 5 + a 4 = a 3 ,若存在两项 a m , a n ,使得 8 a m a n = a 1 ,则9 1+ 的最小值 mn为__________.【答案】2【解析】Q 正项等比数列{a n } 满足 2a 5 + a 4 = a 3 ,∴ 2a 1q 4 +a 1q 3 =a 1q 2 ,整理得 2q 2 +q - 1 = 0 ,又 q > 0 ,解得 q = 12,Q 存在两项 a , a 使得 8 a ⋅ a = a ,∴ 64a 2 q m +n -2 = a 2 ,整理得 m + n = 8 ,m nmn111∴则 9 1 1 ⎛ 9 1 ⎫ 1 ⎛ m 9n ⎫ 1 ⎛ m 9n ⎫ m n 8 ⎝ m n ⎭ 8 ⎝9 1 m 9n+ 的最小值为 2,当且仅当 = 取等号,但此时 m , n ∉ N * .m n n m又 m + n = 8 ,所以只有当 m = 6 , n = 2 时,取得最小值是 2.故答案为 2.三、解答题:本大题共6 个大题,共 70 分,解答应写出文字说明、证明过程或演算步骤.17.(10 分)已知等差数列{a n(1)求 {a}的通项公式;n}的公差不为 0, a 1= 3 ,且 a , a , a 成等比数列.2 4 7(2)求 a 2 + a 4 + a 6 + L + a 2n .【答案】(1) a n = n + 2 ;(2) n 2 + 3n .【解析】(1)Q a 2 , a 4 , a 7成等比数列,∴a42= a a ,2 7即 (a 1 + 3d )2 = (a 1 + d )(a 1 + 6d ) ,化简得 (a 1 - 3d )d = 0 ,∵公差 d ≠ 0 ,∴ a 1 = 3d ,6=n (a +a ) (2)若b= 4 { ⎪ 12 由题意得 ⎨,则 ⎨ , ⎩ 7 ⎪(a + 6d )2 = (a + d )(a + 21d )⎩ 1化简得 ⎨⎧a + 2d = 7(2)证明: b = 42n (2n + 4) n (n + 2) 2 ⎝ n n + 2 ⎭ - + - + - + L +⎪1 + - - = - ⎪ < . ⎪Q a = 3 ,∴ d = 1,∴ a = a + (n - 1)d = n + 2 .1 n1(2)由(1)知 a 2n = 2n + 2 ,故{a 2n } 是首项为 4、公差为 2 的等差数列,所以 a + a + a + L + a2 4 6 n (4 + 2n + 2)2 2n = = n 2 + 3n . 2 218.(12 分)已知公差不为零的等差数列{a n } 满足 S 5 = 35 ,且 a 2 , a 7 , a 22 成等比数列.(1)求数列{a n } 的通项公式;n nn(a - 1)(a + 3) ,且数列 b n }的前 n 项和为 T n ,求证: T < 3n 4.【答案】(1) a n = 2n + 1;(2)见详解.【解析】(1)设等差数列{a n } 的公差为 d ( d ≠ 0 ),⎧ 5 ⨯ 4⎧S = 355a + d = 35 5a 2 = a a2 221 11 ⎩2a 1 = 3d ⎧a = 3 ,解得 ⎨ 1⎩d = 2,所以 a = 3 + 2 (n -1) = 2n +1. nn nn(a -1)(a + 3) =4 11⎛1 1 ⎫ = = - ⎪ ,所以 T = n 1 ⎛ 1 1 1 1 1 1 1 1 1 1 ⎫- + - 2 ⎝ 1 3 2 4 3 5 n - 1 n + 1 n n + 2 ⎭= 1 ⎛ 1 1 1 ⎫ 3 1 ⎛ 1 1 ⎫ 3 + 2 ⎝ 2 n + 1 n + 2 ⎭ 4 2 ⎝ n + 1 n + 2 ⎭ 419.(12 分)已知数列{a n}的前 n 项和为 Sn且 S = 2a - 1 (n ∈ N * ) .n n(1)求数列{a n}的通项公式;(2)求数列{na n}的前 n 项和 T n.【答案】(1) a = 2n- 1 ;(2) T = n ⋅ 2n - 2n + 1 .nn【解析】(1)因为 S = 2a - 1 ,当 n ≥ 2 时, S = 2a - 1 ,7= 2a + 1 , n ∈ N * .+1),数列 ⎨ 15 ≤ T n < ; 即 a ∴ 数列 {a }的通项公式为 a = 2n - 1 n ∈ N * .(2n + 1)(2n + 3) 2⎝ 2n + 1 2n + 3⎪⎭ , - ⎪ + - ⎪ +⋅⋅⋅+⎪⎥ 2 ⎢⎣⎝ 3 5 ⎭ ⎝ 5 7 ⎭ ⎝ 2n + 2n + 3 ⎭⎦ 6 4n + 6整理可得 a n = 2a n -1 ,Q a = S = 2a - 1 ,解得 a = 1 ,1 111所以数列 {a n}为首项为1 ,公比为 2 的等比数列,∴a = 2n -1 .n(2)由题意可得:T = 1⨯ 20 + 2 ⨯ 21 + ⋅⋅⋅ + n ⋅ 2n ,n所以 2T = 1⨯ 21 + 2 ⨯ 22 + ⋅⋅⋅ + (n - 1)2n -1 + n ⋅ 2n ,n两式相减可得 -T = 1 + 21 + 22 + ⋅⋅⋅+ 2n -1 - n ⋅ 2n = n∴ T = n ⋅ 2n - 2n + 1 .n1 - 2n 1 - 2- n ⋅ 2n = 2n - 1 - n ⋅ 2n ,20.(12 分)已知数列{a n}满足 a 1= 1 , an +1n(1)求证数列{a n +1}是等比数列,并求数列{a n } 的通项公式;(2)设 b = log (a n 2 2n +1 ⎧ 1 ⎫ 1 1b b ⎬ 的前 n 项和 T n ,求证:6 ⎩ n n +1 ⎭.【答案】(1)证明见解析, a = 2n - 1(n ∈ N * )(2)见解析. n【解析】(1)由 an +1 = 2a n + 1 ,得 a n +1 + 1 = 2 (a + 1),n+ 1n +1 a + 1n= 2 ,且 a + 1 = 2 ,1∴ 数列 {a +1}是以 2 为首项, 2 为公比的等比数列,n∴ a + 1 = 2 ⨯ 2n -1 = 2n ,n( )nn(2)由(1)得: b = logn2(a2n +1+ 1) = log (22n +1- 1 + 1)= 2n + 1 ,2∴1b bn n +11 1 ⎛ 1 1 ⎫ = = -∴T = n1 ⎡⎛ 1 1 ⎫ ⎛ 1 1 ⎫ ⎛ 1 1 ⎫⎤ 1 1 - = - (n ∈ N * ),8又 0 < 1即 1n (2)设数列满足 b = a sin a π2的前 项和 .⎪⎩n,2 3 L 2 3 L 2 (a + 4) = S + S 2a = d + 4 d = 2 ⎪ ⎩= asin n π + ⎪ = a cos (n π ) , 2 ⎭ ⎝n +1,2n -1,⎪⎩n, 2 3 L 2 3 L a ⋅ a1 1 1 1 1 1 1≤ ,∴- ≤- < 0 ,∴ ≤ - < ,4n + 6 10 10 4n + 6 15 6 4n + 6 61≤ T < .15 621.(12 分)已知等差数列的前 项和为 ,且 是 与 的等差中项.(1)求的通项公式;n ,求n n【答案】(1)⎧⎪- (n + 2), ;(2) T = ⎨n n = 2k - 1(k = 1,,, ) n = 2k (k = 1,,, ) .⎧a = 7⎧a + 2d = 7 ⎧a = 3 【解析】(1)由条件,得 ⎨ 3 ,即 ⎨ 1 , ⎨ 1⎪715⎩1⎩,所以{a n }的通项公式是(2)由(1)知, b = a sinnn.(2n + 1)π 2n n⎛ π ⎫(1)当 n = 2k -1 (k =1,2,3,…)即 n 为奇数时, b = -a , b nnn +1= aT = -a + a - a + L + a n 1 2 3 n -1 - a = -a + (-2) n - 1= -n - 2 ;n 1(2)当 n = 2k (k =1,2,3,…):即 n 为偶数时, b = a , bnnn -1= -aT = -a + a - a +⋯- a n 1 2 3 n -1+ a = 2 ⋅ n n 2= n ,⎧⎪- (n + 2), 综上所述, T = ⎨n22.(12 分)设正项数列n = 2k - 1(k = 1,,, ) n = 2k (k = 1,,, ) .的前 n 项和为 ,已知 .(1)求证:数列 是等差数列,并求其通项公式;(2)设数列的前 n 项和为 ,且 b = 4n nn +1,若对任意 都成立,求实数 的取值范围.9(2)由(1)可得 b = 1 n (n + 1) n n + 1∴ T = 1 - ⎪ + - ⎪ + L + - ⎛ 1 ⎫ ⎛ 1 1 ⎫ ⎛ 1 1 ⎫1 n = 1 -= , ⎪ 2 ⎭ ⎝ 2 3 ⎭⎝ n n + 1 ⎭n + 1 n + 1⎝,即 nλ < n + (-1)n ⋅ 2 对任意⎢⎣ ⎥⎦n 恒成立,令 f (n ) = (n + 2)(n + 1)Q f (n + 1)- f (n ) = n (n + 1)- 2②当 为奇数时, λ < (n - 2)(n + 1)又 (n - 2)(n + 1)= n - - 1 ,易知:f (n ) = n - 在【答案】(1)见证明,【解析】(1)证明:∵;(2),且.,当当即时,时,有,解得 .,即.,于是,即.∵ ,∴为常数,∴数列是 为首项, 为公差的等差数列,∴.1 1= - ,nnn + 1都成立⎡ n (n + 1)+ (-1)n ⋅ 2 (n + 1)⎤⇔ λ <⎢⎥ nmin(n ∈ N *),①当 为偶数时, λ < (n + 2)(n + 1) = n + 2+ 3 ,n nn (n + 1) > 0 ,在 上为增函数,;n 恒成立,2 2 n n n为增函数,,102⨯ 4 ⨯ 3 = 0 ⎧a = -3 ⎪S 4 = 4a 1 + ⎪⎩a = a + 4d = 516 4⎩q3 (a + a + a ) = 120 ∴由①②可知:,综上所述 的取值范围为.第 7 单元 数列(提高篇)第Ⅰ卷一、选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.记 S 为等差数列{a } 的前 n 项和.已知 S = 0 , a = 5 ,则()n n45A . a n = 2n - 5B . a n = 3n - 10C . S = 2n 2 - 8nD . S = 1n nn 2 - 2n【答案】A2.已知等比数列{a }中, a n 3 ⋅ a = 20 , a = 4 ,则 a 的值是( )13 6 10A .16B .14C .6D .5【答案】D【解析】由等比数列性质可知 a ⋅ a = a 2 = 20 ,3138由 a 6 = 4 ,得 q 4= a 2 8 = a 2620 5= ,∴ a = a q 4 = 5 ,本题正确选项 D .10 63.等比数列{a } 中, a + a + a = 30 , a + a + a = 120 ,则 a + a + a = ( )n123456789A .240B .±240C .480D .±480【答案】C【解析】设等比数列{a } 中的公比为 q ,由 a + a + a = 30 , a + a + a = 120 ,n 1 2 3 4 5 6⎧ 得 ⎨a + a + a = 301 2 31 2 3,解得 q 3 = 4 ,∴ a + a + a = q 3 (a + a + a ) = 480.7 8 9 4 5 6112 , N = 4.我国古代的《洛书》中记载着世界上最古老的一个幻方:如图,将1,2,…,9 填入3 ⨯ 3 的方格内,使三行,三列和两条对角线上的三个数字之和都等于 15.一般地,将连续的正整数1,2,3,L , n 2 填入 n ⨯ n 个方格中,使得每行,每列和两条对角线上的数字之和都相等,这个正方形叫做n 阶幻方.记 n 阶幻方的对角线上的数字之和为 N n ,如图三阶幻方的 N 3 = 15 ,那么 N 9 的值为()A .369B .321C .45D .41【答案】A【解析】根据题意可知,幻方对角线上的数成等差数列,根据等差数列的性质可知对角线的两个数相加正好等于1 + n 2,根据等差数列的求和公式 S = n (1+ n 2 ) 9 9 ⨯ (1+ 92 ) 2 = 369 ,故选 A .5.已知 1, a 1 , a 2 ,9 四个实数成等差数列,1, b 1 , b 2 , b 3 ,9 五个数成等比数列,则b 2 (a 2 - a 1 ) = ( A .8 B .-8 C .±8 D .98【答案】A)【解析】由 1, a 1 , a 2 ,9 成等差数列,得公差 d = a 2 - a 1 = 9 - 1 84 - 1 = 3 ,由 1, b , b , b ,9 成等比数列,得 b 2 = 1⨯ 9 ,∴ b = ±3 ,12322当 b = -3 时,1, b , -3 成等比数列,此时 b 2 = 1⨯ (-3) 无解,2 11所以 b = 3 ,∴ b (a - a 2 2 2 1 ) = 3 ⨯ 8= 8 .故选 A .36.已知数列{a n }是公比不为 1 的等比数列, S n为其前 n 项和,满足 a = 2 ,且16a , 9a , 2a2 1 4 7成等差数列,则 S = ()3A . 5B .6C .7D .9【答案】C【解析】数列{a n } 是公比 q 不为 l 的等比数列,满足 a 2 = 2 ,即 a 1q = 2 ,122 ⨯ 2 + 3)⨯ 2 ; 2 ⨯ 2 + 4 )⨯3 ;22- 5 =,且 A n =7n + 45a7= (10B .172C . 143A . 93【解析】因为 7 = 7 = a + a a 2a A = 13 = 7 ⨯13 + 45 = 17 1 13 2 且16a , 9a , 2a 成等差数列,得18a = 16a + 2a ,即 9a q 3 = 8a + a q 6 ,1 47417111解得 q = 2,a = 1 ,则 S = 1 3 1 - 23 1 - 2= 7 .故选 C .7.将石子摆成如图的梯形形状,称数列 5,9,14,20,L ,为“梯形数”.根据图形的构成,此数列的第 2016 项与 5 的差,即 a 2016- 5 = ()A . 2018⨯ 2014B . 2018⨯ 201C .1011⨯ 2015D .1010⨯ 2012【答案】C【解析】由已知的图形我们可以得出图形的编号与图中石子的个数之间的关系为:n =1 时, a = 2 + 3 = 11(n =2 时, a = 2 + 3 + 4 = 2…,由此我们可以推断:1 (a = 2 + 3 + L + (n + 2 ) = 1n⎡⎣2 + (n + 2)⎤⎦ ⨯ (n + 1),∴ a 1⨯ ⎡⎣2 + (2016 + 2)⎤⎦ ⨯ (2016 + 1)- 5 = 1011⨯ 2015 .故选 C .20168.已知两个等差数列{a }和 {b }的前 n 项和分别为 A 和 BnnnnB n + 3 b n 7)17D .15【答案】B771131313(a + a )1 131 13= 2 b 2b b + b 13(b + b ) B 13 + 3 2,故答案选 B .9.已知数列{ }的前 n 项和为 , , ( ),则 ( )A.32B.64C.128D.25613,∴ S B .C . 1a - 1 a - 1,n⎧B . 2019 ) =+ = + = + =2 ,1 1 + 1 + a 2a 2【答案】B【解析】由,得,又,∴- 1 n +1 S - 1n= 2 ,即数列{则∴10.数列1}是以 1 为首项,以 2 为公比的等比数列,,则 ..故选 B .满足: ,若数列 是等比数列,则 的值是()A .1 【答案】B2 D .【解析】数列为等比数列 ⇒ a- 1λa - 2上式恒成立,可知 ⎨λ =q⎩-2 = -q⇒ λ = 2 ,本题正确选项 B .11.已知函数 f (x ) =2( 1 + x 2x ∈ R ),若等比数列满足 a a1 2019= 1 ,则A .2019【答案】A ( )2 C .2D . 1 2【解析】∴ f (a )+ f (a12019,1 + a2 1 + a 2 1 + a 2 1 + a 21 2019 1 1 1为等比数列,则,14b b3B . 16 C . 115D . 2b b= = - ⎭ 数列 的前 项和 T = - + - ⎪ ⎪ , 2 ⎝ 3 5 5 72n + 1 2n + 3 ⎭ 2 ⎝ 3 2n + 3 ⎭可得 λ ≤ 12,即12.已知是公比不为 1 的等比数列,数列.满足: , , 成等比数列,c =1n2n 2n +2,若数列的前 项和对任意的恒成立,则 的最大值为( )A .115【答案】C【解析】由 , ,成等比数列得 a 2 =a a ,2 2nb n又是公比不为 1 的等比数列,设公比为 q ,则 a 2 q2b n-2 = a 2 q 2n ,整理得 b = n + 1,c =111n n2n 2n +21 1 ⎛ 1 1 ⎫ (2n + 1)(2n + 3)2 ⎝ 2n + 1 2n +3 ⎪ ,1 ⎛ 1 1 1 11 1 ⎫ 1 ⎛ 1 1 ⎫+ ⋅⋅⋅ +- = - n数列 是单调递增数列,则当 n =1 时取到最小值为1151 ,即 的最大值为,故选 C .1515,第Ⅱ卷二、填空题:本大题共4 小题,每小题5 分.13.已知{a n } 是等差数列, a 2 + a 4 + a 6 + a 8 = 16 ,则 S 9 = _________.【答案】36【解析】{a n } 是等差数列, a 2 + a 4 + a 6 + a 8 = 16 , a 2 + a 8 = a 4 + a 6 = 2a 5 ,得出 a 5 = 4 ,又由 S = 9 ⋅ (a 1 + a 9 )9 = 9a = 36 .514.在数列 {a }中, a n 1= 1,an +1- a = 2n + 1 ,则数列的通项 a = ________.n n15x【答案】 n 2【解析】当 n ≥ 2 时,a = (a - a ) + (ann n -1n -1- a n -2) + (an -2- a n -3) + L + (a - a ) + (a - a ) + a ,3 2 2 1 1⇒ a = (2n - 1) + (2n - 3) + (2 n - 5) + L + 5 + 3 + 1 = n当 n = 1 , a 也适用,所以 a = n 2 .1nn (2n - 1 + 1) 2= n 2 ,15.设数列{a n } 的前 n 项和为 S n ,且 ∀n ∈ N *, a n +1a = ________.n【答案】 n - 6(n ∈ N * ) (答案不唯一)> a , S ≥ S .请写出一个满足条件的数列{a } 的通项公式n n 6 n【解析】 ∀n ∈ N * , a n +1> a ,则数列{a } 是递增的, ∀n ∈ N * , S ≥ S ,即 S 最小,n n n 6 6只要前 6 项均为负数,或前 5 项为负数,第 6 项为 0,即可,所以,满足条件的数列{a n } 的一个通项公式 a n = n - 6(n ∈ N * ) (答案不唯一).16.已知函数 f ( x ) = x 2 cosπx2,数列 {a }中, a = f (n )+ f (n + 1)(n ∈ N * ) ,则数列{a }的n n n前 40 项之和 S 40 = __________.【答案】1680【解析】函数 f (x ) = x 2 cos π 2且数列 {a }中, a = f (n )+ f (n +1),n n可得 a = f (1)+ f (2) = 0 - 4 = -4 ; a = f (2)+ f (3) = -4 + 0 = -4 ;12a = f (3)+ f (4) = 0 +16 = 16 ; a = f (4)+ f (5) = 16 ;3 4a = f (5)+ f (6) = 0 - 36 = -36 ; a = f (6)+ f (7) = -36 ;…,5 6可得数列 {a n 即有数列 {a n}为 -4 , -4 , 16 ,16 , -36 , -36 , 64 , 64 , -100 , -100 ,…, }的前 40 项之和:S = (-4 - 4 +16 +16)+ (-36 - 36 + 64 + 64)+ (-100 -100 +144 +144)+ 40⋅⋅⋅+ (-1444 -1444 +1600 +1600) = 24 + 56 + 88 +⋅⋅⋅+ 31216= ⨯10 ⨯ (24 + 312 ) = 1680 , ( a b a 1 - 22n 2 + n (n ∈ N * ).2 2 222212本题正确结果1680 .三、解答题:本大题共6 个大题,共 70 分,解答应写出文字说明、证明过程或演算步骤.17.10 分)已知数列{a n}是等比数列,数列 {b }是等差数列,且满足: n 1= b = 1 , + b = 4a , - 3b = -5 .1 2 3 2 3 2(1)求数列{a n }和 {b }的通项公式;n(2)设 c n = a n + b n ,求数列 {c n}的前 n 项和 S n .【答案】(1) a = 2n -1 , n ∈ N * , b = 2n - 1,n ∈ N * ;(2) S = 2n + n 2 - 1 .nn n【解析】(1)设 {an}的公比为 q , {b }的公差为 d ,由题意 q > 0 ,n⎧(1+ d ) + (1+ 2d ) = 4q ⎧-4q + 3d = -2由已知,有 ⎨ ,即 ⎨⎩q 2 - 3(1+ d ) = -5 ⎩ q 2 - 3d = -2⇒ q 2 - 4q + 4 = 0 ⇒ d = q = 2 ,所以 {a n }的通项公式为 an= 2n -1 , n ∈ N * , {b }的通项公式为 b = 2n - 1,n ∈ N * .n n(2) c = a + b = 2n -1 + 2n - 1 ,分组求和,分别根据等比数列求和公式与等差数列求和公式得到nnn1 - 2nn (1+ 2n - 1)S =+= 2n + n 2 - 1 .n18.(12 分)己知数列{a }的前 n 项和为 S n(1)求 {a}的通项公式;nn且 S = n 1 12 2(2)设 b n =1a an n +1,求数列 {b n}的前 100 项和.【答案】(1) a n = n ;(2) T100 =100 101.【解析】(1)当 n ≥ 2 时, S =n两式相减得 a n = S n - S n -1 = n , n 2 + n , S = (n - 1)2 + (n - 1)= n 2 + n- n ,17当 n =1时, a = S = + = 1,满足 a = n ,\ a = n . 2 2骣 1 骣 1 骣1 1 1 1 1001 - + - +L + - +2 = - , n +1 =2 n∈ N * ). ⎧⎬(2)若数列{b }满足: ba + 1 3n4 4 == 3 +n⎩ a n +1⎭a + 1 = 3n ,所以 a =1 - 1 . 3n ( )⇒ S = 2n - 144(2)令 b = 2n + 1,求数列 {b }的前 n 项和 T 及 T 的最小值.a + 2 nn1 11 1 n n(2)由(1)可知 b n =1 1 1= - ,n (n + 1) n n + 1所以数列 {b n}的前 100 项和 T100= b +b +?1 2b100= 琪 琪 琪 琪 - = 1 - = .桫 2桫 3 ? 99 100100 101 101 10119.(12 分)已知数列{a }满足: a n 1 3a -2a n - 3 ( 3a + 4 n(1)证明数列 ⎨ 1 ⎫ 为等差数列,并求数列{a n }的通项公式;⎩ a n + 1⎭nn =3n (n ∈ N * ),求 {b }的前 n 项和 S . nn n【答案】(1)证明见解析, a = n1 2n - 1 9- 1;(2) S = ⨯ 3n +2 + .n【解析】(1)因为 an +1+ 1 = -2a - 3 a + 1 1 3a + 4 1 n + 1 = n ,所以 , 3a + 4 3a + 4 a + 1 a a + 1 n n n +1 n +1 n⎧ 1 ⎫所以 ⎨ ⎬ 是首项为 3,公差为 3 的等差数列,所以n1 n(2)由(1)可知: a =n 1 3n- 1,所以由 b = n 3n a + 1 nn ∈ N * ⇒ b = n ⋅ 3n +1 , nS = 1 ⨯ 32 + 2 ⨯ 33 + L + (n - 1) ⨯ 3n + n ⨯ 3n +1 ①;n3S = 1 ⨯ 33 + 2 ⨯ 34 + L + (n - 1) ⨯ 3n +1 + n ⨯ 3n +2 ②,n①-②得 -2S = 32 + 33 + L + 3n +1 - n ⨯ 3n +2 = n 32 (3n - 1)3 - 1 - n ⨯ 3n +2n9⨯ 3n +2+ .20.(12 分)已知数列{a n}的前 n 项和为 Sn,且 S n = 2a n - 2n -1 .(1)求数列{a n}的通项公式;n nn185 ⨯ 2n -1 (2)Q b = 2n + 1 1 1 1 ⎛ 3 5 7 2n + 1 ⎫ ,则 T n = ⎪ , a + 2 52n -1 5 ⎝ 20 21 22 2n -1 ⎭ T = ⎪ 两式作差得 1 - T = ⨯ ⎢3 + ⎛ 1 ⎫ 1 ⎡ ⎛ 2 2 2 ⎫ 2n + 1⎤ 2n + 5 + +⋅⋅⋅+ - = 1 -2n ⎥⎦ ⎝ 2 ⎭ n 5 ⎣21 22 2n -1 ⎭ 5 ⨯ 2n 5 ⨯ 2n -1 5 ⨯ 2n 5 ⨯ 2n -1 5 ⨯ 2n 5 ⎧( ⎧ n - 1)2n + , n 是奇数 3 - 3n ⎪b n = 2 2 , n 是奇数2 , b = ⎨ ;(2) T = ⎨ .3n ⎪(n - 1)2n + 1 + , n 是偶数 n -2 ⎪b = 2 2 , n 是偶数n n【答案】(1)a = 5 ⨯ 2n -1- 2 (n ∈ N *);(2) T = 2 - 2n +5 3,最小值 . 5【解析】(1)当 n =1 时, a 1 = S 1 = 2a 1 - 2 - 1 ,解得 a 1 = 3 ,当 n ≥ 2 时, a n = S n - S n -1 = 2a n - 2a n -1 - 2 ,解得 a n = 2 a n -1 + 2 .则 a + 2 = 2 (an n -1+ 2),故 {a n + 2}是首项为 a 1 + 2 = 5 ,公比为 2 的等比数列,∴ a = 5 ⨯ 2n -1 - 2 (n ∈ N * ). n = ⨯ (2n + 1)⨯ + + + ⋅⋅⋅ +nn1 1 ⎛2 n 5 ⎝3 5 7 2n - 1 2n + 1 ⎫+ + + ⋅⋅⋅ + +21 22 23 2n -1 2n ⎭⎪ ⎪⎝,所以 T = 2 - n 2n + 5 5 ⨯ 2n -1,2n + 5 2n + 7 2n + 5 -2n - 3令 c = ,有 c - c =- = < 0 ,对 n ∈ N * 恒成立, n n +1 n则数列{c n }是递减数列,故{T n } 为递增数列,则 (T n )min 3= T = . 121.(12 分)已知正项数列且.的前 项和为 ,且 , ,数列 满足 ,(1)求数列(2)令【答案】(1), 的通项公式;,求数列 的前 项和 .n +1 ⎪⎪ n n⎩ n ⎪⎩ 2【解析】(1)当时, ,即 ,,19⎧⎪S + S = a 2 由 ⎨ ,可得= a 2 (n ≥ 2) ,⎪⎩ n由 ⎨ 两式相除,得 n +1 = 2 (n ≥ 2 ),⎧b b = 2n b⎪⎩b n -1b n = 2n -1 (n ≥ 2)综上:b = ⎨ n ⎪b = 2 n -22 , n 是偶数 ⎩ ⎧ 3n ⎪⎪ 2 , 的前 项和为 B ,∴ B = ⎨ , -3n + 1 ⎪ , n 是奇数 ⎧(n - 1)2n + , n 是奇数 ⎪⎪ 2综上: T = ⎨ .3n ⎪(n - 1)2n + 1 + , n 是偶数n +1 n n +1 S + S n -1 n即,又是公差为 ,首项为 的等差数列,,由题意得:,n n +1 b n -1是奇数时,是公比是 ,首项 的等比数列,∴ b = 2nn +1 2 ,同理 是偶数时是公比是 ,首项的等比数列,∴ b = 2nn -2 2 ,n ⎧ n +1⎪b = 2 2 , n 是奇数n.(2)令,即 ,⎧⎪ A = 1⋅ 20 + 2 ⋅ 21 + 3 ⋅ 22 + ⋅⋅⋅ + n ⋅ 2n -1的前 项和为 ,则 ⎨ n⎪⎩2 A n = 1⋅ 21 + 2 ⋅ 22 + 3 ⋅ 23 + ⋅⋅⋅ + n ⋅ 2n,两式相减得 - A = 20 + 21 + 22 + 2n -1 - n ⋅ 2n = n,1 - 2n 1 - 2- n ⋅ 2n ,令n n⎪⎩ 2n 是偶数3 - 3nn⎪⎩ 220ln 22 ln 32 ln n 2 (n - 1)(2n + 1) (当 x ≥ a 时, f '( x ) = 1 - = ,此时要考虑 a 与 1 的大小.(2)由(1)可知当 a = 1 , x > 1 时, x -1 - ln x > 0 ,即 ln x > 1 - x ,所以 ln x = n - 1 - = n - 1 - - ⎪ < n - 1 - + + L + ⎝ 2 n 2 ⎭ ⎝ 2 ⨯ 3 3 ⨯ 4 n(n + 1) ⎭ 1 ⎫ n - 1 = (n - 1) - n + 1 ⎭ 2(n + 1) ⎛ 122.(12 分)已知函数 f ( x ) =| x - a | - ln x(a > 0) .(1)讨论 f ( x ) 的单调性;(2)比较 + +⋯+ 与 的大小 n ∈ N * 且 n > 2) ,并证明你的结论.22 32 n 2 2(n + 1)【答案】(1)见解析;(2)见解析.⎧ x - ln x - a, 【解析】(1)函数 f ( x ) 可化为 f ( x ) = ⎨⎩a - x - ln x,x ≥ a0 < x < a ,当 0 < x < a 时, f '( x ) = -1 - 1 x< 0 ,从而 f ( x ) 在 (0, a) 上总是递减的,1 x - 1x x①若 a ≥ 1 ,则 f '( x ) ≥ 0 ,故 f ( x ) 在 [a, +∞ ) 上递增;②若 0 < a < 1 ,则当 a ≤ x < 1 时, f '( x ) < 0 ;当 x > 1 时, f '( x ) > 0 ,故 f ( x ) 在 [a,1) 上递减,在 (1, +∞) 上递增,而 f ( x ) 在 x = a 处连续,所以当 a ≥ 1 时, f ( x ) 在 (0, a) 上递减,在[a, +∞ ) 上递增;当 0 < a < 1 时, f ( x ) 在 (0,1) 上递减,在[1, +∞ ) 上递增.1< 1 - .x x所以 ln 22 ln 32 ln n 2 1 1 1+ + L + < 1 - + 1 - + L 1 -22 32 n 2 22 32 n 2⎛ 1 1 + ⎝ 22 32 + L + 1 ⎫ 1 1 ⎫ ⎛ 1 ⎪ ⎪2n 2 - 2 - n + 1 (n - 1)(2n + 1) = = .2(n + 1) 2(n + 1)21。

普通高中2017高考高三数学第一次模拟试题精选:数列04含答案

普通高中2017高考高三数学第一次模拟试题精选:数列04含答案

数列045、设3x x f =)(,等差数列{}n a 中73=a ,12321=++a a a ,记n S =()31+n a f ,令n n n S a b =,数列}1{nb 的前n 项和为n T . (1)求{}n a 的通项公式和n S ;(2)求证:31<n T ;(3)是否存在正整数n m ,,且n m <<1,使得n m T T T ,,1成等比数列?若存在,求出n m ,的值,若不存在,说明理由.【答案】解:(1)设数列{}n a 的公差为d ,由7213=+=d a a , 12331321=+=++d a a a a .解得11=a ,d =3 , ……………2分 ∴23-=n a n ……………4分∵3x x f =)(, ∴S n =()31+n a f =131+=+n a n . ……………6分(2))13)(23(+-==n n S a b n n n∴)131231(31)13)(23(11+--=+-=n n n n b n ……………8分 ∴31)1311(31<+-=n T n ……………10分(3)由(2)知,13+=n n n T ∴13,411+==m m T T m ,13+=n n n T ,∵n m T T T ,,1成等比数列. ∴ 1341)13(2+=+n n m m ……………12分 即n n m m 4312+=+6当1=m 时,7n n 43+=,n =1,不合题意;当2=m 时,413n n 43+=,n =16,符合题意; 当3=m 时,919n n 43+=,n 无正整数解;当4=m 时,1625n n 43+=,n 无正整数解; 当5=m 时,2531n n 43+=,n 无正整数解;当6=m 时,3637n n 43+=,n 无正整数解; ……………15分当7≥m 时,010)3(1622>--=--m m m ,则1162<+m m ,而34343>+=+n n n ,所以,此时不存在正整数m,n,且1<m<n,使得n m T T T ,,1成等比数列. ……………17分综上,存在正整数m=2,n=16,且1<m<n,使得n m T T T ,,1成等比数列. ……………18分另解:(3)由(2)知,13+=n n n T ∴13,411+==m m T T m ,13+=n n n T ∵n m T T T ,,1成等比数列. ∴ 21()31431m n m n =⋅++, ……………12分 取倒数再化简得n n mm 4312+=+6 当2=m 时,413n n 43+=,n =16,符合题意; ……………14分 2221161611193,0,39339m m m m m m m +⎛⎫≥<≤=+=+-≤< ⎪⎝⎭时, 而34343>+=+nn n , 所以,此时不存在正整数m 、n , 且1<m<n,使得n m T T T ,,1成等比数列. ……………17分 综上,存在正整数m=2,n=16,且1<m<n,使得n m T T T ,,1成等比数列. ……………18分6、设等差数列}{n a 的前n 项和为n S ,且34135=+a a ,93=S .数列}{n b 的前n 项和为n T ,满足n n b T -=1.(1)求数列}{n a 的通项公式;(2)写出一个正整数m ,使得91+m a 是数列}{n b 的项;(3)设数列}{n c 的通项公式为ta a c n n n +=,问:是否存在正整数t 和k (3≥k ),使得1c ,2c ,k c 成等差数列?若存在,请求出所有符合条件的有序整数对),(k t ;若不存在,请说明理由.【答案】(1)设数列}{n a 的首项为1a ,公差为d ,由已知,有⎩⎨⎧=+=+9333416211d a d a ,……(2分)解得11=a ,2=d ,…………(3分)所以}{n a 的通项公式为12-=n a n (*N ∈n ).…………(4分)(2)当1=n 时,1111b T b -==,所以211=b .……(1分) 由n n b T -=1,得111++-=n n b T ,两式相减,得11++-=n n n b b b , 故n n b b 211=+,……(2分) 所以,}{n b 是首项为21,公比为21的等比数列,所以n n b ⎪⎭⎫ ⎝⎛=21.……(3分) )4(2182191+=+=+m m a m ,…………(4分) 要使91+m a 是}{n b 中的项,只要n m 24=+即可,可取4=m .…………(6分) (只要写出一个m 的值就给分,写出42-=n m ,*N ∈n ,3≥n 也给分)(3)由(1)知,tn n c n +--=1212,…………(1分) 要使1c ,2c ,k c 成等差数列,必须k c c c +=122,即tk k t t +--++=+12121136,…………(2分) 化简得143-+=t k .…………(3分) 因为k 与t 都是正整数,所以t 只能取2,3,5.…………(4分)当2=t 时,7=k ;当3=t 时,5=k ;当5=t 时,4=k .…………(5分) 综上可知,存在符合条件的正整数t 和k ,所有符合条件的有序整数对),(k t 为: )7,2(,)5,3(,)4,5(.…………(6分)7、等比数列....{}n c 满足11410-+⋅=+n n n c c ,*N n ∈,数列{}n a 满足n a n c 2=(1)求{}n a 的通项公式;(5分)(2)数列{}n b 满足11n n n b a a +=⋅,n T 为数列{}n b 的前n 项和.求n n T ∞→lim ;(5分)(3)是否存在正整数(),1m n m n <<,使得1,,m n T T T 成等比数列?若存在,求出所有,m n 的值;若不存在,请说明理由.(6分)【答案】解:(1)解:40,103221=+=+c c c c ,所以公比4=q 2分 10411=+c c 计算出21=c 3分 121242--=⋅=n n n c 4分 12-=∴n a n 5分(2)11122121n b n n ⎛⎫=- ⎪-+⎝⎭6分 于是11111112335212121n n T n n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-= ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎣⎦ 8分 n n T ∞→lim =21 10分(3)假设否存在正整数(),1m n m n <<,使得1,,m n T T T 成等比数列,则2121321m n m n ⎛⎫=⋅ ⎪++⎝⎭, 12分 可得2232410m m n m -++=>,由分子为正,解得1122m -<<+由,1m N m *∈>,得2m =,此时12n =, 当且仅当2m =,12n =时,1,,m n T T T 成等比数列。

【全国百强校】江苏省2017届高三数学第一轮复习:数列的概念(无答案)

【全国百强校】江苏省2017届高三数学第一轮复习:数列的概念(无答案)

第1课时 数列的概念【学习目标】1、理解数列的概念;了解数列通项公式的意义和前n 项和的概念;2、了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项;3、能根据数列的前几项归纳出数列的一个通项公式.【知识梳理】1、数列的定义:按照 叫做数列.数列中的每一个数叫做数列的数列可以看成定义域为__________________的函数,该函数的图象是2、数列的分类:按项数多少,可分为________________________;按数值大小,可分为________________________; 按数值范围,可分为________________________3、数列的表示法有 、 、4、通项公式与递推公式的区别:通项公式:递推公式:5、已知数列前n 项和n S ,则n a =【教学过程】一、基础训练1、数列4,25,2,…,n n 3+,…中34是第 项. 2、数列}{n a 的图象是函数1log )(2+=x x f 图象上x 取正整数时的点列,则其通项公式为 3、设)( 21312111)(*N n nn n n n f ∈+⋯⋯++++++=,那么=)1(f ,=)2(f =-+)()1(n f n f4、数列{}n a 的通项n d cn a n +=(c ,d 为常数),已知415,2342==a a ,则c = ,d = =10a ___________ ___. 5、已知数列{}n a 满足11(1)(2)n n n n a a a n --=+-≥,且11a =,那么45a a = 6、数列{}n a 中,11a =,对于所有的2≥n 都有221n a a a n =⋅⋯⋯⋅⋅,则=+53a a7、,999.0,99.0,9.0…,的一个通项公式是 ;87,45,23,1--,…,的一个通项公式是 8、已知函数⎪⎩⎪⎨⎧-=为偶数)(为奇数)n (n )(22n n n f ,且)1()(++=n f n f a n ,则123100a a a a ++++= ______ 二、典型例题例1、数列{}n a 的通项公式是2212n n a n -=, (1)0和1是不是数列中的项?如果是,则是第几项?如果不是,说明理由.(2)数列中是否存在连续且相等的两项?例2、在数列{}n a 中,51010,20a a ==,通项公式为项数n 的一次函数,(1)求数列{}n a 的通项公式; (2)100是否为数列{}n a 中的项?(3)若12n n c n a t =⋅+,是否存在*,m t N ∈,使得122m c c c +=,若存在,求出,m t ;若不存在,说明理由.例3、(1)求数列{}32922+-n n 中的最小项;(2)已知252+=n n a n ,求数列{}n a 中的最大项.若1562+=n n a n 呢?例4、已知数列{}n a 满足:)(52212121221*∈+=+⋯⋯++N n n a a a n n ,求数列{}n a 的通项公式n a .第1课时 数列的概念课后作业1、已知),3(,21N n n a a a n n n ∈≥+=--,,,2,1121+===n n n a a b a a 则数列{}n b 的前4项依次是_________ 2、已知数列,,12,,7,5,3,1 -n 则33是它的第 项.3、已知数列的前四项如下,写出下列各数列的一个通项公式:(1),201,121,61,21…, (2)5555,555,55,5,…, (3 .4、数列2,0,2,0,2,0, …,给出以下公式:(1)1)1(1--+=n n a , (2)n n a )1(1--=,(3)2sin 2πn a n =,可能是该数列的通项公式的是 5、有下列5个命题:(1)数列是按照一定的规律排列的一列数;(2)数列的项数是有限的;(3)数列若用图像表示,从图像上看都是一些孤立的点;(4)数列中不能有相等的项;(5)数列的通项公式是唯一的.其中正确的命题是6、已知数列{}n a 中,从第二项起,每一项都等于它的前后两项之和,,2007,121=-=a a则=2008a7、已知数列{}n a 满足:*434121,0,,n n n n a a a a n N --===∈,则2009a =______,2014a =______8、已知数列{}n a 的通项公式(,,n na a a b c nb c=+都是正实数)则1n n a a +与的大小关系是_______ 9、已知数列1212312341,,,,,,,,,,...213214321,则56是数列的第___________项. 10、在数列}{n a 中,如果存在非零常数T ,使得n T n a a +=对于任意的非零自然数n 均成立,那么就称数列}{n a 为周期数列,其中T 叫做数列}{n a 的周期. 若周期数列}{n x 满足11=x ,)0,(2≠∈=a R a a x ,且)2(||11≥-=-+n x x x n n n ,当数列的}{n x 的周期最小时,该数列前2008项的和是__________________11、已知数列{}n a 的通项公式的是34122+-=n n a n ,(1)解不等式:1+>n n a a ;(2)试问:该数列中是否存在最小的项?若存在,是第几项?若不存在,说明理由.12、已知二次函数()y f x =的图像经过坐标原点,其导函数'()62f x x =-,数列{}n a 的前n 项和为n S 点(,)n n S *()n N ∈均在函数()y f x =的图像上.(1)求数列{}n a 的通项公式;(2)设13n n n b a a +=,n T 是数列{}n b 的前n 项和,求使得20n m T <对所有n N +∈都成立的最小正整数m .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省2017年高考一轮复习专题突破训练数列一、填空题1、(2016年江苏高考)已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是 ▲ .2、(2015年江苏高考)数列{}n a 满足11a =,且11n n a a n +-=+,则数列1n a ⎧⎫⎨⎬⎩⎭的前10项和为_________。

3、(2014年江苏高考)在各项均为正数的等比数列}{n a 中,若12=a ,2682a a a +=,则6a 的值是 ▲4、(南京市2016届高三三模)设数列{a n }的前n 项和为S n ,满足S n =2a n -2,则a 8a 6= ▲ .5、(南通、扬州、泰州三市2016届高三二模)在等比数列{}n a 中,21a =,公比1q ≠±.若135,4,7a a a 成等差数列,则6a 的值是 ▲ .6、(南通市2016届高三一模)设等比数列}{n a 的前n 项的和为n S ,若15,342==S S ,则6S 的值为7、(苏锡常镇四市2016届高三一模)设数列{a n }是首项为l ,公差不为零的等差数列,S n 为其前n 项和,若S 1,S 2,S 3成等比数列,则数列{a n }的公差为 。

8、(苏锡常镇四市市2016届高三二模)设公差为d (d 为奇数,且1d >)的等差数列{}n a 的前n 项和为n S ,若19m S -=-,0m S =,其中3m >,且*m ∈N ,则n a = ▲ . 9、(镇江市2016届高三一模)S n 是等差数列{a n }的前n 项和,若S n S 2n =n +14n +2,则a 3a 5=________.10、(常州市2016届高三上期末)已知等比数列{}n a 的各项均为正数,且1249a a +=,3456a a a a +++=40,则7899a a a ++的值为11、(淮安、宿迁、连云港、徐州苏北四市2016届高三上期末)若公比不为1的等比数列}{n a 满足13)(log 13212=⋯a a a ,等差数列}{n b 满足77a b =,则1321b b b +⋯++的值为 12、(南京、盐城市2016届高三上期末)设n S 是等比数列{}n a 的前n 项和,0n a >,若6325S S -=,则96S S -的最小值为 ▲13、(无锡市2016届高三上期末)对于数列{}n a ,定义数列{}n b 满足:1()n n n b a a n N *+=-∈,且1341(),1,1n n b b n N a a *+-=∈==-则1a =14、(扬州市2016届高三上期末)已知等比数列{}n a 满足4212=+a a ,523a a =,则该数列的前5项的和为 ▲15、(扬州中学2016届高三3月质检)已知等差数列{}n a 的公差0≠d ,且39108a a a a +=-.若n a =0 ,则n = .二、解答题1、(2016年江苏省高考)记{}1,2,100U =…,.对数列{}()*n a n N ∈和U 的子集T ,若T =∅,定义0T S =;若 {}12,,k T t t t =…,,定义12+k T t t t S a a a =++….例如:{}=1,3,66T 时,1366+T S a a a =+.现设{}()*n a n N ∈是公比为3的等比数列,且当{}=2,4T 时,=30T S .(1)求数列{}n a 的通项公式;(2)对任意正整数()1100k k ≤≤,若{}1,2,k T ⊆…,,求证:1T k S a +<; (3)设,,C D C U D U S S ⊆⊆≥,求证:2C C D D S S S +≥ .2、(2014年江苏高考)设1234,,,a a a a 是各项为正数且公差为(0)d d ≠的等差数列, (1)证明:31242,2,2,2aaaa依次构成等比数列;(2)是否存在1,a d ,使得2341234,,,a a a a 依次构成等比数列?并说明理由; (3)是否存在1,a d 及正整数,n k ,使得231234,,,n n k n k n k a a a a +++依次构成等比数列?并说明理由。

4、(南京市2016届高三三模)已知数列{a n }的前n 项的和为S n ,记b n =S n+1n .(1)若{a n }是首项为a ,公差为d 的等差数列,其中a ,d 均为正数.①当3b 1,2b 2,b 3成等差数列时,求ad的值;②求证:存在唯一的正整数n ,使得a n+1≤b n <a n+2.(2)设数列{a n }是公比为q(q >2)的等比数列,若存在r ,t(r ,t ∈N *,r <t)使得b t b r =t +2r +2,求q 的值.5、(南通市2016届高三一模)若数列}{n a 中存在三项,按一定次序排列构成等比数列,则称}{n a 为 “等比源数列”。

(1)已知数列}{n a 中,12,211-==+n n a a a 。

①求数列}{n a 的通项公式;②试判断数列}{n a 是否为“等比源数列”,并证明你的结论。

(2)已知数列}{n a 为等差数列,且*)(,01N n Z a a n ∈∈≠.求证:}{n a 为“等比源数列” 6、(苏锡常镇四市市2016届高三二模)已知数列{}n a 的前n 项和为n S ,13a =,且对任意的正整数n ,都有113n n n S S λ++=+,其中常数0λ>.设3nn n a b = ()n *∈N ﹒ (1)若3λ=,求数列{}n b 的通项公式; (2)若1≠λ且3λ≠,设233n n n c a λ=+⨯-()n *∈N ,证明数列{}n c 是等比数列; (3)若对任意的正整数n ,都有3n b ≤,求实数λ的取值范围.7、(镇江市2016届高三一模)已知数列{a n )的各项都为自然数,前n 项和为S n ,且存在整数λ,使得对任意正整数n 都有S n =(1+λ)a n -λ恒成立. (1) 求λ值,使得数列{a n )为等差数列,并求数列{a n )的通项公式;(2) 若数列{a n }为等比数列,此时存在正整数k ,当1≤k<j 时,有∑ji =ka i =2 016,求k.8、(淮安、宿迁、连云港、徐州苏北四市2016届高三上期末)已知各项均为正数的数列}{n a 的首项11=a ,n S 是数列}{n a 的前项和,且满足:).0(*1111N n a a a a S a S a n n n n n n n n ∈≠=-+-++++λλ.(1)若1a ,2a ,3a 成等比数列,求实数λ的值; (2)若21=λ,求n S .9、(南京、盐城市2016届高三上期末)设数列{}n a 共有(3)m m ≥项,记该数列前i 项12,,,i a a a 中的最大项为i A ,该数列后m i -项12,,,i i m a a a ++ 中的最小项为i B ,(1,2,3,,1)i i i r A B i m =-=- .(1)若数列{}n a 的通项公式为2n n a =,求数列{}i r 的通项公式; (2)若数列{}n a 满足11a =,2i r =-,求数列{}n a 的通项公式;(3)试构造一个数列{}n a ,满足n n n a b c =+,其中{}n b 是公差不为零的等差数列,{}n c 是等比数列,使得对于任意给定的正整数m ,数列{}i r 都是单调递增的,并说明理由.10、(苏州市2016届高三上期末)已知数列{}n a 满足:112a =,113n n n a a p nq -+-=⋅-,*n ∈N ,,p q ∈R .(1)若0q =,且数列{}n a 为等比数列,求p 的值; (2)若1p =,且4a 为数列{}n a 的最小项,求q 的取值范围.11、(泰州市2016届高三第一次模拟)已知数列{},{}n n a b 满足2(2)n n n S a b =+,其中n S 是数列{}n a 的前n 项和. (1)若数列{}n a 是首项为23,公比为13-的等比数列,求数列{}n b 的通项公式;(2)若n b n =,23a =,求数列{}n a 的通项公式; (3)在(2)的条件下,设nn na cb =,求证:数列{}nc 中的任意一项总可以表示成该数列其他两项之积.12、(扬州中学2016届高三3月质检)已知两个无穷数列{}{},n n a b 分别满足1112n na a a +=⎧⎨-=⎩,1112n nb b b +=-⎧⎪⎨=⎪⎩, 其中*n N ∈,设数列{}{},n n a b 的前n 项和分别为,n n S T ,(1)若数列{}{},n n a b 都为递增数列,求数列{}{},n n a b 的通项公式;(2)若数列{}n c 满足:存在唯一的正整数k (2k ≥),使得1k k c c -<,称数列{}n c 为“k 坠点数列”①若数列{}n a 为“5坠点数列”,求n S ;②若数列{}n a 为“p 坠点数列”,数列{}n b 为“q 坠点数列”,是否存在正整数m ,使得1m m S T +=,若存在,求m 的最大值;若不存在,说明理由.参考答案 一、填空题 1.【答案】20.【解析】由510S =得32a =,因此2922(2d)33,23620.d d a -+-=-⇒==+⨯= 2、11112(1)(2)112n n n n i n n a a n a a i +++=++-=+⇒-==-∑,所以1(1)(2)2n n n a+++=n (1)2n n a +⇒=。

故101111111202(1.....)223101111i ia ==⨯-+-++-=∑ 3、44、45、1496、【答案】63.【命题立意】本题旨在考查等比数列的基本运算,等比数列的求和,考查学生的运算能力,难度中等.【解析】由等比数列前n 项和的性质232,,,n n n n n S S S S S -- 成等比数列,则24264,,S S S S S --成等比数列,()()26153315S -=⨯-,解得663S =.法一:设等比数列{a n }的首项为a 1,公比为q .显然q≠1,由题意得⎩⎨⎧a 1(1-q 2)1-q =3a 1(1-q 4) 1-q=15.解之得:⎩⎨⎧a 1=1,q =±2.所以,S 6=1-q 61-q =63.法二:由等比数列的性质得 q 2=S 4-S 2S 2=4,(下同一)法三:由S 2,S 4-S 2,S 6-S 4成等比数列 所以 (S 4-S 2)2=S 2(S 6-S 4),得S 6=63. 7、2 8、312n - 9、【答案】35.【命题立意】本题旨在考查等差数列的通项公式及前n 项和,考查学生的运算能力,难度中等.【解析】由S n S 2n =n +14n +2可得,()()111212122212n n n n n a a a a n n a a a a n +++==+++,当1n =时,112223a a a =+,212112,a a d a a a ==-=,311511233455a a d a a a d a +===+. 10、117 11、26 12、20 13、8 14、31 15、5二、解答题1、(1)由已知得1*13,n n a a n N -=∙∈.于是当{2,4}T =时,2411132730r S a a a a a =+=+=. 又30r S =,故13030a =,即11a =. 所以数列{}n a 的通项公式为1*3,n n a n N -=∈. (2)因为{1,2,,}T k ⊆ ,1*30,n n a n N -=>∈,所以1121133(31)32k kk r k S a a a -≤+++=+++=-< . 因此,1r k S a +<.(3)下面分三种情况证明.①若D 是C 的子集,则2C C D C D D D D S S S S S S S +=+≥+= . ②若C 是D 的子集,则22C C D C C C D S S S S S S +=+=≥ . ③若D 不是C 的子集,且C 不是D 的子集.令U E C C D = ,U F D C C = 则E φ≠,F φ≠,E F φ= . 于是C E C D S S S =+ ,D F C D S S S =+ ,进而由C D S S ≥,得E F S S ≥. 设k 是E 中的最大数,l 为F 中的最大数,则1,1,k l k l ≥≥≠.由(2)知,1E k S a +<,于是1133l k l F E k a S S a -+=≤≤<=,所以1l k -<,即l k ≤. 又k l ≠,故1l k ≤-,从而11121131311332222l k l k E F l a S S a a a ------≤+++=+++=≤=≤, 故21E F S S ≥+,所以2()1C C D D C D S S S S -≥-+ , 即21C C D D S S S +≥+ .综合①②③得,2C C D D S S S +≥ .2、(1)证明:设12343,,,3a x d a x d a x d a x d =-=-=+=+,因为: 因为2222(2)2ax d-=,31(3)(22)2222a ax d x d x d -++-==g ,所以3122,2,2a aa依次构成等比数列。

相关文档
最新文档