求数列通项专题高三数学复习教学设计
高三数学一轮复习学案:第31课时 数列的通项

例1在数列{a n }中,a 1=2,a n +1=a n +ln(1+1n ),求a n思考题1 (1)设数列{a n }中,a 1=2,a n +1=a n +n +1,则通项公式a n =________.(2)设数列{a n }满足a 1=2,a n +1-a n =3·22n -1,求数列{a n }的通项公式.题型二累乘法例2 设数列{a n }是首项为1的正项数列,且(n +1)a 2n +1-na 2n +a n +1a n =0(n =1,2,3,…),则它的通项公式是a n =________.思考题2 若a 1=1,a n +1a n=n +1,则通项a n =________. 题型三换元法例3 已知数列{a n },其中a 1=43,a 2=139,且当n ≥3时,a n -a n -1=13(a n -1-a n-2),求通项公式a n .思考题3 (1)已知数列{a n }中,其中a 1=1,且当n ≥2时,a n =a n -12a n -1+1,求通项公式a n .(2)若数列{a n }中,a 1=3且a n +1=a 2n (n 是正整数),则它的通项公式a n =________.题型四待定系数法(构造新数列法)例4 (1)已知数列{a n }中,a 1=1,a n +1=2a n +3,求a n .(2)在数列{a n }中,a 1=-1,a n +1=2a n +4·3n -1,求通项公式a n .(3)在数列{a n }中,a 1=-1,a 2=2,当n ∈N ,a n +2=5a n +1-6a n ,求通项公式a n .思考题4 已知数列{a n }满足a 1=12,3(1+a n +1)1-a n =2(1+a n )1-a n +1,a n a n +1<0,求数列{a n }的通项公式.题型五公式法例5设数列{a n}的前n项和为S n,已知a1=a,a n+1=S n+3n,n∈N*.(1)记b n=S n-3n,求数列{b n}的通项公式;(2)若a n+1≥a n,n∈N*,求a的取值范围.思考题5(1)若a n>0,a n+22=2S n,求数列{a n}的通项公式.(2)设数列{a n}的前n项和为S n,数列{S n}的前n项和为T n,满足T n=2S n-n2,n∈N*.①求a1的值;②求数列{a n}的通项公式.。
求数列通项专题高三数学复习教学设计

绝不同意为了成功而不择手段,刻薄成家,理无久享.求数列通项专题高三数学复习教学设计海南华侨中学邓建书课题名称求数列通项(高三数学第二阶段复习总第1课时)科目高三数学年级高三(5)班教学时间2009年4月10日学习者分析数列通项是高考的重点内容必须调动学生的积极让他们掌握!教学目标一、情感态度与价值观1. 培养化归思想、应用意识.2.通过对数列通项公式的研究体会从特殊到一般又到特殊的认识事物规律培养学生主动探索勇于发现的求知精神二、过程与方法1. 问题教学法------用递推关系法求数列通项公式2. 讲练结合-----从函数、方程的观点看通项公式三、知识与技能1. 培养学生观察分析、猜想归纳、应用公式的能力;2. 在领会函数与数列关系的前提下渗透函数、方程的思想教学重点、难点1.重点:用递推关系法求数列通项公式2.难点:(1)递推关系法求数列通项公式(2)由前n项和求数列通项公式时注意检验第一项(首项)是否满足若不满足必须写成分段函数形式;若满足则应统一成一个式子.教学资源多媒体幻灯教学过程教学活动1复习导入第一组问题:数列满足下列条件求数列的通项公式(1);(2)由递推关系知道已知数列是等差或等比数列即可用公式求出通项第二组问题:[学生讨论变式]数列满足下列条件求数列的通项公式(1);(2);解题方法:观察递推关系的结构特征可以利用"累加法"或"累乘法"求出通项(3)解题方法:观察递推关系的结构特征联想到"?=?)"可以构造一个新的等比数列从而间接求出通项教学活动2变式探究变式1:数列中求思路:设由待定系数法解出常数从而则数列是公比为3的等比数列教学活动3练习:数列中求思路一:模仿变式1尝试"?=?)"设此时没有符合题意的x引发认知冲突讨论新的出路思路二:由得故数列是公差为1的等差数列解题反思:反思上面两个问题的区别和联系讨论变式1的第二种解题思路变式1思路二:由得转化为我们熟悉的问题变式2:数列中求思路:通过类比转化化归为以上类型即可求解解题感悟:抓住递推关系的结构特征进行类比转化1.分层次训练拓展思维培养能力2.学生归纳总结:学到什么?会解决什么样的问题?哪些是难点?教学活动4先反思提高1、递推关系形如""的数列的通项的求解思路;2、在复习的过程中要注意提高自己在新的问题情境中准确、合理使用所学知识解决问题的能力;要了解事物间的联系与变化并把握变化规律再巩固落实1、数列中(是常数)且成公比不为的等比数列.(I)求的值;(II)求的通项公式.2、若数列中a1=3且an+ 1=an2(n是正整数)则数列的通项an=__________3、数列中求4、数列中求5、思考:在数列中.证明数列是等比数列;经过纠错---- 释疑 ---- 老师小结:掌握数列通项公式的求法如①直接(观察)法②递推关系法③累加法④累乘法⑤待定系数法等4.课后反馈:试卷和作业课后思考:高中阶段求数列通项有哪些类型和方法?课后自己寻找和总结下面是赠送的合同范本,不需要的可以编辑删除!!!!!!教育机构劳动合同范本为大家整理提供,希望对大家有一定帮助。
高三数学第二轮复习专题 数列数列通项的求法(教案及测试;含详解答案)

城东蜊市阳光实验学校数列通项的求法考纲要求:1. 理解数列的概念和几种简单的表示方法〔列表、图像、通项公式〕;2. 可以根据数列的前几项归纳出其通项公式;3. 会应用递推公式求数列中的项或者者.通项;4. 掌握n n s a 求的一般方法和步骤.考点回忆:回忆近几年高考,对数列概念以及通项一般很少单独考察,往往与等差、等比数列或者者者与数列其它知识综合考察.一般作为考察其他知识的铺垫知识,因此,假设这一部分掌握不好,对解决其他问题也是非常不利的. 根底知识过关: 数列的概念1.按照一定排列的一列数称为数列,数列中的每一个数叫做这个数列的,数列中的每一项都和他的有关.排在第一位的数称为这个数列的第一项〔通常也叫做〕.往后的各项依次叫做这个数列的第2项,……第n 项……,数列的一般形式可以写成12,n a a a …………,其中是数列的第n 项,我们把上面数列简记为. 数列的分类:1.根据数列的项数,数列可分为数列、数列.2.根据数列的每一项随序号变化的情况,数列可分为数列、数列、数列、 数列.数列的通项公式:1.假设数列{}n a 的可以用一个公式来表示,那么这个公式叫做这个数列的通项公式,通项公式可以看成数列的函数. 递推公式; 1.假设数列{}n a 的首项〔或者者者前几项〕,且任意一项1n n a a -与〔或者者其前面的项〕之间的关系可以,那么这个公式就做数列的递推公式.它是数列的一种表示法. 数列与函数的关系:1.从函数的观点看,数列可以看成以为定义域的函数()na f n =,当自变量按照从小到大的顺序依次取值时,所对应的一列函数值,反过来,对于函数y=f(x),假设f(i)(i=1,2,3,……)有意义,那么我们可以得到一个数列f(1),f(2),f(3)……f(n)…… 答案: 数列的概念 1.顺序项序号首项n a {}n a数列的分类 1.有限无限 2.递增递减常摆动 数列的通项公式1.第n 项与它的序号n 之间的关系n a =f(n)解析式 递推公式1. 可以用一个公式来表示数列与函数的关系1. 正整数集N*〔或者者它的有限子集{}1,2,3,n ……〕高考题型归纳:题型1.观察法求通项观察法是求数列通项公式的最根本的方法,其本质就是通过观察数列的特征,找出各项一一共同的构成规律,横向看各项之间的关系构造,纵向看各项与项数之间的关系,从而确定出数列的通项.例1.数列12,14,58-,1316,2932-,6164,….写出数列的一个通项公式.分析:通过观察可以发现这个数列的各项由以下三部分组成的特征:符号、分子、分母,所以应逐个考察其规律.解析:先看符号,第一项有点违犯规律,需改写为12--,由此整体考虑得数列的符号规律是{(1)}n-;再看分母,都是偶数,且呈现的数列规律是{2}n;最后看分子,其规律是每个分子的数比分母都小3,即{23}n -. 所以数列的通项公式为23(1)2n nn n a -=-. 点评:观察法一般适用于给出了数列的前几项,根据这些项来写出数列的通项公式,一般的,所给的数列的前几项规律性特别强,并且规律也特别明显,要么能直接看出,要么只需略作变形即可. 题型2.定义法求通项直接利用等差数列或者者等比数列的定义求通项的方法叫定义法,这种方法适应于数列类型的题目.例2.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.分析:对于数列{}n a ,是等差数列,所以要求其通项公式,只需要求出首项与公差即可.解析:设数列{}n a 公差为)0(>d d∵931,,a a a 成等比数列,∴9123a a a =,即)8()2(1121d a a d a +=+d a d 12=⇒ ∵0≠d,∴d a =1………………………………①∵255aS =∴211)4(2455d a d a +=⋅⨯+…………②由①②得:531=a ,53=d∴n n a n 5353)1(53=⨯-+=点评:利用定义法求数列通项时要注意不要用错定义,设法求出首项与公差〔公比〕后再写出通项.题型3.应用nS 与na 的关系求通项有些数列给出{na }的前n 项和nS 与na 的关系式n S =()n f a ,利用该式写出11()n n S f a ++=,两式做差,再利用11n n na S S ++=-导出1n a +与na 的递推式,从而求出na 。
数列通项公式的求法课件-高三数学一轮复习

(2)证明:∵cn=a2nn(n∈N*), ∴cn+1-cn=a2nn+ +11-a2nn=an+21-n+12an=2bn+n 1. 将 bn=3·2n-1 代入,得 cn+1-cn=34(n∈N*). ∴数列{cn}是公差为34的等差数列,c1=a21=12, 故 cn=12+34(n-1)=34n-14.
探究 5 此类题可由 an=SS1n(-nS=n-11()n,≥2)求出通项 an,但要注意 n=1 与 n ≥2 两种情况能否统一.
思考题 5 在数列{an}中,a1=1,a1+2a2+3a3+…+nan=n+2 1an+1,n∈
N*,求 an. 【解析】
由 a1+2a2+3a3+…+nan=n+2 1an+1,
例 4 已知数列{an}满足 a1=1,an+1=2aan+n 1(n∈N+).求数列{an}的通项公 式.
【解析】 易知 an>0,依题意得an1+1=2ana+n 1=a1n+2, ∴数列a1n是等差数列,公差为 2,首项为 1,∴a1n=1+(n-1)×2=2n-1, ∴an=2n1-1.
探究 4 已知数列递推公式的分母中含有通项公式的表达式,求解对应的通 项公式时,往往可以通过观察表达式的特点,通过倒数关系加以转化,利用等差 数列的性质分析相应的通项公式问题.
思考题 4 设数列{an}是首项为 1 的正项数列,且 an+1-an+an+1·an= 0(n∈N*),求{an}的通项公式.
【解析】 ∵an+1-an+an+1·an=0.∴an1+1-a1n=1. 又a11=1,∴a1n是首项为 1,公差为 1 的等差数列. 故a1n=n,∴an=1n.
题型四 已知 Sn 求 an
题型二 累乘法
例 2 在数列{an} 中,已知 a1=3,nan=(1+n)an+1,求 an. 【解析】 据题意有aan+n 1=n+n 1⇒aan-n 1=n-n 1(n≥2 且 n∈N*). ∴an=a1·aa21·aa32·…·aan-n 1 =3×12×23×34×…×n-n 1=3n(n≥2 且 n∈N*),把 n=1 代入上式也成立,故 an=3n(n∈N*).
高中教学数列设计数学教案

高中教学数列设计数学教案
教学内容:数列
一、教学目标
1.了解数列的定义和性质。
2.掌握常见数列的求和公式。
3.能够应用数列知识解决问题。
二、教学重点和难点
重点:数列的定义和性质,常见数列的求和公式。
难点:能够灵活运用数列知识解决问题。
三、教学准备
1.教师准备教案和教学PPT。
2.学生准备数学笔记本和作业本。
四、教学过程
1.引入:通过引入一个简单的问题引出数列的概念,让学生思考数列的定义。
2.概念讲解:讲解数列的定义和性质,包括等差数列、等比数列等常见数列的特点。
3.例题讲解:通过几个例题,帮助学生掌握常见数列的求和公式。
4.练习:让学生做一些练习题,巩固所学知识。
5.拓展:提出一些拓展问题,让学生运用所学知识解决问题。
6.总结:总结本节课的重点内容,梳理学生的思路。
五、教学反馈
1.教师让学生口头回答一些问题,检查他们的理解情况。
2.教师布置相关作业,巩固所学知识。
六、教学手段
1.课堂互动:让学生积极参与,通过讨论和解答问题来加深理解。
2.多媒体辅助:通过PPT呈现数列的概念和例题,提高学生的学习效果。
七、教学总结
本节课通过引入、讲解、练习等环节,使学生初步掌握数列的相关知识,为以后的学习打下坚实基础。
高三数学复习教案:高考数学数列复习教案

高三数学复习教案:高考数学数列复习教案【】欢迎来到查字典数学网高三数学教案栏目,教案逻辑思路清晰,符合认识规律,培养学生自主学习习惯和能力。
因此小编在此为您编辑了此文:高三数学复习教案:高考数学数列复习教案希望能为您的提供到帮助。
本文题目:高三数学复习教案:高考数学数列复习教案【知识图解】【方法点拨】1.学会从特殊到一般的观察、分析、思考,学会归纳、猜想、验证.2.强化基本量思想,并在确定基本量时注重设变量的技巧与解方程组的技巧.3.在重点掌握等差、等比数列的通项公式、求和公式、中项等基础知识的同时,会针对可化为等差(比)数列的比较简单的数列进行化归与转化.4.一些简单特殊数列的求通项与求和问题,应注重通性通法的复习.如错位相减法、迭加法、迭乘法等.5.增强用数学的意识,会针对有关应用问题,建立数学模型,并求出其解.第1课数列的概念【考点导读】1. 了解数列(含等差数列、等比数列)的概念和几种简单的表示方法(列表、图象、通项公式),了解数列是一种特殊的函数;2. 理解数列的通项公式的意义和一些基本量之间的关系;3. 能通过一些基本的转化解决数列的通项公式和前项和的问题。
【基础练习】1.已知数列满足,则 = 。
分析:由a1=0, 得由此可知: 数列是周期变化的,且三个一循环,所以可得:2.在数列中,若,,则该数列的通项 2n-1 。
3.设数列的前n项和为,,且,则 ____2__.4.已知数列的前项和,则其通项 .【范例导析】例1.设数列的通项公式是,则(1)70是这个数列中的项吗?如果是,是第几项?(2)写出这个数列的前5项,并作出前5项的图象;(3)这个数列所有项中有没有最小的项?如果有,是第几项? 分析:70是否是数列的项,只要通过解方程就可以知道;而作图时则要注意数列与函数的区别,数列的图象是一系列孤立的点;判断有无最小项的问题可以用函数的观点来解决,一样的是要注意定义域问题。
解:(1)由得:或所以70是这个数列中的项,是第13项。
高三复习课数列求通项公式的基本方法与技巧

高三复习课《数列求通项公式的基本方法与技巧》说课稿大家好!我本节课说课的内容是高三复习课《数列求通项公式的基本方法与技巧》,所用的教材是普通高中课程标准实验教科书(B版)。
高三第一阶段复习,也称“知识篇”。
在这一阶段,学生重温高一、高二所学课程,全面复习巩固各个知识点,熟练掌握基本方法和技能;然后站在全局的高度,对学过的知识产生全新认识。
在高一、高二时,是以知识点为主线索,依次传授讲解的,由于后面的相关知识还没有学到,不能进行纵向联系,所以,学的知识往往是零碎和散乱,而在第一轮复习时,以章节为单位,将那些零碎的、散乱的知识点串联起来,并将他们系统化、综合化,把各个知识点融会贯通。
对于高中的学生,第一轮复习更为重要,我们希望能做高考试题中一些基础题目,必须侧重基础,加强复习的针对性,讲求实效。
一、教材与学情分析(一)教材的地位和作用1、数列是高中数学的重要内容之一,也是与大学数学相衔接的内容,在测试学生逻辑推理能力和理性思维水平,以及考查学生创新意识和创新能力等方面有不可替代的作用。
数列是反映自然规律的基本数学模型之一。
通过对日常生活和现实世界中大量实际问题的分析,建立等差数列和等比数列两种数学模型,有利于培养数学抽象能力,发展数学建模能力。
2、在历年高考试题中,数列占有重要地位,近几年更是有所加强。
特别是2011年辽宁高考解答题第一题就是考查了数列求通项。
(二)学情分析学生通过对高中数学中数列的学习,已经对解决一些数列问题有一定的能力。
但是授课班级是理科普通班,学生的基础一般,反应速度不怎么快,缺乏独立思考的能力和深度思维,普遍感到数学难学。
但大部分学生主观上有学好数学的愿望,能认识到学习数学的重要性。
如果能让学生由被动接受转变为主动参与,亲身实践,那么听课的积极性和思维能力会有很大提高,自主学习和解决问题的能力也会得到很大的发展。
所以我采用的是分组展示、评价的教学方式。
二、教学目标分析(一)知识与技能目标:理解数列的通项公式的含义,熟练掌握求数列通项公式的基本方法与技巧。
高三数学一轮复习精品教案――数列

城东蜊市阳光实验学校2021届高三数学一轮复习精品教案――数列〔附高考预测〕一、本章知识构造: 二、重点知识回忆 1.数列的概念及表示方法〔1〕定义:按照一定顺序排列着的一列数.〔2〕表示方法:列表法、解析法〔通项公式法和递推公式法〕、图象法.〔3〕分类:按项数有限还是无限分为有穷数列和无穷数列;按项与项之间的大小关系可分为单调数列、摆动数列和常数列.〔4〕n a 与n S 的关系:11(1)(2)n nn S n a S S n -=⎧=⎨-⎩≥.2.等差数列和等比数列的比较〔1〕定义:从第2项起每一项与它前一项的差等于同一常数的数列叫等差数列;从第2项起每一项与它前一项的比等于同一常数〔不为0〕的数列叫做等比数列. 〔2〕递推公式:110n n n n a a d a a q q n *++-==≠∈N ,·,,.〔3〕通项公式:111(1)n n n a a n d a a q n -*=+-=∈N ,,.〔4〕性质等差数列的主要性质:①单调性:0d ≥时为递增数列,0d ≤时为递减数列,0d =时为常数列.②假设m n p q +=+,那么()m n p q a a a a m n p q *+=+∈N ,,,.特别地,当2m n p +=时,有2m n p a a a +=.③()()nm a a n m d m n *-=-∈N ,.④232k k k k k S S S S S --,,,…成等差数列.等比数列的主要性质:①单调性:当1001a q <⎧⎨<<⎩,或者者101a q >⎧⎨>⎩时,为递增数列;当101a q <⎧⎨>⎩,,,或者者1001a q >⎧⎨<<⎩时,为递减数列;当0q <时,为摆动数列;当1q =时,为常数列.②假设m n p q +=+,那么()m n p q a a a a m n p q *=∈N ··,,,.特别地,假设2m n p +=,那么2m n p a a a =·.③(0)n m nma q m n q a -*=∈≠N ,,. ④232k kk k k S S S S S --,,,…,当1q ≠-时为等比数列;当1q =-时,假设k 为偶数,不是等比数列.假设k 为奇数,是公比为1-的等比数列.三、考点剖析考点一:等差、等比数列的概念与性质 例1.〔2021模拟〕数列.12}{2n n S n a nn -=项和的前〔1〕求数列}{n a 的通项公式;〔2〕求数列.|}{|n n T n a 项和的前解:〔1〕当111112,1211=-⨯===S a n时;、当.213])1()1(12[)12(,2221n n n n n S S a n n n n -=-----=-=≥-时,.213111的形式也符合n a -=.213}{,n a a n n -=的通项公式为数列所以、〔2〕令.6,,0213*≤∈≥-=n n n a n 解得又N当2212112||||||,6n n S a a a a a a T n n n n n -==+++=+++=≤ 时;当||||||||||,67621n n a a a a a T n++++++=> 时综上,⎪⎩⎪⎨⎧>+-≤-=.6,7212,6,1222n n n n n n T n点评:此题考察了数列的前n 项与数列的通项公式之间的关系,特别要注意n =1时情况,在解题时经常会忘记。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
假如单以金钱来算,我在香港第六、七名还排不上,我这样说是有事实根据的.但我认为,富有的人要看他是怎么做.照我现在的做法我为自己内心感到富足,这是肯定的.
求数列通项专题高三数学复习教学设计
海南华侨中学邓建书
课题名称
求数列通项(高三数学第二阶段复习总第1课时)
科目
高三数学
年级
高三(5)班
教学时间
2009年4月10日
学习者分析
数列通项是高考的重点内容
必须调动学生的积极让他们掌握!
教学目标
一、情感态度与价值观
1. 培养化归思想、应用意识.
2.通过对数列通项公式的研究
体会从特殊到一般
又到特殊的认识事物规律
培养学生主动探索
勇于发现的求知精神
二、过程与方法
1. 问题教学法------用递推关系法求数列通项公式
2. 讲练结合-----从函数、方程的观点看通项公式
三、知识与技能
1. 培养学生观察分析、猜想归纳、应用公式的能力;
2. 在领会函数与数列关系的前提下
渗透函数、方程的思想
教学重点、难点
1.重点:用递推关系法求数列通项公式
2.难点:(1)递推关系法求数列通项公式(2)由前n项和求数列通项公式时注意检验第一项(首项)是否满足
若不满足必须写成分段函数形式;若满足
则应统一成一个式子.
教学资源
多媒体幻灯
教学过程
教学活动1
复习导入
第一组问题:
数列满足下列条件
求数列的通项公式
(1);(2)
由递推关系知道已知数列是等差或等比数列即可用公式求出通项
第二组问题:[学生讨论变式]
数列满足下列条件
求数列的通项公式
(1);(2);
解题方法:观察递推关系的结构特征
可以利用"累加法"或"累乘法"求出通项
(3)
解题方法:观察递推关系的结构特征
联想到"?=?)"
可以构造一个新的等比数列
从而间接求出通项
教学活动2
变式探究
变式1:数列中
求
思路:设
由待定系数法解出常数
从而
则数列是公比为3的等比数列
教学活动3
练习:数列中
求
思路一:模仿变式1
尝试"?=?)"
设
此时没有符合题意的x
引发认知冲突
讨论新的出路
思路二:由得
故数列是公差为1的等差数列
解题反思:反思上面两个问题的区别和联系
讨论变式1的第二种解题思路
变式1思路二:由得
转化为我们熟悉的问题
变式2:数列中
求
思路:通过类比转化
化归为以上类型即可求解
解题感悟:抓住递推关系的结构特征进行类比转化
1.分层次训练
拓展思维培养能力
2.学生归纳总结:学到什么?会解决什么样的问题?哪些是难点?
教学活动4
先反思提高
1、递推关系形如""的数列的通项的求解思路;
2、在复习的过程中
要注意提高自己在新的问题情境中准确、合理使用所学知识解决问题的能力;要了解事物间的联系与变化
并把握变化规律
再巩固落实
1、数列中
(是常数
)
且成公比不为的等比数列.(I)求的值;(II)求的通项公式.
2、若数列中
a1=3
且an+ 1=an2(n是正整数)
则数列的通项an=__________
3、数列中
求
4、数列中
求
5、思考:在数列中
.证明数列是等比数列;
经过纠错---- 释疑 ---- 老师小结:
掌握数列通项公式的求法
如①直接(观察)法②递推关系法③累加法④累乘法⑤待定系数法等
4.课后反馈:试卷和作业
课后思考:高中阶段
求数列通项有哪些类型和方法?课后自己寻找和总结。