数列专题复习教案
高中数学《数列》二轮复习教学设计

必修 5 第 2 章 教学内容分析
《数列》是高考的热点,同时也是高考的难点,在高考中一般占 19 分,小题 5 分,
解答题 14 分,其中小题和解答题的第一问往往是基础题,所以这 9 分是学生必得的
分数。同时引导学生利用函数的思想去直观的认识数列的本质是高考能力立意的指导
(1) 设 数 列 bn1 an1 2an ,
且
b1=
3 2
证明{ bn
}是等比
数列。
(2)
设
数
列
cn
an 2n
,证明
学生分析问题,并合作解 决问题,教师适时点拨 第(1)问,注意 n 2 第(2)问,可利用第一问 结论,亦可用题设
用等差数列,等比数列的 定义证明数列,并求通项 公式和前 n 项的和;解题 时要总览全局,注意上一 问的结论可作为下面问 题的条件。
反 思
题在高考中考什么,怎么考。学生通过自主探索和合作交流中理解并掌握本节内容。 在课堂教学中充满了师生,生生之间的交流互动。
本节课不足:1、例 3 的幻灯片没设计好,存在有重叠看不清的问题,以后课前要
预看。2、还应更注重细节,讲究规范,强调反思。本节课基本达到了预定的目标,在
教学过程中学生参与度高,课堂气氛活跃。在以后的教学中努力提高教学技巧,逐步
4、 通过解题后的反思,找准自己的问题,总结成功经验,吸取失败教训。
4/5
………………………………………………最新资料推荐……………………………………… 运 用 深 化
1、在数列{ an }中, a1 =8, a4 2 且满足 an2 2an1 an
(1) 求数列{ an }的通项公式
数列复习课教学设计

课题名称:《数列》复习课教学背景分析(一)本课时教学内容的功能和地位数列在高考中占有重要的位置,也是高考命题的热点之一 .由于数列内容的丰富性,应用的广泛性和数列属性的多样性,决定了数列在高考中地位的特殊性 . 这就要求我们在数列的复习中,要重视基础知识和方法的学习,理解和掌握等差、等比数列的基本知识与方法,帮助学生自我构架数列知识框图,实现对数列整体把握、多样解读数列属性的目标 .(二)学情分析在北京市面对全体高中学生的调研中,多数同学认为在高中阶段的课程中,《数列》部分是最难的 .在复习《数列》之初,本人亦进行了学生的问卷调查,学生更多地觉得数列难在方法技巧多、观察分析变形难等等 .本讲面对的是进入一轮复习的高三学生,对《数列》的相关知识点有一定的掌握,学生具备一定的探究问题、分析问题和解决问题的能力,但缺乏对《数列》的整体把握和研究数列的一个“主线”,学生往往就事论事,只是一味地考虑解题情况 .(三)教学准备学生调查问卷、前测题目.教学目标( 1)通过数列复习,使学生理清本章知识网络,归纳整合知识系统.(2)通过师生整理、点评、分析的过程,诊断学习等差数列的问题,学会突破难点的基本方法;通过交流诊断分析学习数列的难点,使学生深化对数列的理解,并形成一定的元认知能力。
(3)通过合作学习,让学生在团队协作中,自我探究,进一步让学生学会思考问题的方法,严谨的推理,多角度思考问题。
教学重点和难点诊断学习数列的难点及分析、尝试寻找如何突破难点的一些对策。
教学方法启发式、讨论式 .教学过程教学环师生活动节(一)教师活动:数据1.PPT 展示学生前测题目的答题情况(柱状与表现图) .反馈2.PPT展示学生完成调查问卷的反馈情况.学生活动:观看反馈情况.设计意图前测题目立足于学业水平测试,难度不太高,综合性不强 .通过这些问题对学生前面的学习效果作一反馈;通过调查问卷,了解学生学习数列的难点 .(二)教师活动:知识整1. PPT 展示学生在调查问卷中画出的《数体把握列》一章的“知识框图” .2.PPT展示学生代表的“知识框图”与前测答题情况的对比 .3.PPT 展示老师画的“知识框图” ,并举例说明由等差数列的定义到通项公式经历的认知过程 .学生活动1:三名学生代表说说自己画的结让学生自己动手构建知识框图,了解学生对数列的研究内容、研究方法的掌握情况 .通过学生间的讨论互评,查找漏洞 .通过教师展示的“知识框图”,让学生体会,知识整体把握及理清知识间关系的重要性 .通过对比三名同学的“知识框图”和答题情况,引导学生感构框图 .学生活动 2:其他同学结合“知识框图”谈自己的想法 .前测题目:( 1 )如果数列的前 n项和S n a1 a2a n满足条件 log 2 S n n ,那么 { a n} ()A.是公比为 2 的等比数列B.是公比为 1/2 的等比数列C.是公差为 2 的等差数列D.既不是等差数列,也不是等比数列( 2)如果等差数列{ a n} 的前n 项和 S n,a4 =2, S1010 ,那么 a n =受题目不会做背后的原因,其实是数列本身的知识没有掌握,对知识的整体把握不够,知识间的联系不清楚 .( 3)已知数列 { a n } 中,a n 13an2( n∈3),且 a3+a5+a6+a8=20,那么 a10等于()A.8B.5C.26D.7 3( 4 )在数列 { a n } 中,已知前n 项的和S n4n2n ,那么 a100等于()A.810B.805C. 800D.795( 5)等比数列 { a n} 中, a4 =2, a5 =5 ,则数列 {lg a n} 的前 8 项和等于 ()A.4B.5C.6D.7( 6)数列 a n的通项公式为a n 2n 49 ,当 S n达到最小时,n等于().A.23B.24C.25D.26(三)教师活动:结合前测题目中多数同学存在问通过前面“知识框图” 的解题任题的第 4 题.整体把握,使原本没做出务分析1.让原本没思路的同学谈想法 .题目的同学可以谈出新的想法;通过题目做对的2.挑选做对的同学谈解题过程 .同学谈解题过程,引导学3.结合对知识框图的完善和第 4 题的讲评,生能够说出“看待数列问让学生小组讨论后谈谈对数列新的认识 .题应该是多角度的” .师生共同评价、整理意见,4.教师进行汇总归纳,数列的难点在于其丰完成对数列的诊断与分富多样的属性:析,并尝试给出一些对通项公式策 .通过尝试找出突破数递推式列之“难”的一些对策,表示S n从而实现对数列内容的数列属性“整体把握” .一般函数特殊学生活动:1.学生代表(前测没做出此题)谈新的想法.2.学生代表(前测做出此题)谈解题方法.3.小组讨论,学生代表谈对数列的新认识.(四)教师活动:由学生整理对数列反馈、小结概1.结合本节课,谈谈你的想法 .诊断、分析后的“处方”。
2024届高三数学二轮专题复习教案数列

2024届高三数学二轮专题复习教案——数列一、教学目标1.知识目标掌握数列的基本概念、性质和分类。
熟练运用数列的通项公式、求和公式。
能够解决数列的综合应用题。
2.能力目标提高学生分析问题和解决问题的能力。
培养学生的逻辑思维能力和创新意识。
二、教学内容1.数列的基本概念数列的定义数列的项、项数、通项公式数列的分类2.数列的性质单调性周期性界限性3.数列的求和等差数列求和公式等比数列求和公式分段求和4.数列的综合应用数列与函数数列与方程数列与不等式三、教学重点与难点1.教学重点数列的基本概念和性质数列的求和数列的综合应用2.教学难点数列求和的技巧数列与函数、方程、不等式的综合应用四、教学过程1.导入新课通过讲解一道数列的典型例题,引导学生回顾数列的基本概念、性质和求和公式,为新课的学习做好铺垫。
2.数列的基本概念(1)数列的定义:按照一定规律排列的一列数叫做数列。
(2)数列的项:数列中的每一个数叫做数列的项。
(3)数列的项数:数列中项的个数。
(4)数列的通项公式:表示数列中任意一项的公式。
(5)数列的分类:等差数列、等比数列、斐波那契数列等。
3.数列的性质(1)单调性:数列的项随序号增大而增大或减小。
(2)周期性:数列中某些项的值呈周期性变化。
(3)界限性:数列的项有最大值或最小值。
4.数列的求和(1)等差数列求和公式:S_n=n/2(a_1+a_n)(2)等比数列求和公式:S_n=a_1(1q^n)/(1q)(3)分段求和:根据数列的特点,将数列分为若干段,分别求和。
5.数列的综合应用(1)数列与函数:利用数列的通项公式研究函数的性质。
(2)数列与方程:利用数列的性质解决方程问题。
(3)数列与不等式:利用数列的性质解决不等式问题。
6.课堂练习(2)已知数列{a_n}的通项公式为a_n=n^2+n,求证数列{a_n}为单调递增数列。
(3)已知数列{a_n}的前n项和为S_n=n^2n+1,求证数列{a_n}为等差数列。
复习课数列的概念教案

复习课数列的概念教案课题名称:数列的概念复习教案课题目标:1. 复习数列的基本概念,包括数列的定义、通项公式、常见数列类型等。
2. 掌握数列的求和公式与其应用。
3. 训练学生分析数列的规律与性质的能力。
教学内容:1. 数列的定义与表示法2. 等差数列与等差数列的通项公式3. 等比数列与等比数列的通项公式4. 常见数列类型(斐波那契数列、逆序数列等)5. 数列的求和公式与应用6. 数列的性质与规律分析教学步骤:Step 1:导入与引导(5分钟)教师通过简单的问题引导学生回忆数列的定义,并提问学生数列的应用领域。
Step 2:数列的定义与表示法(10分钟)教师通过例题解析,将数列的定义与表示法进行复习与讲解。
教师重点强调数列中的元素按照一定的规律排列,并用数学语言表示出来。
Step 3:等差数列与等差数列的通项公式(15分钟)教师复习等差数列的定义,然后通过例题引导学生发现等差数列中的元素之间的差是固定的,即等差公差。
教师带领学生总结等差数列的通项公式,并通过例题让学生掌握其应用。
Step 4:等比数列与等比数列的通项公式(15分钟)教师复习等比数列的定义,然后通过例题引导学生发现等比数列中的元素之间的比是固定的,即等比比值。
教师带领学生总结等比数列的通项公式,并通过例题让学生掌握其应用。
Step 5:常见数列类型(15分钟)教师介绍一些常见的数列类型,如斐波那契数列、逆序数列等,并通过例题让学生理解其特点与通项公式。
Step 6:数列的求和公式与应用(15分钟)教师复习数列的求和公式,如等差数列的求和公式和等比数列的求和公式,并通过例题让学生掌握其应用。
Step 7:数列的性质与规律分析(15分钟)教师引导学生通过观察数列中的元素与规律,发现数列中的一些性质和规律。
教师带领学生通过例题进行分析与归纳,培养学生观察、思考和分析问题的能力。
Step 8:总结与拓展(10分钟)教师对本节课所学内容进行总结,并展示数列在实际生活中的应用,激发学生对数列的兴趣。
数列复习课的教案

数列复习课的教案一、教学目标:1. 理解数列的概念和特征;2. 掌握数列的常见表示方法;3. 能够求解数列的通项公式;4. 能够应用数列解决问题。
二、教学内容:1. 数列的定义和性质;2. 数列的表示方法;3. 数列的通项公式;4. 数列的求和公式;5. 数列的应用。
三、教学过程:1. 导入(5分钟)通过提问和讲解,复习数列的概念,引导学生回忆数列的定义和性质。
2. 知识讲解(15分钟)a) 数列的表示方法:递推公式和通项公式;b) 数列的通项公式的推导方法和步骤;c) 数列的求和公式的推导方法和应用;d) 数列在实际问题中的应用。
3. 讲解例题(15分钟)通过讲解一些典型的数列例题,引导学生掌握数列的解题方法和技巧。
4. 练习巩固(20分钟)学生自主完成一些练习题,巩固数列的相关知识和解题方法。
5. 拓展延伸(10分钟)引导学生思考更复杂的数列问题,并提供一些拓展题目,激发学生的兴趣和思维。
6. 总结归纳(5分钟)对数列的相关知识点进行总结和归纳,帮助学生梳理思路,加深对数列的理解。
四、教学手段:1. 板书:列举数列的定义、性质、表示方法、通项公式和求和公式等重要概念和公式。
2. 多媒体教学:通过投影仪展示例题、解题步骤和相关应用,提高学生的理解和兴趣。
3. 互动讨论:通过提问、回答和讨论,激发学生思维,培养学生的问题解决能力。
五、教学评价:1. 课堂表现:观察学生的听讲、思考和回答问题的情况,评价学生的积极性和参与度。
2. 练习评价:对学生完成的练习题进行批改,评价学生对数列的掌握情况。
3. 问题解决能力评价:观察学生解决复杂数列问题的能力,评价学生的问题解决能力和思维发展。
六、教学反思:通过数列复习课的教学,学生对数列的概念、性质、表示方法、通项公式和求和公式等知识有了更深入的理解。
课堂中的讲解和练习巩固相结合,有效提高了学生的学习兴趣和解题能力。
但是,还需要进一步加强数列的应用训练,培养学生解决实际问题的能力。
数列复习教学案

数列复习专题(一)教学目标:系统掌握数列有关概念和公式并会运用解决问题. 重点难点:等差、等比数列的概念和公式. 引入新课1.数列的概念,通项公式,数列的分类,从函数的观点看数列. 2.等差、等比数列的定义. 3.等差、等比数列的通项公式. 4.等差中项、等比中项.5.等差、等比数列的前n 项和公式及其推导方法.例题剖析(1)已知等差数列的第p n k ,,项构成等比数列的连续3项,如果这个等差数列不是常数列,则等比数列的公比为 .(2)182 ,,,,z y x 成等比数列,则=x .(3)三个数成等比数列,它们的积为512,如果中间一个数加上2,则成等差数列,这三个数是 .(4)一个数列的前n 项和为n S n n 1)1(4321+-++-+-= ,则=++503317S S S .(5)一个数列}{n a ,当n 为奇数时,15+=n a n ,当n 为偶数时,22nn a =,则这个数列前m 2项的和为 .(6)已知正项等比数列}{n a 共有m 2项,且)(94342a a a a +=⋅,++++ 321a a a)(426422m m a a a a a ++++= ,则=1a ,公比=q .例1(7)设}{n a ,}{n b 都是等差数列,它们的前n 项和分别为n S ,n T ,已知1235-+=n n T S nn ,则=nn b a ;=55b a .(8)已知方程022=++m x x 和022=+-n x x 一共四个根组成一个首项为3的等差数列,则=-n m .(9)一个直角三角形三边长组成等差数列,则它的三边长从小到大的比值为 .例2 某三个互不相等的数组成等差数列,如果适当排列此三数,也可成等比数列,已知这三个数的和等于6,求这三个数.课堂小结等差、等比数列的概念和公式.课后训练一 基础题1.若直角三角形的三边的长组成公差为3的等差数列,则三边长分别为( ) A .5,8,11 B .9,12,15 C .10,13,16 D .15,18,21 2.设{}n a 是等比数列,有下列四个命题:(1){}2na 是等比数列;(2){}1+n na a 是等比数列;(3)⎭⎬⎫⎩⎨⎧n a 1是等比数列;(4){}||lg n a 是等比数列;其中正确命题的序号为 .3.写出数列的一个通项公式,使它的前4项分别是下列各数:(1)16795431,,,; (2)978756534312⨯⨯⨯⨯,,,;(3)11,101,1001,10001; (4)818929432--,,,;二 提高题4.已知四个数依次成等差数列,且四个数的平方和为94,首尾两数之积比中间两数之积少18,求此等差数列.5.等差数列{}n a 中,前m 项(m 为奇数)和为77,其中偶数项之和为33, 且181=-m a a ,求通项公式.6.在等差数列{}n a 中,已知)(q p p S q S q p ≠= =,,求q p S +.三 能力题7.如图是第七届国际数学教育大会)7(-ICME 的会徽图案轮廓,它是由一串直角三角 形组成的,其中18732211=====A A A A A A OA ,记821OA OA OA ,,, 的长度所组成的数列为{}n a )81(≤≤ ∈+n N n ,,写出数列{}n a 的通项公式.8.一个正方形被分成九个相等的小正方形,将中间的一个正方形挖掉,再将剩余的每个正方形都分成九个相等的小正方形,并将中间的一个正方形挖掉,如此继续下去…… (1)第三次分割时共挖掉了多少个正方形?(2)设原正方形边长为a ,第n 次分割时共挖掉了多少个正方形?这些正方形的面积和为多少?12 7A 8数列复习专题(二)教学目标: 进一步掌握数列的有关概念和公式的应用;对等差、等比数列有更深刻的理解,逐渐形成熟练技巧.重点难点: 等差、等比数列的概念和公式. 例题剖析例1 求下列数列的前n 项和: (1)求数列 ++++,,,,,nn 21813412211的前n 项和;(2)设6666660个.n n a =; (3)431321211⨯⨯⨯, , ,…,)1(1+n n ,…; (4)数列 , , , , , 1222221221211-+++++++n 前99项之和是 .求和:12321-++++=n n nxx x S .若数列{}n a 的前n 项和n S =322+-n n ,求通项公式n a .从盛有盐的质量分数为%20的盐水kg 2的容器中倒出kg 1盐水,然后加入kg 1水,以后每次都倒出kg 1盐水,然后再加入kg 1水,问:(1)第5次倒出的的kg 1盐水中含盐多少g ?(2)经6次倒出后,一共倒出多少kg 盐?此时加kg 1水后容器内盐水中盐的质量分数为多少?例2 例3 例4课后训练一 基础题1.数列}{n a 的通项公式是)(11N n n n a n ∈ ++=,若前n 项和为10,则项数为___.2.数列 ,,,,9999999999的前n 项和为 . 3.设])1([2n n n a ---=,则=10S .4.已知等差数列{}n a 中,===n n n S S S 3210025,, . 二 提高题 5.设)52)(12(1++=n n a n ,求n S .6.已知数列: ⨯⨯⨯⨯⨯,,,,,,nn 211614813412211,求n S .7.已知数列 ,,,,,na a a 21,求n S .8.设13233331-+++++=n n a ,求n S .9.利用等比数列前n 项和公式证明ba babb ab a a n n nn n n --=++++++--11221.三能力题10.根据美国学者詹姆斯·马丁的测算,近十年,人类知识总量已达到每三年翻一番,到2020年甚至要达到73天翻一番的空前速度。
等差数列复习课教案(公开课)

等差数列复习课教案(公开课)等差数列复习课宜良县职业高级中学董家金(一) 教学目标1.学问与技能:复习等差数列的定义、通项公式、前n 项和公式及相关性质.2.过程与办法:师生共同回忆复习,通过相关例题与练习加深同学的理解.3.情感与价值:培养同学观看、归纳的能力,培养同学的应用意识.(二) 教学重、难点重点:等差数列相关性质的理解。
难点:等差数列相关性质的应用。
(三) 教学办法师生共同探讨复习本课时的主要学问点,再通过例题、习题加深同学的应用意识,本节课采纳多媒体辅助教学。
(四) 课时支配1课时(五) 教具预备多媒体课件(六) 教学过程Ⅰ学问回顾1、等差数列定义普通地,假如一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。
2、等差数列的通项公式假如等差数列{}n a 首项是1a ,公差是d ,则等差数列的通项公式是d n a a n )1(1-+=。
注重:等差数列的通项公式收拾后为)(1d a nd a n -+=,是关于n 的一次函数。
3、等差中项假如a,A,b 成等差数列,那么A 叫着a 与b 的等差中项。
即:2b a A +=,或b a A +=2。
4、等差数列的前n 项和公式等差数列{}n a 首项是1a ,公差是d ,则2)(1n n a a n S +==d n n na 2)1(1-+。
注重:1) 该公式收拾后为n d a n d s n )2(212-+=,是关于n 的二次函数,且常数项为0。
2) 等差数列的前n 项和公式推导过程中利用了“倒序相加求和法”。
3) 数列n a 与前n项和n s 的关系-=-11S S S a n n n )1()2(=≥n n 5、等差数列的推断办法a) 定义法:对于数列{}n a ,若d a a n n =-+1(常数),则数列{}n a 是等差数列。
b) 等差中项法:对于数列{}n a ,若212+++=n n n a a a ,则数列{}n a 是等差数列。
数列复习课教案

数列复习课教案(一)民立中学夏芝晨(区学科带头人)数列是一类特殊的函数,它的定义域是自然数集N或N的有限子集,通项公式就是这一函数的解析表达式。
等差数列和等比数列是两种最基本、最常见的数列。
它们各有五个基本量:首项、公差或公比、项数、通项、前项和;两个基本公式——通项公式和前项和公式,将这五个基本量连接起来,应用函数与方程的思想方法,认识这些基本量的相互联系,由已知推求未知,构成了数列理论的基本框架,成为贯穿始终的主线。
第一课时复习课题:数列、等差数列、等比数列。
复习目标:理解数列的概念,掌握等差数列、等比数列的概念。
复习重点:掌握等差数列、等比数列的概念。
复习难点:用函数的观点来研究数列。
教学过程:知识要点:(1)数列可看作定义域为自然数集N或其子集的函数。
数列的各项即是自变量(项数)从1开始自小到大依次取自然数时对应的一系列函数值。
数列的一般形式:简记为数列。
项数有限的数列叫有穷数列,项数无限的数列叫无穷数列。
(2)表示函数的常用方法有列表法、解析法和图象法三种。
相应地,表示数列也可用上述三种方法。
如果能用解析法表示数列,那么这种解析式就称为数列的通项公式。
数列的图象法表示与函数的图象法表示有区别,前者只是一些孤立的点,后者一般是一段或若干条曲线。
(3)数列中,若(常数),对都成立,则数列叫等差数列,常数叫数列的公差。
数列中,若(常数),,对都成立,则数列叫等比数列,常数叫数列的公比。
(4)三数成等差,即是的等差中项;三数成等比,即是的等比中项。
例一:根据下列数列的前项的值,写出满足反映给出规律的一个通项公式。
(1)3,5,9,17,33,……(2)0,3,8,15,24,……(3)(4)0,1,0,1,0,1,……解:分析与项数之间的对应关系:(1)联想数列2,4,8,16,32,……即数列,可知。
(2)联想1,4,9,16,25,……即数列,可知。
(3)这是一个分数数列,分子为偶数数列,分母为,是两个连续奇数的积,所求的通项公式是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
年级 数学 科辅导讲义(第 讲)
学生姓名 授课教师: 授课时间:
数列专题复习
题型一:等差、等比数列的基本运算
例1、已知数列}{n a 是等比数列,且4622a a a =,则=53a a ( )
A .1
B .2
C .4
D .8
例2、在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11= ( ) A.58 B.88 C.143 D.176
变式 1、等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为 ( ) A.1 B.2 C.3 D.4
2、若等比数列{}n a 满足2412
a a =
,则2
135a a a = . 3、已知{}n a 为等差数列,且13248,12,a a a a +=+=(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)记{}n a 的前n 项和为n S ,若12,,k k a a S +成等比数列,求正整数k 的值。
题型二:求数列的通项公式
⑴.已知关系式)(1n f a a n n +=+,可利用迭加法(累加法)
例1:已知数列{}n a 中,)2(12,211≥-+==-n n a a a n n ,求数列{}n a 的通项公式;
变式 已知数列{}n a 满足122a =,12n n a a n +-=,求数列{}n a 的通项公式.
(2).已知关系式)(1n f a a n n ⋅=+,可利用迭乘法(累积法)
例2、已知数列{}n a 满足:111
(2),21
n n a n n a a n --=≥=+,求求数列{}n a 的通项公式;
变式 已知数列{}n a 满足n n a n a 2
1=+,11=a ,求数列{}n a 的通项公式。
(3).构造新数列
1°递推关系形如“q pa a n n +=+1”,利用待定系数法求解
例、已知数列{}n a 中,32,111+==+n n a a a ,求数列{}n a 的通项公式.
变式 已知数列{}n a 中,54,211+==+n n a a a ,求数列{}n a 的通项公式。
2°递推关系形如“n
n n q pa a +=+1”两边同除1
n p
+或待定系数法求解
例、已知n n n a a a 32,111+==+,求数列{}n a 的通项公式.
变式 已知数列{}n a ,n n n a a 631+=+,31=a ,求数列{}n a 的通项公式。
3°递推关系形如"11n n n n a pa qa a ---=≠(p,q 0),两边同除以1n n a a -
例1、已知数列{}n a 中,1122n n n n a a a a ---=≥=1(n 2),a ,求数列{}n a 的通项公式.
变式 数列{}n a 中,)(42,211++∈+==N n a a a a n
n
n ,求数列{}n a 的通项公式.
d 、给出关于n S 和m a 的关系(1--=n n n S S a )
例1、设数列{}n a 的前n 项和为n S ,已知)(3,11++∈+==N n S a a a n n n ,设n
n n S b 3-=,
求数列{}n b 的通项公式.
变式 设n S 是数列{}n a 的前n 项和,11=a ,)2(212
≥⎪⎭
⎫
⎝
⎛-
=n S a S n n n . ⑴求{}n a 的通项; ⑵设1
2+=n S b n
n ,求数列{}n b 的前n 项和n T .
题型三:数列求和
一、利用常用求和公式求和 1、 等差数列求和公式:d n n na a a n S n n 2
)
1(2)(11-+=+=
2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)
1(11)1()1(111
q q q a a q
q a q na S n n
n
前n 个正整数的和 2
)
1(321+=
++++n n n 前n 个正整数的平方和 6)
12)(1(3212
2
2
2
++=
++++n n n n
前n 个正整数的立方和 23
333]2
)1([321+=++++n n n
例1、在数列{a n }中,a 1=8,a 4=2,且满足a n +2+a n =2a n +1.
(1)求数列{a n }的通项公式;
(2)设S n 是数列{|a n |}的前n 项和,求S n .
二、错位相减法求和(重点)
这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. 求和时一般在已知和式的两边都乘以组成这个数列的等比数列的公比q ;然后再将得到的新和式和原和式相减,
转化为同倍数的等比数列求和。
例2、求和:1
32)12(7531--+⋅⋅⋅++++=n n x n x x x S
变式 已知等差数列{}n a 的通项公式n a n =,等比数列{}1
2,+=n n n b b ,设n n n b a C •=,n S 是数列n C 的
前n 项和,求n S 。
三、分组法求和
有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. 例3、求数列的前n 项和:231
,,71,41,1112-+⋅⋅⋅+++-n a
a a n ,…
变式 求数列{n(n+1)}的前n 项和.
四、裂项法求和
这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:
(1))()1(n f n f a n -+= (2)
n n n n tan )1tan()1cos(cos 1sin -+=+ (3)1
1
1)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=
n n n n n a n (5)])
2)(1(1
)1(1[21)2)(1(1++-+=+-=
n n n n n n n a n
(6) n
n
n n n n n n S n n n n n n n n n a 2)1(1
1,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=
-则 例4 求数列⋅⋅⋅++⋅⋅⋅++,1
1,
,3
21,
2
11n n 的前n 项和.
变式 1、在数列{an}中,1
1211++
⋅⋅⋅++++=n n
n n a n ,又12+⋅=n n n a a b ,求数列{bn}的前n 项的和.
2、已知等比数列{a n }中,a 1=3,a 4=81,若数列{b n }满足b n =log 3a n ,则数列⎩⎨
⎧
⎭
⎬⎫
1b n b n +1的前n 项和S n =________.
题型四:等差、等比数列的判定
例1、已知n S 为等差数列{}n a 的前n 项和,)(+∈=N n n
S b n
n .求证:数列{}n b 是等差数列.
变式:已知公比为3的等比数列{}n b 与数列{}n a 满足*
,3N n b n a
n ∈=,且11=a ,证明{}n a 是等差数列。
例2、设{a n }是等差数列,b n =n
a ⎪⎭
⎫
⎝⎛21,求证:数列{b n }是等比数列;
变式1、数列{a n }的前n 项和为S n ,数列{b n }中,若a n +S n =n .设c n =a n -1,求证:数列{c n }是等比数列;
2、已知n S 为数列{}n a 的前n 项和,11=a ,24+=n n a S ,
数列{}n b ,n n n a a b 21-=+,求证:{}n b 是
等比数列;
课后作业:
1、已知数列{a n }的各项均为正数,前n 项和为S n ,且满足2S n =a 2n +n -4(n ∈N *
).
(1)求证:数列{a n }为等差数列; (2)求数列{a n }的通项公式。
2、已知数列{a n }的前n 项和为S n ,且S n =4a n -3(n ∈N *).
(1)证明:数列{a n }是等比数列;
(2)若数列{b n }满足b n +1=a n +b n (n ∈N *),且b 1=2,求数列{b n }的通项公式.
3、已知等差数列{a n }的前n 项和为
S n ,a 5=5,S 5=15,则数列⎩
⎪⎨⎪⎧⎭⎪⎬⎪
⎫1a n a n +1的前
n 项和n T 。
4、已知数列{a n }的前n 项和为S n =3n ,数列{b n }满足b 1=-1,b n +1=b n +(2n -1)(n ∈N *).
(1)求数列{a n }的通项公式a n ; (2)求数列{b n }的通项公式b n ;
(3)若c n =a n ·b n
n ,求数列{c n }的前n 项和T n .。