江苏各市2013中考数学分类解析 专题08:平面几何基础

合集下载

2013中考数学真题解析平面几何的综合

2013中考数学真题解析平面几何的综合

2013中考数学真题解析平面几何的综合
中考数学考什么,这是考生和家长最关心的问题。

以往的中考考题主要体现在对知识点的考查上,强调知识点的覆盖面,对能力的考查没有放在一个突出的位置上。

近几年的中考命题发生了明显的变化,既强调了由知识层面向能力层面的转化,又强调了基础知识与能力并重。

注重在知识的交汇处设计命题,对学生能力的考查也提出了较高的要求。

中考数学重点考查学生的数学思维能力已经成为趋势和共识。

初三学生可利用寒假时间对数学思想方法进行梳理、总结,逐个认识它们的本质特征、思维程序和操作程序。

有针对性地通过典型题目进行训练,能够真正适应中考命题。

南京02-13年中考数学试题分类解析专题 08 平面几何基础

南京02-13年中考数学试题分类解析专题 08 平面几何基础

2013版[中考12年]南京市2002-2013年中考数学试题分类解析专题08 平面几何基础一、选择题1.(江苏省南京市2002年2分)下列图形中对称轴最多的是【】A、圆B、正方形C、等腰三角形D、线段2. (江苏省南京市2002年2分)两个相似菱形边长的比是1∶4,那么它们的面积比是【】A、1∶2B、1∶4C、1∶8D、1∶163. (江苏省南京市2003年2分)观察下列“风车”的平面图案:其中是中心对称图形的有【】(A)1个(B)2个(C)3个(D)4个【答案】B。

【考点】中心对称图形,生活中的旋转现象。

【分析】根据中心对称图形的定义,在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合的图形,结合各图形的特点可知第2个与第4个,是中心对称图形,其它两个不是.故选B。

4.(江苏省南京市2003年2分)在比例尺是1∶38 000的南京交通游览图上,玄武湖隧道长约7cm,它的实际长度约为【】.(A)0.266 km (B)2.66 km (C)26.6 km (D)266 km5. (江苏省南京市2004年2分)若∠α=20°,则∠α的补角等于【】A、20°B、70°C、110°D、160°【答案】D。

【考点】补角。

【分析】根据补角的定义,互补即两角的和为180°,则若∠α=20°,∠α的补角=180°﹣20°=160°。

故选D。

6.(江苏省南京市2004年2分)在比例尺是1:8000的南京市城区地图上,太平南路的长度约为25cm,它的实际长度约为【】A、320cmB、320mC、2000cmD、2000m7. (江苏省南京市2005年2分)在比例尺为1:40000的工程示意图上,将于2005年9月1日正式通车的南京地铁一号线(奥体中心至迈皋桥段)的长度约为54.3cm,它的实际长度约为【】A、0.2172kmB、2.172kmC、21.72kmD、217.2km【答案】C。

【2013版中考12年】江苏省南京市2002-2013年中考数学试题分类解析 专题8 平面几何基础

【2013版中考12年】江苏省南京市2002-2013年中考数学试题分类解析 专题8 平面几何基础

"【2013版中考12年】江苏省南京市2002-2013年中考数学试题分类解析专题8 平面几何基础 "一、选择题1.(江苏省南京市2002年2分)下列图形中对称轴最多的是【】A、圆B、正方形C、等腰三角形D、线段2. (江苏省南京市2002年2分)两个相似菱形边长的比是1∶4,那么它们的面积比是【】A、1∶2B、1∶4C、1∶8D、1∶163. (江苏省南京市2003年2分)观察下列“风车”的平面图案:其中是中心对称图形的有【】(A)1个(B)2个(C)3个(D)4个【答案】B。

【考点】中心对称图形,生活中的旋转现象。

【分析】根据中心对称图形的定义,在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合的图形,结合各图形的特点可知第2个与第4个,是中心对称图形,其它两个不是.故选B。

4.(江苏省南京市2003年2分)在比例尺是1∶38 000的南京交通游览图上,玄武湖隧道长约7cm,它的实际长度约为【】.(A)0.266 km (B)2.66 km (C)26.6 km (D)266 km5. (江苏省南京市2004年2分)若∠α=20°,则∠α的补角等于【】A、20°B、70°C、110°D、160°【答案】D。

【考点】补角。

【分析】根据补角的定义,互补即两角的和为180°,则若∠α=20°,∠α的补角=180°﹣20°=160°。

故选D。

6.(江苏省南京市2004年2分)在比例尺是1:8000的南京市城区地图上,太平南路的长度约为25cm,它的实际长度约为【】A、320cmB、320mC、2000cmD、2000m7. (江苏省南京市2005年2分)在比例尺为1:40000的工程示意图上,将于2005年9月1日正式通车的南京地铁一号线(奥体中心至迈皋桥段)的长度约为54.3cm,它的实际长度约为【】A、0.2172kmB、2.172kmC、21.72kmD、217.2km【答案】C。

最新江苏省13市中考数学试题分类解析汇编专题8:-平面几何基础

最新江苏省13市中考数学试题分类解析汇编专题8:-平面几何基础
在我们学校大约有4000多名学生,其中女生约占90%以上。按每十人一件饰品计算,大概需要360多件。这对于开设饰品市场是很有利的。女生成为消费人群的主体。
虽然调查显示我们的创意计划有很大的发展空间,但是各种如“漂亮女生”和“碧芝”等连锁饰品店在不久的将来将对我们的创意小屋会产生很大的威胁。
【答案】700。
【考点】余角。
【分析】根据余角的定义:若两个角的和为90°,则这两个角互余,直接得出结果:900-200=700。
6.(泰州3分)如图,直线 、 被直线l所截, ∥ ,∠1=70°,则∠2=▲。
【答案】1100。
【考点】平行线的性质,平角的概念。
【分析】根据同位角相等的平行线性质和平角等于1800的概念直接得出结论: 。
【分析】根据轴对称图形和中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合。可知A是中心对称图形而不是轴对称图形;B也是中心对称图形而不是轴对称图形;C既是轴对称图形又是中心对称图形,它有四条对称轴,分别是连接三个小圆线段所在的水平和竖直直线,这水平和竖直直线之间的两条角平分线;D既不是轴对称图形也不是中心对称图形。故选C。
4.(南京2分)如图,过正五边形ABCDE的顶点A作直线l∥CD,则
∠1=▲.
【答案】360。
【考点】n边形的内角和。
【分析】利用n边形的内角和定理,直接得出正五边形的内角和是(5-2)×180°=5400,再除以5即得每一个内角等于108°,则∠1=(180°-108°)÷2=36°。
5.(南通3分)已知 =20°,则 的余角等于▲.
相同点:
①;
②.[来源:学*科*网]
不同点:
① ;

专题08 平面解析几何(解答题)

专题08  平面解析几何(解答题)

专题08 平面解析几何(解答题)1.【2019年高考全国Ⅰ卷文数】已知点A ,B 关于坐标原点O 对称,│AB │=4,⊙M 过点A ,B 且与直线x +2=0相切.(1)若A 在直线x +y =0上,求⊙M 的半径;(2)是否存在定点P ,使得当A 运动时,│MA │−│MP │为定值?并说明理由. 【答案】(1)M e 的半径=2r 或=6r ;(2)存在,理由见解析.【解析】(1)因为M e 过点,A B ,所以圆心M 在AB 的垂直平分线上.由已知A 在直线+=0x y 上,且,A B 关于坐标原点O 对称,所以M 在直线y x =上,故可设(, )M a a .因为M e 与直线x +2=0相切,所以M e 的半径为|2|r a =+.由已知得||=2AO ,又MO AO ⊥u u u u r u u u r,故可得2224(2)a a +=+,解得=0a 或=4a . 故M e 的半径=2r 或=6r .(2)存在定点(1,0)P ,使得||||MA MP -为定值. 理由如下:设(, )M x y ,由已知得M e 的半径为=|+2|,||=2r x AO .由于MO AO ⊥u u u u r u u u r ,故可得2224(2)x y x ++=+,化简得M 的轨迹方程为24y x =.因为曲线2:4C y x =是以点(1,0)P 为焦点,以直线1x =-为准线的抛物线,所以||=+1MP x . 因为||||=||=+2(+1)=1MA MP r MP x x ---,所以存在满足条件的定点P .【名师点睛】本题考查圆的方程的求解问题、圆锥曲线中的定点定值类问题.解决定点定值问题的关键是能够根据圆的性质得到动点所满足的轨迹方程,进而根据抛物线的定义得到定值,验证定值符合所有情况,使得问题得解.2.【2019年高考全国Ⅱ卷文数】已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,P 为C 上一点,O 为坐标原点.(1)若2POF △为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于16,求b 的值和a 的取值范围.【答案】(1)31-;(2)4b =,a 的取值范围为[42,)+∞.【解析】(1)连结1PF ,由2POF △为等边三角形可知在12F PF △中,1290F PF ∠=︒,2PF c =,13PF c =,于是122(31)a PF PF c =+=+,故C 的离心率是31ce a==-. (2)由题意可知,满足条件的点(,)P x y 存在.当且仅当1||2162y c ⋅=,1y yx c x c⋅=-+-,22221x y a b +=,即||16c y =,① 222x y c +=,②22221x y a b+=,③ 由②③及222a b c =+得422b y c =,又由①知22216y c=,故4b =.由②③得()22222a x c b c=-,所以22c b ≥,从而2222232,a b c b =+≥=故42a ≥.当4b =,42a ≥时,存在满足条件的点P . 所以4b =,a 的取值范围为[42,)+∞.【名师点睛】本题主要考查求椭圆的离心率,以及椭圆中存在定点满足题中条件的问题,熟记椭圆的简单性质即可求解,考查计算能力,属于中档试题.3.【2019年高考全国Ⅲ卷文数】已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点; (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程. 【答案】(1)见解析;(2)22542x y ⎛⎫+-= ⎪⎝⎭或22522x y ⎛⎫+-= ⎪⎝⎭. 【解析】(1)设()111,,,2D t A x y ⎛⎫-⎪⎝⎭,则2112x y =.由于y'x =,所以切线DA 的斜率为1x ,故11112y x x t+=-.整理得112 2 +1=0. tx y -设()22,B x y ,同理可得222 2 +1=0tx y -. 故直线AB 的方程为2210tx y -+=. 所以直线AB 过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+. 由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=. 于是()21212122,121x x t y y t x x t +=+=++=+.设M 为线段AB 的中点,则21,2M t t ⎛⎫+⎪⎝⎭. 由于EM AB ⊥u u u u r u u u r ,而()2,2EM t t =-u u u u r ,AB u u u r 与向量(1, )t 平行,所以()220t t t +-=.解得t =0或1t =±.当t =0时,||EM u u u u r =2,所求圆的方程为22542x y ⎛⎫+-= ⎪⎝⎭;当1t =±时,||2EM =u u u u r ,所求圆的方程为22522x y ⎛⎫+-= ⎪⎝⎭.【名师点睛】此题第一问是圆锥曲线中的定点问题和第二问是求圆的方程,属于常规题型,按部就班地求解就可以,思路较为清晰,但计算量不小.4.【2019年高考北京卷文数】已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(1)求椭圆C 的方程;(2)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点.【答案】(1)2212x y +=;(2)见解析. 【解析】(1)由题意得,b 2=1,c =1. 所以a 2=b 2+c 2=2.所以椭圆C 的方程为2212x y +=.(2)设P (x 1,y 1),Q (x 2,y 2), 则直线AP 的方程为1111y y x x -=+. 令y =0,得点M 的横坐标111M x x y =--. 又11y kx t =+,从而11||||1M x OM x kx t ==+-.同理,22||||1x ON kx t =+-.由22,12y kx t x y =+⎧⎪⎨+=⎪⎩得222(12)4220k x ktx t +++-=. 则122412kt x x k +=-+,21222212t x x k-=+. 所以1212||||||||11x x OM ON kx t kx t ⋅=⋅+-+-()12221212||(1)(1)x x k x x k t x x t =+-++-22222222212||224(1)()(1)1212t k t kt k k t t k k-+=-⋅+-⋅-+-++12||1t t+=-. 又||||2OM ON ⋅=,所以12||21tt+=-. 解得t =0,所以直线l 经过定点(0,0).【名师点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.5.【2019年高考天津卷文数】设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,上顶点为B .已知3||2||OA OB =(O 为原点).(1)求椭圆的离心率; (2)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线x =4上,且OC AP ∥,求椭圆的方程.【答案】(1)12;(2)2211612x y +=.【解析】(1)设椭圆的半焦距为c ,由已知有32a b =,又由222a b c =+,消去b 得22232a a c ⎛⎫=+ ⎪ ⎪⎝⎭,解得12c a =. 所以,椭圆的离心率为12. (2)由(1)知,2,3a c b c ==,故椭圆方程为2222143x y c c+=.由题意,(, 0)F c -,则直线l 的方程为3()4y x c =+, 点P 的坐标满足22221,433(),4x y c cy x c ⎧+=⎪⎪⎨⎪=+⎪⎩消去y 并化简,得到2276130x cx c +-=,解得1213,7c x c x ==-. 代入到l 的方程,解得1239,214y c y c ==-.因为点P在x轴上方,所以3,2P c c ⎛⎫⎪⎝⎭.由圆心C在直线4x=上,可设(4, )C t.因为OC AP∥,且由(1)知( 2 , 0)A c-,故3242ctc c=+,解得2t=.因为圆C与x轴相切,所以圆的半径长为2,又由圆C与l相切,得23(4)242314c+-=⎛⎫+ ⎪⎝⎭,可得=2c.所以,椭圆的方程为2211612x y+=.【名师点睛】本小题主要考查椭圆的标准方程和几何性质、直线方程、圆等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想、数形结合思想解决问题的能力. 6.【2019年高考江苏卷】如图,在平面直角坐标系xOy中,椭圆C:22221(0)x ya ba b+=>>的焦点为F1(–1、0),F2(1,0).过F2作x轴的垂线l,在x轴的上方,l与圆F2:222(1)4x y a-+=交于点A,与椭圆C交于点D.连结AF1并延长交圆F2于点B,连结BF2交椭圆C于点E,连结DF1.已知DF1=52.(1)求椭圆C的标准方程;(2)求点E的坐标.【答案】(1)22143x y+=;(2)3(1,)2E--.【解析】(1)设椭圆C 的焦距为2c .因为F 1(−1,0),F 2(1,0),所以F 1F 2=2,c =1. 又因为DF 1=52,AF 2⊥x 轴, 所以DF 2=222211253()222DF F F -=-=, 因此2a =DF 1+DF 2=4,从而a =2. 由b 2=a 2−c 2,得b 2=3.因此,椭圆C 的标准方程为22143x y +=.(2)解法一:由(1)知,椭圆C :22143x y +=,a =2,因为AF 2⊥x 轴,所以点A 的横坐标为1. 将x =1代入圆F 2的方程(x −1) 2+y 2=16,解得y =±4. 因为点A 在x 轴上方,所以A (1,4). 又F 1(−1,0),所以直线AF 1:y =2x +2.由22()22116y x x y =+-+=⎧⎨⎩,得256110x x +-=, 解得1x =或115x =-. 将115x =-代入22y x =+,得 125y =-, 因此1112(,)55B --.又F 2(1,0),所以直线BF 2:3(1)4y x =-.由221433(1)4x y x y ⎧⎪⎪⎨⎪+=-⎩=⎪,得276130x x --=,解得1x =-或137x =. 又因为E 是线段BF 2与椭圆的交点,所以1x =-. 将1x =-代入3(1)4y x =-,得32y =-. 因此3(1,)2E --.解法二:由(1)知,椭圆C:221 43x y+=.如图,连结EF1.因为BF2=2a,EF1+EF2=2a,所以EF1=EB,从而∠BF1E=∠B.因为F2A=F2B,所以∠A=∠B,所以∠A=∠BF1E,从而EF1∥F2A.因为AF2⊥x轴,所以EF1⊥x轴.因为F1(−1,0),由221431xx y⎧⎪⎨+==-⎪⎩,得32y=±.又因为E是线段BF2与椭圆的交点,所以32y=-.因此3(1,)2E--.【名师点睛】本小题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力.7.【2019年高考浙江卷】如图,已知点(10)F,为抛物线22(0)y px p=>的焦点,过点F的直线交抛物线于A、B两点,点C在抛物线上,使得ABC△的重心G在x轴上,直线AC交x轴于点Q,且Q在点F 的右侧.记,AFG CQG △△的面积分别为12,S S . (1)求p 的值及抛物线的准线方程;(2)求12S S 的最小值及此时点G 的坐标.【答案】(1)p =2,准线方程为x =−1;(2)最小值为312+,此时G (2,0). 【解析】(1)由题意得12p=,即p =2. 所以,抛物线的准线方程为x =−1.(2)设()()(),,,,,A A B B c c A x y B x y C x y ,重心(),G G G x y .令2,0A y t t =≠,则2A x t =.由于直线AB 过F ,故直线AB 方程为2112t x y t-=+,代入24y x =,得()222140t y y t---=,故24B ty =-,即2B y t =-,所以212,B tt ⎛⎫- ⎪⎝⎭.又由于()()11,33G A B c G A B c x x x x y y y y =++=++及重心G 在x 轴上,故220c t y t-+=,得242211222,2,,03t t C t t G t t t ⎛⎫⎛⎫-+⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 所以,直线AC 方程为()222y t t x t-=-,得()21,0Q t-.由于Q 在焦点F 的右侧,故22t >.从而4224221244242222211|2|||322221222211|||1||2|23A ct t t FG y t S t t t t t S t t QG y t t t t-+-⋅⋅--====--+--⋅--⋅-.令22m t =-,则m >0,122113222134323424S m S m m m m m m=-=--=+++++⋅+…. 当3m =时,12S S 取得最小值312+,此时G (2,0). 【名师点睛】本题主要考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,同时考查运算求解能力和综合应用能力.8.【2018年高考全国Ⅰ文数】设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN =∠∠. 【答案】(1)y =112x +或112y x =--;(2)见解析. 【解析】(1)当l 与x 轴垂直时,l 的方程为x =2,可得M 的坐标为(2,2)或(2,–2). 所以直线BM 的方程为y =112x +或112y x =--. (2)当l 与x 轴垂直时,AB 为MN 的垂直平分线,所以∠ABM =∠ABN .当l 与x 轴不垂直时,设l 的方程为(2)(0)y k x k =-≠,M (x 1,y 1),N (x 2,y 2),则x 1>0,x 2>0.由2(2)2y k x y x=-⎧⎨=⎩,得ky 2–2y –4k =0,可知y 1+y 2=2k ,y 1y 2=–4.直线BM ,BN 的斜率之和为1221121212122()22(2)(2)BM BN y y x y x y y y k k x x x x ++++=+=++++.① 将112y x k =+,222yx k=+及y 1+y 2,y 1y 2的表达式代入①式分子,可得121221121224()882()0y y k y y x y x y y y k k++-++++===.所以k BM +k BN =0,可知BM ,BN 的倾斜角互补,所以∠ABM =∠ABN . 综上,∠ABM =∠ABN .【名师点睛】本题主要考查抛物线的标准方程与几何性质、直线与抛物线的位置关系,考查考生的化归与转化能力、运算求解能力,考查的数学核心素养是直观想象与数学运算.在设直线的方程时,一定要注意所设方程的适用范围,如用点斜式时,要考虑到直线的斜率不存在的情况,以免解答不严密或漏解.(1)求出直线l 与抛物线的交点,利用两点式写出直线BM 的方程;(2)由(1)知,当直线l 与x 轴垂直时,结论显然成立,当直线l 与x 轴不垂直时,设出斜率k ,联立直线l 与C 的方程,求出M ,N 两点坐标之间的关系,再表示出BM 与BN 的斜率,得其和为0,从而说明BM 与BN 两条直线的斜率互为相反数,进而可知两角相等.9.【2018年高考全国Ⅱ卷文数】设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.【答案】(1)y =x –1;(2)22(3)(2)16x y -+-=或22(11)(6)144x y -++=. 【解析】(1)由题意得F (1,0),l 的方程为y =k (x –1)(k >0). 设A (x 1,y 1),B (x 2,y 2).由2(1)4y k x y x=-⎧⎨=⎩得2222(24)0k x k x k -++=. 216160k ∆=+=,故212224k x x k++=. 所以212244(1)(1)k AB AF BF x x k+=+=+++=. 由题设知22448k k +=,解得k =–1(舍去),k =1. 因此l 的方程为y =x –1.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为2(3)y x -=--,即5y x =-+.设所求圆的圆心坐标为(x 0,y 0),则00220005(1)(1)16.2y x y x x =-+⎧⎪⎨-++=+⎪⎩,解得0032x y =⎧⎨=⎩,或00116.x y =⎧⎨=-⎩, 因此所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=.【名师点睛】本题主要考查抛物线与直线和圆的综合,考查考生的数形结合能力、运算求解能力,考查的数学核心素养是直观想象、数学运算.(1)利用点斜式写出直线l 的方程,代入抛物线方程,得到关于x 的一元二次方程,利用根与系数的关系以及抛物线的定义加以求解;(2)由题意写出线段AB 的垂直平分线所在直线的方程,设出圆心的坐标,由题意列出方程组,解得圆心的坐标,即可求解.10.【2018年高考全国Ⅲ卷文数】已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB的中点为(1,)(0)M m m >. (1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0u u u r u u u r u u u r .证明:2||||||FP FA FB =+u u u r u u u r u u u r. 【答案】(1)见解析;(2)见解析.【解析】(1)设11()A x y ,,22()B x y ,,则2211143x y +=,2222143x y +=.两式相减,并由1212=y y k x x --得1212043x x y y k +++⋅=.由题设知1212x x +=,122y y m +=,于是34k m=-. 由题设得302m <<,故12k <-.(2)由题意得F (1,0).设33()P x y ,,则331122(1)(1)(1)(00)x y x y x y -+-+-=,,,,.由(1)及题设得3123()1x x x =-+=,312()20y y y m =-+=-<.又点P 在C 上,所以34m =,从而3(1)2P -,,3||=2FP u u u r . 于是222211111||(1)(1)3(1)242x x FA x y x =-+=-+-=-u u u r .同理2||=22x FB -u u u r .所以1214()32FA FB x x +=-+=u u u r u u u r .故2||=||+||FP FA FB u u u r u u u r u u u r .【名师点睛】本题主要考查椭圆的方程及简单几何性质、直线的斜率公式、直线与椭圆的位置关系、向量的坐标运算与向量的模等,考查运算求解能力、数形结合思想,考查的数学核心素养是数学抽象、数学运算.圆维曲线中与中点弦有关的问题常用点差法,建立弦所在直线的斜率与中点坐标间的关系,也可以通过联立直线方程与圆锥曲线方程,消元,根据根与系数的关系求解.11.【2018年高考北京卷文数】已知椭圆2222:1(0)x y M a b a b +=>>的离心率为63,焦距为22.斜率为k 的直线l 与椭圆M 有两个不同的交点A ,B . (1)求椭圆M 的方程;(2)若1k =,求||AB 的最大值;(3)设(2,0)P -,直线P A 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C ,D 和点71(,)44Q -共线,求k .【答案】(1)2213x y +=;(2)6;(3)1. 【解析】(1)由题意得222c =,所以2c =,又63c e a ==,所以3a =, 所以2221b a c =-=,所以椭圆M 的标准方程为2213x y +=.(2)设直线AB 的方程为y x m =+,由2213y x m x y =+⎧⎪⎨+=⎪⎩消去y 可得2246330x mx m ++-=, 则2223644(33)48120m m m ∆=-⨯-=->,即24m <,设11(,)A x y ,22(,)B x y ,则1232m x x +=-,212334m x x -=,则222212121264||1||1()42m AB k x x k x x x x ⨯-=+-=+⋅+-=,易得当20m =时,max ||6AB =,故||AB 的最大值为6. (3)设11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y ,则221133x y += ①,222233x y += ②,又(2,0)P -,所以可设1112PA y k k x ==+,直线PA 的方程为1(2)y k x =+, 由122(2)13y k x x y =+⎧⎪⎨+=⎪⎩消去y 可得2222111(13)121230k x k x k +++-=, 则2113211213k x x k +=-+,即2131211213k x x k =--+, 又1112y k x =+,代入①式可得13171247x x x --=+,所以13147y y x =+, 所以1111712(,)4747x y C x x --++,同理可得2222712(,)4747x y D x x --++.故3371(,)44QC x y =+-u u u r ,4471(,)44QD x y =+-u u u r ,因为,,Q C D 三点共线,所以34437171()()()()04444x y x y +--+-=,将点,C D 的坐标代入化简可得12121y y x x -=-,即1k =. 【名师点睛】本题主要考查椭圆的方程及几何性质、直线与椭圆的位置关系,考查考生的逻辑思维能力、运算求解能力,考查数形结合思想,考查的数学核心素养是直观想象、逻辑推理、数学运算.解决椭圆的方程问题,常用基本量法,同时注意椭圆的几何量的关系;弦长的计算,通常要将直线与椭圆方程联立,利用根与系数的关系求解.12.【2018年高考天津卷文数】设椭圆22221(0)x y a b a b+=>>的右顶点为A ,上顶点为B .已知椭圆的离心率为53,||13AB =. (1)求椭圆的方程;(2)设直线:(0)l y kx k =<与椭圆交于,P Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若BPM △的面积是BPQ △面积的2倍,求k 的值.【答案】(1)22194x y +=;(2)12-. 【解析】本小题主要考查椭圆的标准方程和几何性质、直线方程等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想解决问题的能力.满分14分.(1)设椭圆的焦距为2c ,由已知得2259c a =,又由222a b c =+,可得23a b =.由22||13AB a b =+=,从而3,2a b ==.所以,椭圆的方程为22194x y +=.(2)设点P 的坐标为11(,)x y ,点M 的坐标为22(,)x y ,由题意,210x x >>, 点Q 的坐标为11(,)x y --.由BPM △的面积是BPQ △面积的2倍,可得||=2||PM PQ ,从而21112[()]x x x x -=--,即215x x =. 易知直线AB 的方程为236x y +=,由方程组236,,x y y kx +=⎧⎨=⎩消去y ,可得2632x k =+.由方程组221,94,x y y kx ⎧+⎪=⎨⎪=⎩消去y ,可得12694x k =+. 由215x x =,可得2945(32)k k +=+,两边平方,整理得2182580k k ++=,解得89k =-,或12k =-.当89k =-时,290x =-<,不合题意,舍去;当12k =-时,212x =,1125x =,符合题意.所以,k 的值为12-.【名师点睛】高考解析几何解答题大多考查直线与圆锥曲线的位置关系,涉及轨迹方程问题、定值问题、最值问题、参数的取值或取值范围问题等,其中考查较多的圆锥曲线是椭圆与抛物线,解决此类问题要重视化归与转化思想及设而不求法的应用.13.【2018年高考江苏卷】如图,在平面直角坐标系xOy 中,椭圆C 过点1(3,)2,焦点12(3,0),(3,0)F F -,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于,A B 两点.若OAB △的面积为267,求直线l 的方程.【答案】(1)椭圆C的方程为2214xy+=,圆O的方程为223x y+=;(2)①(2,1);②532y x=-+.【解析】(1)因为椭圆C的焦点为12()3,0,(3,0)F F-,可设椭圆C的方程为22221(0)x ya ba b+=>>.又点1(3,)2在椭圆C上,所以2222311,43,a ba b⎧+=⎪⎨⎪-=⎩,解得224,1,ab⎧=⎪⎨=⎪⎩因此椭圆C的方程为2214xy+=.因为圆O的直径为12F F,所以其方程为223x y+=.(2)①设直线l与圆O相切于0000(),,(00)P x y x y>>,则22003x y+=,所以直线l的方程为000()xy x x yy=--+,即0003xy xy y=-+.由22001,43,xyxy xy y⎧+=⎪⎪⎨⎪=-+⎪⎩消去y,得222200004243640()x y x x x y+-+-=.(*)因为直线l与椭圆C有且只有一个公共点,所以222222000000()()(24)(44364820)4x x y y y x∆=--+-=-=.因为00,0x y>,所以002,1x y==.因此点P的坐标为(2,1).②因为三角形OAB的面积为267,所以21267AB OP⋅=,从而427AB=.设1122,,()(),A x y B x y ,由(*)得2200022001,22448(2)2(4)x y x x x y ±-=+,所以2222121()()x B y y x A =-+-222000222200048(2)(1)(4)x y x y x y -=+⋅+.因为22003x y +=,所以22022016(2)32(1)49x AB x -==+,即42002451000x x -+=, 解得22005(202x x ==舍去),则2012y =, 因此P 的坐标为102(,)22. 综上,直线l 的方程为532y x =-+.【名师点睛】本题主要考查直线方程、圆的方程、圆的几何性质、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等知识,考查分析问题能力和运算求解能力. (1)利用椭圆的几何性质求圆的方程和椭圆的方程. (2)①利用直线与圆、椭圆的位置关系建立方程求解; ②结合①,利用弦长公式、三角形的面积公式求解.14.【2018年高考浙江卷】如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足P A ,PB 的中点均在C 上.PMBAOyx(1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆x 2+24y =1(x <0)上的动点,求△P AB 面积的取值范围.【答案】(1)见解析;(2)1510[62,]4. 【解析】本题主要考查椭圆、抛物线的几何性质,直线与抛物线的位置关系等基础知识,同时考查运算求解能力和综合应用能力.满分15分. (1)设00(,)P x y ,2111(,)4A y y ,2221(,)4B y y . 因为PA ,PB 的中点在抛物线上,所以1y ,2y 为方程202014()422y x y y ++=⋅即22000280y y y x y -+-=的两个不同的实数根. 所以1202y y y +=. 因此,PM 垂直于y 轴. (2)由(1)可知120212002,8,y y y y y x y +=⎧⎪⎨=-⎪⎩ 所以2221200013||()384PM y y x y x =+-=-, 21200||22(4)y y y x -=-.因此,PAB △的面积3221200132||||(4)24PABS PM y y y x =⋅-=-△. 因为220001(0)4y x x +=<,所以2200004444[4,5]y x x x -=--+∈.因此,PAB △面积的取值范围是1510[62,]4. 【名师点睛】圆锥曲线问题是高考重点考查内容之一,也是难点之一.椭圆、抛物线是其中常考内容,需要熟练地掌握椭圆和拋物线的定义、基本性质、标准方程等,对于处理有关问题有很大的帮助.同时还要注意运算能力的培养和提高.15.【2017年高考全国Ⅰ卷文数】设A ,B 为曲线C :y =24x 上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程. 【答案】(1)1;(2)7y x =+.【解析】(1)设A (x 1,y 1),B (x 2,y 2),则12x x ≠,2114x y =,2224x y =,x 1+x 2=4,于是直线AB 的斜率12121214y y x x k x x -+===-.(2)由24x y =,得2x y'=.设M (x 3,y 3),由题设知312x =,解得32x =,于是M (2,1). 设直线AB 的方程为y x m =+,故线段AB 的中点为N (2,2+m ),|MN |=|m +1|.将y x m =+代入24xy =得2440x x m --=.当16(1)0m ∆=+>,即1m >-时,1,2221x m =±+. 从而12||=2||42(1)AB x x m -=+.由题设知||2||AB MN =,即42(1)2(1)m m +=+,解得7m =. 所以直线AB 的方程为7y x =+.【名师点睛】本题主要考查直线与圆锥曲线的位置关系,主要利用根与系数的关系:因为直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用根与系数的关系及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用根与系数的关系直接解决,但应注意不要忽视判别式的作用. (1)设A (x 1,y 1),B (x 2,y 2),由两点斜率公式求AB 的斜率;(2)联立直线与抛物线方程,消y ,得12||=2||42(1)AB x x m -=+,解出m 即可.16.【2017年高考全国Ⅱ卷文数】设O 为坐标原点,动点M 在椭圆C 22:12x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =u u u ru u u u r.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=u u u r u u u r.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .【答案】(1)222x y +=;(2)见解析.【解析】(1)设P (x ,y ),M (00,x y ),则N (0,0x ),00(,),(0,)NP x x y NM y =-=u u u r u u u u r ,由2NP NM =u u u ru u u u r 得0022x x y y ==,. 因为M (00,x y )在C 上,所以22122x y +=.因此点P 的轨迹方程为222x y +=.(2)由题意知F (−1,0),设Q (−3,t ),P (m ,n ),则(3,),(1,),33OQ t PF m n OQ PF m tn =-=---⋅=+-u u u r u u u r u u u r u u u r, (,),(3,)OP m n PQ m t n ==---u u u r u u u r.由1OP PQ ⋅=u u u r u u u r得2231m m tn n --+-=,又由(1)知222m n +=,故330m tn +-=.所以0OQ PF ⋅=u u u r u u u r ,即OQ PF ⊥u u u r u u u r.又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F .【名师点睛】定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒成立的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.(1)转移法求轨迹:设所求动点坐标及相应已知动点坐标,利用条件列两种坐标关系,最后代入已知动点轨迹方程,化简可得所求轨迹方程;(2)证明直线过定点问题,一般方法是以算代证:即证0OQ PF ⋅=u u u r u u u r,先设 P (m ,n ),则需证330m tn +-=,即根据条件1OP PQ ⋅=u u u r u u u r可得2231m m tn n --+-=,而222m n +=,代入即得330m tn +-=.17.【2017年高考全国Ⅲ卷文数】在直角坐标系xOy 中,曲线22y x mx =+-与x 轴交于A ,B 两点,点C的坐标为(0,1).当m 变化时,解答下列问题: (1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. 【答案】(1)不会,理由见解析;(2)见解析 【解析】(1)不能出现AC ⊥BC 的情况,理由如下:设1(,0)A x ,2(,0)B x ,则12x x ,满足220x mx +-=,所以122x x =-. 又C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为121112x x --⋅=-, 所以不能出现AC ⊥BC 的情况.(2)BC 的中点坐标为(2122x ,),可得BC 的中垂线方程为221()22x y x x -=-. 由(1)可得12x x m +=-,所以AB 的中垂线方程为2mx =-.联立22(21)22m x x y x x ⎧=-⎪⎪⎨⎪-=-⎪⎩,,又22220x mx +-=,可得212m x y ⎧=-⎪⎪⎨⎪=-⎪⎩,,所以过A 、B 、C 三点的圆的圆心坐标为(122m --,),半径292m r +=,故圆在y 轴上截得的弦长为22232m r -=(),即过A 、B 、C 三点的圆在y 轴上截得的弦长为定值. 【名师点睛】解答本题时,设()()12,0,,0A x B x ,由AC ⊥BC 得1210x x +=,由根与系数的关系得122x x =-,矛盾,所以不存在;求出过A ,B ,C 三点的圆的圆心坐标和半径,即可得圆的方程,再利用垂径定理求弦长.直线与圆综合问题的常见类型及解题策略:(1)处理直线与圆的弦长问题时多用几何法,即弦长的一半、弦心距、半径构成直角三角形.代数方法:运用根与系数的关系及弦长公式:222121212||1||1()4AB k x x k x x x x =+-=++-; (2)圆的切线问题的处理要抓住圆心到直线的距离等于半径,从而建立关系解决问题. 18.【2017年高考北京卷文数】已知椭圆C 的两个顶点分别为A (−2,0),B (2,0),焦点在x 轴上,离心率为32. (1)求椭圆C 的方程;(2)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过D 作AM 的垂线交BN 于点E .求证:△BDE 与△BDN 的面积之比为4:5.【答案】(1)2214x y +=;(2)见解析.【解析】(1)设椭圆C 的方程为22221(0)x y a b a b+=>>.由题意得2,3,2a c a=⎧⎪⎨=⎪⎩解得3c =.所以2221b a c =-=.所以椭圆C 的方程为2214x y +=.(2)设(,)M m n ,则(,0),(,)D m N m n -. 由题设知2m ≠±,且0n ≠.直线AM 的斜率2AM n k m =+,故直线DE 的斜率2DE m k n+=-. 所以直线DE 的方程为2()m y x m n +=--. 直线BN 的方程为(2)2ny x m=--. 联立2(),(2),2m y x m n n y x m +⎧=--⎪⎪⎨⎪=-⎪-⎩解得点E 的纵坐标222(4)4E n m y m n -=--+. 由点M 在椭圆C 上,得2244m n -=.所以45E y n =-. 又12||||||||25BDE E S BD y BD n =⋅=⋅△,1||||2BDN S BD n =⋅△,所以BDE △与BDN △的面积之比为4:5.【名师点睛】本题对考生计算能力要求较高,重点考查了计算能力,以及转化与化归的能力,解答此类题目,主要利用,,,a b c e 的关系,确定椭圆方程是基础,本题易错点是对复杂式子的变形能力不足,导致错漏百出.本题能较好地考查考生的逻辑思维能力、运算求解能力、分析问题与解决问题的能力等. (1)根据条件可知32,2c a a ==,以及222b a c =-,从而求得椭圆方程;(2)设(,)M m n ,则(,0),(,)D m N m n -,根据条件求直线DE 的方程,并且表示出直线BN 的方程,并求得两条直线的交点纵坐标,根据1212E BDE BDNN BD y S S BD y ⋅⋅=⋅⋅△△即可求出面积比值. 19.【2017年高考天津卷文数】已知椭圆22221(0)x y a b a b+=>>的左焦点为,()0F c -,右顶点为A ,点E的坐标为(0,)c ,EFA △的面积为22b .(1)求椭圆的离心率;(2)设点Q 在线段AE 上,3||2FQ c =,延长线段FQ 与椭圆交于点P ,点M ,N 在x 轴上,PM QN ∥,且直线PM 与直线QN 间的距离为c ,四边形PQNM 的面积为3c .(i )求直线FP 的斜率; (ii )求椭圆的方程.【答案】(1)12;(2)(ⅰ)34;(ⅱ)2211612x y +=.【解析】(1)设椭圆的离心率为e .由已知,可得21()22b c a c +=.又由222b a c =-,可得2220c ac a +-=,即2210e e +-=. 又因为01e <<,解得12e =. 所以,椭圆的离心率为12. (2)(ⅰ)依题意,设直线FP 的方程为(0)x my c m =->,则直线FP 的斜率为1m. 由(1)知2a c =,可得直线AE 的方程为12x yc c +=,即220x y c +-=, 与直线FP 的方程联立,可解得(22)3,22m c c x y m m -==++,即点Q 的坐标为(22)3(,)22m c cm m -++. 由已知|FQ |=32c ,有222(22)33[]()()222m c c c c m m -++=++,整理得2340m m -=,所以43m =, 故直线FP 的斜率为34.(ii )由2a c =,可得3b c =,故椭圆方程可以表示为2222143x y c c+=.由(i )得直线FP 的方程为3430x y c -+=,与椭圆方程联立22223430,1,43x y c x y c c -+=⎧⎪⎨+=⎪⎩ 消去y ,整理得2276130x cx c +-=,解得137cx =-(舍去),或x c =. 因此可得点3(,)2c P c ,进而可得2235|()()22|c c FP c c =++=, 所以53||||||22c cFP FQ Q c P -=-==. 由已知,线段PQ 的长即为PM 与QN 这两条平行直线间的距离, 故直线PM 和QN 都垂直于直线FP .因为QN FP ⊥,所以339||||tan 248c c QN FQ QFN =⋅∠=⨯=, 所以FQN △的面积为2127||||232c FQ QN =,同理FPM △的面积等于27532c ,由四边形PQNM 的面积为3c ,得22752733232c c c -=,整理得22c c =,又由0c >,得2c =.所以,椭圆的方程为2211612x y +=.【名师点睛】圆锥曲线问题在历年高考中都是较有难度的压轴题,本题对考生的计算能力要求较高,是一道难题,重点考查了运算求解能力以及转化与化归的能力.求解此类问题时,利用,,,a b c e 的关系,确定椭圆离心率是基础,通过联立直线方程与椭圆(圆锥曲线)的方程,根据根与系数的关系进行解题,但本题需求解交点坐标,在求解过程要善于发现四边形PQNM 中的几何关系,从而易求其面积,进而使问题获解.(1)先根据题意得出21()22b c a c +=,然后结合222b a c =-,即可求得离心率;(2)(ⅰ)首先设直线FP 的方程为x my c =-,再写出直线AE 的方程,两方程联立得到点Q 的坐标,根据32FQ c =求得m 的值,即得直线FP 的斜率;(ⅱ)将直线FP 的方程和椭圆方程联立,可得点P 的坐标,再求,FP FQ ,确定直线PM 和QN 都垂直于直线FP ,根据平面几何关系求面积,从而可求得c 的值,进而得椭圆的方程.20.【2017年高考山东卷文数】在平面直角坐标系xOy 中,已知椭圆C :22221x y a b +=(a >b >0)的离心率为22,椭圆C 截直线y =1所得线段的长度为22. (1)求椭圆C 的方程;(2)动直线l :y =kx +m (m ≠0)交椭圆C 于A ,B 两点,交y 轴于点M .点N 是M 关于O 的对称点,⊙N 的半径为|NO |.设D 为AB 的中点,DE ,DF 与⊙N 分别相切于点E ,F ,求∠EDF 的最小值.【答案】(1)22142x y +=;(2)EDF ∠的最小值为π3. 【解析】(1)由椭圆的离心率为22,得2222()a a b =-, 又当1y =时,2222a x a b =-,得2222a a b-=,所以224,2a b ==,因此椭圆方程为22142x y +=.(2)设1122(,),(,)A x y B x y ,联立方程2224y kx mx y =+⎧⎨+=⎩, 得222(21)4240k x kmx m +++-=, 由0∆>得2242m k <+.(*)且122421kmx x k +=+, 因此122221my y k +=+,所以222(,)2121km mD k k -++, 又(0,)N m -, 所以222222()()2121km m ND m k k =-++++ 整理得2242224(13)(21)m k k ND k ++=+ , 因为NF m =,所以2422222224(31)831(21)(21)ND k k k k k NF+++==+++.令283,3t k t =+≥, 故21214t k ++=, 所以2221616111(1)2NDt t NFt t=+=++++ . 令1y t t=+,所以211y t'=-. 当3t ≥时,0y '>,从而1y t t =+在[3,)+∞上单调递增,因此1103t t +≥,等号当且仅当3t =时成立,此时0k =,所以22134ND NF≤+=,由(*)得 22m -<< 且0m ≠.故12NF ND ≥, 设2EDF θ∠=, 则1sin 2NF ND θ=≥ , 所以θ的最小值为π6, 从而EDF ∠的最小值为π3,此时直线l 的斜率是0. 综上所述:当0k =,(2,0)(0,2)m ∈-U 时,EDF ∠取到最小值π3. 【名师点睛】圆锥曲线中的两类最值问题:①涉及距离、面积的最值以及与之相关的一些问题; ②求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时确定与之有关的一些问题.常见解法:①几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决; ②代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数,再求这个函数的最值,最值常用基本不等式法、配方法及导数法求解. 解答本题时,(1)由22c a =得2a b =,由椭圆C 截直线y =1所得线段的长度为22,得2222a a b -=,求得椭圆的方程为22142x y +=;(2)由2224x y y kx m⎧+=⎨=+⎩,解得22(21)4k x kmx +++ 2240m -=,确定222(,)2121km m D k k -++,4222||3221m DN k k k =+++,结合22ND NF的单调性求EDF ∠的最小值.21.【2017年高考浙江卷】如图,已知抛物线2x y =,点A 11()24-,,39()24B ,,抛物线上的点13(,)()22P x y x -<<.过点B 作直线AP 的垂线,垂足为Q .(1)求直线AP 斜率的取值范围; (2)求||||PA PQ ⋅的最大值. 【答案】(1)(1,1)-;(2)2716. 【解析】本题主要考查直线方程、直线与抛物线的位置关系等基础知识,同时考查解析几何的基本思想方法和运算求解能力.满分15分. (1)设直线AP 的斜率为k ,2114122x k x x -==-+, 因为1322x -<<,所以直线AP 斜率的取值范围是(1,1)-. (2)联立直线AP 与BQ 的方程110,24930,42kx y k x ky k ⎧-++=⎪⎪⎨⎪+--=⎪⎩ 解得点Q 的横坐标是22432(1)Q k k x k -++=+. 因为|P A |=211()2k x ++=21(1)k k ++, |PQ |=222(1)(1)1()1Q k k k x x k -++-=-+,所以3(1)(1)k k PA PQ ⋅--+=.令3()(1)(1)f k k k =--+,因为2()(42)(1)f k k k '=--+,所以 f (k )在区间1(1,)2-上单调递增,1(,1)2上单调递减, 因此当k =12时,||||PA PQ ⋅取得最大值2716. 【名师点睛】本题主要考查直线方程、直线与抛物线的位置关系等基础知识,同时考查解析几何的基本思想方法和运算求解能力.(1)由斜率公式可得AP 的斜率为12x -,再由1322x -<<,得直线AP 的斜率的取值范围;(2)联立直线AP 与BQ 的方程,得Q 的横坐标,进而通过表达||PA 与||PQ 的长度,利用函数3()(1)(1)f k k k =--+的单调性求解||||PA PQ ⋅的最大值.22.【2017年高考江苏卷】如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y E a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点1F 作直线1PF 的垂线1l ,过点2F 作直线2PF 的垂线2l . (1)求椭圆E 的标准方程;(2)若直线1l ,2l 的交点Q 在椭圆E 上,求点P 的坐标.【答案】(1)22143x y +=;(2)4737(,)77.【解析】(1)设椭圆的半焦距为c .因为椭圆E 的离心率为12,两准线之间的距离为8,所以12c a =,228a c=,。

【中考12年】江苏省连云港市2001-2012年中考数学试题分类解析 专题08 平面几何基础

【中考12年】江苏省连云港市2001-2012年中考数学试题分类解析 专题08 平面几何基础

[中考12年]某某市2001-2012年中考数学试题分类解析专题08 平面几何基础一、选择题1. (2001年某某某某3分)在比例尺1∶n的某市地图上,规划出一块长5cm、宽2cm的矩形工业园区,则该园区的实际面积是【】(单位:平方米)(A)n1000(B)2n1000(C)10n (D)210n2. (2001年某某某某3分)下列四个命题中的真命题是【】(A)同位角相等,则它们的平分线互相垂直(B)内错角相等,则它们的平分线互相垂直(C)同旁内角互补,则它们的平分线互相垂直(D)同旁内角相等,则它们的平分线互相垂直3. (2002年某某某某3分)下面给出四个命题,其中假命题是【】A .两条直线被第三直线所截,同位角相等B .不相等的两角不是对顶点C .平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧D .以已知线段AB 为弦的圆的圆心的轨迹是线段AB 的垂直平分线4. (2004年某某某某3分)下列图案中,既是中心对称又是轴对称的图案是【 】A .B .C .D .5. (2005年某某某某3分)如图,直线1l ∥2l ,3l ⊥4l .有三个命题:①︒=∠+∠9031;②︒=∠+∠9032;③42∠=∠.下列说法中,正确的是【 】(A )只有①正确 (B )只有②正确 (C )①和③正确 (D )①②③都正确6. (2006年某某某某3分)下列图案中,不是..中心对称图形的是【 】 A 、B 、C 、D 、7. (2006年某某某某3分)多边形的内角和不可能...为【 】 A 、180° B 、680° C 、1080° D 、1980°8. (2008年某某某某3分)已知AC 为矩形ABCD 的对角线,则图中1∠与2∠一定不相等的是【 】A .B .C .D.9. (2010年某某某某3分)下列四个多边形:①等边三角形;②正方形;③正五边形;④正六边形.其中,既是轴对称图形又是中心对称图形的是【】A.①② B.②③ C.②④ D.①④10. (2011年某某某某3分)小华在中问小明:“已知一个三角形三边长分别是4,9,12,如何求这个三角形的面积?”小明提示说:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是【】A.B.C.D.11.(2012年某某某某3分)下列图案是轴对称图形的是【】A. B. C. D.12.(2012年某某某某3分)如图,将三角尺的直角顶点放在直线a上,a∥b,∠1=50°,∠2=60°,则∠3的度数为【】A.50° B.60° C.70° D.80°二、填空题1. (2004年某某某某3分)如图,两平面镜OA与OB之间的夹角为110°,光线经平面镜OA反射到平面镜OB上,再反射出去,其中∠1=∠2,则∠1的度数为▲ 度.100,则第5个内角的度数是2. (2005年某某某某3分)已知一个五边形的4个内角都是▲ .3. (2006年某某某某3分)如图,∠BAC=30°,AB=10。

【2013版中考12年】江苏省泰州市2002-2013年中考数学试题分类解析 专题08 平面几何基础

【2013版中考12年】江苏省泰州市2002-2013年中考数学试题分类解析 专题08 平面几何基础

某某市2002-2013年中考数学试题分类解析 专题08 平面几何基础一、选择题1.(某某省某某市2002年4分)等腰三角形一边长为4,一边长9,它的周长是【 】A 、17B 、22C 、17或22D 、132.(某某省某某市2002年4分)下列图形中是中心对称图形的是【 】3.(某某省某某市2003年4分)下列四个命题中,正确的命题有【 】①三角形中至少有一个角不小于60度.②用边长相等的正五边形与正六边形的组合能镶嵌成一个平面.③如果4>a ,那么不等式a x a ->-4)4(的解集是1->x .④Rt△ABC 中,∠C=90°,AC=3,BC =4,如果以点C 为圆心,r 为半径的圆与AB 只有一个公共点,那么r =512. A .1个 B .2个 C .3个 D .4个4.(某某省某某市2004年4分)△ABC 中,AB=3,BC=4,则AC 边的长满足【 】A .AC=5B .AC >1 C .AC <7 D. 1<AC <75.(某某省某某市2004年4分)下列由正三角形和正方形拼成的图形中是轴对称图形而不是中心对称图形的是【 】6.(某某省某某市2004年4分)给出下列四个命题:(1)如果某圆锥的侧面展开图是半圆,则其轴截面一定是等边三角形;(2)若点A 在直线y=2x —3上,且点A 到两坐标轴的距离相等,则点A 在第一或第四象限;(3)半径为5的圆中,弦AB=8,则圆周上到直线AB 的距离为2的点共有四个;(4)若A (a ,m )、B (a -1,n )(a >0)在反比例函数xy 4=的图象上,则m <n. 其中,正确命题的个数是【 】A. 1个B. 2个C. 3个D. 4个7.(某某省某某市2006年3分)已知:如图,∠AOB的两边 OA、OB均为平面反光镜,∠A0B=40.在OB上有一点P,从P点射出一束光线经OA上的Q点反射后,反射光线QR恰好与OB平行,则∠QPB的度数是【】8.(某某省某某市2006年3分)如图,在10×10的正方形网格纸中,线段AB、CD的长均等于5.则图中到AB和CD所在直线的距离相等的网格点的个数有【】9.(某某省某某市2008年3分)如图,直线a、b被直线c所截,下列说法正确的是【】A.当∠1=∠2时,一定有a∥bB. 当a∥b时,一定有∠1=∠2C.当a∥b时,一定有∠1+∠2=180°D.当a∥b时,一定有∠1+∠2=90°10.(某某省某某市2010年3分)下列命题:①正多边形都是轴对称图形;②通过对足球迷健康状况的调查可以了解我国公民的健康状况;③方程1312112-=+--x x x 的解是0=x ;④如果一个角的两边与另一个角的两边分别平行,那么这两个角相等.其中真命题的个数有【 】11.(2013年某某某某3分)下列标志图中,既是轴对称图形,又是中心对称图形的是【 】二、填空题1. (某某省某某市2002年2分)△ABC中,∠A=∠B+∠C,则∠A=▲ .2.(某某省某某市2002年2分)以给定的图形“○○、△△、”(两个圆、两个三角形、两条平行线段)为构件,构思独特且有意义的图形。

江苏宿迁02-13中考数学试题分类解析 专题08:平面几何基础

江苏宿迁02-13中考数学试题分类解析 专题08:平面几何基础

专题8:平面几何基础一、选择题1.(2004年江苏宿迁4分)如图,直线a、b被直线c所截,若a//b,∠1=1300 ,则∠2等于【】A .300 B. 400 C. 500 D. 6002. (2004年江苏宿迁4分)已知一辆小轿车车牌号的后两个数字组成了一个中心对称图形,且这两个数字不相同,则这两个数字的和是【】A. 2B.12C. 15D.163. (2005年江苏宿迁3分)如图,AB∥CD,则图中∠1、∠2、∠3关系一定成立的是【】A.∠1+∠2+∠3=180°B.∠1+∠2+∠3=360°C.∠1+∠3=2∠2 D.∠1+∠3=∠24. (2006年江苏宿迁4分)下列图案中,不是轴对称图形的是【】5. (2007年江苏宿迁3分)如图,直线a∥b ,∠2=95°,则∠1等于【】∴∠1=1800-∠3=85°。

故选D。

6. (2007年江苏宿迁3分)如图,在△ABC中,AB=a,AC=b,BC边上的垂直平分线DE交BC、BA分别于点D、E,则△AEC的周长等于【】A. a +bB.a -bC.2a +bD.a +2b7. (2008年江苏宿迁3分)下列图形中既是轴对称图形又是中心对称图形的是【 】 A.正六边形 B.正五边形 C.平行四边形 D.等腰三角形 8.(2013年江苏宿迁3分)下列三个函数:①y=x+1;②1y x=;③2y x x 1=-+.其图象既是轴对称图形,又是中心对称图形的个数有【 】A .0B .1C .2D .3①y=x+1的函数图象,既是轴对称图形,又是中心对称图形;二、填空题1.(2004年江苏宿迁4分)一块长方体橡皮被刀切了3次,最多能被分成 ▲ 块.3. (2008年江苏宿迁4分)若一个正多边形的内角和是其外角和的3倍,则这个多边形的边数是▲.4. (2010年江苏宿迁3分)如图,平面上两个正方形与正五边形都有一条公共边,则α∠等于▲°.角分别为108°、90°,从而∠α=72°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题8:平面几何基础
一、选择题
1. (2013年江苏淮安3分)若等腰三角形有两条边的长度为3和1,则此等腰三角形的周长为【】
A.5 B.7 C.5或7 D.6
2. (2013年江苏南通3分)下面的几何体中,既是轴对称图形又是中心对称图形的个数是【】
A.4 B.3 C.2 D.1
3. (2013年江苏南通3分)有3cm,6cm,8cm,9cm的四条线段,任选其中的三条线段组成一个三角形,则最多能组成三角形的个数为【】
A.1 B.2 C.3 D.4
【答案】C。

4. (2013年江苏南通3分)如图,用尺规作出∠OBF=∠AOB,所画痕迹MN是【】
A.以点B为圆心,OD为半径的弧
B.以点C为圆心,DC为半径的弧
C.以点E为圆心,OD为半径的弧
D.以点E为圆心,DC为半径的弧
5. (2013年江苏泰州3分)下列标志图中,既是轴对称图形,又是中心对称图形的是【】
6. (2013年江苏无锡3分)下列说法中正确的是【】
A.两直线被第三条直线所截得的同位角相等
B.两直线被第三条直线所截得的同旁内角互补
C.两平行线被第三条直线所截得的同位角的平分线互相垂直
D.两平行线被第三条直线所截得的同旁内角的平分线互相垂直
7. (2013年江苏徐州3分)若等腰三角形的顶角为80°,则它的底角度数为【】
A.80°B.50°C.40°D.20°
8. (2013年江苏盐城3分)如图,直线a∥b,∠1=120°,∠2=40°,则∠3等于【】
A.600B.700C.800D.900
9. (2013年江苏盐城3分)如图①是3×3正方形方格,将其中两个方格涂黑,并且使得涂黑后的整个图案是轴对称图形,约定绕正方形ABCD的中心旋转能重合的图案都视为同一种,例②中四幅图就视为同一种,则得到不同共有【】
A.4种B.5种C.6种D.7种
10. (2013年江苏扬州3分)下列图形中,由AB∥CD,能得到∠1=∠2的是【】
11. (2013年江苏扬州3分)一个多边形的每个内角均为108°,则这个多边形是【】
A.七边形B.六边形C.五边形D.四边形
二、填空题
1. (2013年江苏淮安3分)若n边形的每一个外角都等于60°,则n=▲ .
2.(2013年江苏淮安3分)如图,三角板的直角顶点在直线l上,看∠1=40°,则∠2的度数是▲ .
【答案】50°。

3. (2013年江苏连云港3分)如图,一束平行太阳光线照射到正五边形上,则∠1=▲º.
4. (2013年江苏南京2分)△OAB是以正多边形相邻的两个顶点A、B与它的中心O为顶点的三角形。

若△OAB的一个内角为70 ,则该正多边形的边数为▲。

5. (2013年江苏南通3分)如图,直线AB、CD相交于点O,OE⊥AB,∠BOD=200,则∠COE 等于▲度。

【答案】70。

6. (2013年江苏泰州3分)命题“相等的角是对顶角”是▲ 命题(填“真”或“假”).
7. (2013年江苏泰州3分)如图,△ABC中,AB+AC=6cm,BC的垂直平分线l与AC相交于点D,则△ABD的周长为▲ cm.
8. (2013年江苏无锡2分)六边形的外角和等于▲°.
9. (2013年江苏徐州3分)若∠α=50°,则它的余角是▲ °.
10.(2013年江苏徐州3分)请写出一个是中心对称图形的几何图形的名称:▲ .
【答案】平行四边形(答案不唯一)。

11. (2013年江苏徐州3分)如图,在正八边形ABCDEFGH中,四边形BCFG的面积为20cm2,则正八边形的面积为▲ cm2.
三、解答题
1. (2013年江苏常州6分)在Rt△ABC中,∠C=90°,AC=1,
,点O为Rt△ABC
内一点,连接A0、BO、CO,且∠AOC=∠COB=BOA=120°,按下列要求画图(保留画图痕迹):
以点B为旋转中心,将△AOB绕点B顺时针方向旋转60°,得到△A′O′B(得到A、O的对应点分别为点A′、O′),并回答下列问题:
∠ABC=▲ ,∠A′BC=▲ ,OA+OB+OC=▲ .
【答案】解:作图如下:
30°;90°。

2. (2013年江苏淮安8分)如图,在边长为1个单位长度的小正方形组成的两格中,点A、
B、C都是格点.
(1)将△ABC向左平移6个单位长度得到得到△A1B1C1;
(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2,请画出△A2B2C2.
3. (2013年江苏宿迁10分)如图,在平行四边形ABCD中,AD>AB.
(1)作出∠ABC的平分线(尺规作图,保留作图痕迹,不写作法);
(2)若(1)中所作的角平分线交AD于点E,AF⊥BE,垂足为点O,交BC于点F,连接EF.求证:四边形ABFE为菱形.
【答案】解:(1)如图所示:
4. (2013年江苏盐城10分)实践操作:如图,△ABC是直角三角形,∠ACB=900,利用直尺和圆规按下列要求作图,并在图中表明相应的字母。

(保留痕迹,不写作法)
(1)作BAC的平分线,交BC于点O;
(2)以O为圆心,OC为半径作圆。

综合运用:在你所作的图中,
(1)AB与⊙O的位置关系是▲;(直接写出答案)
(2)若AC=5,BC=12,求⊙O的半径。

相关文档
最新文档