北师大版数学八年级上册同步练习附答案1 认识无理数
北师大版八年级上册数学 9.同步练习2.1 认识无理数

2.1 认识无理数1、在实数3.14,25,3.3333,0.412⋅⋅,0.10110111011110…,π,中,有( )个无理数?A .2个B .3个C .4个D .5个2、下列说法中,正确的是( )A .带根号的数是无理数B .无理数都是开不尽方的数C .无限小数都是无理数D .无限不循环小数是无理数3.下列命题中,正确的个数是( )①两个有理数的和是有理数; ②两个无理数的和是无理数; ③两个无理数的积是无理数;④无理数乘以有理数是无理数; ⑤无理数除以有理数是无理数; ⑥有理数除以无理数是无理数。
A .0个B .2个C .4个D .6个4.判断(正确的打“√”,错误的打“×”)①带根号的数是无理数;( ) 一定没有意义;( ) ③绝对值最小的实数是0;( )④平方等于3;( ) ⑤有理数、无理数统称为实数;( ) ⑥1的平方根与1的立方根相等;( )⑦无理数与有理数的和为无理数;( ) ⑧无理数中没有最小的数,也没有最大的数。
( )5.a )A .有理数B .正无理数C .正实数D .正有理数6.下列四个命题中,正确的是( )A .倒数等于本身的数只有1B .绝对值等于本身的数只有0C .相反数等于本身的数只有0D .算术平方根等于本身的数只有17.下列说法不正确的是( )A .有限小数和无限循环小数都能化成分数B .整数可以看成是分母为1的分数C .有理数都可以化为分数D .无理数是开方开不尽的数8.代数式21a +y ,()21a -中一定是正数的有( ) A .1个 B .2个 C .3个 D .4个9 )A .m 是完全平方数B .m 是负有理数C .m 是一个完全平方数的相反数D .m 是一个负整数10.已知a 为有理数,b 为无理数,则a+b 为( )A .整数B .分数C .有理数D .无理数11215的大小关系是( )A .215< B .215<< C .215<<D 215<<12的相反数之和的倒数的平方为 。
2019—2020年新北师大版八年级数学上册《认识无理数》同步测试题及.docx

认识无理数一.选择题(共10小题)1.在下列实数中:0,,﹣3.1415,,,0.343343334…无理数有()A.1个B.2个C.3个D.4个2.五个数中:﹣,﹣1,0,,,是无理数的有()A.0个B.1个C.2个D.3个3.下列各数中,是无理数的()A.πB.0 C.D.﹣4.下列各数中,无理数的是()A.B.C.πD.5.在实数﹣2,,,0.1122,π中,无理数的个数为()A.0个B.1个C.2个D.3个6.下列各数中,属于无理数的是()A.πB.0 C.D.﹣7.在﹣2,,,3.14,,,这6个数中,无理数共有()A.4个B.3个C.2个D.1个8.下列各数是无理数的是()A.B.C.D.169.在这6个数中,无理数共有()A.1个B.2个C.3个D.4个10.下列说法正确的是()A.带有根号的数是无理数 B.无限小数是无理数C.无理数是无限不循环小数D.无理数是开方开不尽的数二.填空题(共10小题)11.如图,在5×5的正方形网格中,以AB为边画直角△ABC,使点C在格点上,且另外两条边长均为无理数,满足这样条件的点C共个.12.下列各数:,,5.12,﹣,0,,3.1415926,,﹣,2.181181118…(两个8之间1的个数逐次多1).其中是无理数的有个.13.若无理数a满足:﹣4<a<﹣1,请写出两个你熟悉的无理数:.14.在实数1.732,中,无理数的个数为.15.在,,,0.8888…,3π,0.262662666266662…,六个数中,无理数有个.16.下列实数中,0.13,π,﹣,,1.212212221…(两个1之间依次多一个2)中,是无理数的有个.17.在实数、、中,无理数是.18.在(﹣)0,,0,,,0.010010001…,,﹣0.333…,,3.1415,2.010101…(相邻两个1之间有1个0)中,无理数有个.19.写出两个无理数,使它们的和为有理数,;写出两个无理数,使它们的积为有理数,.20.下列各数:中,是无理数的有个.三.解答题(共10小题)21.把下列各数分别填在相应的集合中:﹣,,﹣,0,﹣,、,0.,3.1422.在下列4×4各图中,每个小正方形的边长都为1,请在每一个图中分别画出一条线段,且它们的长度均表示不等的无理数.表示:表示:表示:(注:横线上填入对应的无理数)23.在:,,0,3.14,﹣,﹣,7.151551…(每相邻两个“1”之间依次多一个“5”)中,整数集合{ …},分数集合{ …},无理数集合{ …}.24.国涛同学家的客厅是面积为28平方米的正方形,那么请你判断一下这个正方形客厅的边长x 是不是有理数?如果误差要求小于0.01米,那么边长x的最大取值是多少(精确到0.001)?25.500多年前,数学各学派的学者都认为世界上的数只有整数和分数,直到有一天,大数学家毕达哥拉斯的一个名叫希帕索斯的学生,在研究1和2的比例中项时(若1:x=x:2,那么x叫1和2的比例中项),他怎么也想不出这个比例中项值.后来,他画了一个边长为1的正方形,设对角线为x,于是由毕达哥拉斯定理x2=12+12=2,他想x代表对角线的长,而x2=2,那么x必定是确定的数,这时他又为自己提出了几个问题:(1)x是整数吗?为什么不是?(2)x可能是分数吗?是,能找出来吗?不是,能说出理由吗?亲爱的同学,你能帮他解答这些问题吗?26.下列数中:①﹣|﹣3|,②﹣0.3,③﹣,④,⑤,⑥,⑦0,⑧﹣,⑨1.2020020002…(每两个2之间依次多一个0)(请填序号)无理数是,整数是.负分数是.27.已知长方体的体积是1620,它的长、宽、高的比是5:4:3,问长方体的长、宽、高是无理数吗?为什么?28.体积为3的正方体的边长可能是整数吗?可能是分数吗?可能是有理数吗?请说明你的理由.29.有6个实数:﹣32,﹣,,0.313131…,,﹣,请计算这列数中所有无理数的和.30.判断下列说法是否正确,如果正确请在括号内打“√”,错误请在括号内打“×”,并各举一例说明理由.(1)有理数与无理数的积一定是无理数.(2)若a+1是负数,则a必小于它的倒数..参考答案与试题解析一.选择题(共10小题)1.(2016•阜宁县二模)在下列实数中:0,,﹣3.1415,,,0.343343334…无理数有()A.1个B.2个C.3个D.4个【分析】根据无理数是无限不循环小数,可得答案.【解答】解:,0.343343334…是无理数,故选:B.【点评】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.2.(2016•河源校级一模)五个数中:﹣,﹣1,0,,,是无理数的有()A.0个B.1个C.2个D.3个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数有:,只有1个.故选B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.(2016•安徽模拟)下列各数中,是无理数的()A.πB.0 C.D.﹣【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、π是无理数,故此选项正确;B、0是有理数,故此选项错误;C、=2,是有理数,故此选项错误;D、﹣是有理数,故此选项错误;故选:A.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.(2016•集美区模拟)下列各数中,无理数的是()A.B.C.πD.【分析】根据无理数是无限不循环小数,可得答案.【解答】解:A、是有理数,故A错误;B、()0是有理数,故B错误;C、π是无理数,故C正确;D、=2是有理数,故D错误;故选:C.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.5.(2016•义乌市模拟)在实数﹣2,,,0.1122,π中,无理数的个数为()A.0个B.1个C.2个D.3个【分析】根据无理数的三种形式解答即可.【解答】解:无理数有:,π,共2个.故选C.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.6.(2016•海曙区一模)下列各数中,属于无理数的是()A.πB.0 C.D.﹣【分析】根据无理数的定义,即可解答.【解答】解:A、π是无理数,正确;B、0是有理数,故错误;C、=2是有理数,故错误;D、﹣是有理数,故错误;故选:A.【点评】本题考查了有理数,解决本题的关键是熟记有理数的定义.7.(2016春•阿荣旗期末)在﹣2,,,3.14,,,这6个数中,无理数共有()A.4个B.3个C.2个D.1个【分析】要确定题目中的无理数,在明确无理数的定义的前提下,知道无理数分为3大类:π类,开方开不尽的数,无限不循环的小数,根据这3类就可以确定无理数的个数.从而得到答案.【解答】解:根据判断无理数的3类方法,可以直接得知:是开方开不尽的数是无理数,属于π类是无理数,因此无理数有2个.故选:C.【点评】本题考查了无理数的定义,判断无理数的方法,要求学生对无理数的概念的理解要透彻.8.(2016•松江区二模)下列各数是无理数的是()A.B.C.D.16【分析】根据无理数是无限不循环小数,可得答案.【解答】解:A、是有理数,故A错误;B、是无理数,故B正确;C、是有理数,故C错误;D、16是有理数,故D错误;故选:B.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.9.(2016春•乌拉特前旗期末)在这6个数中,无理数共有()A.1个B.2个C.3个D.4个【分析】由于无理数就是无限不循环小数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及0.1010010001…,等有这样规律的数,由此即可判定选择项.【解答】解:在这6个数中,无理数有:,π共2个.故选B.【点评】此题主要考查了无理数的定义,注意带根号的数与无理数的区别:带根号的数不一定是无理数,带根号且开方开不尽的数一定是无理数.本题中是有理数中的整数.10.(2016春•枣阳市期末)下列说法正确的是()A.带有根号的数是无理数 B.无限小数是无理数C.无理数是无限不循环小数D.无理数是开方开不尽的数【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、=2是有理数,故选项错误;B、无线不循环小数是无理数,无限小数是有理数,故选项错误;C、正确;D、π不是开方开不尽的数,故选项错误.故选C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.二.填空题(共10小题)11.(2016春•宁城县期末)如图,在5×5的正方形网格中,以AB为边画直角△ABC,使点C在格点上,且另外两条边长均为无理数,满足这样条件的点C共 4 个.【分析】画出图形即可就解决问题.【解答】解:如图所示,满足条件的点C有4个.故答案为4.【点评】本题考查无理数、直角三角形、勾股定理等知识,解题的关键是画好图形,注意不能漏解,考虑问题要全面.12.(2016春•启东市月考)下列各数:,,5.12,﹣,0,,3.1415926,,﹣,2.181181118…(两个8之间1的个数逐次多1).其中是无理数的有 4 个.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.【解答】解:,,﹣,2.181181118…(两个8之间1的个数逐次多1)是无理数,故答案为:4.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.13.(2016春•乐陵市校级月考)若无理数a满足:﹣4<a<﹣1,请写出两个你熟悉的无理数:﹣,﹣π.【分析】无理数就是无限不循环小数,依据定义即可作出解答.【解答】解:无理数有:﹣,﹣π.(答案不唯一).故答案是:﹣,﹣π.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.14.(2015秋•高邮市校级期末)在实数1.732,中,无理数的个数为2 .【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:,是无理数,故答案为:2.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.15.(2015秋•威宁县校级期中)在,,,0.8888…,3π,0.262662666266662…,六个数中,无理数有 4 个.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.【解答】解:无理数有:,,3π,0.262662666266662…共4个.故答案是:4.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.16.(2014春•黄山期末)下列实数中,0.13,π,﹣,,1.212212221…(两个1之间依次多一个2)中,是无理数的有 3 个.【分析】根据无理数是无限不循环小数,可得答案.【解答】解:π,,1.212212221…(两个1之间依次多一个2)是无理数,故答案为:3.【点评】本题考查了无理数,无理数是无限不循环小数.17.(2014秋•晋江市期末)在实数、、中,无理数是.【分析】根据无理数的三种形式求解.【解答】解:=2,无理数有:.故答案为:.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.18.(2014秋•泾阳县期中)在(﹣)0,,0,,,0.010010001…,,﹣0.333…,,3.1415,2.010101…(相邻两个1之间有1个0)中,无理数有 4 个.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.【解答】解:无理数有:0.010010001…,,,2.010101…(相邻两个1之间有1个0)共有4个.故答案是:4.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.19.(2014秋•宁蒗县校级月考)写出两个无理数,使它们的和为有理数2﹣,3+;写出两个无理数,使它们的积为有理数3,2.【分析】(1)先写一个无理数,根据和为4即可求出另一个无理数;(2)先写一个无理数,根据积是12即可求出另一个无理数.【解答】解:(1)可以先写出任意一个无理数如2﹣,若两个无理数的和是4,则另一个无理数是:4﹣(2﹣)=2+;(2)可以先写出任意一个无理数如3,若两个无理数的积是12,则另一个无理数是:12÷3.故答案为:2﹣,2+;3,.【点评】此题主要考查了无理数定义和性质,两个无理数的和,差,积,商不一定是无理数.并且本题答案不唯一.20.(2011秋•宁陕县校级期末)下列各数:中,是无理数的有 2 个.【分析】由于初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数,所以无理数就是无限不循环小数,由此即可判定求解.【解答】解:下列各数:中,∵π是无限不循环小数,而是开方开不尽的数.∴他们都是无理数;而,0.010*********符合分数的概念,是有理数;,=2,是有理数.故有2个无理数.【点评】此题主要考查了无理数的定义,注意带根号的数与无理数的区别:带根号的数不一定是无理数,带根号且开方开不尽的数一定是无理数.其中是有理数中的整数;0.010*********是有限小数,是有理数.三.解答题(共10小题)21.(2016春•丰都县期末)把下列各数分别填在相应的集合中:﹣,,﹣,0,﹣,、,0.,3.14【分析】根据有理数与无理数的定义看判定求解.【解答】解:有理数集合:(﹣,﹣,0,,0.,3.14,…),无理数集合:(,﹣,,…).【点评】本题主要考查了有理数与无理数的定义.有理数是整数与分数的统称;无理数是无限不循环小数.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.开方开不尽的数也是无理数.22.(2011秋•泰顺县校级期中)在下列4×4各图中,每个小正方形的边长都为1,请在每一个图中分别画出一条线段,且它们的长度均表示不等的无理数.表示:表示:2表示:3(注:横线上填入对应的无理数)【分析】连接任意正方形的对角线,根据勾股定理计算出其长度,再由无理数的定义进行解答即可.【解答】解:如图所示:AB==;CD==2;EF==3.【点评】本题考查的是无理数的定义及勾股定理的应用,解答此题时要熟知无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.23.(2011秋•温州期中)在:,,0,3.14,﹣,﹣,7.151551…(每相邻两个“1”之间依次多一个“5”)中,整数集合{ …},分数集合{ …},无理数集合{ …}.【分析】根据无理数、整数、分数的定义即可作答.【解答】解:整数集合{0,﹣};分数集合{,3.14};无理数集合{,﹣,7.151551…}.【点评】此题主要考查了无理数、分数、无理数的定义注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.24.国涛同学家的客厅是面积为28平方米的正方形,那么请你判断一下这个正方形客厅的边长x 是不是有理数?如果误差要求小于0.01米,那么边长x的最大取值是多少(精确到0.001)?【分析】根据开方运算,可得正方形的边长,根据无理数是无限不循环小数,可得答案.【解答】解:=2,这个正方形客厅的边长x不是有理数,2≈2×2.6457≈5.291.【点评】本题考查了无理数,无理数是无限不循环小数,开方运算是解题关键.25.500多年前,数学各学派的学者都认为世界上的数只有整数和分数,直到有一天,大数学家毕达哥拉斯的一个名叫希帕索斯的学生,在研究1和2的比例中项时(若1:x=x:2,那么x叫1和2的比例中项),他怎么也想不出这个比例中项值.后来,他画了一个边长为1的正方形,设对角线为x,于是由毕达哥拉斯定理x2=12+12=2,他想x代表对角线的长,而x2=2,那么x必定是确定的数,这时他又为自己提出了几个问题:(1)x是整数吗?为什么不是?(2)x可能是分数吗?是,能找出来吗?不是,能说出理由吗?亲爱的同学,你能帮他解答这些问题吗?【分析】(1)根据比例中项的定义,可知x2=2,结合无理数的概念,就能得出x是不是整数的结论.(2)根据分数的定义,任何分数的平方还是分数,即能得出结论.【解答】解:(1)不是,∵1<2<4,而x2=2∴1<x2<4,若x>0,1<x<2,∴在1和2之间不存在另外的整数.(2)不是,因为任何分数的平方不可能是整数.【点评】本题主要考查无理数和勾股定理的知识点,掌握无理数的概念是解答的关键,此题是基础题,不是很难.26.(2010秋•温州期中)下列数中:①﹣|﹣3|,②﹣0.3,③﹣,④,⑤,⑥,⑦0,⑧﹣,⑨1.2020020002…(每两个2之间依次多一个0)(请填序号)无理数是③④⑨,整数是①⑥⑦.负分数是②⑧.【分析】无理数就是无限不循环小数.整数应包括正整数、0、负整数.分数包括正负数、负分数.由此即可判定求解.【解答】解:根据无理数的定义可知:无理数是③④⑨,根据有理数的分类可知:整数是①⑥⑦,负分数是②⑧.【点评】此题主要考查了无理数的定义,也考查了整数分数的定义,初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.27.已知长方体的体积是1620,它的长、宽、高的比是5:4:3,问长方体的长、宽、高是无理数吗?为什么?【分析】根据长方体的体积公式,可得长、宽、高、根据无理数就是无限不循环小数,可得答案.【解答】解:长、宽、高不是无理数,理由如下:设长、宽、高分别为5x,4x,3x.由体积,得60x3=1620,解得x=3,长、宽、高分别为15,12,9不是无理数.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.28.体积为3的正方体的边长可能是整数吗?可能是分数吗?可能是有理数吗?请说明你的理由.【分析】首先用正方体的体积公式求出正方体的边长,然后根据有理数和无理数的概念进行判断.【解答】解:∵正方体的体积为3,∴正方体的边长为,是无理数,故体积为3的正方形的边长不可能是整数、分数、有理数.【点评】本题主要考查无理数和有理数的知识点,解题的关键是熟练掌握无理数和有理数的概念,本题比较基础,需要熟练掌握.29.(2015秋•河南校级月考)有6个实数:﹣32,﹣,,0.313131…,,﹣,请计算这列数中所有无理数的和.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:﹣,,﹣是无理数,所有无理数的和:﹣++(﹣)=﹣+2﹣=.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.30.(2013秋•萧山区校级期中)判断下列说法是否正确,如果正确请在括号内打“√”,错误请在括号内打“×”,并各举一例说明理由.(1)有理数与无理数的积一定是无理数.×(2)若a+1是负数,则a必小于它的倒数.√.【分析】(1)根据乘法法则即可判断;(2)根据a+1是负数即可求得a的范围,即可作出判断.【解答】解:(1)任何无理数有有理数0的乘积等于0,故命题错误;(2)a+1是负数,即a+1<0,即a<﹣1,则a必小于它的倒数.故答案是:×,√.【点评】此题主要考查了无理数的运算,正确理解运算性质是关键.。
八年级数学上册 2.1 认识无理数课时同步练习北师大版

认识无理数1.下列各数中的无理数是( )A .0.7 B.12C .πD .-8 2.面积为6的长方形,长是宽的2倍,则宽为( )A .整数B .分数C .无理数D .不能确定3.下列说法正确的是( )A .有理数是有限小数B .有理数是无限小数C .无理数是无限循环小数D .无限不循环小数是无理数4.已知直角三角形的两直角边长分别是4和5,则这个直角三角形的斜边的长度( )A .在4和5之间B .在5和6之间C .在6和7之间D .在7和8之间5.如图所示,在正方形网格中,每个小正方形的边长都为1,对于网格中的△ABC ,边长为无理数的有( )A .0条B .1条C .2条D .3条6.在37,0,π2,-xx ,65,0.01001这六个数中,无理数有________个. 7.如图所示,Rt△ABC 的三边长分别是a ,b ,c.(1)计算:①若a =1,c =2,则b 2=______;②若a =3,c =5,则b 2==______;③若a =0.6,c =1,则b 2=________.(2)通过(1)中计算出的b 2值,我们知道,b 是整数的有______;b 是分数的有______;b 既不是整数,也不是分数的有______.(填序号)8.已知m 2=5,x ,y 为两个连续的整数,且x <m <y ,则x -y =________.9.下列各数中,哪些是有理数?哪些是无理数?-34,-1.42··,π,3.1416,23,0,42,-1.4242242224…(相邻两个4之间2的个数逐次加1).10、下列各数中,哪些是有理数?哪些是无理数?3.14, -34, ••75.0, 0.1010010001…(相邻两个1之间0的个数逐次加1). 解:有理数: 无理数:11、设面积为5π的圆的半径为a 。
(1)、a 是有理数吗?说说你的理由。
(2)、估计a 的值(精确到十分位,并利用计算器验证你的估计).(3)、如果精确到百分位呢?解:(1)、(2)、(3)、12、下列各数中,哪些是有理数?哪些是无理数?0.4583, •7.3, -π, -71, 18。
初中北师大版数学八年级上册2.1【同步练习】《认识无理数》

《认识无理数》同步练习1.下列各数中:-1,23,3.14,-π,3,0,2,27, 25,-0.2020020002……(相邻两个2之间0的个数逐次加1).其中,是有理数的是_____________,是无理数的是_______________。
在上面的有理数中,分数有____________,整数有______________。
2.x 2=8,则x______分数,______整数,______有理数。
(填“是”或“不是”)3.面积为3的正方形的边长______有理数;面积为4的正方形的边长______有理数。
(填“是”或“不是”)4.一个高为2米,宽为1米的大门,对角线大约是______米(精确到0.01)。
5.下列数中是无理数的是( )A.0.12∙∙32B.2π C .0 D .7226.下列说法中正确的是( )A.不循环小数是无理数B.分数不是有理数C.有理数都是有限小数D.3.1415926是有理数7.下列语句正确的是( )A.3.78788788878888是无理数B.无理数分正无理数、零、负无理数C.无限小数不能化成分数D.无限不循环小数是无理数8.在直角△ABC 中,∠C=90°,AC=23,BC=2,则AB 为( ) A.整数B.分数C.无理数D.不能确定9.面积为6的长方形,长是宽的2倍,则宽为( )A.小数B.分数C.无理数D.不能确定10.下列说法中,正确的是( )A.数轴上的点表示的都是有理数B.无理数不能比较大小C.无理数没有倒数及相反数D.实数与数轴上的点是一一对应的11.在,,0,,0.010010001……,,-0.333…,, 3.1415, 2.010101…(相邻两个1之间有1个0)中,无理数有( )A.1个B.2个 C .3个 D.4个12.下列说法正确的是( )A.有理数只是有限小数B.无理数是无限小数C.无限小数是无理数D.是无理数13.下列说法错误的是 ( )A.无理数的相反数还是无理数B.无限小数都是无理数C.正数、负数统称有理数D.实数与数轴上的点一一对应14.下列说法中:(1)无理数就是开方开不尽 的数;(2)无理数是无限小数;(3)无 理数包括正无理数、零、负无理数;(4) 无理数可以用数轴上的点来表示。
新北师大版八年级数学上册同步测试2.1 认识无理数

最新整理初中数学第二章实数2.1 认识无理数※课时达标1.在下列数:, 1.44,∏, 3.14, -,2+, , 1.2121……中,无理数有_____________.有理数有_____________.2.判断正误:(1)有理数包括整数、分数和零.( ) (2)无理数都是开方开不尽的数.( ) (3)不带根号的数都是有理数.( ) (4)带根号的数都是无理数.( )(5)无理数都是无限小数.( )(6)无限小数都是无理数.( )3.已知一直角三角形的两直角边长分别为1, 2,斜边长为x.(1)根据一直角三角形,写出关于x的方程, 并说明x是有理数吗?为什么?(2)估计x的值(结果精确到十分位), 并用计算器验证你的估计.(3)如果结果精确到百分位呢?4.面积分别为1,2,3,4,5,6,7,8,9的正方形边长是有理数的正方形有________个,边长是无理数的正方形有________个.※课后作业★基础巩固1.下列各数中:-1,,3.14,-π,3,0,2,, ,-0.2020020002……(相邻两个2之间0的个数逐次加1).其中,是有理数的是_____________,是无理数的是_______________.在上面的有理数中,分数有____________,整数有______________.2.x2=8,则x______分数,______整数,______ 有理数.(填“是”或“不是”)3.面积为3的正方形的边长______有理数;面积为4的正方形的边长______有理数.(填“是”或“不是”)4.一个高为2米,宽为1米的大门,对角线大约是______米(精确到0.01).5.下列数中是无理数的是().A.0.12B. C.0 D .6.下列说法中正确的是().A.不循环小数是无理数B.分数不是有理数C.有理数都是有限小数D.3.1415926是有理数7.下列语句正确的是().A.3.78788788878888是无理数B.无理数分正无理数、零、负无理数C.无限小数不能化成分数D.无限不循环小数是无理数☆能力提高8.在直角△ABC中,∠C=90°,AC=,BC=2,则AB为().A.整数B.分数C.无理数D.不能确定9.面积为6的长方形,长是宽的2为( ). A.小数 B.分数 C.无理数D.不能确定10.下列说法中,正确的是( ) A.数轴上的点表示的都是有理数 B.无理数不能比较大小C.无理数没有倒数及相反数D.实数与数轴上的点是一一对应的●中考在线11.在,,0,……,,-0.333…,, 2.010101…(相邻两个1之间有1 无理数有( ).A.1个B.2个 C .3个12.下列说法正确的是( ). A.有理数只是有限小数 B.无理数是无限小数C.无限小数是无理数D.是无理数13.下列说法错误的是 ( ). A.无理数的相反数还是无理数 B.无限小数都是无理数 C.正数、负数统称有理数 D.实数与数轴上的点一一对应14.下列说法中:(1)的数;(2)无理数是无限小数;(3)数包括正无理数、零、负无理数;(4理数可以用数轴上的点来表示.共有( )个是正确B.2D.4).B.0.5D. 0.151151115… ). 理数 3.14159,,1.010010001…,π,中,无理数的( ).B.2个C.3个D.4个 ).B.πC.D.|﹣2|( ). B.C.D.4的正方形的对角线的长是 ).B.分数 D.不是有理数;②任何一个无理数都能用数轴上的限个,无理数有有限个.其中 ( ).B.②③C.③④D.②③④。
北师大版八年级上册2.1认识无理数同步练习

8( 上)2.1认识无理数(含答案)一.选择题:(四个选项中只有一个是正确的,选出正确选项填在题目的括号内)1、在等式 x2=3中,以下说法正确的选项是()A. x可能是整数 B. x可能是分数 C. x可能是有理数D. x不是有理数2.边长为 5 的正方形的对角线长是()A .整数B .分数 C.有理数 D .无理数3.体积为 10的正方体的边长是()A .整数 B.分数 C.无理数 D.有理数4.以下说法正确的是()A .有理数不过有限小数B .无理数是无穷小数C.无穷小数是无理数D.是分数25.以下说法中正确的选项是()A .不循环小数是无理数B .分数不是有理数C.有理数都是有限小数 D . 3.1415926是有理数6.以下说法正确的选项是()A.无穷循环小数是无理数B.无理数都是正数C.有理数总能够用有限小数或无穷循环小数表示 D .无理数只有7.以下说法正确的有()①无穷小数都是无理数;②不循环小数都是无理数;③无理数都是无穷小数;④无理数也有负数;⑤无理数分为正无理数、零、负无理数;A .2个B. 3个C. 4个 D . 5个8.如图,正方形网格中,每小格正方形边长为1,则网格上的△ABC 中,边长为无理数的边数有()A .0 条 B. 1 条 C. 2 条 D .3 条第 8题图第 10题图9.一个正方形的面积是15,预计它的边长大小在()A. 2与 3之间B. 3与 4之间C.4与 5之间 D . 5与 6之间10.如图,每个小正方形的边长都是1,图中 A ,B,C,D 四个点分别为小正方形的极点,以下说法:①△ ACD 的面积是有理数;②四边形 ABCD 的四条边的长度都是无理数;③四边形ABCD 的三条边的长度是无理数,一条边的长度是有理数.此中说法正确的有()A . 0 个 B. 1 个 C. 2 个 D. 3 个二.填空题:(将正确答案填在题目的横线上)11.已知 x2=8,则 x_____分数, _____整数, _____有理数;(填“是”或“不是”)12.面积为 15的正方形的边长 ______有理数,面积为16的正方形的边长 _____有理数;(填“是”或“不是”)13.面积分别是 1,2, 3,4, 5, 6,7, 8, 9的正方形中,边长是有理数的有_____个,边长是无理数的有 _____个;14.如图, Rt△ ABC 的三边分别是 a,b, c;( 1)计算:若a1, c2,则 b2 _______;②若a3, c 5,则b2 _______;1 / 3③若a 0.6, c 1,则b 2_______;( 2)经过( 1)计算出的 b 2 值,能够知道b 是整数的是 _______, b 是分数的是 ______ ;b 是无理数的是 _____;(填序号)15.如图,在 5×5的正方形网格中,以 AB 为边画 Rt△ABC ,使点 C 在格点上,且此外两边长均为无理数,知足这样条件的点C 共有 ______个;三.解答题:(写出必需的说明过程,解答步骤) 16.把以下 各数的序号 填入相应的括号内:1313① 2 ;② ( 2);③ 20%;④ 3.14 ;⑤ 0;⑥ 5;⑦ ;⑧ 5 ;⑨ ···(每两个 1之间的 4 的个数逐次加 1)( 1)正分数会合:{······}; ( 2)负有理数会合:{······}; ( 3)整数会合:{······};( 4)无理数会合:{······};17.设边长为 4 的正方形的对角线长为 x ;( 1) x 是有理数吗?说明原因;( 2)请预计一下 x 在哪两个相邻整数之间? ( 3)预计 x 的值 (结果精准到十分位 );( 4)假如结果精准到百分位呢?18.如图,在 3×3 的方格中,有一暗影正方形,设每一个小方格的边长为1 个单位;( 1)求暗影正方形的面积;( 2)暗影正方形的边长是有理数吗?若不是,它介于哪两个整数之间?19.在所给的网格(每个小正方形的边长都是 1)中,按以下要求画出三角形:( 1)三边长都是有理数;( 2)有两边长是有理数,一边长是无理数; ( 3)三边长都不是有理数;.11.20.无穷循环小数 0.3 可化为分数 3 ,分数 3 即无穷循环小数0.3 ;一般地, 任何一个无穷循环小数都.能够写成分数的形式;下边以 0.5 为例,给出一种化循环小数为分数的方法:图 1图 2 图 3...x 5 9 ;设 x 0.5 ,∴ 10 x 5.5 50.5 ∴ 10x 5 x解得:模仿上述做法达成以下问题:..( 1)把无穷循环小数 0.7 化为分数,即:0.7=_________;. .( 2)把无穷循环小数0.72化为分数;2.1认识无理数 参照答案:2 / 31~10DDCBD CACBC11.不是,不是,不是;12.不是,是;13. 3, 6;14.( 1)① 3;② 16;③ 0.64 ;( 2)②,③,①;15. 4;16.( 1)③④⑥;(2)①⑧;( 3)②⑤;( 4)⑦⑨;17. (1)x 不是有理数;原因:由勾股定理可知x2= 42+ 42= 32∵ 52= 25, 62= 36,∴ x 不行能是整数,且x 在 5 和 6 之间若 x 是最简分数n,则 (n 232,∴ x 也不行能是分数m m ) ,还是一个分数,不等于综上可知: x 既不是整数,也不是分数,因此x 不是有理数(2)x 在 5 和 6 之间;(3)5.7;(4)5.66;18.( 1)S暗影5;( 2)暗影正方形的边长不是有理数,它介于 2 与 3 这两个整数之间;19.答案不独一,正面是此中一种:. 70.79 ;20.( 1)图 1 图 2 72 8 图3 . . . . . . x( 2)设x 0.7 2 ,∴ 100x 72.72 72 0.72 72 x 解得:99 11 ;3 / 3。
北师大版八年级数学上册同步练习附答案

第一章勾股定理1.1 探索勾股定理第1课时认识勾股定理1.若△ABC中,∠C=90°,(1)若a=5,b=12,则c= ;(2)若a=6,c=10,则b= ;(3)若a∶b=3∶4,c=10,则a= ,b= .2.某农舍的大门是一个木制的矩形栅栏,它的高为2 m,宽为1.5 m,现需要在相对的顶点间用一块木棒加固,木板的长为.3.直角三角形两直角边长分别为5 cm,12 cm,则斜边上的高为.4.等腰三角形的腰长为13 cm,底边长为10 cm,则面积为().A.30 cm2B.130 cm2C.120 cm2D.60 cm25.轮船从海中岛A出发,先向北航行9km,又往西航行9 km,由于遇到冰山,只好又向南航行4 km,再向西航行6 km,再折向北航行2 km,最后又向西航行9 km,到达目的地B,求AB两地间的距离.6.一棵9 m高的树被风折断,树顶落在离树根3 m之处,若要查看断痕,要从树底开始爬多高?7.折叠长方形ABCD的一边AD,使点D落在BC边的F点处,若AB=8 cm,BC=10 cm,求EC的长.FC参考答案:1.(1)13;(2)8;(3)6,8. 2.2.5m . 3.1360cm . 4.D . 5.25km . 6.4. 7.3 cm .1.2 一定是直角三角形吗1.如图在∆ABC 中, ∠BAC = 90︒, AD ⊥BC 于D , 则图中互余的角有 A .2对 B .3对 C .4对 D .5对2.如果直角三角形的两边的长分别为3、4,则斜边长为3.已知:四边形ABCD 中,BD 、AC 相交于O ,且BD 垂直AC ,求证:AB CD AD BC 2222+=+。
4. 已知:钝角∆BAC ,CD 垂直BA 延长线于D ,求证:BC AB AC AB AD 2222=++⋅。
D CO ABD AB C5. 已知:AB AC =,且AB AC ⊥,D 在BC 上,求证:BD CD AD 2222+=。
初中数学北师大版八年级上册第二章1认识无理数 同步练习

初中数学北师大版八年级上册第二章1同步练习一、选择题1.在−3.14,0,−|−2|,π,0.3030030003…(相邻两个3之间0的个数加1),227中,无理数有()A. 1个B. 2个C. 3个D. 4个2.下列说法中正确的是()A. 无限小数都是无理数B. 无理数都是无限小数C. 实数可以分为正实数和负实数D. 两个无理数的和一定是无理数3.已知a是有理数,b是无理数则下列结论:①a+b是无理数;②a−b是无理数;③ab是无理数;④ab是无理数.其中一定正确的是()A. ①②③④B. ①②C. ①③D. ①③④4.下列四个实数中是无理数的是()A. 2.5B. 103C. πD. 1.4145.给出下列四个数:−2,0,1.41,π,其中为无理数的是()A. −2B. 0C. 1.41D. π6.下列实数中,为无理数的是()A. 0.2B. 0.333C. 0.1010010001…(每两个1之间多一个0)D. −57.分别标有数字0,π,13,−1,√2的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到无理数的概率是()A. 15B. 25C. 35D. 458.如图在正方形网格中,每个小正方形的边长均为1,则在△ABC中,边长为无理数的边有()A. 3条B. 2条C. 1条D. 0条9. 已知边长为m 的正方形面积为12,则下列关于m 的说法中,错误的是( )①m 是无理数;②m 的值在4和5之间 ;③m 的值在3和4之间;④m 是有理数.A. ①②B. ①③C. ③④D. ②④10. 如图,已知由16个边长为1的小正方形拼成的图案中,有五条线段PA ,PB ,PC ,PD ,PE ,其中长度是有理数的有( )A. 1条B. 2条C. 3条D. 4条二、填空题11. 下列各数:0.5,0,1.26850349,π3,227,0.21212112…(相邻两个2之间1的个数逐次加1),其中无理数有______个.12. 四个实数√16,73,√90,π中,任取一个数是无理数的概率为______.13. 在数−√5、227、√32、−2.4、0.3˙5˙、13、3.14、−π、0.123456789⋯中,有理数有 ,无理数有 ,正实数有 ,负实数有 .14. 三角形的两边长分别是3和4,请写出一个无理数表示第三边的长,这个数可以是______. 三、解答题15. 如图,在正方形网格中,每个小正方形的顶点称为格点.画出以AB 为斜边的直角△ABC ,且△ABC 的顶点均在格点上,各边长均为无理数.16.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形:(1)在图(1)中,画一个直角三角形,使它的三边长都是有理数;(2)在图(2)中,画一个等腰直角三角形,使它的三边长都是无理数;(3)在图(3)中,画一个正方形,使它的面积是8.17.正方形网格(边长为1的小正方形组成的网格纸,正方形的顶点称为格点)是我们在初中阶段常用的工具,利用它可以解决很多问题.(1)如图①中,△ABC是格点三角形(三个顶点为格点),则它的面积为______;(2)如图②,在4×4网格中作出以A为顶点,且面积最大的格点正方形(四个顶点均为格点);(3)上题(2)中的面积最大的格点正方形边长为______(填有理数或无理数).答案和解析1.【答案】B【解析】【分析】此题主要考查了无理数的定义,无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此解答即可.【解答】解:是无理数、0.3030030003…(相邻两个3之间0的个数加1)是无理数,所以有2个无理数.故选B.2.【答案】B【解析】【分析】本题考查实数的分类,无理数的定义,属于基础题.根据实数的分类和无理数的定义对各选项进行逐一分析即可.【解答】解:A、无限循环小数是有理数,故本选项错误;B、无理数都是无限小数符合无理数的定义,故本选项正确;C、实数可以分为正实数和负实数和0,故本选项错误;D、当两个无理数互为相反数时,此和为有理数,故本选项错误.故选:B.3.【答案】B【解析】【分析】本题主要考查了无理数的定义,根据无理数的概念逐项判定即可.【解答】解:①a+b是无理数,正确;②a−b是无理数,正确;③0×π=0是有理数,故③错误;=0是有理数,故④错误;④0b综上所述,其中一定正确的是①②.故选B.4.【答案】C【解析】解:A、2.5是有理数,故选项错误;B、10是有理数,故选项错误;3C、π是无理数,故选项正确;D、1.414是有理数,故选项错误.故选:C.根据无理数的定义:无限不循环小数是无理数即可求解.此题主要考查了无理数的定义.初中常见的无理数有三类:①π类;②开方开不尽的数,如√6;③有规律但无限不循环的数,如0.8080080008…(每两个8之间依次多1个0).5.【答案】D【解析】解:A.−2是整数,属于有理数;B.0是整数,属于有理数;C.1.41是有限小数,属于有理数;D.π是无理数.故选:D.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6.【答案】C【解析】解:A.0.2是有限小数,属于有理数;B.0.333是有限小数,属于有理数;C.0.1010010001…(每两个1之间多一个0);D.−5是整数,属于有理数.故选:C.本题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.本题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.7.【答案】B,−1,√2,其中无理数有π,√2,共2个,【解析】解:∵五张卡片上分别标有0,π,13∴抽到无理数的概率是2;5故选:B.先找出无理数的个数,再根据概率公式计算可得.本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其,本题找到无理数的个数是关键.中事件A出现m种结果,那么事件A的概率P(A)=mn8.【答案】B【解析】解:由题意:AB=√42+12=√17,BC=√32+12=√10,AC=√32+42=5,则在△ABC中,边长为无理数的边有2条.故选:B.利用勾股定理求出三角形的三边长,即可判断.本题考查勾股定理,无理数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.【答案】D【解析】【分析】(1)此题主要考查了无理数的定义,要熟练掌握,(2)此题还考查了无理数和有理数的特征和区别,要熟练掌握,解答此题的关键是要明确:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数.【解答】解:∵边长为m的正方形面积为12,∴m2=12,∵9<12<16,∴3<m<4∴m是无理数,∴结论①③正确;综上,可得关于m的说法中,错误的是②④.故选D.10.【答案】B【解析】【分析】本题考查了无理数的定义,勾股定理的知识.利用勾股定理分别求出各条线段的平方,找到长度为有理数的线段即可.【解答】解:观察图形可知PA=4,由勾股定理得:PB2=42+12=17PC2=42+32+25PD2=22+22=8,PE2=32+22=13.故其中长度是有理数的有2条.故选:B.11.【答案】2【解析】解:在0.5,0,1.26850349,π3,227,0.21212112…(相邻两个2之间1的个数逐次加1)中,无理数有π3,0.21212112…(相邻两个2之间1的个数逐次加1),一共2个.故答案为:2.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.此题主要考查了无理数的定义,初中范围内常见的无理数有三类:①π类,如2π,π2等;②开方开不尽的数,如√3,√43等;③虽有规律但却是无限不循环的小数,如0.1010010001…(两个1之间依次增加1个0),0.2121121112…(两个2之间依次增加1个1)等.12.【答案】12【解析】解:在√16,73,√90,π四个实数中,无理数为√90,π,共2个, 故任取一个数是无理数的概率为24=12, 故答案为:12.根据题目中的数字,可以判断其中有几个无理数,从而可以求得任取一个数是无理数的概率.本题考查概率公式、无理数,解答本题的关键是明确题意,求出相应的概率.13.【答案】227、−2.4、0.3˙5˙、13、3.14;−√5、√32、−π、0.123456789⋯;227、√32、0.3˙5˙、13、3.14、0.123456789⋯; −√5、−2.4、−π. 【解析】 【分析】此题考查实数的定义、有理数、无理数、正实数、负实数的定义.解答此题的关键是熟练掌握有理数、无理数、正实数、负实数的定义,即有理数是整数和分数的集合,有理数的小数部分是有限或为无限循环的数;不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数;正实数是比0大的实数,负实数是比0小的实数.然后根据相关定义即可求解. 【解答】解:根据有理数的定义即可知227、−2.4、0.3˙5˙、13、3.14是有理数, 故答案为:227、−2.4、0.3˙5˙、13、3.14;根据无理数的定义即可知−√5、√32、−π、0.123456789⋯是无理数,故答案为:−√5、√32、−π、0.123456789⋯;根据正实数的定义即可知227、√32、0.3˙5˙、13、3.14、0.123456789⋯是正实数,故答案为:227、√32、0.3˙5˙、13、3.14、0.123456789⋯;根据负实数的定义即可知−√5、−2.4、−π.是负实数, 故答案为:−√5、−2.4、−π.14.【答案】√5【解析】解:∵三角形的两边长分别是3和4, ∴1<第三边<7, 又∵第三边为无理数, ∴第三边可以为√5等. 故答案为:√5先根据三角形三边关系求得第三边的范围,再根据第三边为无理数,求得第三边即可. 本题主要考查了三角形的三边关系,解决问题的关键是根据第三边的范围求得第三边的长.注意无理数有三种常见的形式:①开方开不尽的数,②无限不循环小数,③含有π的数.15.【答案】解:如图所示:△ABC 即为所求.【解析】直接利用网格结合勾股定理得出符合题意的图形. 此题主要考查了应用设计与作图,正确应用勾股定理是解题关键.16.【答案】解:如图所示:【解析】图(1)直角三角形,使它的三边长都是有理数三边可以分别为:3,4,5;图(2)等腰直角三角形,使它的三边长都是无理数三边可以分别为:√10,√10,√20;图(3)画一个正方形,使它的面积是8,可知边长为2√2;根据这些分析在网格中容易画出符合条件的图形.此题主要考查了应用设计与作图,正确应用勾股定理逆定理是解题关键.17.【答案】5 无理数【解析】解:(1)S△ABC=3×4−12×2×3−12×1×4−12×2×2=5,故答案为5.(2)面积最大的正方形ABCD如图所示.(3)正方形的边长=√12+32=√10,√10是无理数,故答案为无理数.(1)利用分割法求出三角形的面积即可.(2)利用数形结合的思想解决问题即可.(3)利用勾股定理求出正方形的边长即可判断.本题考查作图−应用与设计,无理数,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1认识无理数一.选择题(共10小题)1. 在下列实数中:0,,﹣3.1415,,,0.343343334…无理数有()A. 1个B. 2个C. 3个D. 4个2. 五个数中:﹣,﹣1,0,,,是无理数的有()A. 0个B. 1个C. 2个D. 3个3. 下列各数中,是无理数的()A. πB. 0C.D. ﹣4. 下列各数中,无理数的是()A. B. C. π D.5. 在实数﹣2,,,0.1122,π中,无理数的个数为()A. 0个B. 1个C. 2个D. 3个6. 下列各数中,属于无理数的是()A. πB. 0C.D. ﹣7. 在﹣2,,,3.14,,,这6个数中,无理数共有()A. 4个B. 3个C. 2个D. 1个8. 下列各数是无理数的是()A. B. C. D. 169. 在,-,0,,3.1415,π这6个数中,无理数共有()A. 1个B. 2个C. 3个D. 4个10. 下列说法正确的是()A. 带有根号的数是无理数B. 无限小数是无理数C. 无理数是无限不循环小数D. 无理数是开方开不尽的数二.填空题(共10小题)11. 如图,在5×5的正方形网格中,以AB为边画直角△ABC,使点C在格点上,且另外两条边长均为无理数,满足这样条件的点C共______个.12. 下列各数:,,5.12,﹣,0,,3.1415926,,﹣,2.181181118…(两个8之间1的个数逐次多1).其中是无理数的有__个.13. 若无理数a满足:﹣4<a<﹣1,请写出两个你熟悉的无理数:__.14. 在实数1.732,,-,,中,无理数的个数为__.15. 在,,,0.8888…,3π,0.262662666266662…,六个数中,无理数有__个.16. 下列实数中,0.13,π,﹣,,1.212212221…(两个1之间依次多一个2)中,是无理数的有__ 个.17. 在实数、、中,无理数是__.18. 在,,0,,,0.010010001…,,﹣0.333…,,3.1415,2.010101…(相邻两个1之间有1个0)中,无理数有__个.19. 写出两个无理数,使它们的和为有理数__,__;写出两个无理数,使它们的积为有理数__,__.20. 下列各数:,,,,,0.010*********,,中,是无理数的有__个.三.解答题(共10小题)21. 把下列各数分别填在相应的集合中:﹣,,,0,,,,,3.1422. 在下列4×4各图中,每个小正方形的边长都为1,请在每一个图中分别画出一条线段,且它们的长度均表示不等的无理数.表示:表示:表示:(注:横线上填入对应的无理数)23. 在:,,0,3.14,,﹣,7.151551…(每相邻两个“1”之间依次多一个“5”)中,整数集合{ …},分数集合{ …},无理数集合{ …}.24. 国涛同学家的客厅是面积为28平方米的正方形,那么请你判断一下这个正方形客厅的边长x是不是有理数?如果误差要求小于0.01米,那么边长x的最大取值是多少(精确到0.001)?25. 500多年前,数学各学派的学者都认为世界上的数只有整数和分数,直到有一天,大数学家毕达哥拉斯的一个名叫希帕索斯的学生,在研究1和2的比例中项时(若1:x=x:2,那么x叫1和2的比例中项),他怎么也想不出这个比例中项值.后来,他画了一个边长为1的正方形,设对角线为x,于是由毕达哥拉斯定理x2=12+12=2,他想x代表对角线的长,而x2=2,那么x必定是确定的数,这时他又为自己提出了几个问题:(1)x是整数吗?为什么不是?(2)x可能是分数吗?是,能找出来吗?不是,能说出理由吗?亲爱的同学,你能帮他解答这些问题吗?26. 下列数中:①﹣|﹣3|,②﹣0.3,③﹣,④,⑤,⑥,⑦0,⑧﹣,⑨1.2020020002…(每两个2之间依次多一个0)(请填序号)无理数是,整数是.负分数是.27. 已知长方体的体积是1620,它的长、宽、高的比是5:4:3,问长方体的长、宽、高是无理数吗?为什么?28. 体积为3的正方体的边长可能是整数吗?可能是分数吗?可能是有理数吗?请说明你的理由.29. 有6个实数:﹣32,﹣,,0.313131…,,﹣,请计算这列数中所有无理数的和.30. 判断下列说法是否正确,如果正确请在括号内打“√”,错误请在括号内打“×”,并各举一例说明理由.(1)有理数与无理数的积一定是无理数.(2)若a+1是负数,则a必小于它的倒数..答案一.选择题1. 【答案】B【解析】根据无理数是无限不循环小数,可得答案.,0.343343334…是无理数,故选B.考点:无理数.2.【答案】B【解析】无理数有:,只有1个.故选B.考点:无理数.3. 【答案】A【解析】A选项中,π是无理数,故此选项正确;B选项中,0是有理数,故此选项错误;C选项中,=2,是有理数,故此选项错误;D选项中,是有理数,故此选项错误;故选A.4. 【答案】C【解析】A选项中,是分数,属于有理数,故A错误;B选项中,是有理数,故B错误;C选项中,是无理数,故C正确;D选项中,是有理数,故D错误;故选C.5. 【答案】C【解析】无理数为:,,共有2个.故选C.6. 【答案】A【解析】A选项中,π是无理数,故此选项正确;B选项中,0是有理数,故此选项错误;C选项中,=2,是有理数,故此选项错误;D选项中,是有理数,故此选项错误;故选A.7.【答案】C【解析】无理数有、共两个,故选C.8. 【答案】B【解析】A选项中,是分数,属于有理数,故A错误;B选项中,是无理数,故B正确;C选项中,是有理数,故C错误;D选项中,16是有理数,故D错误;故选B.9.【答案】B【解析】在上述6个数中,,,0,3.1415都属于有理数,属于无理数的是共2个.故选B. 10.【答案】C【解析】A选项中,带有根号的数不一定是无理数,如是有理数,故此选项错误;B选项中,无限小数包括无限循环小数和无限不循环小数,其中只有无限不循环小数才是无理数,而无限循环小数是有理数,故此选项错误;C选项中,无理数是无限不循环小数的说法是正确的;D选项中,开方开不尽的数是无理数,但无理数不一定是开方产生的,无是无理数,但它不是开方产生的数,故选项错误.故选C.二.填空题11.【答案】4【解析】本题需根据直角三角形的定义和图形即可找出所有满足条件的点.根据题意可得以AB为边画直角△ABC,使点C在格点上,满足这样条件的点C共8个.故答案为:8.12.【答案】4【解析】根据:有理数的定义:“分数和整数统称为有理数”及无理数的定义:“无限不循环小数叫做无理数”分析可知:在上述各数中,、、及(每两个8之间1的个数依次多1)是无理数,其余的数都是有理数,即无理数共有4个.点睛:初中阶段所遇到的无理数主要有三种形式:①开方开不尽的数;②无限不循环小数;③含有π的数.13. 【答案】﹣,﹣π【解析】本题答案不唯一,这样的无理数很多,如:.14. 【答案】2【解析】根据:有理数的定义:“分数和整数统称为有理数”及无理数的定义:“无限不循环小数叫做无理数”分析可知:在上述各数中,是无理数,其余的都是有理数,即上述各数中无理数共有2个.15. 【答案】4【解析】根据:有理数的定义:“分数和整数统称为有理数”及无理数的定义:“无限不循环小数叫做无理数”分析可知:在上述各数中,,是无理数,其余的都是有理数,即上述各数中,无理数有4个.16. 【答案】3【解析】根据:有理数的定义:“分数和整数统称为有理数”及无理数的定义:“无限不循环小数叫做无理数”分析可知:在上述各数中,(每两个1之间依次多一个2)是无理数,其余的都是有理数,即上述各数中,无理数有3个.17. 【答案】【解析】无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.根据无理数的三种形式可求出答案.需要注意的就是本题中=2.考点:无理数18. 【答案】4【解析】根据:有理数的定义:“分数和整数统称为有理数”及无理数的定义:“无限不循环小数叫做无理数”分析可知:在上述各数中,是无理数,其余的都是有理数,即上述各数中,无理数有4个.19. 【答案】【解析】(1)两个无理数的和为有理数,这样的无理数很多,如:和;(2)两个无理数的积为有理数,这样的无理数很多,如:和.点睛:(1)两个无理数的和、差、积、商有可能是无理数,也有可能是有理数;(2)本题的两个小问,在解答时,可以先任写出一个无理数和一个不为0的有理数,再通过有理数减去无理数和有理数除以无理数可得对应的另一根无理数.20. 【答案】2【解析】根据:有理数的定义:“分数和整数统称为有理数”及无理数的定义:“无限不循环小数叫做无理数”分析可知:在上述各数中,是无理数,其余的数都是有理数,即上述各数中,无理数有2个.点睛:带根号的数与无理数的区别:带根号的数不一定是无理数,如是有理数中的整数;带有根号且开方开不尽的数就一定是无理数.三.解答题21. 【解析】本题考查的是实数的分类. 先把-化为-2的形式,-化为-2,化为2的形式,再根据实数分无理数及有理数进行解答即可.解:有理数集合: -,-,0,,,3.14 .无理数集合:,-,22. 【解析】连接任意正方形的对角线,根据勾股定理计算出其长度,再由无理数的定义进行解答即可.23.【解析】根据无理数、整数、分数的定义即可作答.24. 【答案】5.291.【解析】(1)根据正方形的面积是边长的平方,可得该正方形的边长为米,化简可知边长不是有理数;(2)把化简并按指定“精确度”取近似值可得答案.解:(1)由题意可得正方形边长为:,这个正方形客厅的边长x不是有理数;(2)由(1)可得这个正方形边长x的最大取值为:.25. 【答案】(1)在1和2之间不存在另外的整数.(2)不是.【解析】(1)根据比例中项的定义,可知x2=2,结合无理数的概念,就能得出x是不是整数的结论.(2)根据分数的定义,任何分数的平方还是分数,即能得出结论.解:(1)不是,∵1<2<4,而x2=2∴1<x2<4,若x>0,1<x<2,∴在1和2之间不存在另外的整数.(2)不是,因为任何分数的平方不可能是整数.考点:本题主要考查无理数和勾股定理点评:解答本题的关键是熟练掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.26. 【答案】无理数是③④⑨,整数是①⑥⑦,负分数是②⑧.【解析】(1)由无理数的定义:“无限不循环小数叫做无理数”可知,上述各数中,无理数是③④⑨;(2)根据有理数定义和有理数的分类可知:上述各数中,整数是①⑥⑦,负分数是②⑧.27.【答案】长、宽、高分别为15,12,9不是无理数.【解析】首先根据题中条件求出长方体的长、空、高的值,然后再根据无理数的定义判断这些值是否是无理数即可.解:该长方体的长、宽、高不是无理数,理由如下:设该长方体的长、宽、高分别为5x,4x,3x.由题意可得:60x3=1620,解得x=3,∴该长方体的长、宽、高分别为15,12,9,∵15,12,9都是整数,属于有理数,不属于无理数,∴该长方体的长、宽、高不是无理数.28.【答案】体积为3的正方形的边长不可能是整数、分数、有理数.【解析】先根据正方体的体积公式求出棱长,即可判断.解:由题意得,正方体的棱长为,不可能是整数,不可能是是分数,不可能是有理数.考点:本题考查的是正方体的体积公式,实数的分类点评:解答本题的关键是熟练掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.29. 【答案】【解析】首先根据“无理数的定义”,找出上述各数中的无理数,再把它们相加即可.解:∵上述各数中:﹣,,﹣是无理数,∴上述各数中,所有无理数的和为:==.30. 【答案】×,√.【解析】(1)“有理数与无理数的积一定是无理数.”这种说法是错误的,如是无理数,0是有理数,但它们的积是0,为有理数,故这种说法错误;(2)“若a+1是负数,则a必小于它的倒数.”这种说法正确.∵a+1是负数,∴a+1<0,即a<﹣1,∴a必小于它的倒数.如:a=-2,-2的倒数是,-2是小于的.。