八年级上册认识无理数知识点整理北师大版

合集下载

北师大版八年级数学上册第二章2.1认识无理数课件共23张PPT

北师大版八年级数学上册第二章2.1认识无理数课件共23张PPT

讲授新课
一 无理数的认识
活动探究
活动:把两个边长为1的小正方形通过剪、 拼,设法得到一个大正方形,你会吗?
1
1
1
还有好多方法哦!课余时间再动手试一试, 比比谁找的多!
11 11
1
1
1
1
11 22 11 22
11 11
11 11
11 11
问题1:设大正方形的边长为a,则a满足什么条件? 因为S大正方形=2,所以a2=2.
追问1:a是一个什么样的数?a可能是整数吗?
从“数”的角度:
a
因为 a2=2, 而12=1, 22=4
所以 12<a2<22 ,
所以 1< a< 2,a不是整数
a
a
从“形”的角度:
A
取出一个三角形 C
B
在三角形ABC中,AC=1,BC=1,AB=a 根据三角形的三边关系:
AC-BC< a<AC+BC 所以0<a<2,且 a≠1,所以a不是整数
1.4<a<1.5
1.96<S<2.25
1.41<a<1.42
1.988 1<S<2.016 4
1.414<a<1.415
1.999 396<S<2.002 225
1.414 2<a<1.414 3 1.999 961 64<S<2.000 244 49
想一想 (1)边长a会不会算到某一位时,它的平方恰好等于2 呢?为什么? (2) a可能是有限小数吗?它会是一个怎样的数呢?
D.面积为1.44的正方形.
无理数的概念及认识

2.1认识无理数-八年级上册初二数学(北师大版)

2.1认识无理数-八年级上册初二数学(北师大版)
3.重点难点解析:在讲授过程中,我会特别强调无理数的定义和表示方法这两个重点。对于难点部分,如无限不循环小数和近似计算,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与无理数相关的实际问题,如√2在直角三角形中的应用。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用计算器计算π的近似值,并讨论如何选择合适的近似精度。
d.无理数在实际中的应用,如圆周率π在计算圆的周长和面积中的应用。
e.无理数与图形的关系,如勾股定理中涉及的根号2。
-举例:通过具体数值示例(如√2、π)来解释无理数的概念和表示方法,强调其在数学和科学中的重要性。
2.教学难点
-难点内容:无理数的理解和近似计算。
-难点解析:
a.理解无理数的无限不循环性质,学生可能难以接受无理数无法精确表示的概念。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解无理数的基本概念。无理数是不能表示为两个整数比的数,如√2、π等。它们在数学、科学和工程等领域具有重要地位。
2.案例分析:接下来,我们来看一个具体的案例。以圆周率π为例,讲解其在计算圆的周长和面积中的应用,以及无理数如何帮助我们精确描述自然界中的现象。
1.关注学生的认知水平,从生活实际出发,让学生更好地理解无理数;
2.优化教学方法,注重引导学生深入思考,提高学生的逻辑思维能力;
3.设计更多具有挑战性的练习题,提高学生的实际操作能力;
4.加强课堂互动,关注学生的个体差异,提高教学质量。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)

八年级数学上册第2章实数1认识无理数新版北师大版

八年级数学上册第2章实数1认识无理数新版北师大版
D. 含有π的数是无理数
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
7. [2024西安铁一中期中]下列各数中,是无理数的是(
A. 面积为16的正方形的边长
B. 体积为27的正方体的棱长
C. 两直角边分别为2和3的直角三角形的斜边长
D. 长为4,宽为3的长方形的对角线长
1
2
3
4
5
6
7
8
9
10
11
D. a 比2小
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
2. 在Rt△ ABC 中,∠ C =90°,∠ A ,∠ B ,∠ C 所对的
边分别为 a , b , c .
(1)①当 a =1, c =2时, b2=

3

②当 a =3, c =5时, b2= 16


③当 a =0.6, c =1时, b2= 0.64
D. 3.3与3.4之间
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
知识点3 无理数的概念
5. 【新考向 数学文化】公元前6世纪古希腊的毕达哥拉斯学
派认为“万物皆数”,意思是一切量都可以用整数或整数
之比(分数)表示.后来,这一学派的希伯索斯发现,边长
为1的正方形的对角线的长不能用整数或整数之比表示,

北师大版初中数学八年级上册2.1 认识无理数1

北师大版初中数学八年级上册2.1  认识无理数1

知 a2=2,那么 a 是整数吗?a 是分数吗? 数即为整数部分;(2)确定 x 的十分位上的
二、合作探究
数,同样寻找它在哪两个连续整数之间;
探究点一:无理数的概念及认识
(3)按照上述方法可以依次确定 x 的百分
下列各数中,哪些是有理数?哪 位 、 千 分 位 、 …上 的 数 , 从 而 确 定 x 的
22 0.125, 0.35, ; 无 理 数 : - 5π ,
7
TB:小初高题库
北师大初中数学
相信自己,就能走向成功的第一步 教师不光要传授知识,还要告诉学生学会生TB:小初高题库
些是无理数?
值.
5
··
3. 14, - , 0. 58 , - 0.125, - 5
3
22 π,0.35, ,5.3131131113…(相邻两个
7
三、板书设计
{ ) 定义:无限不循环小数
无理数
识别
3 之间 1 的个数逐次加 1).
解析:准确理解有理数和无理数的概
让学生通过估计、借助计算器进行探
念是解答本题的关键.任何有限小数或无 索和讨论,体会数学学习的乐趣,体会无
北师大初中数学
北师大初中数学 八年级
重点知识精选
掌握知识点,多做练习题,基础知识很重要! 北师大初中数学 和你一起共同进步学业有成!
TB:小初高题库
北师大初中数学
2.1 认识无理数
5.3131131113…(相邻两个 3 之间 1 的个数
逐次加 1).
1.了解无理数的概念及意义,会判断
方法总结:有理数与无理数的主要区
拼图发现新数——无理数
正数 x 满足 x2=17,则 x 精确到

北师大版数学八年级上册课件:2.1 认识无理数(共13张PPT)

北师大版数学八年级上册课件:2.1 认识无理数(共13张PPT)

综合能力提升练
13.( 教材母题变式 )如图是16个边长为1的小正方形拼成的大正方形,其中CA,CB,CD,CE中 长度既不是整数,也不是分数的有 3 条.
14.( 改编 )把下列各数填入表示它所在的数集的大括号内: -2,-12,3.020020002…( 每两个 2 之间多 1 个 0 ),272,-π3,-( -3 ),0.333,0,34,-17,3.1·5·,0.12345678910111213…( 小数部分由相继的正整数组 成 ),-1.202020202…( 每两个 2 之间有 1 个 0 ).
( 4 )无理数集合: 3.020020002…( 每两个 2 之间多 1 个 0 ),-
π 3
,0.12345678910111213…(
小数部分由相继的正整数组成
)…
.
综合能力提升练
15.请你在方格纸上按照如下要求设计图形,每个单元格的边长为1.( 所设计图形顶点在格 点上 ) ( 1 )请在图1中设计一个直角三角形,使它三边中有两边边长不是有理数. ( 2 )请在图2中设计一个直角三角形,使它的三边边长都不是有理数.
综合能力提升练
( 1 )整数集合:{-2,-(-3 ),0,-17…}; ( 2 )分数集合: -12 , 272,0.333,-34,3.1·5·,-1.202020202…( 每两个 2 之间 有 1 个 0 )… ; ( 3 )负有理数集合: -2,-12,-34,-17,-1.202020202…( 每两个 2 之间有 1 个 0 )… ;
拓展探究突破练
17.无限循环小数如何化为分数呢?请你仔细阅读下列资料:由于小数部分位数是无限的,所 以不可能写成十分之几、百分之几、千分之几等等的数.转化时需要先去掉无限循环小数 的“无限小数部分”.一般是用扩倍的方法,把无限循环小数扩大十倍、一百倍或一千倍…… 使扩大后的无限循环小数与原无限循环小数的“无限小数部分”完全相同,然后这两个数相

北师大版八年级数学(上)第二章 实数 认识无理数

北师大版八年级数学(上)第二章  实数 认识无理数
圆周率π=3.141 592 65…也是一个无限不循环小数,故π是无理 数
我们所学过的数可以分为:
实数
有理数:有限小数或无限循环小数
整数 分数
无理数:无限不循环小数
事实上,任何一个有理数都可以写成有限小数或无限循环小数 反过来,任何有限小数或无限循环小数也都是有理数
例题精讲:
例 1:下列各数中,( )是无理数.
解:(1)边长分别为 3,4,5 的三角形是直角三角形; (2)边长分别为 1,1, 的三角形是直角三角形.
练习:下列正方形中,边长为无理数的是( )
A.面积为 64 的正方形
B.面积为 16 的正方形
C.面积为 1.44 的正方形
D.面积为 12 的正方形
解:A、边长是 8,是有理数,故本选项错误; B、边长是 4,是有理数,故本选项错误; C、边长是 1.2,是有理数,故本选项错误; D、边长是 ,是无理数,故本选项正确; 故选:D.
A.1
B.2
C.3
D.4
解: 是分数,属于有理数;0. 是循环小数,属于有理数;﹣2 是整数,属于有理数. 无理数有:π,0.101001…(每两个 1 之间多一个 0)共 2 个.故选:B.
例 3:请你设计两个直角三角形,满足下列条件: (1)使其三边长都能用有理数表示; (2)使其三边中两边是有理数,另一边是无理数.
C.3 个
D.4 个
解: 是分数,属于有理数;﹣0.5,3.14 是有限小数,属于有理数; 无理数有:3.3030030003…,﹣π 共 2 个.故选:B.
3.设面积为 3π 的圆的半径为 r,则 r 是有理数还是无理数?
解:面积为 3π 的圆的半径 r= , 是无理数.答:r是无理数.

北师大版八年级数学上册第二章实数2.1认识无理数

北师大版八年级数学上册第二章实数2.1认识无理数

2016.9
选做题:
已知m =26,n =88,那么在m、n 6, 7, 8, 9。 之间的正整数有________
2 2
2016.9
本课小结:
1.无理数的定义.
2.数的分类. 3.判定一个数是无理数还是有理数.
2016.9
2016.9
生活中真的有很多不是有理数 的数吗?
2016.9
当堂训练
1、 下列各数中,哪些是无理数?哪些是有理数? . . 0.123432123432 …,3.14, , 0.101001000100001, ,


1.2332333233332…,
2
4 0.57, 3
1
2、如果x2=10,则x是一个 无理 数 ,x的整数部 分是 3 。
2016.9
例1 填空 2 0.351 , , 3
. 3
4. 96,
..
3.14159,
-5.232332…,
0.12334567891011…(由相继的正整数组成).
0.351 ,
3.14159,
… 4. 96,
..Leabharlann 2 , 3 , 3
5.232332…
0.12334567891011… …
a既不是整数又不是分数,所以a一定不是 有理数。

那么a到底是什么数呢?
2016.9
2016.9
a
∴1 a 2 1.42 < 2 < 1.52
∴1.4 a 1.5
a
有多大呢?

1 < 2 < 2
2
2
a 1.41421356L
它是无限不循环小数

北师大版初中八年级数学上册第2章1认识无理数课件

北师大版初中八年级数学上册第2章1认识无理数课件

是有理数吗?(2)哪个数是无限不循环小数?哪个是含有π的数?这些数都是
无理数吗?
11

解 有理数:0,-4,0.12,- ,3.141 592 7;无理数: ,1.112 111 211…(相邻两个 2 之
7
2
··
间 1 的个数逐次加 1).
【误区警示】
1.注意3.141 592 7与π的区别.3.141 592 7属于有限小数,不是π,前者是有理
(2)x不是有理数.因为没有一个整数的平方等于7,也没有一个分数的平方等
于7.由上面的计算知,x是无限不循环小数;
(3)x≈2.6;验证略;
(4)x≈2.65.
【方法归纳】
要估算无理数的近似值,第一步应确定被估算的无理数的整数取值范围;第
二步以较小整数逐步开始加0.1(或以较大整数逐步开始减0.1),并求其平方,
实数
1
认识无理数
核心·重难探究
知识点一
无理数的识别
【例1】 下列各数,哪些是有理数?哪些是无理数?
·· 11
π
0, ,-4,0.12,- ,1.112
2
7
111 211…(相邻两个 2 之间 1 的个数逐次加 1),
3.141 592 7.
思路分析 (1)哪个数是整数?哪个是分数?哪个是无限循环小数?这些数都
确定被估算数的十分位;…;如此继续下去,可以求出无理数的近似值.
数,后者是无理数.
2.
π
2
不是分数,分数的分子与分母都是正整数.
知识点二
无理数的近似值的估算
【例2】 设面积为x的整数部分是多少?
(2)x是有理数吗?请简要说明理由.
(3)估计x的值(结果精确到0.1),并用计算器验证你的估计.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上册《认识无理数》知识点整理北师大版
1.无限小数都是无理数无限小数分:为无限循环小数和无限不循环小数,其中无限循环小数是有理数,只有无限不循环的小数才是无理数。 2.无理数包括正无理数、负无理数和零。受思维习惯的影响,有些同学错误认为正无理数与负无理数之间应有零,零也是无理数,其实零是一个有理数,因此,无理数只分为正无理数和负无理数两类。 3.带根号的数是无理数。是.无理数是用根号形式表示的数。是无理数,但并不是用根号形式表示的,再如:0.1010010001(两个1之间依次多一个),亦为不带根号的无理数。 5.无理数是开方开不尽的数。无理数并非由开方的结果来定义的,事实上,如 ,0.232232223,等无理数,都不是由开方得到的。 6.两个无理数的和、差、积、商仍是无理数。两个无理数的和,差,积,商不一定是无理数,如:等都是有理数。 7.无理数与有理数的乘积是无理数。这种说法是错误的!由 等似乎易见无理数与有理数的积是无理数,就下肯定结论,错了!如 等足以推翻以上结论。8.有些无理数是分数。因为分数属于有理数,且无理数与有理数是两类不同的数,所以说,无理数不可能写成分数,当然,有些无理数可以借助分数线来表示。如,但一定要注意它并不是分数。 9.无理数比有理数少。这种说法错误,无理数在人们生产和生活中使用的少一些,但并不是说无理数就少一些,我们平常的计算中没有特别需要时,习惯地把一些无理数按要求通过取近似值的方法用有理数来表示,这样似乎就觉得使用无理数少一些,实际上,无理数也有无限个且比有理数多得多。 10.一个无理数的平方一定是有理数。这种说法错误,不要误认为只有 等无理数,如 等也是无理数,显然 等不是有理数。
相关文档
最新文档