初中八年级上册数学知识点整理总结

合集下载

八年级上册数学知识点归纳总结

八年级上册数学知识点归纳总结

八年级上册数学知识点归纳总结
一、轴对称图形
轴对称图形的性质包括对应线段相等和对应角相等。

在画出一个图形关于某条直线的轴对称图形时,需要找到关键点,画出这些关键点的对应点,然后按照原图顺序依次连接各点。

二、等腰三角形和等边三角形
等腰三角形的两个底角相等,顶角平分线、底边上的高、底边上的中线互相重合,称为“三线合一”。

判定一个三角形是否为等腰三角形,可以通过等角对等边的性质。

等边三角形的三个内角都相等,每个角都是60°。

如果一个等腰三角形有一个角是60°,那么它就是等边三角形。

三、整式的乘法
整式的乘法包括单项式与单项式相乘,以及单项式与多项式相乘。

在单项式与单项式相乘时,需要将它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

四、函数
函数是描述变量之间关系的一种方式。

在函数中,x是自变量,y 是因变量。

函数的表示法有三种:关系式(解析)法、列表法和图象法。

五、圆
圆的周长是图形一周的长度,直径所在的直线是圆的对称轴。

圆的最长的弦是直径,直径是过圆心的弦。

圆周率(π)是圆的周长与
直径的比值,通常取π≈3.14。

圆周角是顶点在圆周上,且它的两边分别与圆有另一个交点的角,它等于相同弧所对的圆心角的一半。

以上知识点是八年级上册数学的主要内容,掌握这些知识点对于理解数学概念和解决实际问题都非常重要。

八年级数学上册 知识点总结

八年级数学上册 知识点总结

八年级数学上册知识点总结数学》(八年级上册)知识点总结第一章勾股定理1、勾股定理:直角三角形两直角边a,b的平方和等于斜边c的平方,即a²+b²=c²。

2、勾股定理的逆定理:如果三角形的三边长a,b,c有关系a²+b²=c²,那么这个三角形是直角三角形。

3、勾股数:满足a²+b²=c²的三个正整数,称为勾股数。

第二章实数一、实数的概念及分类1、实数的分类:正有理数、有理数零有限小数和无限循环小数、实数负有理数、正无理数、无理数无限不循环小数、负无理数。

2、无理数:无限不循环小数叫做无理数。

在理解无理数时,要抓住“无限不循环”这一特点,归纳起来有四类:1)开方开不尽的数,如7、32等;2)有特定意义的数,如圆周率π,或化简后含有π的数,如222π+8等;3)有特定结构的数,如0.xxxxxxxx01…等;4)某些三角函数值,如sin60等。

二、实数的倒数、相反数和绝对值1、相反数:实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=−b,反之亦成立。

2、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值(|a|≥)。

零的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥;若|a|=−a,则a≤。

3、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和−1.零没有倒数。

4、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

5、估算。

三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x的平方等于a,即x²=a,那么这个正数x就叫做a的算术平方根。

八年级上册数学知识点归纳总结

八年级上册数学知识点归纳总结

八年级上册数学知识点归纳总结八年级上册数学知识点归纳总结如下:
1. 整式的加减
- 同类项的加减
- 整式的加减运算法则
- 括号的运算法则
- 移项与去括号
2. 一元二次方程
- 一元二次方程的定义
- 解二次方程的方法(因式分解法、配方法、求根公式)
- 判别式和根的情况
3. 提公因式与分式
- 提公因式的方法
- 分式的概念与基本性质
- 分式的基本运算(加减乘除)
4. 二次根式
- 二次根式的定义与概念
- 二次根式的化简
- 二次根式的运算(加减乘除)
5. 数据的收集整理与分析
- 数据的搜集和整理
- 统计图的绘制与分析
- 平均数、中位数、众数的计算
6. 几何图形的认识与性质
- 点、线、面的概念
- 直线、射线、线段的特点
- 同位角、对顶角、同旁内角的性质
7. 平面图形的性质与计算
- 三角形的分类
- 四边形的分类
- 平行四边形与矩形的性质
8. 角与等角(同位角、内错角、同旁内角的性质)
- 角的概念和性质
- 直角、钝角、锐角
- 利用角的性质解决问题
9. 周长和面积
- 二维图形的周长计算(长方形、正方形、三角形)
- 二维图形的面积计算(长方形、正方形、三角形、梯形)
这些是八年级上册数学的一些重要知识点,希望能对你有所帮助。

八年级上册数学知识点归纳总结

八年级上册数学知识点归纳总结

八年级上册数学知识点归纳总结一、有理数1. 有理数的概念有理数是可以表示为两个整数之比的数,包括正整数、负整数、零、分数(正分数和负分数)。

2. 有理数的运算(1)加法和减法:同号相加减,异号相加减取相反数后加(2)乘法:同号得正,异号得负(3)除法:分子取商的符号,分母取绝对值后再除3. 有理数的比较在数轴上比较大小,可以通过绝对值和符号来确定大小关系4. 有理数的应用有理数在实际生活中的运用,如温度、扩大、缩小等二、代数1. 代数的基本概念(1)代数式:由运算符号和字母组成的表达式(2)项:代数式中的最小单位(3)系数:含有变量的项的常数因子(4)幂:同一个数的多次相乘2. 一元一次方程如ax+b=0(a≠0),其中a、b为已知数,x为未知数3. 一元一次不等式如ax+b>0(a≠0),其中a、b为已知数,x为未知数4. 代数式的加减法整理同类项后进行加减5. 代数式的乘法分配律、结合律、交换律的运用6. 代数式的因式分解三、平方根和立方根1. 平方数和平方根平方数是某个数的平方,平方根是某个数的算术平方根2. 平方根的求法开平方、开方运算3. 立方数和立方根立方数是某个数的立方,立方根是某个数的算术立方根4. 立方根的求法开立方、立方根的运算5. 有理数的平方与立方有理数的平方是对其绝对值的平方,有理数的立方是对其绝对值的立方四、多边形1. 多边形的基本认识多边形是由同一个平面上的若干条线段组成的闭合图形2. 多边形的内角和外角n边形的内角和等于180°×(n-2)n边形的外角和等于360°3. 正多边形边相等,角相等的多边形4. 不规则多边形五、相似1. 相似的概念对于两个图形,如果它们的形状相似(其中一图放大或缩小),则它们称之为相似的2. 相似三角形对于两个三角形,如果它们的对应角相等,则它们为相似三角形3. 相似三角形的性质相似三角形的性质包括对应边成比例、对应角相等、相似三角形的高线比例等六、函数1. 函数的概念对应关系中,一个自变量对应一个因变量的关系2. 函数的表示方法函数的图像、函数的解析式、函数的映射表示等3. 函数的性质奇函数、偶函数、周期函数、增减性与极值、奇偶性及周期性的判断等4. 函数的应用在实际问题中,函数的运用,如一元一次函数、二次函数等七、同比例1. 比例的概念两个量之间的相等关系2. 比例的性质比例中的乘除、比例式的变形3. 等比例四个数成等比的性质4. 倒数的概念两个数之积为1时,这两个数称为倒数5. 倒比例四个数成倒比的性质八、图形的旋转1. 图形的旋转图形绕定点旋转的变换2. 旋转的性质旋转变换后的图形3. 图形的对称图形相对于一条直线、一个点的对称4. 图形的变换平移、旋转、翻转的组合变换以上就是八年级上册数学知识点的归纳总结,希望能帮助到大家对这些知识点的理解和掌握。

八年级上下册数学知识点总结

八年级上下册数学知识点总结

数学知识点总结
一、上册知识点:
1.整数的加减法:正整数、负整数、零的概念,整数的加法和减法运算法则。

2.有理数:有理数的概念,有理数的分类(正有理数、负有理数、零),有理数的加法和减法运算法则。

3.乘方:乘方的概念,乘方的性质,乘方的运算法则。

4.乘法与除法:乘法的概念,乘法的性质,乘法的运算法则;除法的概念,除法的性质,除法的运算法则。

5.分数:分数的概念,分数的性质,分数的加减法运算法则。

6.代数式:代数式的概念,代数式的简化,代数式的加减法运算法则。

7.一元一次方程:一元一次方程的概念,一元一次方程的解法,一元一次方程的应用。

8.几何图形:点、线、面的概念,几何图形的基本性质,几何图形的分类。

9.角:角的概念,角的分类,角的性质,角的度量。

10.平行线:平行线的概念,平行线的性质,平行线的判定。

二、下册知识点:
1.直角三角形:直角三角形的概念,直角三角形的性质,直
角三角形的边角关系。

2.勾股定理:勾股定理的概念,勾股定理的应用。

3.多边形:多边形的概念,多边形的分类,多边形的性质。

4.圆:圆的概念,圆的性质,圆的度量。

5.圆柱和圆锥:圆柱和圆锥的概念,圆柱和圆锥的性质,圆柱和圆锥的计算。

6.比例与比例式:比例的概念,比例的性质,比例式的概念,比例式的计算。

7.百分数:百分数的概念,百分数的性质,百分数的计算。

8.数据的收集与整理:数据的收集方法,数据的整理方法,数据的分析与表示。

9.概率:概率的概念,概率的计算。

10.函数与图像:函数的概念,函数的性质,函数的图像。

八年级上册数学知识点归纳总结

八年级上册数学知识点归纳总结

八年级上册数学知识点归纳总结一、三角形(一)三角形的相关概念1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2、三角形的边:组成三角形的三条线段叫做三角形的边。

3、三角形的顶点:三角形相邻两边的公共端点叫做三角形的顶点。

4、三角形的内角:三角形相邻两边所组成的角叫做三角形的内角,简称三角形的角。

(二)三角形的分类1、按角分类:(1)锐角三角形:三个角都是锐角的三角形。

(2)直角三角形:有一个角是直角的三角形。

(3)钝角三角形:有一个角是钝角的三角形。

2、按边分类:(1)不等边三角形:三条边都不相等的三角形。

(2)等腰三角形:有两条边相等的三角形。

其中,相等的两条边叫做腰,另一条边叫做底边。

两腰的夹角叫做顶角,腰与底边的夹角叫做底角。

(3)等边三角形:三条边都相等的三角形,也叫正三角形。

(三)三角形的三边关系1、三角形任意两边之和大于第三边。

2、三角形任意两边之差小于第三边。

(四)三角形的内角和定理三角形三个内角的和等于 180°。

(五)三角形的外角1、三角形的一边与另一边的延长线组成的角,叫做三角形的外角。

2、三角形的一个外角等于与它不相邻的两个内角的和。

3、三角形的一个外角大于与它不相邻的任何一个内角。

二、全等三角形(一)全等三角形的概念能够完全重合的两个三角形叫做全等三角形。

(二)全等三角形的性质1、全等三角形的对应边相等。

2、全等三角形的对应角相等。

(三)全等三角形的判定1、三边分别相等的两个三角形全等(SSS)。

2、两边和它们的夹角分别相等的两个三角形全等(SAS)。

3、两角和它们的夹边分别相等的两个三角形全等(ASA)。

4、两角和其中一个角的对边分别相等的两个三角形全等(AAS)。

5、斜边和一条直角边分别相等的两个直角三角形全等(HL)。

三、轴对称(一)轴对称图形如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴。

八年级上册数学知识点总结归纳

八年级上册数学知识点总结归纳

八年级上册数学知识点总结归纳八年级上册数学主要包括整数的加减乘除、分式、一元一次方程与一次方程组等内容。

以下是对这些知识点的详细总结和归纳。

一、整数的加减乘除1. 整数的概念:整数包括正整数、负整数和0。

整数是数轴上的点,可以进行加减乘除计算。

2. 整数的加减法:同号两个数相加、异号两个数相减。

同号两个数相加,取相同的符号,然后将它们的绝对值相加;异号两个数相减,取绝对值大的符号,然后用绝对值大的数减去绝对值小的数,差的符号与绝对值大的数的符号相同。

3. 整数的乘法:同号两个数相乘得正,异号两个数相乘得负。

两个数相乘时,先将它们的绝对值相乘,再确定符号。

4. 整数的除法:同号两个数相除得正,异号两个数相除得负。

两个数相除时,先将被除数和除数的绝对值相除,再确定符号。

5. 整数运算的性质:加法交换律、结合律;乘法交换律、结合律;加法与乘法的相互分配律;零的性质:任何整数与0相加等于自身;乘法的零性质:任何整数与0相乘等于0;除法的性质:0不能作为除数。

二、分式1. 分式的概念:分式是一个整数分母和分子组成的表达式,包括真分式和假分式。

其中,分母不为0。

2. 分式的加减乘除:加减法:先通分,再进行加减法;乘法:先化简为最简分式,再进行乘法;除法:倒数再乘。

3. 分式的性质:分式也遵循加法交换律、结合律和乘法交换律、结合律;负数分式化成最简分式时,分母为正。

三、一元一次方程1. 一元一次方程的概念:一元一次方程是指只含有一个未知数的一次方程,且未知数的最高次数为1。

2. 解一元一次方程的基本方法:通过移项变元、整理方程式,最终得到未知数的值。

3. 一元一次方程的应用:一元一次方程在解决实际问题中的应用非常广泛,如人头问题、水池问题、速度问题等。

四、一元一次方程组1. 一元一次方程组的概念:一元一次方程组是指由两个或两个以上的一元一次方程组成的方程组。

2. 一元一次方程组的解法:通过分别解方程组中的各个方程,最终得到未知数的值。

八年级上册数学笔记知识点

八年级上册数学笔记知识点

八年级上册数学笔记知识点一、有理数1. 有理数:在现实生活中存在着大量的具有相反意义的量,如向东走与向西走,盈利与亏损等。

用一种符号表示具有相反意义的量就得到有理数。

2. 有理数的分类:整数和分数统称为有理数。

注意:0既不是正数也不是负数。

二、数轴1. 数轴:规定了原点、正方向和单位长度的直线叫做数轴。

2. 建立数轴:先确定原点、再确定正方向、最后确定单位长度。

3. 理解数轴上的点与实数是一一对应的关系。

三、绝对值1. 定义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

2. 规律总结:一个正数的绝对值是大于它本身;一个负数的绝对值是小于它的实际绝对值;0的绝对值是它本身。

四、相反数1. 定义:只有符号不同的两个数叫做互为相反数。

2. 注意:互为相反数的两个数不一定是异号,但一定是非零的数;符号不同的两个数也互为相反数。

如-a和a互为相反数,并且有绝对值较大的一个符号决定相反数的符号。

五、公式定理部分1. 代数式求值:把已知条件整体代入代数式中求出未知量的值。

2. 代数式的变形:根据代数式中数字与字母的特点,灵活运用乘法对加法的分配律,提取公因式以及公式法等使代数式得到简化。

3. 特殊三角形:等边三角形、等腰三角形、直角三角形等,分别根据其性质得出有关边、角的关系式,并注意综合运用。

六、三角形部分1. 等腰三角形:根据等腰三角形的特点综合运用勾股定理、三角形内角和定理、三角形稳定性等知识求出角度的大小。

2. 直角三角形:根据直角三角形的特点综合运用勾股定理、三角函数等知识求出线段的长或角的度数。

七、四边形部分平行四边形和梯形是两种最基本的四边形,其它四边形都是由这两种基本四边形通过转化而得到的或是它们的特例。

因此,在研究四边形的有关性质时,应从基本四边形的性质入手,结合具体四边形的特点进行转化(通过添加辅助线)来解决。

八、函数部分函数思想是初中数学中的一个重要思想,应通过具体问题来培养这种思想,应弄清一个函数包括定义域和对应法则两部分,注意函数的定义域优先的原则。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中八年级上册数学知识点整理总结第一章 勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。

3、勾股数:满足222c b a =+的三个正整数,称为勾股数。

第二章 实数一、实数的概念及分类1、实数的分类 正有理数 有理数 零 有限小数和无限循环小数实数 负有理数 正无理数无理数无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数值,如sin60o 等 二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。

2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。

(|a|≥0)。

零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a≥0;若|a|=-a ,则a≤0。

3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

5、估算三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。

特别地,0的算术平方根是0。

表示方法:记作“a”,读作根号a。

性质:正数和零的算术平方根都只有一个,零的算术平方根是零。

2、平方根:一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(或二次方根)。

表示方法:正数a的平方根记做“a±”,读作“正、负根号a”。

性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。

开平方:求一个数a的平方根的运算,叫做开平方。

≥a注意a的双重非负性:a≥03、立方根一般地,如果一个数x的立方等于a,即x3=a那么这个数x 就叫做a 的立方根(或三次方根)。

表示方法:记作3a性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

注意:33aa-=-,这说明三次根号内的负号可以移到根号外面。

四、实数大小的比较1、实数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。

2、实数大小比较的几种常用方法(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。

(2)求差比较:设a、b是实数,,0baba>⇔>-,0baba=⇔=-baba<⇔<-0(3)求商比较法:设a、b是两正实数,;1;1;1babababababa<⇔<=⇔=>⇔>(4)绝对值比较法:设a、b是两负实数,则baba<⇔>。

(5)平方法:设a、b是两负实数,则baba<⇔>22。

五、算术平方根有关计算(二次根式)1、含有二次根号“”;被开方数a 必须是非负数。

2、性质:(1))0()(2≥=a a a)0(≥a a(2)==a a 2)0(<-a a(3))0,0(≥≥•=b a b a ab ()0,0(≥≥=•b a ab b a ) (4))0,0(>≥=b a bab a ()0,0(>≥=b a baba ) 3、运算结果若含有“a ”形式,必须满足:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式六、实数的运算(1)六种运算:加、减、乘、除、乘方 、开方 (2)实数的运算顺序先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。

(3)运算律加法交换律 a b b a +=+加法结合律 )()(c b a c b a ++=++ 乘法交换律 ba ab = 乘法结合律 )()(bc a c ab =乘法、加法的分配律 ac ab c b a +=+)(第三章 位置的确定一、 在平面内,确定物体的位置一般需要两个数据。

二、平面直角坐标系及有关概念 1、平面直角坐标系在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。

其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;x 轴和y 轴统称坐标轴。

它们的公共原点O 称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

2、为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x 轴和y 轴上的点(坐标轴上的点),不属于任何一个象限。

3、点的坐标的概念对于平面内任意一点P,过点P 分别x 轴、y 轴向作垂线,垂足在上x 轴、y 轴对应的数a ,b 分别叫做点P 的横坐标、纵坐标,有序数对(a ,b )叫做点P 的坐标。

点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。

平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标。

平面内点的与有序实数对是一一对应的。

4、不同位置的点的坐标的特征 (1)、各象限内点的坐标的特征 点P(x,y)在第一象限0,0>>⇔y x点P(x,y)在第二象限0,0><⇔y x 点P(x,y)在第三象限0,0<<⇔y x 点P(x,y)在第四象限0,0<>⇔y x (2)、坐标轴上的点的特征点P(x,y)在x 轴上0=⇔y ,x 为任意实数 点P(x,y)在y 轴上0=⇔x ,y 为任意实数点P(x,y)既在x 轴上,又在y 轴上⇔x ,y 同时为零,即点P坐标为(0,0)即原点(3)、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线(直线y=x )上⇔x 与y 相等点P(x,y)在第二、四象限夹角平分线上⇔x 与y 互为相反数 (4)、和坐标轴平行的直线上点的坐标的特征 位于平行于x 轴的直线上的各点的纵坐标相同。

位于平行于y 轴的直线上的各点的横坐标相同。

(5)、关于x 轴、y 轴或原点对称的点的坐标的特征 点P 与点p’关于x 轴对称⇔横坐标相等,纵坐标互为相反数,即点P (x ,y )关于x 轴的对称点为P’(x ,-y )点P 与点p’关于y 轴对称⇔纵坐标相等,横坐标互为相反数,即点P (x ,y )关于y 轴的对称点为P’(-x ,y )点P 与点p’关于原点对称⇔横、纵坐标均互为相反数,即点P (x ,y )关于原点的对称点为P’(-x ,-y )(6)、点到坐标轴及原点的距离 点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x 轴的距离等于y (2)点P(x,y)到y 轴的距离等于x (3)点P(x,y)到原点的距离等于22y x +三、坐标变化与图形变化的规律:一、函数:一般地,在某一变化过程中有两个变量x 与y ,如果给定一个x 值,相应地就确定了一个y 值,那么我们称y 是x 的函数,其中x 是自变量,y 是因变量。

二、自变量取值范围使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。

三、函数的三种表示法及其优缺点(1)关系式(解析)法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。

(2)列表法把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图象法用图象表示函数关系的方法叫做图象法。

(1)列表:列表给出自变量与函数的一些对应值 (2)描点:以表中每对对应值为坐标,在坐标平面内描出相(3)连线:按照自变量由小到大的顺序,把所描各点用平滑 1、正比例函数和一次函数的概念一般地,若两个变量x ,y 间的关系可以表示成b kx y +=(k ,b 为常数,k ≠0)的形式,则称y 是x 的一次函数(x 为自变量,y 为因变量)。

特别地,当一次函数b kx y +=中的b=0时(即kx y =)(k 为常数,k ≠0),称y 是x 的正比例函数。

2、一次函数的图像: 所有一次函数的图像都是一条直线3、一次函数、正比例函数图像的主要特征:一次函数b kx y +=的图像是经过点(0,b )的直线;正比例6、正比例函数和一次函数解析式的确定确定一个正比例函数,就是要确定正比例函数定义式kxy=(k ≠0)中的常数k。

确定一个一次函数,需要确定一次函数定义式bkxy+=(k≠0)中的常数k和b。

解这类问题的一般方法是待定系数法。

7、一次函数与一元一次方程的关系:任何一个一元一次方程都可转化为:kx+b=0(k、b为常数,k≠0)的形式.而一次函数解析式形式正是y=kx+b(k、b为常数,k≠0).当函数值为0时, 即kx+b=0就与一元一次方程完全相同.结论:由于任何一元一次方程都可转化为kx+b=0(k、b为常数,k≠0)的形式.所以解一元一次方程可以转化为:当一次函数值为0时,求相应的自变量的值.从图象上看,这相当于已知直线y=kx+b确定它与x轴交点的横坐标值.第五章二元一次方程组1、二元一次方程含有两个未知数,并且所含未知数的项的次数都是1的整式方程叫做二元一次方程。

2、二元一次方程的解适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

3、二元一次方程组含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。

4二元一次方程组的解二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。

5、二元一次方程组的解法(1)代入(消元)法(2)加减(消元)法6、一次函数与二元一次方程(组)的关系:(1)一次函数与二元一次方程的关系:直线y=kx+b上任意一点的坐标都是它所对应的二元一次方程kx- y+b=0的解(2)一次函数与二元一次方程组的关系:二元一次方程组的解可看作两个一次函数和的图象的交点。

相关文档
最新文档