认识无理数
无理数的认识与运算

无理数的认识与运算在我们的数学世界中,有理数是大家比较熟悉和常见的数,比如整数和分数。
但还有一类数,它们被称为无理数,就像数学领域中的“神秘嘉宾”,常常让初学者感到困惑和好奇。
那什么是无理数呢?简单来说,无理数是无限不循环小数。
比如说,圆周率π就是一个非常著名的无理数,约等于 31415926它的小数位无穷无尽且没有循环的规律。
再比如√2(根号 2),它的值约为141421356也是一个无理数。
无理数的发现可是有着一段有趣的历史。
在古希腊时期,毕达哥拉斯学派认为“万物皆数”,他们所说的数指的是有理数。
然而,后来有一个叫做希帕索斯的人发现了一个问题。
如果一个正方形的边长为 1,那么它的对角线长度是多少呢?通过勾股定理可以算出,对角线的长度是√2。
但人们发现,√2不能表示为两个整数之比,也就是不能写成一个有理数的形式。
这一发现引起了轩然大波,因为它打破了当时人们对于数的认知。
那么,我们怎么来判断一个数是不是无理数呢?这可不像判断有理数那么简单。
对于一些常见的无理数,我们可以通过其定义和性质来判断。
比如,如果一个数的小数部分是无限不循环的,那它就是无理数。
但对于一些复杂的数,可能需要通过一些数学方法来证明。
接下来,让我们来看看无理数的运算。
无理数的加、减、乘、除运算可不像有理数那么简单直接。
先来说说加法和减法。
两个无理数相加或相减,结果可能是有理数,也可能是无理数。
比如,√2 +(√2)= 0,结果是有理数;而√2 +√3 则是一个无理数。
乘法运算中,如果两个无理数相乘的结果是一个有理数,那么这两个无理数互为有理化因式。
例如,√2 × √8 =√16 = 4。
除法运算也类似,比如,√8 ÷ √2 =√4 = 2。
在进行无理数的运算时,常常需要将其化简。
比如,计算√18 √8,我们先将它们化为最简形式,√18 =3√2,√8 =2√2,然后相减得到√18 √8 =3√2 2√2 =√2 。
认识无理数

认识无理数认识无理数无理数是一种特殊的数,它无法表示为两个整数的比值,也不能用分数或者小数表示。
无理数是一种无限不循环的小数,它的小数部分永远不会重复。
在古代,无理数的概念并不存在。
古代数学家和自然哲学家们认为宇宙中的一切事物都可以用有理数表示和理解。
然而,随着数学的发展,人们意识到有些长度是无法用有理数来表示的,比如一条边长为1的正方形的对角线。
最早提出无理数概念的数学家是希腊哲学家毕达哥拉斯。
他发现了一个不能表示为两个整数之比的数,即根号2。
这个数字是无理数的典型例子,它的小数部分是无限不循环的。
希腊人因此认识到,数学上还存在着一种新的数。
接下来的几个世纪里,数学家们对无理数的理解有所深化。
公元3世纪的数学家阿基米德成为了解析无理数的先驱之一。
他创造了一个近似求出根号2的方法,即不断逼近根号2的有理数序列。
这种方法被称为连分数方法,是一种处理无理数的常见技巧。
然而,数学家们很快意识到连分数方法有一定的限制,无法涵盖所有无理数。
在17世纪,法国数学家笛卡尔提出了重要的思路,他认为无理数应该通过代数的方式来研究。
这种代数方法的奠基人是德国数学家弗朗茨·韦尔斯特拉斯和理查德·迪德金德。
他们通过用代数方程来表示无理数,进一步深化了对无理数的理解。
无理数的概念在数学发展的过程中发挥了重要作用。
需要指出的是,无理数不仅仅是指那些无法用有限小数表示的数。
根号2是一个无理数,但是根号4是一个有理数,因为它可以表示为2的平方根。
无理数在现代数学中有着广泛的应用。
在几何学中,无理数广泛用于测量,比如计算圆的周长和面积。
在物理学中,无理数被用来表示实际世界中的各种测量结果,比如重力加速度、电荷大小等等。
无理数的一些性质也是数学家们关注的重点。
无理数是无限不循环的,这意味着它的各个数字不会重复出现。
这种无限性质使得无理数具有不可数性,也就是说无理数的个数是不可数的。
同时,无理数和有理数的关系也是研究的一个重要课题。
认识无理数课件

第二章 实数
1
认识无理数
学习目标
1.知道非有理数的存在,认识无理数.
2.理解无理数的概念,掌握无理数与有理数的区别,并
能判断一个数是有理数还是无理数.(重点)
3.探索无理数是无限不循环小数,并从中体会无限逼
近的思想(难点)
复习回顾
1.整 数和 分 数统称为有理数.
整数分为 正整数、0、负整数
3 (均
填整数)。
3
7.有六个数:0.123,(-1.5) ,3.1416, ,-2π,
0.1020020002···(每两个2之间依次增加一个0),若其中无理数
的个数为x,整数的个数为y,非负数的个数为z,则
x+y+z=
6
.
五、当堂达标检测
拓展提升
在下图的正方形网格中画出1个三角形使三边都是无理数。
例2:在下列正方形网格中,先找出长度为有理数的线段,再找
出长度是无理数的线段.
长度为有理数的线段: AB、EF
长度为无理数的线段:CD、GH、MN
三、即学即练,应用知识
1.判断下列说法是否正确:
(1)所有无限小数都是无理数;
(2)所有无理数都是无限小数;
(3)有理数都是有限小数;
(4)不是有限小数的不是有理数.
;
分数分为 正分数、负分数
.
2.一个整数的平方一定是整数吗? 是
3 .一个分数的平方一定是分数吗?
是
一、创设情境,引入新知
活动:把两个边长为1的小正方形通过剪、拼,设法得到一个大正方形,你会吗?
1
1
一、创设情境,引入新知
还有好多方法,课余时间再动手试一试,比比谁找的多!
《认识无理数》课件

无理数的特征
无理数的小数部分是无限不循环的, 无法精确表示。
无理数是实数的一种,具有实数的所 有性质和运算规则。
无理数与有理数的区别
有理数是可以表示为 两个整数之比的数, 包括整数、分数和十 进制小数。
有理数和无理数在实 数域中是互斥的,即 它们不能相互转化。
无理数则无法表示为 分数形式,其小数部 分无限不循环。
古希腊数学家阿基米德首次使用圆内接多边形的方法近似计 算出圆周率的值。
根号2的发现
根号2是一个无限不循环小数,表示2的平方根。
古希腊数学家欧几里德在《几何原本》中首次证明了根号2的存在性,并对其进 行了近似计算。
03 无理数的应用
在几何学中的应用
勾股定理
无理数在几何学中最为著名的应 用是勾股定理,它说明了直角三 角形的两条直角边的平方和等于 斜边的平方,其中斜边长度是一
无理数在未来的发展前景
01
推动数学与其他学科的进一步融合
随着科学技术的不断发展,无理数将在更多领域发挥重要作用,推动数
学与其他学科的进一步融合。
02
深化实数理论的研究
随着数学的发展,实数理论的研究将不断深入,无理数作为实数理论的
基础之一,其研究也将得到进一步深化。
03
促进数学教育的发展
无理数是数学教育中的重要内容之一,随着教育的不断改革和完善,无
02 无理数的产生
无法精确表示的数
无法用分数精确表示的数
例如,0.333...虽然可以无限接近于1/3,但无法精确等于1/3。
无法用有限小数或循环小数精确表示的数
例如,0.1010010001...是一个无限不循环小数,无法用有限小数或循环小数来 表示。
圆周率π的发现
北师大版数学八年级上册1《认识无理数》教案5

北师大版数学八年级上册1《认识无理数》教案5一. 教材分析《认识无理数》是人教版八年级数学上册的一章,本章主要让学生了解无理数的概念、性质和应用。
无理数是实数的一个重要组成部分,与有理数相比,无理数具有无限不循环的小数特点。
本章内容在数学系统中占有重要地位,为学生深入学习三角函数、复数等数学知识打下基础。
二. 学情分析学生在学习本章内容前,已经掌握了有理数、实数等基础知识,对数的运算和性质有一定的了解。
但学生对无理数的概念、性质和应用可能较为陌生,因此,在教学过程中,需要注重引导学生从已有知识出发,逐步理解和掌握无理数的相关概念。
三. 教学目标1.了解无理数的概念,掌握无理数的性质;2.能够对无理数进行简单的运算和估计;3.理解无理数在实际生活中的应用,提高数学素养。
四. 教学重难点1.无理数的概念及其与有理数的区别;2.无理数的性质,如无限不循环小数、不能表示为分数等;3.无理数在实际生活中的应用。
五. 教学方法1.采用情境教学法,以生活实例引导学生认识无理数;2.采用探究教学法,让学生通过小组合作、讨论,探索无理数的性质;3.采用实践教学法,让学生通过实际操作,体会无理数在生活中的应用。
六. 教学准备1.准备相关的生活实例和图片,用于导入和巩固环节;2.准备无理数的性质和运算练习题,用于操练和家庭作业环节;3.准备PPT或黑板,用于呈现和板书。
七. 教学过程1.导入(5分钟)利用生活实例,如测量物体长度、计算圆的周长等,引导学生认识无理数。
让学生感受无理数在实际生活中的存在,激发学生的学习兴趣。
2.呈现(10分钟)通过PPT或黑板,呈现无理数的概念和性质。
详细解释无理数的定义,阐述无理数与有理数的区别,展示无理数的性质,如无限不循环小数、不能表示为分数等。
3.操练(10分钟)让学生进行无理数的运算练习,如求无理数的和、差、积、商等。
通过实际操作,让学生加深对无理数的理解,巩固所学知识。
4.巩固(10分钟)通过小组合作、讨论,让学生探究无理数的性质。
认识无理数课件ppt

90
9
事实上,任何一个有理数都可以写成有限小数或无 限循环小数. 反过来,任何有限小数或无限循环小数也都是有理数.
无理 2
0.101 001 000 1…(两个1之间依次多1个0)
-168.323 223 222 3…(两个3之间依次多1个2)
无理数有_______________________________ 实数有___27_2_,__13_,__, 0_._3_, 0____________________
【规律方法】
无理数的特征:
1.圆周率 及一些最终结果含有 的数.
2.开方开不尽的数. 3.有一定的规律,但不循环的无限小数.
随堂练习
1.下列各数:
,0,0.23,1,25,
2
27
0.303
003
(相邻两个3之间0
的个数逐次加1),1中,无理数的个数是( )
A.2个
B.3个 C.4个 D.5个
【解析】选A.无限不循环小数是无理数,其中 π,0.303 003 2
(相邻两个3之间0的个数逐次加1)两个是无理数,其他是有理数.
1 ,
5 ,
4
2
0,
有理数集合
, 0.373 773 777 3 (相邻两个3之间的7的个 数逐次加1)
无理数集合
【跟踪训练】
填空:在实数 22 , 1 , ,0.3,0 中,
73
整数有_______0__________________________ 有理数有____2_72_,__13_,_0_.3_,_0__________________
学习目标
1.理解无理数的概念,会判断一个数是有理数还是 无理数. 2.能在数轴上表示某些简单的无理数.
让我们一起认识简单的无理数

让我们一起认识简单的无理数无理数是一类特殊的数,它们无法表示为两个整数的比值。
与有理数相比,无理数更加神秘和复杂。
在数学领域,无理数的研究具有重要的意义,它们不仅拓宽了数学的边界,还深刻影响了人类对世界的认知。
本文将带领读者一起探索简单的无理数,感受它们的魅力。
一、无理数的定义和特点无理数是指不能表示为两个整数的比值的实数。
它们既无限而无循环的小数,也无法用分数表示。
最常见的无理数有根号2、π、e等。
这些无理数在十进制表示时,小数部分是无限不循环的。
无理数有其独特的特点,首先是无限性。
无理数的小数部分没有尽头,永不终止。
无论我们怎样计算,都无法得出一个精确的结果。
其次,无理数的小数部分也是无循环的。
相较于有理数的循环小数,无理数的小数部分没有任何重复的模式。
二、根号2的无理数性质根号2是最简单却也最重要的无理数之一。
它的十进制表示是一个无限不循环小数:1.41421356...。
根号2无法被写成两个整数的比值,这一事实被古希腊数学家毕达哥拉斯首先发现。
他证明了根号2的无理性,从而揭示了无理数的存在。
根号2还有一些重要的性质,例如它是一个代数数。
这意味着根号2是一个方程的根,具体而言,根号2是方程x^2=2的正实数解。
此外,根号2还可以通过几何方法构造得到,可以在一个边长为1的正方形中,作一条对角线,那么这条对角线的长度就是根号2。
三、π与圆周率π是另一个著名的无理数,它表示圆的周长和直径的比值。
π的十进制表示是一个无限不循环小数:3.14159265...。
π的计算一直是数学家们的研究重点之一,迄今为止,已经计算到了数万位的精度。
π的无理性最早是由古希腊数学家阿基米德提出的,他通过将圆的周长和直径之间的比值进行逼近来证明了π的无理性。
此后,人们通过无数努力,使用各种方法、算法逐渐逼近π的精确值,但仍然没有找到完全精确的表示。
π的无理性和无限性使得它在数学和应用领域有着广泛的应用。
它在几何学、物理学、工程学等多个领域都发挥着重要作用,是许多数学公式和方程的关键因素。
认识无理数ppt课件

新课引入
小红是刚升入八年级的新生,一个周末的上午,当工程 师的爸爸给小红出了一道数学题:一个边长为6cm的正方形 木板,按如图的痕迹锯掉四个一样的直角三角形.请计算剩下 的正方形木板的面积是多少?剩下的正方形木板的边长又是 多少厘米呢?见过这个数吗?你能帮小红解决这个问题吗?
探究学习
核心知识点一 无理数的认识 讨论一:a,b是否存在,它们是有理数吗?
(3)借助计算器进行探索,过程整理如下,你的结果呢?
边长a 1<a<2 1.4<a<1.5 1.41<a<1.42 1.414<a<1.415 1.4142<a<1.4143
面积s 1<s<4 1.96<s<2.25 1.9881<s<2.0164 1.999396<s<2.002225 1.99996164<s<2.00024449
解:(1)在整数10和11之间 (2)x精确到十分位时,x在10.2与10.3之间,x精确到百分位时,x 在10.29与10.30之间
9.如图,在3×3的方格网(每个小方格的边长均为1) 中有一阴影正方形, (1)阴影正方形的面积是多少? (2)阴影正方形的边长介于哪两个整数之间?
解:(1)S阴影正方形=3×3-12 ×1×2×4=5 (2)介于2和3之间
随堂练习
1.下列各数中,是有理数的是( B ) A.面积为3的正方形的边长 B.体积为8的正方体的棱长 C.两直角边长分别为2和3的直角三角形的斜边长 D.长为3,宽为2的长方形的对角线长
2.下列各数:π,0,0.23·,22,0.303 003 000 3…(每个 3 后增加 1 个 0)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
S ?
2b 1
图2-1
1.判断下列说法是否正确;
(1)无限小数都是无理数.(
错
)
(2)无理数都是无限小数.( 对 )
(3)带根号的数都是无理数.( 错 )
2.把下列各数分别填在相应的集合中;
3.1415926 √—7 0.6
√3—6 0 ~
22
7
-8
√3
— 3
0.191191119…
结果都为分数,所以a不可能是以3 为分母的分数。
a可能是分数吗? 试说出原因。
a
两个相同的最简分数的乘积仍然是分 数,所以a不可能是分数。
a
a既不是整数又不是分数,所以a一定不是 有理数。
那么a到底是什么数呢? 古人把这个数取名为无理数。
课堂练习:下列各数哪些是无理数?
,3.14 , 0.1010010001…, 2 , 3 , 9 , 2 1 5
思考: 在a 中的无理数a,到底是什么样的数
呢?
欢迎批评 、指正 谢谢大家!
,-3.5, …
二 拼图活动
有两个边长为1的小正方形,剪一剪,拼一拼,设法 得到一个大的正方形。看看能有几种拼法?
1
1
1
1
完美的 正方形
拼图:
变 化 的 世 界
1
1
奇 妙 的 组 合
问题与思考
(1)设大正方形的边长为a,a满足什么条件?
a
因为正方形的面积为2
S
所以 a
a可能是整数吗?
,
a
,
32 9,
越来越大,
所以a不可能是整数
a可能是以2为分母的分数吗?
,
a
3 3 9 ..... . 2 2 4,
结果都为分数,所以a不可能是以2 为分母的分数。
a可能是以3为分母的分数吗?
,
a
,
,
...... ,
的数吗? 右图是由16个边长为 1的小正方形拼成的,任 意连接这些小正方形的 若干个顶点,可得到一 些线段。试分别找出两 条长度是有理数的线段 和两条长度不是有理数 的线段。
例如:
E
由勾股定理知:
线段AB,DE,AE的长 能用有理数表示;
线段AC,CE,BE的长
不能用有理数表示。
C
AB
D
小结:
1.在生活中确实存在既不是整数也不是分数的数, 既不是有理数的数。 2.无理数在现实生活中是大量存在的。 3.学完本节后你有什么感受?
无理数有 0.1010010001… , 3 , , 2 1
方法点拔:
判定一个数是否无理数:
(1)看它是不是无限不循环数不能;
具体从以下几方面来判断:
(1)开方开不尽的数是无理数;
(2) 是无理数;
(3)无理数与有理数的和、差一定是无理数;
(4)无理数与有理数(不为0)的积、商一定是无理数;
每相邻两个9之间依次多一个1
有理数集合
无理数集合
随堂练习:
1.如图,正三角形的边长为2,高为h,h可能是 整数吗?可能是分数吗?
解:因为ABC是正三角形,且AD BC
A
所以BD DC,则BD AB
由勾股定理得 : h
h
h不可能是整数; h也不可能是分数。
B
D
C
生活中真的有很多不是有理数
无理数的发现
希伯索斯(Hippasus)
毕达哥拉斯的学生
?
真理毕竟是淹没不了的。 真理是经得起时间的考验的! 人们不会忘记希伯索斯这位为真理而献身的 可敬学者,还把这样的数取名为“无理数”。
巧妙的组合:
(1)图2-1中,以直角三角形 的斜边为边的正方形的 面积是多少?
(2)设该正方形的边长为b, b满足什么样条件?
《数学》(八年级 上册)
x x?
一 复习引入:
1.我们学过的数有哪些? 2.什么是有理数?
回顾 & 思考☞
什么叫有理数?
正整数:如:1,2,3,…
有 整数 理 数
分数
零:0
负整数:如-1,-2,-3,…
正分数:如 1 , 1 , 5.2, … 23
负分数如 1 , 5
5
6
3.除了有理数外还有没有其他的数呢?