全国中考数学试题分类解析汇编专题28概率统计综合
2021年全国中考数学真题分类汇编--统计与概率的综合运用(学生版)

2021全国中考真题分类汇编(统计与概率)----统计与概率的综合运用一、选择题1. (2021•湖南省衡阳市)下列说法正确的是( ) A .为了解我国中学生课外阅读情况,应采取全面调查方式 B .某彩票的中奖机会是1%,买100张一定会中奖C .从装有3个红球和4个黑球的袋子里摸出1个球是红球的概率是D .某校有3200名学生,为了解学生最喜欢的课外体育运动项目,随机抽取了200名学生,其中有85名学生表示最喜欢的项目是跳绳,估计该校最喜欢的课外体育运动项目为跳绳的有1360人2. (2021•湖北省江汉油田)下列说法正确的是( ) A. “打开电视机,正在播放《新闻联播》”是必然事件 B. “明天下雨概率为0.5”,是指明天有一半的时间可能下雨 C. 一组数据“6,6,7,7,8”的中位数是7,众数也是7D. 甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同.方差分别是20.2s =甲,20.4s =乙,则甲的成绩更稳定二.解答题1. (2021•黑龙江省大庆市)某校要从甲,乙两名学生中挑选一名学生参加数学竞赛,在最近的8次选拔赛中,他们的成績(成绩均为整数,单位:分)如下: 甲:92,95,96,88,92,98,,99,100 乙:100,87,92,93, 9 ,95,92,98由于保存不当,学生乙有一次成绩的个位数字模糊不清, (1)求甲成绩的平均数和中位数;(2)求事件“甲成绩的平均数大于乙成绩的平均数”的概率;(3)当甲成绩的平均数与乙成绩的平均数相等时,请用方差大小说明应选哪个学生参加数学竞赛.2.(2021•山东省济宁市)某校为了解九年级学生体质健康情况,随机抽取了部分学生进行体能测试,并根据测试结果绘制了不完整的条形统计图和扇形统计图,请回答下列问题.(1)在这次调查中,“优秀”所在扇形的圆心角的度数是;(2)请补全条形统计图;(3)若该校九年级共有学生1200人,则估计该校“良好”的人数是;(4)已知“不及格”的3名学生中有2名男生、1名女生,如果从中随机抽取两名同学进行体能加试,请用列表法或画树状图的方法,求抽到两名男生的概率是多少?3.(2021•湖南省常德市)我市华恒小区居民在“一针疫苗一份心,预防接种尽责任”的号召下,积极联系社区医院进行新冠疫苗接种.为了解接种进度,该小区管理人员对小区居民进行了抽样调查,按接种情况可分如下四类:A类——接种了只需要注射一针的疫苗:B 类——接种了需要注射二针,且二针之间要间隔一定时间的疫苗;C类——接种了要注射三针,且每二针之间要间隔一定时间的疫苗;D类——还没有接种,图1与图2是根据此次调查得到的统计图(不完整).请根据统计图回答下列问题.(1)此次抽样调查的人数是多少人?(2)接种B类疫苗的人数的百分比是多少?接种C类疫苗的人数是多少人?(3)请估计该小区所居住的18000名居民中有多少人进行了新冠疫苗接种.(4)为了继续宣传新冠疫苗接种的重要性,小区管理部门准备在已经接种疫苗的居民中征集2名志愿宣传者,现有3男2女共5名居民报名,要从这5人中随机挑选2人,求恰好抽到一男和一女的概率是多少.4.(2021•湖南省衡阳市)“垃圾分类工作就是新时尚”,为了改善生态环境,有效利用垃圾剩余价值,2020年起,我市将生活垃圾分为四类:厨余垃圾、有害垃圾、可回收垃圾、其他垃圾.某学习研究小组在对我市垃圾分类实施情况的调查中,绘制了生活垃圾分类扇形统计图,如图所示.(1)图中其他垃圾所在的扇形的圆心角度数是度;(2)据统计,生活垃圾中可回收物每吨可创造经济总价值约为0.2万元.若我市某天生活垃圾清运总量为500吨,请估计该天可回收物所创造的经济总价值是多少万元?(3)为了调查学生对垃圾分类知识的了解情况,某校开展了相关知识竞赛,要求每班派2名学生参赛.甲班经选拔后,决定从2名男生和2名女生中随机抽取2名学生参加比赛,求所抽取的学生中恰好一男一女的概率.5.(2021•怀化市)某校开展了“禁毒”知识的宣传教育活动.为了解这次活动的效果,现随机抽取部分学生进行知识测试,并将所得数据绘制成不完整的统计图表.频率等级频数(人数)优秀600.6良好a0.25合格10b基本合格50.05合计c1根据统计图表提供的信息,解答下列问题:(1)a=,b=,c=;(2)补全条形统计图;(3)该学校共有1600名学生,估计测试成绩等级在合格以上(包括合格)的学生约有多少人?(4)在这次测试中,九年级(3)班的甲、乙、丙、丁四位同学的成绩均为“优秀”,现班主任准备从这四名同学中随机选取两名同学出一期“禁毒”知识的黑板报,请用列表法或画树状图法求甲、乙两名同学同时被选中的概率.6.(2021•山东省泰安市)为庆祝中国共产党成立100周年,落实教育部《关于在中小学组织开展“从小学党史,永远跟党走”主题教育活动的通知》要求,某学校举行党史知识竞赛,随机调查了部分学生的竞赛成绩,绘制成两幅不完整的统计图表.根据统计图表提供的信息,解答下列问题:(1)本次共调查了名学生;C组所在扇形的圆心角为度;(2)该校共有学生1600人,若90分以上为优秀,估计该校优秀学生人数为多少?(3)若E组14名学生中有4人满分,设这4名学生为E1,E2,E3,E4,从其中抽取2名学生代表学校参加上一级比赛,请用列表或画树状图的方法求恰好抽到E1,E2的概率.竞赛成绩统计表(成绩满分100分)组别分数人数4A组75<x≤80B组80<x≤8510C组85<x≤90D组90<x≤95E组95<x≤14100合计7.(2021•广西玉林市)2021年是中国共产党建党100周年华诞.“五一”后某校组织了八年级学生参加建党100周年知识竞赛,为了了解学生对党史知识的掌握情况,学校随机抽取了部分同学的成绩作为样本,把成绩按不及格、合格、良好、优秀四个等级分别进行统计,并绘制了如下不完整的条形统计图与扇形统计图:请根据图中提供的信息解答下列问题:(1)根据给出的信息,将这两个统计图补充完整(不必写出计算过程);(2)该校八年级有学生650人,请估计成绩未达到“良好”及以上的有多少人?(3)“优秀”学生中有甲、乙、丙、丁四位同学表现突出,现从中派2人参加区级比赛,求抽到甲、乙两人的概率.8.(2021•湖北省随州市)疫苗接种初期,为更好地响应国家对符合条件的人群接种新冠疫苗的号召,某市教育部门随机抽取了该市部分七、八、九年级教师,了解教师的疫苗接种情况,得到如下统计表:(1)表中,a=______,b=______,c=______;(2)由表中数据可知,统计的教师中接种率最高的是______年级教师;(填“七”或“八”或“九”)(3)若该市初中七、八、九年级一共约有8000名教师,根据抽样结果估计未接种的教师约有______人;(4)为更好地响应号召,立德中学从最初接种的4名教师(其中七年级1名,八年级1名,九年级2名)中随机选取2名教师谈谈接种的感受,请用列表或画树状图的方法,求选中的两名教师恰好不在同一年级的概率.9.(2021•山东省菏泽市)2021年5月,菏泽市某中学对初二学生进行了国家义务教育质量检测,随机抽取了部分参加15米折返跑学生的成绩,学生成绩划分为优秀、良好、合格与不合格四个等级,学校绘制了如下不完整的统计图.根据图中提供的信息解答下列问题:(1)请把条形统计图补充完整;(2)合格等级所占百分比为%;不合格等级所对应的扇形圆心角为度;(3)从所抽取的优秀等级的学生A、B、C…中,随机选取两人去参加即将举办的学校运动会,请利用列表或画树状图的方法,求出恰好抽到A、B两位同学的概率.10.(2021•四川省达州市)为庆祝中国共产党成立100周年,在中小学生心中厚植爱党情怀,我市开展“童心向党”教育实践活动,舞蹈,书法,为了解学生的参与情况,该校随机抽取了部分学生进行“你愿意参加哪一项活动”(必选且只选一种),部分信息如下:(1)这次抽样调查的总人数为人,扇形统计图中“舞蹈”对应的圆心角度数为;(2)若该校有1400名学生,估计选择参加书法的有多少人?(3)学校准备从推荐的4位同学(两男两女)中选取2人主持活动,利用画树状图或表格法求恰为一男一女的概率.11.(2021•四川省广元市)“此生无悔入华夏,来世再做中国人!”自疫情暴发以来,我国科研团队经过不懈努力,成功地研发出了多种“新冠”疫苗,并在全国范围内免费接种.截止2021年5月18日16:20,全球接种“新冠”疫苗的比例为18.29%;中国累计接种4.2亿剂,占全国人口的29.32%.以下是某地甲、乙两家医院5月份某天各年龄段接种疫苗人数的频数分布表和接种总人数的扇形统计图:甲医院乙医院年龄段频数频率频数频率18-29周岁900 0.15 400 0.130-39周岁 a 0.25 1000 0.2540-49周岁2100 b c 0.22550-59周岁1200 0.2 1200 0.360周岁以上300 0.05 500 0.125(1)根据上面图表信息,回答下列问题:①填空:a=_________,b=_________,c=_________;②在甲、乙两医院当天接种疫苗的所有人员中,40-49周岁年龄段人数在扇形统计图中所占圆心角为_________;(2)若A、B、C三人都于当天随机到这两家医院接种疫苗,求这三人在同一家医院接种的概率.12. (2021•呼和浩特市))某大学为了解大学生对中国共产党党史识的学习情况,在大学一年级和二年级举行有关党史知识测试活动,现从一二两个年级中各随机抽取20名学生的测试成绩(满分50分,30分及30分以上为合格:40分及40分以上为优秀)进行整理、描述和分析,给出了下面的部分信息.大学一年级20名学生的测试成绩为:39,50,39,50,49,30,30,49,49,4,43,43,43,37,37,37,43,43,37,25.大学二年级20名学生的测试成绩条形统计图如下图所示;两个年级抽取的学生的测试成绩的平均数、众数、中位数、优秀率如下表所示:年级平均数众数中位数优秀率大一 a b 43 m大二39.5 44 c n请你根据上面提供的所有信息,解答下列问题:(1)上表中a=__________,b=__________,c=__________,m=__________,n__________;根据样本统计数据,你认为该大学一、二年级中哪个年级学生掌握党史知识较好?并说明理由(写出一条理由即可);(2)已知该大学一、二年级共1240名学生参加了此次测试活动,通过计算,估计参加此次测试活动成绩合格的学生人数能否超过1000人;(3)从样本中测试成绩为满分的一、二年级的学生中随机抽取两名学生,用列举法求两人在同一年级的概率.13.(2021•贵州省铜仁市)某校开展主题为“防疫常识知多少”的调查活动,抽取了部分学生进行调查,调查问卷设置了A:非常了解、B:比较了解、C:基本了解、D:不太了解四个等级,要求每个学生填且只能填其中的一个等级,采取随机抽样的方式,并根据调查结果绘制成如图所示不完整的频数分布表和频率直方图,根据以上信息回答下列问题:等级频数频率A20 0.4B15 bC10 0.2D a0.1(1)频数分布表中a=____________,b=____________,将频数分布直方图补充完整;(2)若该校有学生1000人,请根据抽样调查结果估算该校“非常了解”和“比较了解”防疫常识的学生共有多少人?(3)在“非常了解”防疫常识的学生中,某班有5个学生,其中3男2女,计划在这5个学生中随机抽选两个加入防疫志愿者团队,请用列表或画树状图的方法求所选两个学生中至少有一个女生的概率.14.(2021•湖北省黄石市)黄石是国家历史文化名城,素有“青铜故里、矿冶之都”的盛名.区域内矿冶文化旅游点有:A.铜绿山古铜矿遗址,B.黄石国家矿山公园,C.湖北水泥遗址博物馆,D.黄石园博园、矿博园.我市八年级某班计划暑假期间到以上四个地方开展研学旅游,学生分成四个小组,根据报名情况绘制了两幅不完整的统计图.请根据图中信息,解答下列问题:(1)全班报名参加研学旅游活动的学生共有______人,扇形统计图中A部分所对应的扇形圆心角是______;(2)补全条形统计图;(3)该班语文、数学两位学科老师也报名参加了本次研学旅游活动,他们随机加入A、B 两个小组中,求两位老师在同一个小组的概率.15.(2021•辽宁省本溪市)为迎接建党100周年,某校组织学生开展了党史知识竞赛活动.竞赛项目有:A.回顾重要事件;B.列举革命先烈;C.讲述英雄故事;D.歌颂时代精神.学校要求学生全员参加且每人只能参加一项,为了解学生参加竞赛情况,随机调查了部分学生,并将调查结果绘制成如下两幅不完整的统计图,请你根据图中信息解答下列问题:(1)本次被调查的学生共有________名;(2)在扇形统计图中“B项目”所对应的扇形圆心角的度数为________,并把条形统计图补充完整;(3)从本次被调查的小华、小光、小艳、小萍这四名学生中,随机抽出2名同学去做宣讲员,请用列表或画树状图的方法求出恰好小华和小艳被抽中的概率.16.(2021•四川省乐山市)某中学全校师生听取了“禁毒”宣传报告后,对禁毒人员肃然起敬.学校德育处随后决定在全校1000名学生中开展“我为禁毒献爱心”的捐款活动.张老师在周五随机调查了部分学生随身携带零花钱的情况,并将收集的数据进行整理,绘制了如图所示的条形统计图.(1)求这组数据的平均数和众数;(2)经调查,当学生身上的零花钱多于15元时,都到出零花钱的20%,其余学生不参加捐款.请你估计周五这一天该校可能收到学生自愿捐款多少元?(3)捐款最多的两人将和另一个学校选出的两人组成一个“禁毒”知识宣讲小组,若从4人中随机指定两人担任正、副组长,求这两人来自不同学校的概率.17.(2021•四川省凉山州)随着手机的日益普及,学生使用手机给学校管理和学生发展带来诸多不利影响,为了保护学生视力,防止学生沉迷网络和游戏,让学生在学校专心学习,促进学生身心健康发展,教育部办公厅于2021年1月15日颁发了《教育部办公厅关于加强中小学生手机管理工作的通知》,为贯彻《通知》精神、某学校团委组织了“我与手机说再见”为主题的演讲比赛,根据参赛同学的得分情况绘制了如图所示的两幅不完整的统计图.(其中A表示“一等奖”,B表示“二等奖”,C表示“三等奖”,D表示“优秀奖”)请你根据统计图中所提供的信息解答下列问题:(1)获奖总人数为______人,m _______;(2)请将条形统计图补充完整;(3)学校将从获得一等奖的4名同学(其中有一名男生,三名女生)中随机抽取两名参加全市的比赛,请利用树状图或列表法求抽取同学中恰有一名男生和一名女生的概率.18.(2021•四川省眉山市))吸食毒品极易上瘾,不但对人的健康危害极大,而且严重影响家庭和社会的稳定.为了解同学们对禁毒知识的掌握情况,从我市某校1000名学生中随机抽取部分学生进行问卷调查,调查评价结果分为:“了解较少”,“基本了解”,“了解较多”,“非常了解”四类,并根据调查结果绘制出如图所示的两幅不完整的统计图.请根据统计图回答下列问题:(1)本次抽取调查的学生共有人,其中“了解较多”的占%;(2)请补全条形统计图;(3)估计此校“非常了解”和“了解较多”的学生共有人;(4)“了解较少”的四名学生中,有3名学生A1,A2,A3是初一学生,1名学生B为初二学生,为了提高学生对禁毒知识的认识,对这4人进行了培训,然后从中随机抽取2人对禁毒知识的掌握情况进行检测.请用画树状图或列表的方法,求恰好抽到初一、初二学生各1名的概率.19.(2021•遂宁市)我市于2021年5月22-23日在遂宁观音湖举行了“龙舟赛”,吸引了全国各地选手参加.现对某校初中1000名学生就“比赛规则”的了解程度进行了抽样调查(参与调查的同学只能选择其中一项),并将调查结果绘制出以下两幅不完整的统计图表,请根据统计图表回答下列问题:类别频数频率不了解10 m了解很少16 0.32基本了解 b很了解 4 n合计 a 1(1)根据以上信息可知:a=,b=,m=,n=;(2)补全条形统计图;(3)估计该校1000名初中学生中“基本了解”的人数约有人;(4)“很了解”的4名学生是三男一女,现从这4人中随机抽取两人去参加全市举办的“龙舟赛”知识竞赛,请用画树状图或列表的方法说明,抽到两名学生均为男生和抽到一男一女的概率是否相同.20. 2021•四川省自贡市)为了弘扬爱国主义精神,某校组织了“共和国成就”知识竞赛,将成绩分为:A(优秀)、B(良好)、C(合格)、D(不合格)四个等级.小李随机调查了部分同学的竞赛成绩,绘制了如下统计图.(1)本次抽样调查的样本容量是_________,请补全条形统计图;(2)已知调查对象中只有两位女生竞赛成绩不合格,小李准备随机回访两位竞赛成绩不合格的同学,请用树状图或列表法求出恰好回访到一男一女的概率;(3)该校共有2000名学生,请你估计该校竞赛成绩“优秀”的学生人数.21.(2021•青海省)为了倡导“节约用水,从我做起”,某市政府决定对该市直属机关200户家庭用水情况进行调查.市政府调查小组随机抽查了其中部分家庭一年的月平均用水量(单位:吨),调查中发现,每户家庭月平均用水量在3~7吨范围内,并将调查结果制成了如下尚不完整的统计表:34567月平均用水量(吨)频数(户4a9107数)频率0.080.40b c0.14请根据统计表中提供的信息解答下列问题:(1)填空:a=,b=,c=.(2)这些家庭中月平均用水量数据的平均数是,众数是,中位数是.(3)根据样本数据,估计该市直属机关200户家庭中月平均用水量不超过5吨的约有多少户?(4)市政府决定从月平均用水量最省的甲、乙、丙、丁四户家庭中,选取两户进行“节水”经验分享.请用列表或画树状图的方法,求出恰好选到甲、丙两户的概率,并列出所有等可能的结果.22.(2021•湖北省荆门市)为庆祝中国共产党建党100周年,某校拟举办主题为“学党史跟党走”的知识竞赛活动.某年级在一班和二班进行了预赛,两个班参加比赛的人数相同,成绩分为A、B、C、D四个等级,其等级对应的分值分别为100分、90分、80分、70分,将这两个班学生的最后等级成绩分析整理绘制成了如图的统计图.(1)这次预赛中,二班成绩在B等及以上的人数是多少?(2)分别计算这次预赛中一班成绩的平均数和二班成绩的中位数;(3)已知一班成绩A 等的4人中有两个男生和2个女生,二班成绩A 等的都是女生,年级要求从这两个班A 等的学生中随机选2人参加学校比赛,若每个学生被抽取的可能性相等,求抽取的2人中至少有1个男生的概率.23. (2021•湖北省十堰市)为庆祝中国共产党成立100周年,某校举行党史知识竞赛活动.赛后随机抽取了部分学生的成绩,按得分划分为A 、B 、C 、D 四个等级,并绘制了如下不完整的统计表和统计图. 等级 成绩(x ) 人数A 90100x ≤≤ 15B 8090x ≤< aC 7080x ≤<18 D70x <7根据图表信息,回答下列问题:(1)表中a __________;扇形统计图中,C 等级所占的百分比是_________;D 等级对应的扇形圆心角为________度;若全校共有1800名学生参加了此次知识竞赛活动,请估计成绩为A 等级的学生共有_______人.(2)若95分以上的学生有4人,其中甲、乙两人来自同一班级,学校将从这4人中随机选出两人参加市级比赛,请用列表或树状图法求甲、乙两人至少有1人被选中的概率24. (2021•湖南省张家界市))为了积极响应中共中央文明办关于“文明用餐”的倡议,某校开展了“你的家庭使用公筷了吗?”的调查活动,并随机抽取了部分学生,对他们家庭用餐使用公筷情况进行统计,统计分类为以下四种:A (完全使用)、B (多数时间使用)、C (偶尔使用)、D (完全不使用),将数据进行整理后,绘制了两幅不完整的统计图.公筷使用情况条形统计图 使用公筷情况扇形统计图根据以上信息,解答下列问题:(1)本次抽取的学生总人数共有 . (2)补全条形统计图;(3)扇形统计图中A 对应的扇形的圆心角度数是 .(4)为了了解少数学生完全不使用公筷的原因,学校决定从D 组的学生中随机抽取两位进行回访,若D 组中有3名男生,其余均为女生,请用列表法或画树状图的方法,求抽取的两位学生恰好是一男一女的概率.公筷情况人。
中考数学复习高频考点精讲精练(全国通用):专题28 统计与概率(解析版)

D.了解一批灯泡的使用寿命,适合进行抽样调查,故本选项不合题意;
答案:C.
2.(2022•宁夏中考)某学习小组做摸球试验,在一个不透明的袋子里装有红、黄两种颜色的小球共 20 个,除颜色
外都相同.将球搅匀后,随机摸出 5 个球,发现 3 个是红球,估计袋中红球的个数是( )
A.12
B.9
C.8
D.6
A.了解全国中学生的睡眠时间 B.了解某河流的水质情况 C.调查全班同学的视力情况 D.了解一批灯泡的使用寿命 解:A.了解全国中学生的睡眠时间,适合进行抽样调查,故本选项不合题意;
B.了解某河流的水质情况,适合进行抽样调查,故本选项不合题意;
C.调查全班同学的视力情况,适合进行全面调查,故本选项符合题意;
鱼苗分别是 5 条、10 条,可以初步估计鱼苗数目较多的是 甲 鱼池.(填甲或乙)
解:由题意可得,
甲鱼池中的鱼苗数量约为:100÷
5 100
=2000(条),
乙鱼池中的鱼苗数量约为:100÷
10 100
=1000(条),
∵2000>1000,
∴初步估计鱼苗数目较多的是甲鱼池,
答案:甲.
8.(2022•上海中考)为了解学生的阅读情况,对某校六年级部分学生的阅读情况展开调查,并列出了相应的频数 分布直方图(如图所示)(每组数据含最小值,不含最大值)(0﹣1 小时 4 人,1﹣2 小时 10 人,2﹣3 小时 14 人, 3﹣4 小时 16 人,4﹣5 小时 6 人),若共有 200 名学生,则该学校六年级学生阅读时间不低于 3 小时的人数是 88 .
答案:D.
4.(2022•苏州中考)为迎接党的二十大胜利召开,某校开展了“学党史,悟初心”系列活动.学校对学生参加各
2018中考数学复习第八单元统计与概率第28讲统计试题

第八单元统计与概率第28讲统计1.(2014·巴中)今年我市有4万名学生参加中考,为了了解这些考生的数学成绩,从中抽取2 000名考生的数学成绩进行统计分析.在这个问题中,下列说法:①这4万名考生的数学中考成绩的全体是总体;②每个考生是个体;③2 000名考生是总体的一个样本;④样本容量是2 000.其中说法正确的有(C)A.4个B.3个C.2个D.1个2.(2013·广州)为了解中学生获取资讯的主要渠道,设置“A:报纸,B:电视,C:网络,D:身边的人,E:其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图,该调查的方式是________,图中的a的值是________.(D)A.全面调查,26B.全面调查,24C.抽样调查,26D.抽样调查,243.(2017·唐山路北区三模)下表为某市2017年5月上旬10天的日最低气温情况,则这10天中日最低气温的中位数和众数分别是(C)A.14 ℃,14 ℃ B.14 ℃,13 ℃C.13 ℃,13 ℃ D.13 ℃,14 ℃4.(2017·河南)小王参加某企业招聘测试,他的笔试,面试、技能操作得分分别为85分,80分,90分,若依次按照2∶3∶5的比例确定成绩,则小王的成绩是(D)A.255分 B.84分 C.84.5分 D.86分5.(2017·河北中考考试说明)某商场对上周女装的销售情况进行了统计,如下表所示:经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是(C)A.平均数 B.中位数 C.众数 D.方差6.(2017·日照)积极行动起来,共建节约型社会!我市某居民小区200户居民参加了节水行动,现统计了10户家庭一个月的节水情况,将有关数据整理如下:请你估计该200户家庭这个月节约用水的总量是(A)A.240吨 B.360吨 C.180吨 D.200吨7.(2017·广安)初三体育素质测试,某小组5名同学成绩如下所示,有两个数据被遮盖,如图:。
全国181套中考数学试题分类汇编28概率统计综合

28:概率统计综合一、选择题1.(重庆潼南4 分)以下说法中正确的选项是A、“翻开电视,正在播放《新闻联播》”是必定事件B、想认识某种饮猜中含色素的状况,宜采纳抽样检查C、数据 1, 1, 2,2, 3 的众数是3D、一组数据的颠簸越大,方差越小【答案】 B。
【考点】随机事件,全面检查与抽样检查,众数,方差。
【剖析】利用必定事件的定义、普查和抽样检查的特色、众数的定义、方差的定义即可作出判断:A、翻开电视,正在播放《新闻联播》是随机事件,故本选项错误,B、想认识某饮猜中含色素的状况,应用抽样检查,故本选项正确,C、数据 1, 1, 2, 2, 3 的众数是1、2,故本选项错误,D、一组数据的颠簸越大,方差越大,故本选项错误。
应选 B。
2.(辽宁沈阳 4 分)以下说法中,正确的选项是A.为检测我市正在销售的酸奶质量,应当采纳抽样检查的方式B.在连续 5 次的数学测试中,两名同学的均匀分同样,方差较大的同学数学成绩更稳固C.某同学连续10 次投掷质量均匀的硬币, 3 次正面向上,所以正面向上的概率是30%D.“ 2012 年将在我市举办全运会,这时期的每天都是晴日”是必定事件.【答案】 A。
【考点】全面检查与抽样检查,方差,随机事件,概率。
【剖析】依据全面检查与抽样检查的差别,方差和概率的意义,必定事件的看法对各选项挨次进行判断即可解答: A、为检测我市正在销售的酸奶质量,应当采纳抽样检查的方式,不可以采纳全面检查,正确;B、方差小的同学数学成绩更稳固,故本选项错误;C、概率应为二分之一,故本选项错误;D、每天都是晴天是可能事件,故本选项错误。
应选A。
b5E2RGbCAP3.(广西贵港 3 分)以下说法正确的选项是A.为了认识全国中学生的心理健康状况,应采纳全面检查的方式B.一组数据5, 6, 7, 6, 6, 8, 10 的众数和中位数都是 6C.一个游戏的中奖概率是0.1 ,则做 10 次这样的游戏必定会中奖D.若甲组数据的方差S 甲2= 0.05 ,乙组数据的方差S 乙2= 0.1 ,则乙组数据比甲组数据稳固【答案】 B。
中考数学试卷概率题解析

一、题目展示1. 从一副扑克牌中随机抽取一张牌,求抽到红桃的概率。
2. 一个口袋里有5个红球、3个蓝球和2个绿球,随机从口袋中摸出一个球,求摸出红球的概率。
3. 一个长方形花坛的长是8米,宽是5米,甲、乙两人分别从花坛的两个对角点同时出发,沿着花坛的边界跑,求甲、乙两人相遇的概率。
二、解题思路1. 确定样本空间:样本空间是指所有可能发生的结果的集合。
2. 确定事件:事件是指样本空间中的一部分,即符合某种特定条件的结果。
3. 计算概率:概率是指事件发生的可能性大小,通常用分数或小数表示。
三、解题步骤1. 第一题解析(1)样本空间:从一副扑克牌中抽取一张牌,共有52张牌。
(2)事件:抽到红桃。
(3)计算概率:红桃有13张,所以抽到红桃的概率为13/52,即1/4。
2. 第二题解析(1)样本空间:从口袋中摸出一个球,共有10个球。
(2)事件:摸出红球。
(3)计算概率:红球有5个,所以摸出红球的概率为5/10,即1/2。
3. 第三题解析(1)样本空间:甲、乙两人相遇,有三种情况:在长方形的一边上相遇、在长方形的另一边上相遇、在长方形的对角线上相遇。
(2)事件:甲、乙两人相遇。
(3)计算概率:甲、乙两人从对角点出发,沿着长方形边界跑,相遇的概率为1。
因为甲、乙两人沿着边界跑,一定会相遇。
四、总结概率题在中考数学试卷中占有一定的比例,这类题目主要考察学生对概率概念的理解和运用。
在解题过程中,要熟练掌握样本空间、事件和概率的计算方法。
同时,注意审题,正确理解题意,才能准确计算出概率。
通过对这类题目的练习,有助于提高学生的逻辑思维能力和解决问题的能力。
2012年全国中考数学试题分类解析汇编专题28:概率统计综合

2012年全国中考数学试题分类解析汇编(159套63专题)专题28:概率统计综合一、选择题1.(2012江苏淮安3分)下列说法正确的是【】A、两名同学5次成绩的平均分相同,则方差较大的同学成绩更稳定。
B、某班选出两名同学参加校演讲比赛,结果一定是一名男生和一名女生CD【答案】【考点】【分析】ABCD故选C。
2. (ABCD【答案】【考点】【分析】根据概率的意义,随机事件,调查方法的选择,概率公式对各选项作出判断:A:某种彩票的中奖率为1%,是中奖的频率接近1%,所以买100张彩票可能中奖,也可能没中奖,所以A选项的说法错误;B、从装有10个红球的袋子中,摸出的应该都是红球,则摸出1个白球是不可能事件,所以B选项的说法正确;C、为了解一批日光灯的使用寿命,可采用抽样调查的方式,而不应采用普查的方式,所以C选项的说法正确;D、掷一枚普通的正六面体骰子,共有6种等可能的结果,则出现向上一面点数是2的概率是16,所以D选项的说法正确。
故选A。
3. (2012湖北十堰3分)下列说法正确的是【】A.要了解全市居民对环境的保护意识,采用全面调查的方式B.若甲组数据的方差S2甲 =0.1,乙组数据的方差S2乙 =0.2,则甲组数据比乙组稳定C.随机抛一枚硬币,落地后正面一定朝上D.若某彩票“中奖概率为1%”,则购买100张彩票就一定会中奖一次【答案】B。
【考点】调查方式的选择,方差的意义,随机事件,概率的意义。
【分析】根据调查方式的选择,方差的意义,随机事件,概率的意义进行逐一判断即可得到答案A、了解全市居民的环保意识,范围比较大,因此采用抽样调查的方法比较合适,本答案错误;B、甲组的方差小于乙组的方差,故甲组稳定正确;C、随机抛一枚硬币,落地后可能正面朝上也可能反面朝上,故本答案错误;D、买100张彩票不一定中奖一次,故本答案错误。
故选B。
4. (2012湖南岳阳3分)下列说法正确的是【】A.随机事件发生的可能性是50% B.一组数据2,2,3,6的众数和中位数都是2C.为了了解岳阳5万名学生中考数学成绩,可以从中抽取10名学生作为样本D.若甲组数据的方差S甲2=0.31,乙组数据的方差S乙2=0.02,则乙组数据比甲组数据稳定【答案】D。
2021年全国中考数学真题分类汇编--统计与概率(试卷版)

从中随机抽取一张,卡片上的数为无理数的概率是( )
A.
B.
C.
D.
10. (2021•广东省)同时掷两枚质地均匀的骰子,则两枚骰子向上的点数之和为 7 的概率
是(
)
A. 1 12
B. 1 6
C. 1 3
D. 1 2
11. (2021•四川省乐山市) 在一次心理健康教育活动中,张老师随机抽取了 40 名学生进
D. 摸出的 2 个球都是红球
27. (2021•浙江省衢州卷)一个布袋里放有 3 个红球和 2 个白球,它们除颜色外其余都相 同.从布袋中任意摸出 1 个球,摸到白球的概率是( )
1
A.
3
2
B.
3
1
C.
5
2
D.
5
28. (2021•贵州省贵阳市)“一个不透明的袋中装有三个球,分别标有 1,2,x 这三个号码,
23. (2021•内蒙古包头市)柜子里有两双不同的鞋,如果从中随机地取出 2 只,那么取出的
鞋是同一双的概率为( )
1
A.
3
1
B.
4
1
C.
5
1
D.
6
24. (2021•齐齐哈尔市)五张不透明的卡片,正面分别写有实数 1,
1 2 , 15 ,
9,
5.06006000600006……(相邻两个 6 之间 0 的个数依次加 1).这五张卡片除正面的数不同外
1
A.
3
1
B.
5
3 C.
8
5
D.
8
17. (2021•湖南省娄底市)从背面朝上的分别画有等腰三角形、平行四边形、矩形、圆的
全国中考数学真题分类汇编第28讲概率

(分类)第28讲概率知识点1 事件的分类与概率的意义知识点2 概率公式知识点3 用频率估计概率知识点4 用列表法或树状图求概率知识点1 事件的分类与概率的意义(xx南充)答案:A3.下列说法正确的是()A.调查某班学生的身高情况,适宜采用全面调查B.篮球队员在罚球线上投篮两次都未投中,这是不可能事件C.天气预报说明天的降水概率为95%,意味着明天一定下雨D.小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1(xx衡阳)答案:A5.已知抛一枚均匀硬币正面朝上的概率为12,下列说法错误..的是()A.连续抛一枚均匀硬币2次必有1次正面朝上B.连续抛一枚均匀硬币10次都可能正面朝上C.大量反复抛一枚均匀硬币,平均每100次有50次正面朝上D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的(xx长沙)答案:C8、下面说法正确的是A、任意掷一枚质地均匀的硬币10 次,一定有5次正面朝上B、天气预报说”明天降水概率为40% ”,表示明天有40% 的时间在下雨“篮球队员在罚球线上投筐一次,投中”为随机事件“a是实数, a 0 ”是不可能事件(xx宿迁)答案:116. 小明和小丽按如下规则做游戏:桌面上放有7根火柴棒,每次取1根或2根,最后取完者获胜。
若由小明先取,且小明获胜是必然事件,,则小明第一次取走火柴棒的根数是▲.(xx达州)5.下列说法正确的是()A.“打开电视机,正在播放《达州新闻》”是必然事件B.天气预报“明天降水概率%50,是指明天有一半的时间会下雨”C.甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是20.3S=甲,20.4S=乙,则甲的成绩更稳定D.数据6,6,7,7,8的中位数与众数均为7(xx南通)答案:C5.下列说法中,正确的是()A.—个游戏中奖的概率是110,则做10次这样的游戏一定会中奖B.为了了解一批炮弹的杀伤半径,应采用全面调查的方式C. 一组数据8,8,7,10,6,8,9的众数是8D. 若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动小(xx泰州)答案:C4.小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛,下面几种说法正确的是( )A.小亮明天的进球率为10%B.小亮明天每射球10次必进球1次C.小亮明天有可能进球D.小亮明天肯定进球(xx淄博)2. 下列语句描述的事件中,是随机事件的为()A.水能载舟,亦能覆舟B.只手遮天,偷天换日C.瓜熟蒂落,水到渠成D.心想事成,万事如意(xx德阳)答案:D(xx孝感)答案:D5.下列说法正确的是()A.了解“孝感市初中生每天课外阅读书籍时间的情况”最适合的调查方式是全面调查B.甲乙两人跳绳各10次,其成绩的平均数相等,22S S甲乙,则甲的成绩比乙稳定C.三张分别画有菱形,等边三角形,圆的卡片,从中随机抽取一张,恰好抽到中心对称图形卡片的概率是1 3D.“任意画一个三角形,其内角和是360”这一事件是不可能事件(xx襄阳)答案:D8.下列语句所描述的事件是随机事件的是( )A.任意画一个四边形,其内角和为180°B.经过任意两点画一条直线C.任意画一个菱形,是中心对称图形D.过平面内任意三点画一个圆(xx福建)答案:D(xx怀化)答案:A(xx齐齐哈尔)答案:A(xx沈阳)(xx烟台)答案:A(xx昆明)答案:D(xx包头)(xx广安)答案:D(xx徐州)知识点2 概率公式(xx·绵阳)答案:15.现有长分别为1,2,3,4,5的木条各一根,从这5根木条中任取3根,能够构成三角形的概率是.(xx成都)答案:612.在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为38,则该盒子中装有黄色兵乓球的个数是.(xx内江)答案:2514. 有五张卡片(形状、大小、质地都相同),正面分别画有下列图形:①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆.将卡片背面朝上洗匀,从中任取一张,其正面图形既是轴对称图形,又是中心对称图形的概率是.(xx金华丽水)答案:B6.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°. 让转盘自由转动,指针停止后落在黄色区域的概率是(▲)A.61B.41C.31D.127(xx柳州)答案:B(xx东营)答案:5413. 有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是.(xx聊城)答案:B9.小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是()红黄蓝A .12 B .13 C .23 D .16(xx 宁波)答案:C4.有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为( ) A .45 B .35 C .25 D .15(xx 岳阳)13.在-2,1,4,-3,0这5个数字中,任取一个数是负数的概率是 .(xx 长沙)答案:1216、掷一枚质地均匀的正方体骰子,骰子的六个面上分别有 1 到 6 的点数,掷得面朝上的点数为偶数的概率 为 .(xx 连云港)答案:D5.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是 A .23B .16C .13D .12(xx 扬州)答案:4311.有4根细木棒,长度分别为2cm 、3cm 、4cm 、5cm ,从中任选3根,恰好能搭成一个三角形的概率是 .(xx 天津)答案:61115.不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是 .(xx 杭州)答案:B 7.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字1~6)朝上一面的数字。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国中考数学试题分类解析汇编专题28:概率统计综合一、选择题1.(2012江苏淮安3分)下列说法正确的是【】A、两名同学5次成绩的平均分相同,则方差较大的同学成绩更稳定。
B、某班选出两名同学参加校演讲比赛,结果一定是一名男生和一名女生C、学校气象小组预报明天下雨的概率为0.8,则明天下雨的可能性较大D、为了解我市学校“阳光体育”活动开展情况,必须采用普查的方法【答案】C。
【考点】方差的意义,概率的意义,调查方法的选择。
【分析】根据方差的意义,概率的意义,调查方法的选择逐一作出判断:A、两名同学5次成绩的平均分相同,则方差较小的同学成绩更稳定,故本选项错误;B、某班选出两名同学参加校演讲比赛,结果不一定是一名男生和一名女生,故本选项错误;C、学校气象小组预报明天下雨的概率为0.8,则明天下雨的可能性较大,故本选项正确;D、为了解我市学校“阳光体育”活动开展情况,易采用抽样调查的方法,故本选项错误。
故选C。
2. (2012福建漳州4分)下列说法中错误的是【】A.某种彩票的中奖率为1%,买100张彩票一定有1张中奖B.从装有10个红球的袋子中,摸出1个白球是不可能事件C.为了解一批日光灯的使用寿命,可采用抽样调查的方式D.掷一枚普通的正六面体骰子,出现向上一面点数是2的概率是61【答案】A。
【考点】概率的意义,随机事件,调查方法的选择,概率公式。
【分析】根据概率的意义,随机事件,调查方法的选择,概率公式对各选项作出判断:A:某种彩票的中奖率为1%,是中奖的频率接近1%,所以买100张彩票可能中奖,也可能没中奖,所以A选项的说法错误;B、从装有10个红球的袋子中,摸出的应该都是红球,则摸出1个白球是不可能事件,所以B选项的说法正确;C、为了解一批日光灯的使用寿命,可采用抽样调查的方式,而不应采用普查的方式,所以C选项的说法正确;D、掷一枚普通的正六面体骰子,共有6种等可能的结果,则出现向上一面点数是2的概率是16,所以D选项的说法正确。
故选A。
3. (2012湖北十堰3分)下列说法正确的是【】A.要了解全市居民对环境的保护意识,采用全面调查的方式B.若甲组数据的方差S 2甲=0.1,乙组数据的方差S 2乙=0.2,则甲组数据比乙组稳定C.随机抛一枚硬币,落地后正面一定朝上D.若某彩票“中奖概率为1%”,则购买100张彩票就一定会中奖一次【答案】B。
【考点】调查方式的选择,方差的意义,随机事件,概率的意义。
【分析】根据调查方式的选择,方差的意义,随机事件,概率的意义进行逐一判断即可得到答案A、了解全市居民的环保意识,范围比较大,因此采用抽样调查的方法比较合适,本答案错误;B、甲组的方差小于乙组的方差,故甲组稳定正确;C、随机抛一枚硬币,落地后可能正面朝上也可能反面朝上,故本答案错误;D、买100张彩票不一定中奖一次,故本答案错误。
故选B。
4. (2012湖南岳阳3分)下列说法正确的是【】A.随机事件发生的可能性是50% B.一组数据2,2,3,6的众数和中位数都是2C.为了了解岳阳5万名学生中考数学成绩,可以从中抽取10名学生作为样本D.若甲组数据的方差S甲2=0.31,乙组数据的方差S乙2=0.02,则乙组数据比甲组数据稳定【答案】D。
【考点】可能性的大小,抽样调查的可靠性,众数,中位数,方差。
【分析】根据事件发生可能性的大小和概率的值的大小的关系以及众数、中位数、方差的定义分别进行判断即可:A、随机事件发生的可能性是大于0,小于1,故本选项错误;B、数据2,2,3,6的众数是2,中位数是2.5,故本选项错误;C、为了了解岳阳5万名学生中考数学成绩,可以从中抽取10名学生的中考数学成绩作为样本,容量太小,故本选项错误;D、∵S甲2=0.31大于S乙2=0.02,∴乙组数据比甲组数据稳定,故本选项正确。
故选D。
5. (2012四川广安3分)下列说法正确的是【】A.商家卖鞋,最关心的是鞋码的中位数B.365人中必有两人阳历生日相同C.要了解全市人民的低碳生活状况,适宜采用抽样调查的方法D.随机抽取甲、乙两名同学的5次数学成绩,计算得平均分都是90分,方差分别是=5,=12,说明乙的成绩较为稳定【答案】C。
【考点】统计量的选择,可能性的大小,调查方法的选择,方差。
【分析】分别利用统计量的选择,可能性的大小,调查方法的选择,方差的知识进行逐项判断即可:A、商家卖鞋,最关心的是卖得最多的鞋码,即鞋码的众数,故本选项错误;B、365天人中可能人人的生日不同,故本选项错误;C、要了解全市人民的低碳生活状况,适宜采用抽样调查的方法,故本选项正确;D、方差越大,越不稳定,故本选项错误。
故选C。
6. (2012四川自贡3分)下列说法不正确的是【】A.选举中,人们通常最关心的数据是众数B.从1、2、3、4、5中随机取一个数,取得奇数的可能性比较大C.数据3、5、4、1、﹣2的中位数是3D.某游艺活动的中奖率是60%,说明参加该活动10次就有6次会获奖【答案】D。
【考点】众数,可能性的大小,中位数,概率的意义。
【分析】A.选举中,人们通常最关心的数据是众数,故本选项正确;B.∵从1、2、3、4、5中随机取一个数,取得奇数的概率为:35,取得偶数的概率为:25,∴取得奇数的可能性比较大,故本选项正确;C.中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)。
由此将这组数据重新排序为-2,1,3,4,5,中位数是3,故本选项正确;D.某游艺活动的中奖率是60%,不能说明参加该活动10次就有6次会获奖,故本选项错误。
故选D。
7. (2012内蒙古赤峰3分)下列说法正确的是【】A.随机掷一枚硬币,正面一定朝上,是必然事件B.数据2,2,3,3,8的众数是8C.某次抽奖活动获奖的概率为150,说明每买50张奖券一定有一次中奖D.想了解赤峰市城镇居民人均年收入水平,宜采用抽样调查【答案】D。
【考点】随机事件,概率的意义,众数,调查方法的选择。
【分析】A.随机掷一枚硬币,正面一定朝上,是随机事件,故本选项错误;B.数据2,2,3,3,8的众数是2或3,故本选项错误;C.某次抽奖活动获奖的概率为150,不能说明每买50张奖券一定有一次中奖,故本选项错误;D.想了解赤峰市城镇居民人均年收入水平,宜采用抽样调查,故本选项正确。
故选D。
二、填空题三、解答题1. (2012重庆市10分)高中招生指标到校是我市中考招生制度改革的一项重要措施.某初级中学对该校近四年指标到校保送生人数进行了统计,制成了如下两幅不完整的统计图:(1)该校近四年保送生人数的极差是.请将折线统计图补充完整;(2)该校2009年指标到校保送生中只有1位女同学,学校打算从中随机选出2位同学了解他们进人高中阶段的学习情况.请用列表法或画树状图的方法,求出所选两位同学恰好是1位男同学和1位女同学的概率.【答案】解:(1)5。
补充折线统计图如下:(2)记3名男同学为A1,A2,A3,女同学为B。
列表如下:A1 A2 A3 BA1 —(A2,A1)(A3,A1)(B,A1)A2 (A1,A2)—(A3,A2)(B,A2)A3 (A1,A3)(A2,A3)—(B,A3)B (A1,B)(A2,B)(A3,B)—由表可知,共有12种情况,选两位同学恰好是1位男同学和1位女同学的有6种情况,∴选两位同学恰好是1位男同学和1位女同学的概率是6 1 122。
【考点】扇形统计图,折线统计图,频数、频率和总量的关系,极差,列表法或树状图法,概率。
【分析】(1)由2011年保送生人数5人,占25%得四年保送生总数:5÷25%=20(人)。
∴2012年保送生人数:20×40%=8(人),2009年保送生人数:20-3-5-8=4(人)。
∴用该校近四年保送生人数的最大值减去最小值,即可求出极差8-3=5。
根据以上数据即可将折线统计图补充完整。
(2)根据题意列表或画树状图,求出所有情况,再求出选两位同学恰好是1位男同学和1位女同学的情况,再根据概率公式计算即可。
2. (2012广东梅州7分)为实施校园文化公园化战略,提升校园文化品位,在“回赠母校一颗树”活动中,我市某中学准备在校园内空地上种植桂花树、香樟树、柳树、木棉树,为了解学生喜爱的树种情况,随机调查了该校部分学生,并将调查结果整理后制成了如图统计图:请你根据统计图提供的信息,解答以下问题:(直接填写答案)(1)该中学一共随机调查了人;(2)条形统计图中的m= ,n= ;(3)如果在该学校随机抽查了一位学生,那么该学生喜爱的香樟树的概率是.【答案】解:(1)200。
(2)70;30。
(3)720。
【考点】扇形统计图,条形统计图,频数、频率和总量的关系,概率公式。
【分析】(1)用喜欢柳树的人数除以其所占的百分比即可得中学一共随机调查了20÷10%=200人。
(2)用总人数乘以喜欢木棉的人数所占的百分比,求出n:n=200×15%=30人,再用总人数减去喜欢桂花树、柳树、木棉树的人数,即可求出m:m=200﹣80﹣20﹣30=70人。
(3)用喜欢香樟树的人数除以总人数即可求得该学生喜爱的香樟树的概率是:707=20020。
3. (2012浙江衢州8分)据衢州市2011年国民经济和社会发展统计公报显示,2011年衢州市新开工的住房有商品房、廉租房、经济适用房和公共租赁房四种类型.老王对这四种新开工的住房套数和比例进行了统计,并将统计结果绘制成下面两幅统计图,请你结合图中所给信息解答下列问题:(1)求经济适用房的套数,并补全频数分布直方图;(2)假如申请购买经济适用房的对象中共有950人符号购买条件,老王是其中之一.由于购买人数超过房子套数,购买者必须通过电脑摇号产生.如果对2011年新开工的经济适用房进行电脑摇号,那么老王被摇中的概率是多少?(3)如果2012年新开工廉租房建设的套数比2011年增长10%,那么2012年新开工廉租房有多少套?【答案】解:(1)∵1500÷24%=6250,6250×7.6%=475,∴经济适用房的套数有475套。
补全频数分布直方图如下:(2)老王被摇中的概率为:4751=9582。
(3)2011年廉租房共有6250×8%=500套,500(1+10%)=550套,∴2012年新开工廉租房550套。
【考点】扇形统计图,频数分布直方图,频数、频率和总量的关系,概率公式。
【分析】(1)根据扇形统计图中公租房所占比例以及条形图中公租房数量即可得出,衢州市新开工的住房总数,从而得出经济适用房的套数。
(2)根据申请购买经济适用房共有950人符合购买条件,经济适用房总套数为475套,得出老王被摇中的概率为:4751= 9582。