白噪声与高白区别
(五)高斯白噪声

(五)⾼斯⽩噪声⾼斯⽩噪声,幅度服从⾼斯分布,功率谱密度服从均匀分布。
(1)⽩噪声,如同⽩光⼀样,是所有颜⾊的光叠加⽽成,不同颜⾊的光本质区别是的它们的频率各不相同(如红⾊光波长长⽽频率低,相应的,紫⾊光波长短⽽频率⾼)。
⽩噪声在功率谱上(若以频率为横轴,信号幅度的平⽅为功率)趋近为常值,即噪声频率丰富,在整个频谱上都有成分,即从低频到⾼频,低频指的是信号不变或缓慢变化,⾼频指的是信号突变。
任意时刻出现的噪声幅值都是随机的,即不相关的(这句话实际上说的就是功率谱密度服从均匀分布的意思,不同的是,前者从时域⾓度描述,⽽后者是从频域⾓度描述)注释:功率谱密度(Power Spectral Density,PSD)的概念,它从频域⾓度出发,定义了信号的功率是如何随频率分布的,即以频率为横轴,功率为纵轴(2)⾼斯分布,从概率密度⾓度来说,⾼斯⽩噪声的幅度分布服从⾼斯分布。
注释:概率密度定义了信号出现的频率是如何随着其幅值变化的,即以信号幅值为横轴,以出现的频率为纵轴。
MATLAB举例说明 clcclear allsigma=sqrt(1/(10.^(0/10))); % 发送功率为1,平均信噪⽐SNR=0dB时的⾼斯⽩噪声标准差n=sigma*(randn(1,10000)+1j*randn(1,10000)); %复⾼斯⽩噪声的实部和虚部是满⾜独⽴同分布的⾼斯随机变量noise=imag(n(1,:)); %复⾼斯⽩噪声的虚部,均值为0,⽅差为sigma^2noise=real(n(1,:)); %复⾼斯⽩噪声实部,均值为0,⽅差为sigma^2y1=fft(noise,1000); %频率采样点个数为1000p1=y1.*conj(y1); %噪声功率计算%作图figureff=0:99;subplot(2,1,1)stem(ff,p1(1:100)); %功率谱密度服从均匀分布subplot(2,1,2)hist(noise,50) %幅度服从⾼斯分布。
图像处理之噪声---椒盐,白噪声,高斯噪声三种不同噪声的区别

图像处理之噪声---椒盐,⽩噪声,⾼斯噪声三种不同噪声的区别 ⽩噪声是指功率谱密度在整个频域内均匀分布的噪声。
所有频率具有相同能量的随机噪声称为⽩噪声。
⽩噪声或⽩杂讯,是⼀种功率频谱密度为常数的随机信号或随机过程。
换句话说,此信号在各个频段上的功率是⼀样的,由于⽩光是由各种频率(颜⾊)的单⾊光混合⽽成,因⽽此信号的这种具有平坦功率谱的性质被称作是“⽩⾊的”,此信号也因此被称作⽩噪声。
相对的,其他不具有这⼀性质的噪声信号被称为有⾊噪声。
⽽理想的⽩噪声具有⽆限带宽,因⽽其能量是⽆限⼤,这在现实世界是不可能存在的。
实际上,我们常常将有限带宽的平整讯号视为⽩噪⾳,因为这让我们在数学分析上更加⽅便。
然⽽,⽩噪声在数学处理上⽐较⽅便,因此它是系统分析的有⼒⼯具。
⼀般,只要⼀个噪声过程所具有的频谱宽度远远⼤于它所作⽤系统的带宽,并且在该带宽中其频谱密度基本上可以作为常数来考虑,就可以把它作为⽩噪声来处理。
例如,热噪声和散弹噪声在很宽的频率范围内具有均匀的功率谱密度,通常可以认为它们是⽩噪声。
然后介绍⼀下⾼斯噪声:顾名思义,⾼斯噪声就是n维分布都服从⾼斯分布的噪声。
然后说⼀下什么是⾼斯分布。
⾼斯分布,也称正态分布,⼜称常态分布。
对于随机变量X,其概率密度函数如图所⽰。
称其分布为⾼斯分布或正态分布,记为N(µ,σ2),其中为分布的参数,分别为⾼斯分布的期望和⽅差。
当有确定值时,p(x)也就确定了,特别当µ=0,σ2=1时,X的分布为标准正态分布。
最后说⼀下名字很有意思的椒盐噪声:椒盐噪声⼜称脉冲噪声,它随机改变⼀些像素值,是由图像传感器,传输信道,解码处理等产⽣的⿊⽩相间的亮暗点噪声。
椒盐噪声往往由图像切割引起。
白噪声_高斯噪声_高斯白噪声的区别

这几个概念的区别和联系:(转自:研学论坛)白噪声,就是说功率谱为一常数;也就是说,其协方差函数在delay=0时不为0,在delay不等于0时值为零;换句话说,样本点互不相关。
(条件:零均值。
)所以,“白”与“不白”是和分布没有关系的。
当随机的从高斯分布中获取采样值时,采样点所组成的随机过程就是“高斯白噪声”;同理,当随机的从均匀分布中获取采样值时,采样点所组成的随机过程就是“均匀白噪声”。
那么,是否有“非白的高斯”噪声呢?答案是肯定的,这就是”高斯色噪声“。
这种噪声其分布是高斯的,但是它的频谱不是一个常数,或者说,对高斯信号采样的时候不是随机采样的,而是按照某种规律来采样的。
仿真时经常采用高斯白噪声是因为实际系统(包括雷达和通信系统等大多数电子系统)中的主要噪声来源是热噪声,而热噪声是典型的高斯白噪声,高斯噪声下的理想系统都是线性系统。
相关讨论:1、白噪声是指功率谱在整个频域内为常数的噪声,其付氏反变换是单位冲击函数的n倍(n取决于功率谱的大小),说明噪声自相关函数在t=0时不为零,其他时刻都为0,自相关性最强。
高斯噪声是一种随机噪声,其幅度的统计规律服从高斯分布。
高斯白噪声是幅度统计规律服从高斯分布而功率谱为常数的噪声如果在系统通带内功率谱为常数,成为带限白噪声“高斯”与“白”没有直接关系,有时人们还会提出高斯型噪声,这指的是噪声功率谱呈高斯分布函数的形状而已。
2、有一个问题我想提出来:连续白噪声和离散白噪声序列的关系是什么?它们之间不应该是简单的采样关系。
因为连续白噪声的功率谱在整个频率轴上为常数,按照随机信号采样定理,对这样的信号采样,采样后的序列的功率谱必然发生混叠,而且混叠过后的功率谱是什么?应该是在整个频率轴上都为无穷大。
这显然不满足离散白噪声序列的定义。
那离散白噪声序列跟连续白噪声有何关系?我觉得是对带限的连续白噪声进行采样后得到的,这个带限的连续白噪声信号的带宽刚好满足Nyquist抽样定理。
三类噪声标准值

三类噪声标准值
在信号处理中,常见的三类噪声标准值有以下三种:
1. 高斯白噪声(Gaussian white noise):高斯白噪声是一种常
见的噪声类型,其统计特性为平均值为0,方差为常数,且满
足高斯分布。
它的功率谱密度为常数,且在所有频率上具有相同的能量。
高斯白噪声经常用于模拟实际环境下的噪声,如电子器件的热噪声、大气电波的噪声等。
2. 色噪声(Colored noise):色噪声是指在不同频率上具有不
同能量分布的噪声。
常见的色噪声包括红色噪声、蓝色噪声和粉色噪声等。
红色噪声在低频部分的能量高于高频部分,蓝色噪声则相反,而粉色噪声在频率上具有-3dB/oct的功率下降特性。
色噪声常用于模拟某些实际系统中存在的噪声,如电路中的1/f噪声。
3. 脉冲噪声(Impulse noise):脉冲噪声是指在信号中出现的
突发式干扰,通常表现为短暂的高能量脉冲或突变。
脉冲噪声往往来自于信号传输过程中的不完美,如电力线上的突发电压变化、信号传输通道中的插入噪声等。
脉冲噪声的幅值、持续时间以及出现的频率等特性可以根据具体应用进行调整和描述。
值得注意的是,噪声标准值通常是指噪声的统计特性,如均值、方差、功率谱密度等。
这些值的具体大小会因不同的应用和系统而有所变化,无法一概而论。
白噪声的名词解释

白噪声的名词解释
嘿,你知道啥是白噪声不?白噪声啊,就好比是生活中的一场持续不断的细雨。
比如说,你在一个下雨天,听着那雨滴淅淅沥沥打在窗户上的声音,那就是一种类似白噪声的感觉呀!
白噪声其实就是一种包含了所有频率的声音。
它就像是一个声音的大杂烩,啥都有!想象一下,你走进一个特别热闹的市场,里面有各种声音,叫卖声、讨价还价声、脚步声等等,这些声音混合在一起,差不多就是白噪声的概念啦!
咱平常生活里也能遇到不少白噪声呢。
比如电视没信号时发出的那种沙沙声,那也是白噪声呀!还有吹风机工作时的声音,不也是一种白噪声嘛!
那白噪声有啥用呢?嘿,用处可大了去了!很多人在睡觉的时候会听白噪声,为啥呢?因为它能帮人屏蔽掉其他的杂音,让你能更快入睡呀!就像你在一个吵闹的房间里,突然打开了白噪声,那些其他的吵闹声好像一下子就被盖住了,神奇不?
再比如说,有些人在工作或者学习的时候也喜欢听白噪声,它能让你更专注呢!这就好比你在一个嘈杂的环境里,给自己围了一个声音的保护罩,外界的干扰都进不来啦!
我觉得白噪声真的是个很有趣的东西呀!它无处不在,却又常常被我们忽略。
但当你真正去了解它、利用它的时候,你就会发现它的奇
妙之处!它就像是我们生活中的一个小秘密武器,能在很多时候给我们带来帮助和惊喜呢!所以呀,可别小看了这白噪声哦!。
高斯噪声,高斯白噪声,加性高斯白噪声.

⾼斯噪声,⾼斯⽩噪声,加性⾼斯⽩噪声. ----头⼤!White Gaussian noise (AWGN)功率谱密度函数在整个频域内是常数,即服从均匀分布。
之所以称它为“⽩”噪声,是因为它类似于光学中包括全部可见光频率在内的⽩光.所谓⽩噪声是指它的功率谱密度函数概率密度函数的⾼斯⽩噪声,是指噪声的概率密度函数满⾜正态分布统计特性,同时它的功率谱密度函数是常数的⼀类噪声。
这⾥值得注意的是,⾼斯型⽩噪声同时涉及到噪声的两个不同⽅⾯,即概率密度函数的功率谱密度函数均匀性,⼆者缺⼀不可。
正态分布性和功率谱密度函数均匀性正态分布性Additive white Gaussian noise (AWGN)/加性⾼斯⽩噪声加性⾼斯⽩噪声(AWGN)从统计上⽽⾔是随机⽆线噪声,其特点是其通信信道上的信号分布在很宽的频带范围内。
⾄于叫“⾼斯”,是因为所以有的噪声都被看作了⼀种随机过程,⽽⾼斯噪声服从⾼斯分布,“⽩”是因为其功率Additive white Gaussian noise (AWGN)is a channel model in which the only impairment(损害)to communication is a linear addition of wideband or white noisewith a constant(定常数)spectral density (expressed as watts per hertz<⽡特/赫兹>of bandwidth) and a Gaussian distribution of amplitude. The model does not account for fading, frequency selectivity, interference, nonlinearity or dispersion. However, it produces simple and tractable(可驯服的)mathematical models which areuseful for gaining insight into the underlying behavior of a system before these other phenomena are considered.Wideband Gaussian noise comes from many natural sources, such as the thermal vibrations(热⼒学震动)of atoms in conductors (referred to as thermal noise or Johnson-Nyquist noise), shot noise, black body radiation from the earth and other warm objects, and from celestial(天体)sources such as the Sun.The AWGN channel is a good model for many satellite and deep space communication links. It is not a good model for most terrestrial links because of multipath,terrain blocking, interference, etc. However, for terrestrial path modeling, AWGN is commonly used to simulate background noise of the channel under study, inaddition to multipath, terrain blocking, interference, ground clutter and self interference that modern radio systems encounter in terrestrial operation.。
白噪声

白噪声白噪声是指功率谱密度在整个频域内均匀分布的噪声。
所有频率具有相同能量密度的随机噪声称为白噪声。
从我们耳朵的频率响应听起来它是非常明亮的“咝”声(每高一个八度,频率就升高一倍。
因此高频率区的能量也显著增强)。
1概述白噪声是指在较宽的频率范围内,各等带宽的频带所含的噪声能量相等的噪声。
一般在物理上把它翻译成白噪声(white noise)。
白噪声或白杂讯,是一种功率频谱密度为常数的随机信号或随机过程。
换句话说,此信号在各个频段上的功率是一样的,由于白光是由各种频率(颜色)的单色光混合而成,因而此信号的这种具有平坦功率谱的性质被称作是“白色的”,此信号也因此被称作白噪声。
相对的,其他不具有这一性质的噪声信号被称为有色噪声。
理想的白噪声具有无限带宽,因而其能量是无限大,这在现实世界是不可能存在的。
实际上,我们常常将有限带宽的平整讯号视为白噪音,因为这让我们在数学分析上更加方便。
然而,白噪声在数学处理上比较方便,因此它是系统分析的有力工具。
一般,只要一个噪声过程所具有的频谱宽度远远大于它所作用系统的带宽,并且在该带宽中其频谱密度基本上可以作为常数来考虑,就可以把它作为白噪声来处理。
例如,热噪声和散弹噪声在很宽的频率范围内具有均匀的功率谱密度,通常可以认为它们是白噪声。
当你需要专心工作,而周遭总是有繁杂的声音时,就可以选用这两种声音来加以遮蔽。
一般来说,通常的情况下你可以选用白色噪音,而粉红色噪音则是特别针对说话声的遮蔽材料。
粉红色噪音又被称做频率反比(1/f) 噪音,因为它的能量分布与频率成反比,或者说是每一个八度音程(Octave) 能量就衰退3 dB。
高斯白噪声高斯白噪声:如果一个噪声,它的幅度分布服从高斯分布,而它的功率谱密度又是均匀分布的,则称它为高斯白噪声。
热噪声和散粒噪声是高斯白噪声。
所谓高斯白噪声中的高斯是指概率分布是正态函数,而白噪声是指它的二阶矩不相关,一阶矩为常数,是指先后信号在时间上的相关性。
高斯白噪声名词解释

高斯白噪声名词解释
高斯白噪声是统计物理学和信号处理中常用的概念。
它指的是一种平均功率为常数,功率谱密度也是常数的随机过程,其自相关函数只有时间的延迟参数。
这种噪声可以模拟多种信号,比如噪声、脉冲和失真。
它们都有一个共同的特点,就是它们的功率谱密度都是常数。
高斯白噪声也被称为自然噪声,它是一种随机过程。
它与脉冲噪声不同,脉冲噪声有一个主要频率,而高斯白噪声没有。
它的功率谱密度是离散的,它在不同的频率上有不同的功率,因此功率谱密度不断变化。
高斯白噪声有许多应用,主要用于信号处理和计算机图像处理。
例如,它可以用于图像增强,可以把噪声干扰去除,使图像达到最佳质量。
它还可以用于信号滤波,可以把低频信号和高频信号做分离,使信号更容易识别。
高斯白噪声在许多领域都有很多应用,比如在社会网络分析中,它可以用于网络模型的构建,它可以使得网络模型更加稳定,更容易判断网络中节点和边的作用。
在经济分析中,高斯白噪声也有重要应用,它可以用于处理潜在的不确定性,它可以让模型更加准确,更加有用。
在医学研究中,高斯白噪声也扮演着重要角色,它可以用来测量脑电图,从而分析患者的脑电波状况,从而分析患者的疾病情况。
总之,高斯白噪声是统计物理学和信号处理中常用的一种概念,它具有平均功率为常数,自相关只有时间延迟参数,功率谱密度也是
常数的特点。
它有许多应用,主要用于信号处理和计算机图像处理,还可以用于社会网络分析和经济分析,同时也有重要的在医学上的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
白噪声、高斯色噪声、高斯白噪声
白噪声,就是说功率谱为一常数;也就是说,其协方差函数在delay=0时不为0,在delay不等于0时值为零;换句话说,样本点互不相关。
(条件:零均值。
)所以,“白”与“不白”是和分布没有关系的。
当随机的从高斯分布中获取采样值时,采样点所组成的随机过程就是“高斯白噪声”;
同理,当随机的从均匀分布中获取采样值时,采样点所组成的随机过程就是“均匀白噪声”。
那么,是否有“非白的高斯”噪声呢?答案是肯定的,这就是”高斯色噪声“。
这种噪声其分布是高斯的,但是它的频谱不是一个常数,或者说,对高斯信号采样的时候不是随机采样的,而是按照某种规律来采样的。
仿真时经常采用高斯白噪声是因为实际系统(包括雷达和通信系统等大多数电子系统)中的主要噪声来源是热噪声,而热噪声是典型的高斯白噪声,高斯噪声下的理想系统都是线性系统。
相关讨论:
1、白噪声是指功率谱在整个频域内为常数的噪声,其付氏反变换是单位冲击函数的n倍(n取决于功率谱的大小),说明噪声自相关函数在t=0时不为零,其他时刻都为0,自相关性最强。
高斯噪声是一种随机噪声,其幅度的统计规律服从高斯分布。
高斯白噪声是幅度统计规律服从高斯分布而功率谱为常数的噪声如果在系统通带内功率谱为常数,成为带限白噪声“高斯”与“白”没有直接关系,有时人们还会提出高斯型噪声,这指的是噪声功率谱呈高斯分布函数的形状而已。
2、有一个问题我想提出来:
连续白噪声和离散白噪声序列的关系是什么?它们之间不应该是简单的采样关系。
因为连续白噪声的功率谱在整个频率轴上为常数,按照随机信号采样定理,对这样的信号采样,采样后的序列的功率谱必然发生混叠,而且混叠过后的功率谱是什么?应该是在整个频率轴上都为无穷大。
这显然不满足离散白噪声序列的定义。
那离散白噪声序列跟连续白噪声有何关系?我觉得是对带限的连续白噪声进行采样后得到的,这个带限的连续白噪声信号的带宽刚好满足Nyquist抽样定理。
这样采样过后的信号的功率谱就能满足定义了。
答:连续白噪声是离散白噪声在采样间隔趋近于零的极限。
对带限的连续白噪声按照Nyquist采样定理进行采样就得到信息不损失的白噪声序列,当连续白噪声的带宽趋近于无穷大时,采样率也趋近于无穷大(采样间隔趋近于零),此时不会发生频谱混叠。
用极限的概念理解二者的关系就很清楚了。
需要说明的是,任何实际系统都是工作于一定频带范围内的,带宽为无穷大的信号仅仅存在于理论分析中,在实际系统中找不到。
3、对随机信号而言也有采样定理,这个采样定理是针对功率谱而言的。
具体的证明可以参看陆大金老师的随机过程教材。
(清华的博士入学考试指定的参考教材)
4、对于不限带的白噪声,已经分析的比较清楚了。
而对于限带白噪声,我认为既然考虑采样定理,那么连续的限带白噪声可以利用采样函数作为正交基的系数来表示,这些系数就是对应的噪声采样值,这个过程
就是连续噪声的离散化过程,以上分析也是分析连续信道容量使用的方法。
那么在数字通信中我们讨论的噪声实际就是这些离散的以采样函数为正交基的系数(即噪声采样值),这时分析这些噪声采样值可知相关函数就是 N0×delta(n),这里delta(n)是离散的冲激函数。
也即功率为N0×delta(0)=N0为有限值。
以上分析具体可以参考John Proakis的<Digital Communications>一书。
有一个概念错误需要指出:“高斯白噪声的幅度服从高斯分布”的说法是错误的,高斯噪声的幅度服从瑞利分布。
另外,还必须区分高斯噪声和白噪声两个不同的概念。
高斯噪声是指噪声的概率密度函数服从高斯分布,白噪声是指噪声的任意两个采样样本之间不相关,两者描述的角度不同。
白噪声不必服从高斯分布,高斯分布的噪声不一定是白噪声。
当然,实际系统中的热噪声是我们一般所说的白噪声的主要来源,它是服从高斯分布的,但一般具有有限的带宽,即常说的窄带白噪声,严格意义上它不是白噪声。
信号中高斯白噪声在频域中是否仍为高斯白噪声?谢谢。
严格来说,你这种提问的方法是有问题的,因为白噪声从定义上说就是指随机序列在时间上不相关。
问题应该这样问:高斯白噪声序列变换到频域后是否仍然不想关?由于傅立叶变换是一种线性变换,高斯白噪声序列变换到频域后肯定服从高斯分布,而且仍然不相关。
因为对一个满秩矩阵进行正交变换(傅立叶变换是一种正交变换)得到的矩阵仍然是满秩矩阵。
当然,以上说法只在时间无穷的意义上是正确的。
对任何有限点的实际序列,在相关的意义上看,即使用循环相关,得到的也是周期性相关函数,所以严格意义上不能称为白噪声;在分布特性上看,根据大数定理,只有时间趋于无穷时,一个序列的概率密度函数才能真正服从某一分布。
从一个服从高斯分布的无限长序列中截取一段(时间加窗),理论上会导致其失去严格的高斯分布特性。
但是,从实际应用的角度,我们一般并不从理论上这样较真,总是在背景噪声是高斯白
噪声这样的前提下推导公式,预测系统在任意时刻(无穷时间上的一个时刻)的性能,信号处理时的有限点高斯白噪声样本虽然从严格理论意义上看已不是高斯白噪声,但还是把它当作高斯白噪声来处理。
这样做的结果是,系统的整体性能在某一时刻可能与理论公式推导的性能有出入,但在无限时间的意义上看,系统性能会趋于理论分析结果。
也是基于这一思想,我们经常用Monte-Carlo 仿真预测系统的性能。
一维(实数)高斯白噪声的幅度是服从高斯分布的。
只有二维的(复数)高斯白噪声的幅值是服从瑞利分布的。
更高维的高斯白噪声的幅值则是服从X^2分布的。
错误!什么叫信号的幅度?幅度就是实信号的绝对值和复信号的模。
因此,即使是一维的高斯白噪声,其幅度也不会服从高斯分布,而应该服从瑞利分布。
二维不相关的复高斯白噪声包络服从指数分布(X^2分布的自由度为2的特例)。
n 个不相关的复高斯白噪声序列叠加后的复信号包络服从自由度为2n的X^2分布。
这些在教科书上写得很清楚。
一个总结:
1. 高斯分布随机变量的绝对值的分布既不是高斯分布,也不是瑞利分布(见附件);高斯分布随机变量的平方服从自由度为1的(X2)分布;实部和虚部均服从高斯分布且统计独立的复随机变量的模服从瑞利分布;实部和虚部均服从高斯分布且统计独立的复随机变量的模的平方服从指数分布(或自由度为2的(X2)分布);N个实部和虚部均服从高斯分布且统计独立的复随机变量的模的平方和服从自由度为2N的(X2)分布。
具体推导见附件。
2. 从概念上,高斯分布随机变量不存在“模”的说法,只能说“绝对值”(属于随机变量的函数)。
在雷达领域,经常说“高斯噪声中信号的模服从瑞利分布”,这句话隐含着雷达信号包含I、Q两个正交通道。
3. 高斯噪声和白噪声是两个不同的概念,这一点大家没有异议(见我9月29
日的帖子),我就不重复了。
4. 由于傅立叶变换是一种线性运算,高斯分布随机变量样本的傅立叶变换是存在的,而且仍然是高斯分布。
但某一个随便变量样本的傅立叶变换不能代表随机序列的性质,描述随机信号的频率特性要用功率谱密度,也就是随机信号的相关函数的傅立叶变换。