精品 2015年全国数学中考填空题真题汇总270题30页

合集下载

2015中考九年级数学检测试卷(有答案)

2015中考九年级数学检测试卷(有答案)

第5题图第2题图 第8题图九年级数学试题一、选择题 (本题共12小题,共36分,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.) 1.下列计算中,正确的是( ).A .2a +3b =5abB .a ·a 3=a 3C .a 6÷a 2=a 3D .(-ab )2=a 2b 22.已知实数a b 、在数轴上对应的点如图所示,则下列式子正确的是( ).A .0ab >B .a b >C .0a b ->D .0a b +>3.温家宝总理有一句名言:“多么小的问题,乘以13亿,都会变得很大, 多么大的经济总量,除以13亿,都会变得很小.”如果每人每天浪费0.01 千克粮食,我国13亿人每天就浪费粮食( ).A .1.3×105 千克 B. 1.3×106千克 C. 1.3×107千克 D. 1.3×108千克4.小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子 长为1.1m ,那么小刚举起的手臂超出头顶( ). A .0.5m B .0.55m C .0.6m D .2.2m5.如图,⊙O 是等边三角形ABC 的外接圆,⊙O 的半径为2,则等边三角 形ABC 的边长为( ).ABC.D.6.某种品牌的同一种洗衣粉有A B C 、、三种袋装包装,每袋分别装有400克、300克、200克洗衣粉,售价分别为3.5元、2.8元、1.9元.A B C 、、三种包装的洗衣粉每袋包装费用(含包装袋成本)分别为0.8元、0.6元、0.5元.厂家销售A B C 、、三种包装的洗衣粉各1200千克,获得利润最大的是( ).A .A 种包装的洗衣粉B .B 种包装的洗衣粉C .C 种包装的洗衣粉D .三种包装的都相同7.在李咏主持的“幸运52”栏目中,曾有一种竞猜游戏,游戏规则是:在20个商标牌中,有5个商标牌的背面注明了一定的奖金,其余商标牌的背面是一张“哭脸”,若翻到“哭脸”就不获奖,参与这个游戏的观众有三次翻牌的机会,且翻过的牌不能再翻.有一位观众已翻牌两次,一次获奖,一次不获奖,那么这位观众第三次翻牌获奖的概率是( ). A .15 B .29 C .14 D .5188.如图,在等腰梯形ABCD 中,AB ∥CD , 对角线AC 平分∠BAD ,∠B =60º,CD =2cm ,则梯形ABCD 的面积为( )cm 2. A..6第12题图第10题图第9题图C..129.小亮用作图象的方法解二元一次方程组时,在同一直角坐标系内作出了相 应的两个一次函数的图象l 1、l 2,如图所示,他解的这个方程组是( ).A .22112y x y x =-+⎧⎪⎨=-⎪⎩ B . 22y x y x =-+⎧⎨=-⎩ C .38132y x y x =-⎧⎪⎨=-⎪⎩ D . 22112y x y x =-+⎧⎪⎨=--⎪⎩ 10.古尔邦节,6位朋友均匀地围坐在圆桌旁共度佳 节.圆桌半径为60cm ,每人离圆桌的距离均为10cm ,现又来了两名客人, 每人向后挪动了相同的距离,再左右调整位置,使8人都坐下,并且8 人之间的距离与原来6人之间的距离(即在圆周上两人之间的圆弧的长) 相等.设每人向后挪动的距离为x ,根据题意,可列方程( ).A .2π(6010)2π(6010)68x +++= B .2π(60)2π6086x +⨯=C .2π(6010)62π(60)8x +⨯=+⨯D .2π(60)82π(60)6x x -⨯=+⨯ 11.下列命题:① 若0a b c ++=,则240b ac -≥;② 若b a c >+,则一元二次方程20ax bx c ++=有两个不相等的实数根; ③ 若23b a c =+,则一元二次方程20ax bx c ++=有两个不等实数根;④ 若240b ac ->,则二次函数的图象与坐标轴的公共点的个数是2或3. 其中正确的是( ).A.只有①②③ B.只有①③④ C.只有①④ D.只有②③④. 12.能分别是( ).A .y = k x ,y =kx 2-xB .y = kx,y =kx 2+x C .y = - k x ,y=kx 2+x D .y = - kx,y =-kx 2-x 二、填空题(本大题共5小题,共15分.只要求填写最后结果,每小题填对得3分.) 13.函数y =x 的取值范围是 .14.如图,∠1的正切值等于__________.15.如图,把矩形纸片OABC 放入平面直角坐标系中,使OA 、OC 分别落在第14题图第15题图第16题图x 轴、y 轴上,连接OB ,将纸片OABC 沿OB 折叠,使点A 落在点A′ 的 位置.若OBtan ∠BOC =12,则点A′ 的坐标为_________. 16.如图,从P 点引⊙O 的两切线PA 、PB ,A 、B 为切点,已知⊙O 的半径 为2,∠P =60°,则图中阴影部分的面积为 .17.用同样大小的黑色棋子按下图所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子 枚(用含n 的代数式表示).三、解答题(本大题共7题,共69分.解答应写出文说明、证明过程或推演步骤.) 18.(8分)网瘾低龄化问题已引起社 会各界的高度关注,有关部门在 全国范围内对12~35岁的网瘾人 群进行了抽样调查.下图是用来 表示在调查的样本中不同年龄段 的网瘾人数的,其中30~35岁的 网瘾人数占样本总人数的20%. (1)被抽样调查的样本总人数为_________人;(2)请把统计图中缺失的数据、图形补充完整;(3)据报道,目前我国12~35岁网瘾人数约为200万人,那么其中12~ 17岁的网瘾人数约为多少人?19.(8分)如图,梯形ABCD 内接于⊙O ,BC ∥AD ,AC 与BD 相交 于点E ,在不添加任何辅助线的情况下:(1)图中共有几对全等三角形,请把它们一一写出来,并选择其中一 对全等三角形进行证明.(2)若BD 平分∠ADC ,请找出图中与△ABE 相似的所有三角形.第1个图第2个图第3个图… 第17题图20.(10分)在数学学习中,及时对知识进行归纳和整理是改善学习的重要 方法.善于学习的小明在学习了一次方程(组)、 一元一次不等式和一次函数后,把相关知识归纳整理如下:(1)请你根据以上方框中的内容在下面数字序号后写出相应的结论:① ;②;③ ;④ ;(2)如果点C的坐标为(13),,那么不等式11kx b k x b ++≥的解集是 . 21.(10分)在“5·12大地震”灾民安置工作中,某企业接到一批生产甲种板材24000m 2和乙种板材12000 m 2的任务.(1)已知该企业安排140人生产这两种板材,每人每天能生产甲种板材30 m 2或乙种板材20 m 2.问:应分别安排多少人生产甲种板材和乙 种板材,才能确保他们用相同的时间完成各自的生产任务?(2)某安置点计划用该企业生产的这批板材搭建A B ,两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间 问:这400间板房最多能安置多少灾民?一次函数与方程的关系 一次函数与不等式的关系1 第20题图第22题图22.(10分)如图,平行四边形ABCD 中,AB AC ⊥,1AB =,BC =.对 角线AC BD ,相交于点O ,将直线AC 绕点O 顺时针旋转,分别交 BC AD ,于点E F ,. (1)证明:当旋转角为90时,四边形ABEF 是平行四边形; (2)试说明在旋转过程中,线段AF 与EC 总保持相等;(3)在旋转过程中,四边形BEDF 可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC 绕点O 顺时针旋转的度数.23.(11分)随着风筝城潍坊近几年城市建设的快速发展,对花木的需求量 逐年提高.某园林专业户计划投资种植花卉及树木,根据市场调查与预 测,种植树木的利润1y 与投资量x 成正比例关系,如图①所示;种植花 卉的利润2y 与投资量x 成二次函数关系,如图②所示(注:利润与投资 量的单位:万元)(1)分别求出利润1y 与2y 关于投资量x 的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?24.(12分)如图,在Rt △ABC 中,∠A =90º,AB =6,AC =8,D ,E 分 别是边AB ,AC 的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ ⊥BC 于Q ,过点Q 作QR ∥BA 交AC 于R ,当点Q 与点C 重合时,点P 停止运动.设BQ =x ,QR =y .(1)求点D 到BC 的距离DH 的长;(2)求y 关于x 的函数关系式(不要求写出自变量的取值范围);(3)是否存在点P ,使△PQR 为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由. 图① 图②九年级数学试题答案一、选择题1.D 2. C 3. C 4. A 5. C 6. B 7. B 8. A 9. D 10. A 11. B 12. B 二、填空题 13.2x ≥ 14. 13 15. 34(,)55- 16.-43π 17 . 3n +1 三、解答题19.解:(1)图中共有三对全等三角形:①△ADB ≌△DAC ②△ABE ≌△DCE ③△ABC ≌△DCB ······················ 3分选择①△ADB ≌△DAC 证明在⊙O 中,∠ABD =∠DCA ,∠BCA =∠BDA∵BC ∥AD ∴∠BCA =∠CAD ∴∠CAD =∠BDA 又∵AD AD =∴△ADB ≌△DAC ······ 5分 (2)图中与△ABE 相似的三角形有: △DCE ,△DBA , △ACD . · 8分20.解:(1)①0kx b +=;②11y kx by k x b =+⎧⎨=+⎩;③0kx b +>;④0kx b +<.(2)1x ≤.21.解:(1)设安排x 人生产甲种板材,则生产乙种板材的人数为(140)x -人.由题意,得24000120003020(140)x x =-, ····························································· (2分) 解得:80x =.经检验,80x =是方程的根,且符合题意. ····························· (3分)答:应安排80人生产甲种板材,60人生产乙种板材. ····································· (4分) (2)设建造A 型板房m 间,则建造B 型板房为(400)m -间,由题意有:5478(400)240002641(400)12000m m m m +-⎧⎨+-⎩≤≤,.···················································· (6分)解得300m ≥. ······················································································· (7分) 又0400m ≤≤,300400m ∴≤≤.这400间板房可安置灾民58(400)33200w m m m =+-=-+. ························ (8分)∴当300m =时,w 取得最大值2300名.答:这400间板房最多能安置灾民2300名. ················································ (10分) 22.(本题满分10分)(1)证明:当90AOF ∠=时,AB EF ∥,又AF BE ∥,∴四边形ABEF 为平行四边形. ······································································· 3分 (2)证明:四边形ABCD 为平行四边形,AO CO FAO ECO AOF COE ∴=∠=∠∠=∠,,. AOF COE ∴△≌△.AF EC ∴= ·································································································· 5分 (3)四边形BEDF 可以是菱形. ······································································ 6分 理由:如图,连接BF DE ,,由(2)知AOF COE △≌△,得OE OF =, EF ∴与BD 互相平分.∴当EF BD ⊥时,四边形BEDF 为菱形. ·················· 7分 在Rt ABC △中,2AC ==,1OA AB ∴==,又AB AC ⊥,45AOB ∴∠=,-------8分,45AOF ∴∠=,AC ∴绕点O 顺时针旋转45时,四边形BEDF 为菱形. ···································· 10分 23.(1)设1y =kx ,由图12-①所示,函数1y =kx 的图像过(1,2),所以2=1⋅k ,2=k 故利润1y 关于投资量x 的函数关系式是1y =x 2;因为该抛物线的顶点是原点,所以设2y =2ax ,由图12-②所示,函数2y =2ax 的图像过 (2,2),所以222⋅=a ,21=a ABCD OF E故利润2y 关于投资量x 的函数关系式是221x y =…………………………4分 (2)设这位专业户投入种植花卉x 万元(80≤≤x ),则投入种植树木(x -8)万元,他获得的利润是z 万元,根据题意,得z =)8(2x -+221x =162212+-x x =14)2(212+-x …………………6分当2=x 时,z 的最小值是14 ……………………………………………8分 因为80≤≤x ,所以622≤-≤-x所以36)2(2≤-x ,所以18)2(212≤-x所以32141814)2(212=+≤+-x ,即32≤z ,此时8=x当8=x 时,z 的最大值是32; ………………………………………11分 24. 解:(1)Rt A ∠=∠,6AB =,8AC =,10BC ∴=.点D 为AB 中点,132BD AB ∴==.90DHB A ∠=∠=,B B ∠=∠.BHD BAC ∴△∽△, DH BD AC BC ∴=,3128105BD DH AC BC ∴==⨯=.…………………3分(2)QR AB ∥,90QRC A ∴∠=∠=.C C ∠=∠,RQC ABC ∴△∽△, RQ QC AB BC ∴=,10610y x-∴=, 即y 关于x 的函数关系式为:365y x =-+.…………………………6分(3)存在,分三种情况:①当PQ PR =时,过点P 作PM QR ⊥于M ,则QM RM =.1290∠+∠=,290C ∠+∠=, 1C ∴∠=∠.84cos 1cos 105C ∴∠===,45QM QP ∴=, 1364251255x ⎛⎫-+ ⎪⎝⎭∴=,185x ∴=. ②当PQ RQ =时,312655x -+=,6x ∴=.③当PR QR =时,则R 为PQ 中垂线上的点, 于是点R 为EC 的中点,11224CR CE AC ∴===.tan QR BAC CR CA==,AB CD ER PM 2 1 A HQA BCD E R PHQ366528x -+∴=,152x ∴=.综上所述,当x 为185或6或152时,PQR △为等腰三角形.…………………12分。

2015中考数学真题分类总汇编_二次函数填空选择精选50题(含解析汇报)(1)

2015中考数学真题分类总汇编_二次函数填空选择精选50题(含解析汇报)(1)

2015中考数学真题分类汇编:二次函数(选择题)一.选择题(共30小题)1.下列函数解析式中,一定为二次函数的是()A.y=3x﹣1 B.y=ax2+bx+c C.s=2t2﹣2t+1 D.y=x2+2.函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.3.下列四个函数图象中,当x>0时,y随x的增大而减小的是()A.B.C.D.4.在同一坐标系中,一次函数y=ax+2与二次函数y=x2+a的图象可能是()A.B.C.D.5.二次函数y=ax2+bx+c的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的图象可能是()A.B.C.D.6.在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2+m的图象可能是()A.B.C.D.2的图象时,列出了下面的表格:x…﹣2 ﹣1 0 1 2 …y…﹣11 ﹣2 1 ﹣2 ﹣5 …)A.﹣11 B.﹣2 C.1 D.﹣58.在平面直角坐标系中,二次函数y=a(x﹣h)2(a≠0)的图象可能是()A.B.C.D.9.如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b﹣1)x+c的图象可能是()A.B.C.D.10.在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A.B.C.D.11.如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0.其中正确的个数有()A.1个B.2个C.3个D.4个12.抛物线y=(x﹣1)2+2的顶点坐标是()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(1,2)13.对于二次函数y=﹣x2+2x.有下列四个结论:①它的对称轴是直线x=1;②设y1=﹣x12+2x1,y2=﹣x22+2x2,则当x2>x1时,有y2>y1;③它的图象与x轴的两个交点是(0,0)和(2,0);④当0<x<2时,y>0.其中正确的结论的个数为()A.1 B.2 C.3 D.414.已知抛物线y=ax2+bx+c(a>0)过(﹣2,0),(2,3)两点,那么抛物线的对称轴()A.只能是x=﹣1B.可能是y轴C.在y轴右侧且在直线x=2的左侧D.在y轴左侧且在直线x=﹣2的右侧15.已知一个函数图象经过(1,﹣4),(2,﹣2)两点,在自变量x的某个取值范围内,都有函数值y随x的增大而减小,则符合上述条件的函数可能是()A.正比例函数B.一次函数C.反比例函数D.二次函数16.二次函数y=x2+4x﹣5的图象的对称轴为()A.x=4 B.x=﹣4 C.x=2 D.x=﹣217.已知二次函数y=x2+(m﹣1)x+1,当x>1时,y随x的增大而增大,而m 的取值范围是()A.m=﹣1 B.m=3 C.m≤﹣1 D.m≥﹣118.如图,反比例函数y=的图象经过二次函数y=ax2+bx图象的顶点(﹣,m)(m>0),则有()A.a=b+2k B.a=b﹣2k C.k<b<0 D.a<k<019.设二次函数y=(x﹣3)2﹣4图象的对称轴为直线l,若点M在直线l上,则点M的坐标可能是()A.(1,0)B.(3,0)C.(﹣3,0)D.(0,﹣4)20.在下列二次函数中,其图象对称轴为x=﹣2的是()A.y=(x+2)2B.y=2x2﹣2 C.y=﹣2x2﹣2 D.y=2(x﹣2)221.若抛物线y=(x﹣m)2+(m+1)的顶点在第一象限,则m的取值范围为()A.m>1 B.m>0 C.m>﹣1 D.﹣1<m<022.二次函数y=x2﹣2x﹣3的图象如图所示,下列说法中错误的是()A.函数图象与y轴的交点坐标是(0,﹣3)B.顶点坐标是(1,﹣3)C.函数图象与x轴的交点坐标是(3,0)、(﹣1,0)D.当x<0时,y随x的增大而减小23.如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0 ②2a+b=0 ③a+b+c>0 ④当﹣1<x<3时,y>0其中正确的个数为()A.1 B.2 C.3 D.424.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①b2>4ac;②2a+b=0;③a+b+c>0;④若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2,其中正确结论是()A.②④B.①④C.①③D.②③25.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B 两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x 轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,其中正确的是()A.①②③B.①③④C.①③⑤D.②④⑤26.二次函数y=ax2+bx+c的图象如图所示,则下列关系式错误的是()A.a<0 B.b>0 C.b2﹣4ac>0 D.a+b+c<027.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法正确的个数是()①a>0;②b>0;③c<0;④b2﹣4ac>0.A.1 B.2 C.3 D.428.如图,已知经过原点的抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣1,下列结论中:①ab>0, ②a+b+c>0, ③当﹣2<x<0时,y<0.正确的个数是()A.0个B.1个C.2个D.3个29.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②>0;③ac﹣b+1=0;④OA•OB=﹣.其中正确结论的个数是()A.4 B.3 C.2 D.130.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b>0;②abc<0;③b2﹣4ac>0;④a+b+c<0;⑤4a﹣2b+c<0,其中正确的个数是()A.2 B.3 C.4 D.5二.填空题(共21小题)1.二次函数y=﹣x2+2x﹣3图象的顶点坐标是.2.已知二次函数y=(x﹣2)2+3,当x时,y随x的增大而减小.3.函数y=x2+2x+1,当y=0时,x= ;当1<x<2时,y随x的增大而(填写“增大”或“减小”).4.下列函数(其中n为常数,且n>1)①y=(x>0);②y=(n﹣1)x;③y=(x>0);④y=(1﹣n)x+1;⑤y=﹣x2+2nx(x<0)中,y的值随x的值增大而增大的函数有个.5.对于两个二次函数y1,y2,满足y1+y2=2x2+2x+8.当x=m时,二次函数y1的函数值为5,且二次函数y2有最小值3.请写出两个符合题意的二次函数y2的解析式(要求:写出的解析式的对称轴不能相同).6.抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)和(m,0),且1<m<2,当x<﹣1时,y随着x的增大而减小.下列结论:①abc>0;②a+b>0;③若点A(﹣3,y),点B(3,y2)都在抛物线上,则y1<y2;④a(m1﹣1)+b=0;⑤若c≤﹣1,则b2﹣4ac≤4a.其中结论错误的是.(只填写序号)7.如图,抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点(,0),有下列结论:①abc>0;②a﹣2b+4c=0;③25a﹣10b+4c=0;④3b+2c>0;⑤a﹣b≥m(am﹣b);其中所有正确的结论是.(填写正确结论的序号)8.如图,在平面直角坐标系中,点A在抛物线y=x2﹣2x+2上运动.过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为.9.已知点A(4,y1),B(,y2),C(﹣2,y3)都在二次函数y=(x﹣2)2﹣1的图象上,则y1、y2、y3的大小关系是.10.在直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:若y′=,则称点Q为点P的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).(1)若点(﹣1,﹣2)是一次函数y=x+3图象上点M的“可控变点”,则点M 的坐标为.(2)若点P在函数y=﹣x2+16(﹣5≤x≤a)的图象上,其“可控变点”Q的纵坐标y′的取值范围是﹣16≤y′≤16,则实数a的取值范围是.11.当x=m或x=n(m≠n)时,代数式x2﹣2x+3的值相等,则x=m+n时,代数式x2﹣2x+3的值为.12.抛物线y=2x2﹣4x+3绕坐标原点旋转180°所得的抛物线的解析式是.13.如图,已知抛物线C1:y=a1x2+b1x+c1和C2:y=a2x2+b2x+c2都经过原点,顶点分别为A,B,与x轴的另一交点分别为M,N,如果点A与点B,点M与点N都关于原点O成中心对称,则称抛物线C1和C2为姐妹抛物线,请你写出一对姐妹抛物线C1和C2,使四边形ANBM恰好是矩形,你所写的一对抛物线解析式是和.14.把二次函数y=2x2的图象向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的解析式为.15.如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,顶点C的纵坐标为﹣2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1,则下列结论正确的是.(写出所有正确结论的序号)①b>0②a﹣b+c<0③阴影部分的面积为4④若c=﹣1,则b2=4a.16.用一根长为32cm的铁丝围成一个矩形,则围成矩形面积的最大值是cm2.17.已知抛物线p:y=ax2+bx+c的顶点为C,与x轴相交于A、B两点(点A在点B左侧),点C关于x轴的对称点为C′,我们称以A为顶点且过点C′,对称轴与y轴平行的抛物线为抛物线p的“梦之星”抛物线,直线AC′为抛物线p的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y=x2+2x+1和y=2x+2,则这条抛物线的解析式为.18.某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为元时,该服装店平均每天的销售利润最大.19.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门.已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为m2.20.已知在平面直角坐标系xOy中,O为坐标原点,线段AB的两个端点A(0,2),B(1,0)分别在y轴和x轴的正半轴上,点C为线段AB的中点,现将线段BA绕点B按顺时针方向旋转90°得到线段BD,抛物线y=ax2+bx+c(a≠0)经过点D.(1)如图1,若该抛物线经过原点O,且a=﹣.①求点D的坐标及该抛物线的解析式;②连结CD,问:在抛物线上是否存在点P,使得∠POB与∠BCD互余?若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由;(2)如图2,若该抛物线y=ax2+bx+c(a≠0)经过点E(1,1),点Q在抛物线上,且满足∠QOB与∠BCD互余.若符合条件的Q点的个数是4个,请直接写出a的取值范围.21.如图,已知直线y=﹣x+3分别交x轴、y轴于点A、B,P是抛物线y=﹣x2+2x+5的一个动点,其横坐标为a,过点P且平行于y轴的直线交直线y=﹣x+3于点Q,则当PQ=BQ时,a的值是.参考答案与试题解析一.选择题(共30小题)1.(2015•兰州)下列函数解析式中,一定为二次函数的是()A.y=3x﹣1 B.y=ax2+bx+c C.s=2t2﹣2t+1 D.y=x2+考点:二次函数的定义.分析:根据二次函数的定义,可得答案.解答:解:A、y=3x﹣1是一次函数,故A错误;B、y=ax2+bx+c(a≠0)是二次函数,故B错误;C、s=2t2﹣2t+1是二次函数,故C正确;D、y=x2+不是二次函数,故D错误;故选:C.2.(2015•宁夏)函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.解答:解:由解析式y=﹣kx2+k可得:抛物线对称轴x=0;A、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,故A错误;B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,故B正确;C、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故C错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故D错误.故选:B.点评:本题主要考查了二次函数及反比例函数和图象,解决此类问题步骤一般为:(1)先根据图象的特点判断k取值是否矛盾;(2)根据二次函数图象判断抛物线与y轴的交点是否符合要求.3.(2015•衢州)下列四个函数图象中,当x>0时,y随x的增大而减小的是()A.B.C.D.考点:二次函数的图象;一次函数的图象;反比例函数的图象.专题:计算题.分析:利用一次函数,二次函数,以及反比例函数的性质判断即可.解答:解:当x>0时,y随x的增大而减小的是,故选B4.(2015•锦州)在同一坐标系中,一次函数y=ax+2与二次函数y=x2+a的图象可能是()A.B.C.D.考点:二次函数的图象;一次函数的图象.分析:根据一次函数和二次函数的解析式可得一次函数与y轴的交点为(0,2),二次函数的开口向上,据此判断二次函数的图象.解答:解:当a<0时,二次函数顶点在y轴负半轴,一次函数经过一、二、四象限;当a>0时,二次函数顶点在y轴正半轴,一次函数经过一、二、三象限.故选C.点评:此题主要考查了二次函数及一次函数的图象的性质,用到的知识点为:二次函数和一次函数的常数项是图象与y轴交点的纵坐标.5.(2015•湖北)二次函数y=ax2+bx+c的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的图象可能是()A.B.C.D.考点:二次函数的图象;一次函数的图象;反比例函数的图象.分析:根据二次函数图象开口向下得到a<0,再根据对称轴确定出b,根据与y轴的交点确定出c>0,然后确定出一次函数图象与反比例函数图象的情况,即可得解.解答:解:∵二次函数图象开口方向向下,∴a<0,∵对称轴为直线x=﹣>0,∴b>0,∵与y轴的正半轴相交,∴c>0,∴y=ax+b的图象经过第一、二、四象限,反比例函数y=图象在第一三象限,只有C选项图象符合.故选C.点评:本题考查了二次函数的图形,一次函数的图象,反比例函数的图象,熟练掌握二次函数的有关性质:开口方向、对称轴、与y轴的交点坐标等确定出a、b、c的情况是解题的关键.6.(2015•泰安)在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2+m的图象可能是()A.B.C.D.考点:二次函数的图象;一次函数的图象.分析:本题可先由一次函数y=﹣mx+n2图象得到字母系数的正负,再与二次函数y=x2+m的图象相比较看是否一致.解答:解:A、由直线与y轴的交点在y轴的负半轴上可知,n2<0,错误;B、由抛物线与y轴的交点在y轴的正半轴上可知,m>0,由直线可知,﹣m>0,错误;C、由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m<0,错误;D、由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m>0,正确,故选D.点评:本题考查抛物线和直线的性质,用假设法来搞定这种数形结合题是一种很好的方法,难度适中.7.(2015•泰安)某同学在用描点法画二次函数y=ax2+bx+c的图象时,列出了下面的表格:x…﹣2 ﹣1 0 1 2 …y…﹣11 ﹣2 1 ﹣2 ﹣5 …由于粗心,他算错了其中一个y值,则这个错误的数值是()A.﹣11 B.﹣2 C.1 D.﹣5考点:二次函数的图象.分析:根据关于对称轴对称的自变量对应的函数值相等,可得答案.解答:解:由函数图象关于对称轴对称,得(﹣1,﹣2),(0,1),(1,2)在函数图象上,把(﹣1,﹣2),(0,1),(1,﹣2)代入函数解析式,得,解得,函数解析式为y=﹣3x2+1x=2时y=﹣11,故选:D.点评:本题考查了二次函数图象,利用函数图象关于对称轴对称是解题关键.8.(2015•沈阳)在平面直角坐标系中,二次函数y=a(x﹣h)2(a≠0)的图象可能是()A.B.C.D.考点:二次函数的图象.分析:根据二次函数y=a(x﹣h)2(a≠0)的顶点坐标为(h,0),它的顶点坐标在x轴上,即可解答.解答:解:二次函数y=a(x﹣h)2(a≠0)的顶点坐标为(h,0),它的顶点坐标在x轴上,故选:D.点评:本题考查了二次函数的图象,解决本题的关键是明二次函数的顶点坐标.9.(2015•安徽)如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b﹣1)x+c的图象可能是()A.B.C.D.考点:二次函数的图象;正比例函数的图象.分析:由一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,得出方程ax2+(b﹣1)x+c=0有两个不相等的根,进而得出函数y=ax2+(b﹣1)x+c与x轴有两个交点,根据方程根与系数的关系得出函数y=ax2+(b﹣1)x+c的对称轴x=﹣>0,即可进行判断.解答:解:∵一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,∴方程ax2+(b﹣1)x+c=0有两个不相等的根,∴函数y=ax2+(b﹣1)x+c与x轴有两个交点,∵方程ax2+(b﹣1)x+c=0的两个不相等的根x1>0,x2>0,∴x1+x2=﹣>0,∴﹣>0,∴函数y=ax2+(b﹣1)x+c的对称轴x=﹣>0,∵a>0,开口向上,∴A符合条件,故选A.点评:本题考查了二次函数的图象,直线和抛物线的交点,交点坐标和方程的关系以及方程和二次函数的关系等,熟练掌握二次函数的性质是解题的关键.10.(2015•泉州)在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A.B.C.D.考点:二次函数的图象;一次函数的图象.分析:首先根据图形中给出的一次函数图象确定a、b的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.解答:解:A、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,对称轴x=﹣<0,应在y轴的左侧,故不合题意,图形错误.B、对于直线y=bx+a来说,由图象可以判断,a<0,b<0;而对于抛物线y=ax2+bx 来说,图象应开口向下,故不合题意,图形错误.C、对于直线y=bx+a来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2+bx 来说,图象开口向下,对称轴y=﹣位于y轴的右侧,故符合题意,D、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx 来说,图象开口向下,a<0,故不合题意,图形错误.故选:C.点评:此主要考查了一次函数、二次函数图象的性质及其应用问题;解题的方法是首先根据其中一次函数图象确定a、b的符号,进而判断另一个函数的图象是否符合题意;解题的关键是灵活运用一次函数、二次函数图象的性质来分析、判断、解答.11.(2015•咸宁)如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0.其中正确的个数有()A.1个B.2个C.3个D.4个考点:二次函数的图象;二次函数图象与系数的关系;二次函数的最值;抛物线与x轴的交点;二次函数与不等式(组).分析:①根据抛物线的顶点坐标确定二次三项式ax2+bx+c的最大值;②根据x=2时,y<0确定4a+2b+c的符号;③根据抛物线的对称性确定一元二次方程ax2+bx+c=1的两根之和;④根据函数图象确定使y≤3成立的x的取值范围.解答:解:∵抛物线的顶点坐标为(﹣1,4),∴二次三项式ax2+bx+c的最大值为4,①正确;∵x=2时,y<0,∴4a+2b+c<0,②正确;根据抛物线的对称性可知,一元二次方程ax2+bx+c=1的两根之和为﹣2,③错误;使y≤3成立的x的取值范围是x≥0或x≤﹣2,④错误,故选:B.点评:本题考查的是二次函数的图象、二次函数的最值、二次函数与不等式,掌握二次函数的性质、正确获取图象信息是解题的关键.12.(2015•新疆)抛物线y=(x﹣1)2+2的顶点坐标是()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(1,2)考点:二次函数的性质.专题:压轴题.分析:直接利用顶点式的特点可写出顶点坐标.解答:解:∵顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),∴抛物线y=(x﹣1)2+2的顶点坐标是(1,2).故选D.点评:主要考查了求抛物线的顶点坐标、对称轴的方法.熟记二次函数的顶点式的形式是解题的关键.13.(2015•梅州)对于二次函数y=﹣x2+2x.有下列四个结论:①它的对称轴是直线x=1;②设y1=﹣x12+2x1,y2=﹣x22+2x2,则当x2>x1时,有y2>y1;③它的图象与x轴的两个交点是(0,0)和(2,0);④当0<x<2时,y>0.其中正确的结论的个数为()A.1 B.2 C.3 D.4考点:二次函数的性质.分析:利用配方法求出二次函数对称轴,再求出图象与x轴交点坐标,进而结合二次函数性质得出答案.解答:解:y=﹣x2+2x=﹣(x﹣1)2+1,故①它的对称轴是直线x=1,正确;②∵直线x=1两旁部分增减性不一样,∴设y1=﹣x12+2x1,y2=﹣x22+2x2,则当x2>x1时,有y2>y1,错误;③当y=0,则x(﹣x+2)=0,解得:x1=0,x2=2,故它的图象与x轴的两个交点是(0,0)和(2,0),正确;④∵a=﹣1<0,∴抛物线开口向下,∵它的图象与x轴的两个交点是(0,0)和(2,0),∴当0<x<2时,y>0,正确.故选:C.点评:此题主要考查了二次函数的性质以及一元二次方程的解法,得出抛物线的对称轴和其交点坐标是解题关键.14.(2015•南昌)已知抛物线y=ax2+bx+c(a>0)过(﹣2,0),(2,3)两点,那么抛物线的对称轴()A.只能是x=﹣1B.可能是y轴C.在y轴右侧且在直线x=2的左侧D.在y轴左侧且在直线x=﹣2的右侧考点:二次函数的性质.分析:根据题意判定点(﹣2,0)关于对称轴的对称点横坐标x2满足:﹣2<x<2,从而得出﹣2<<0,即可判定抛物线对称轴的位置.2解答:解:∵抛物线y=ax2+bx+c(a>0)过(﹣2,0),(2,3)两点,∴点(﹣2,0)关于对称轴的对称点横坐标x2满足:﹣2<x2<2,∴﹣2<<0,∴抛物线的对称轴在y轴左侧且在直线x=﹣2的右侧.故选D.点评:本题考查了二次函数的性质,根据点坐标判断出另一个点的位置是解题的关键.15.(2015•福州)已知一个函数图象经过(1,﹣4),(2,﹣2)两点,在自变量x的某个取值范围内,都有函数值y随x的增大而减小,则符合上述条件的函数可能是()A.正比例函数B.一次函数C.反比例函数D.二次函数考点:二次函数的性质;一次函数的性质;正比例函数的性质;反比例函数的性质.分析:求出一次函数和反比例函数的解析式,根据其性质进行判断.解答:解:设一次函数解析式为:y=kx+b,由题意得,,解得,,∵k>0,∴y随x的增大而增大,∴A、B错误,设反比例函数解析式为:y=,由题意得,k=﹣4,k<0,∴在每个象限,y随x的增大而增大,∴C错误,当抛物线开口向上,x>1时,y随x的增大而减小.故选:D.点评:本题考查的是正比例函数、一次函数、反比例函数和二次函数的性质,掌握各个函数的增减性是解题的关键.16.(2015•甘孜州)二次函数y=x2+4x﹣5的图象的对称轴为()A.x=4 B.x=﹣4 C.x=2 D.x=﹣2考点:二次函数的性质.分析:直接利用抛物线的对称轴公式代入求出即可.解答:解:二次函数y=x2+4x﹣5的图象的对称轴为:x=﹣=﹣=﹣2.故选:D.点评:此题主要考查了二次函数的性质,正确记忆抛物线对称轴公式是解题关键.17.(2015•常州)已知二次函数y=x2+(m﹣1)x+1,当x>1时,y随x的增大而增大,而m的取值范围是()A.m=﹣1 B.m=3 C.m≤﹣1 D.m≥﹣1考点:二次函数的性质.分析:根据二次函数的性质,利用二次函数的对称轴不大于1列式计算即可得解.解答:解:抛物线的对称轴为直线x=﹣,∵当x>1时,y的值随x值的增大而增大,∴﹣≤1,解得m≥﹣1.故选D.点评:本题考查了二次函数的性质,主要利用了二次函数的增减性,熟记性质并列出不等式是解题的关键.18.(2015•玉林)如图,反比例函数y=的图象经过二次函数y=ax2+bx图象的顶点(﹣,m)(m>0),则有()A.a=b+2k B.a=b﹣2k C.k<b<0 D.a<k<0考点:二次函数的性质;反比例函数图象上点的坐标特征.专题:计算题.分析:把(﹣,m)代入y=ax2+bx图象的顶点坐标公式得到顶点(﹣,﹣),再把(﹣,﹣)代入得到k=,由图象的特征即可得到结论.解答:解:∵y=ax2+bx图象的顶点(﹣,m),∴﹣=﹣,即b=a,∴m==﹣,∴顶点(﹣,﹣),把x=﹣,y=﹣代入反比例解析式得:k=,由图象知:抛物线的开口向下,∴a<0,∴a<k<0,故选D.点评:本题考查了二次函数的性质,反比例函数图象上点的坐标特征,熟练掌握反比例函数图象上点的坐标特征是解题的关键.19.(2015•台州)设二次函数y=(x﹣3)2﹣4图象的对称轴为直线l,若点M 在直线l上,则点M的坐标可能是()A.(1,0)B.(3,0)C.(﹣3,0)D.(0,﹣4)考点:二次函数的性质.分析:根据二次函数的解析式可得出直线l的方程为x=3,点M在直线l上则点M的横坐标一定为3,从而选出答案.解答:解:∵二次函数y=(x﹣3)2﹣4图象的对称轴为直线x=3,∴直线l上所有点的横坐标都是3,∵点M在直线l上,∴点M的横坐标为3,故选B.点评:本题考查了二次函数的性质,解答本题的关键是掌握二次函数y=a(x ﹣h)2+k的顶点坐标为(h,k),对称轴是x=h.20.(2015•兰州)在下列二次函数中,其图象对称轴为x=﹣2的是()A.y=(x+2)2B.y=2x2﹣2 C.y=﹣2x2﹣2 D.y=2(x﹣2)2考点:二次函数的性质.分析:根据二次函数的性质求出各个函数的对称轴,选出正确的选项.解答:解:y=(x+2)2的对称轴为x=﹣2,A正确;y=2x2﹣2的对称轴为x=0,B错误;y=﹣2x2﹣2的对称轴为x=0,C错误;y=2(x﹣2)2的对称轴为x=2,D错误.故选:A.点评:本题考查的是二次函数的性质,正确求出二次函数图象的对称轴是解题的关键.21.(2015•益阳)若抛物线y=(x﹣m)2+(m+1)的顶点在第一象限,则m的取值范围为()A.m>1 B.m>0 C.m>﹣1 D.﹣1<m<0考点:二次函数的性质.分析:利用y=ax2+bx+c的顶点坐标公式表示出其顶点坐标,根据顶点在第一象限,所以顶点的横坐标和纵坐标都大于0列出不等式组.解答:解:由y=(x﹣m)2+(m+1)=x2﹣2mx+(m2+m+1),根据题意,,解不等式(1),得m>0,解不等式(2),得m>﹣1;所以不等式组的解集为m>0.故选B.点评:本题考查顶点坐标的公式和点所在象限的取值范围,同时考查了不等式组的解法,难度较大.22.(2015•黔南州)二次函数y=x2﹣2x﹣3的图象如图所示,下列说法中错误的是()A.函数图象与y轴的交点坐标是(0,﹣3)B.顶点坐标是(1,﹣3)C.函数图象与x轴的交点坐标是(3,0)、(﹣1,0)D.当x<0时,y随x的增大而减小考点:二次函数的性质;二次函数的图象.分析:A、将x=0代入y=x2﹣2x﹣3,求出y=﹣3,得出函数图象与y轴的交点坐标,即可判断;B、将一般式化为顶点式,求出顶点坐标,即可判断;C、将y=0代入y=x2﹣2x﹣3,求出x的值,得到函数图象与x轴的交点坐标,即可判断;D、利用二次函数的增减性即可判断.解答:解:A、∵y=x2﹣2x﹣3,∴x=0时,y=﹣3,∴函数图象与y轴的交点坐标是(0,﹣3),故本选项说法正确;B、∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点坐标是(1,﹣4),故本选项说法错误;C、∵y=x2﹣2x﹣3,∴y=0时,x2﹣2x﹣3=0,解得x=3或﹣1,∴函数图象与x轴的交点坐标是(3,0)、(﹣1,0),故本选项说法正确;D、∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴对称轴为直线x=1,又∵a=1>0,开口向上,∴x<1时,y随x的增大而减小,∴x<0时,y随x的增大而减小,故本选项说法正确;故选B.点评:本题考查了二次函数的性质,抛物线与坐标轴的交点坐标,掌握二次函数的性质是解决本题的关键.23.(2015•安顺)如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0 ②2a+b=0 ③a+b+c>0 ④当﹣1<x<3时,y>0其中正确的个数为()A.1 B.2 C.3 D.4考点:二次函数图象与系数的关系.专题:压轴题.分析:由抛物线的开口方向判断a与0的关系,由x=1时的函数值判断a+b+c >0,然后根据对称轴推出2a+b与0的关系,根据图象判断﹣1<x<3时,y的符号.解答:解:①图象开口向下,能得到a<0;②对称轴在y轴右侧,x==1,则有﹣=1,即2a+b=0;③当x=1时,y>0,则a+b+c>0;④由图可知,当﹣1<x<3时,y>0.故选C.点评:本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.24.(2015•恩施州)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A (﹣3,0),对称轴为直线x=﹣1,给出四个结论:①b2>4ac;②2a+b=0;③a+b+c>0;④若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2,其中正确结论是()A.②④B.①④C.①③D.②③考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:∵抛物线的开口方向向下,∴a<0;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,故①正确由图象可知:对称轴x=﹣=﹣1,∴2a﹣b=0,故②错误;∵抛物线与y轴的交点在y轴的正半轴上,∴c>0由图象可知:当x=1时y=0,∴a+b+c=0;故③错误;由图象可知:当x=﹣1时y>0,∴点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2,故④正确.故选B点评:此题考查二次函数的性质,解答本题关键是掌握二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.25.(2015•日照)如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x 轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,其中正确的是()A.①②③B.①③④C.①③⑤D.②④⑤考点:二次函数图象与系数的关系;抛物线与x轴的交点.专题:数形结合.分析:根据抛物线对称轴方程对①进行判断;由抛物线开口方向得到a<0,由对称轴位置可得b>0,由抛物线与y轴的交点位置可得c>0,于是可对②进行判断;根据顶点坐标对③进行判断;根据抛物线的对称性对④进行判断;根据函数图象得当1<x<4时,一次函数图象在抛物线下方,则可对⑤进行判断.解答:解:∵抛物线的顶点坐标A(1,3),∴抛物线的对称轴为直线x=﹣=1,∴2a+b=0,所以①正确;∵抛物线开口向下,∴a<0,∴b=﹣2a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以②错误;∵抛物线的顶点坐标A(1,3),∴x=1时,二次函数有最大值,∴方程ax2+bx+c=3有两个相等的实数根,所以③正确;∵抛物线与x轴的一个交点为(4,0)而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(﹣2,0),所以④错误;∵抛物线y1=ax2+bx+c与直线y2=mx+n(m≠0)交于A(1,3),B点(4,0)∴当1<x<4时,y2<y1,所以⑤正确.故选C.点评:本题考查了二次项系数与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当。

2015年河南省中招数学试题及解析答案

2015年河南省中招数学试题及解析答案

2015年河南省中招考试数学试题及答案解析一、选择题(每小题3分,共24分) 1.下列各数中最大的数是( ) A. 5C.πD.-8【答案】:A【解析】:根据有理数的定义,很容易得到最大的数是5,选A 。

2.如图所示的几何体的俯视图是( )【答案】:B【解析】:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,找到从上面看所得到的图形即可,选B 。

3.据统计,2014年我国高新产品出口总额达40570亿元,将数据40570亿用科学记数法表示为( )A.4.0570×109B. 0.40570×1010C. 40.570×1011D. 4.0570×1012【答案】:D【解析】: 科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数。

确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同。

当原数绝对值>1时,n 是正数; 当原数的绝对值<1时,n 是负数。

将40570亿用科学记数法表示4.0570×1012元,选D 。

4.如图,直线a ,b 被直线c ,d 所截,若∠1=∠2,∠3=1250,则∠4的度数为( )A.550B.600 C .700 D.750【答案】:A【解析】:本题考查了三线八角,因为∠1=∠2,所以a ∥b,又∠3=1250,∠3与∠4互补,则∠4的度数为550。

选A 。

a bcC DB A 正面第2题5.不等式组x503x1+≥⎧⎨-⎩>的解集在数轴上表示为()GURUILIND CB A【答案】:C【解析】:本题考查了不等式组的解集,有①得x≥-5,有②得x<2,这里注意空心和实心;所以选C。

6.小王参加某企业招聘测试,他的笔试,面试,技能操作得分分别为85分,80分,90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是()A.255分B.84分C.84.5分D.86分【答案】:D【解析】:本题主要考察加权平均数的计算方法,(85×2+80×3+90×5)÷(2+3+5)=86分,所以选D.7.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG,交BC 于点E,若BF=6,AB=5,则AE的长为()A.4B.6C.8D.10【答案】:C【解析】:本题主要考察平行四边形和等腰三角形三线合一定理。

精品 2015年全国数学中考计算题真题汇总

精品 2015年全国数学中考计算题真题汇总

精品 2015年全国数学中考计算题真题汇总精品2015年全国中考数学真题计算题汇总分解因式:5x-10x=5x(1-2)=5x*(-2)= -10x因式分解:ax+ay=a(x+y)分解因式:m3-m=m(m2-1)=m(m+1)(m-1)分解因式:2x-2y=2(x-y)分解因式:a2-2a=a(a-2)分解因式:mn-4mn=-3mn分解因式a-9的结果是(a+3)(a-3)分解因式:2mx-6my=2m(x-3y)分解因式:x-x=0因式分解:x-4x=x(1-4)=-3x因式分解:x-9x=x(1-9)=-8x分解因式:x3-xy2=x(x2-y2)=x(x+y)(x-y)计算(x - l)(x+2)的结果是(x-1)(x+2)=x2+x-2若实数a、b满足(4a+4b)(4a+4b-2)-8=0,则a+b=1/2定义运算“*”,规定x*y=ax+by,其中a、b为常数,且1*2=5,2*1=6,则2*3=13若一元二次方程ax-bx-2015=0有一根为x=-1,则a+b=2014关于x的一元二次方程ax+bx=0有两个相等的实数根,写出一组满足条件的实数a,b的值:a=0,b≠0若2m-n2=4,则代数式10+4m-2n2的值为10+4m-2n2=10+4(2+n2)-2n2=8+4n2若a2-3b=5,则6b-2a2+2015=2015-2a2+6b=2015-2(a2-3b)=2010把二次函数y=x2-12x化为形如y=a(x-h)+k的形式:y=(x-6)2-36若x+x+m=(x-3)(x+n)对___成立,则n=4如果a/c=c/e=e/a,且a+c+e=3(b+d+f),那么k=(a+b+c+d+e+f)/6已知关于x的一元二次方程x-2x-k=0有两个相等的实数根,则k值为1已知一元二次方程x-4x-3=0的两根为m,n,则m-mn+n=31页第1页共两组数据:3,a,2b,5与a,6,b的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为4.5若x2+x+m=(x-3)(x+n)对___成立,则n=-4关于x的不等式组{2x+1>3,a-x>1}的解集为14不等式组{3x-5<2x。

2015年初中毕业升学考试试卷数学含答案(真卷出击)

2015年初中毕业升学考试试卷数学含答案(真卷出击)

2015年初中毕业升学考试试卷数学(考试时间共120分钟,全卷满分120分)第Ⅰ卷(选择题,共36分)注意事项:1.答题前,考生务必先将自己的姓名、准考证号用蓝、黑色墨水笔或圆珠笔填写在试卷左边的密封线内.2.第Ⅰ卷为第1页至第2页.答题时,请用2B 铅笔把各小题正确答案序号填涂在答题卡对应的题号内.如需改动,须用橡皮擦干净后,再填涂其它答案. 在第Ⅰ卷上答题无效.一、选择题(本大题共12小题,每小题3分,满分36分.在每个小题给出的四个选项中,只有一项是正确的,每小题选对得3分,错选、不选或多选均得零分) 1.AB.C.5-D.52.如图1,点A B C 、、是直线l 上的三个点,图中共有线段条数是A .1条 B.2条 C.3条 D.4条3.三条直线a b c 、、,若a c ∥,b c ∥,则a 与b 的位置关系是A .a b ⊥ B.a b ∥ C.a b a b ⊥或∥ D.无法确定 4.图2的几何体中,主视图、左视图、俯视图均相同的是5.若分式23x-有意义,则x 的取值范围是 A .3x ≠ B.3x = C.3x < D.3x > 6.不等式5x +≥8的解集在数轴上表示为A . B. C. D.7.一个正多边形的一个内角为120度,则这个正多边形的边数为 A .9 B.8 C.7 D.6图 1图28.如图3,Rt ABC △中,90C ∠=°,ABC ∠的平分线BD 交AC 于D ,若3cm CD =,则点D 到AB 的距离DE 是A .5cm B.4cm C.3cm D.2cm9.如图4,在正方形ABCD 的外侧作等边ADE △,则AEB ∠的度数为 A .10° B.12.5° C.15° D.20°10.上海“世界博览会”某展厅志愿者的年龄分布如图5,这些志愿者年龄的众数是 A .19岁 B.20岁 C.21岁 D.22岁11.抛物线2y x bx c =-++上部分点的横坐标x ,纵坐标y 的对应值如下表:从上表可知,下列说法正确的个数是①抛物线与x 轴的一个交点为(20)-,②抛物线与y 轴的交点为(06), ③抛物线的对称轴是:1x = ④在对称轴左侧y 随x 增大而增大A .1 B.2 C.3 D.4 12.如图6,四边形ABCD 是边长为9的正方形纸片,将其沿MN 折叠,使点B 落在CD 边上的B '处,点A 对应点为A ',且3B C '=,则AM 的长是A .1.5 B.2 C.2.25 D.2.52015年初中毕业升学考试试卷第Ⅱ卷(非选择题,共84分)注意事项:1.答题前,考生务必先将自己的姓名、准考证号用蓝、黑色墨水笔或圆珠笔填写在试卷左边的密封线内.2.第Ⅱ卷为第3页至第10页.答题时,用蓝黑色墨水笔或圆珠笔直接将答案写在试卷上.图3 图4 图5 图6二、填空题(本大题共6小题,每小题3分,满分18分.请将答案直接填写在题中横线上的空白处)13= . 14.因式分解:29x -= .15.写出一个经过点(11),的一次函数解析式 . 16.2010年广州亚运会吉祥物取名“乐羊羊”.图7中各图是按照一定规律排列的羊的组图,图①有1只羊,图②有3只羊,……,则图⑩有 只羊.17.关于x 的一元二次方程(3)(1)0x x +-=的根是 . 18.如图8,AB 是O ⊙的直径,弦2cm BC =,F 是弦BC 的中点,60ABC ∠=°.若动点E 以2cm/s 的速度从A 点出发沿着A B A →→方向运动,设运动时间为()(03)t s t <≤,连结EF ,当t 值为 s时,BEF △是直角三角形. 三、解答题(本大题8分,满分66分.解答应写出必要的文字说明、演算步骤或推理过程) 19.(本题满分6分)计算:30(2)(2010tan 45-+-°.20.(本题满分6分)如图9,在88⨯的正方形网格中,ABC △的顶点和线段EF 的端点都在边长为1的小正方形的顶点上.A B图8 图7(1)填空:ABC ∠= .BC = ; (2)请你在图中找出一点D ,再连接DE DF 、,使以D E F 、、为顶点的三角形与ABC △全等,并加以证明. 21.(本题满分6分)桌面上有4张背面相同的卡片,正面分别写着数字“1”、“2”、“3”“4”.先将卡片背面朝上洗匀.(1)如果让小唐从中任意抽取一张,抽到奇数的概率是 ;(2)如果让小唐从中同时抽取两张.游戏规则规定:抽到的两张卡片上的数字之和为奇数,则小唐胜,否则小谢胜.你认为这个游戏公平吗?说出你的理由. 22.(本题满分8分) 如图10,从热气球P 上测得两建筑物A B 、的底部的俯角分别为45°和30°,如果A B 、两建筑物的距离为90m ,P 点在地面上的正投影恰好落在线段AB 上,求热气球P 的高度.(结果精确到0.01m1.7321.414)图9 45°30°图10目前,“低碳”已成为保护地球环境的热门话题.风能是一种清洁能源,近几年我国风电装机容量迅速增长.图11是我国2003年-2009年部分年份的内力发电装机容量统计图(单位:万千瓦),观察统计图解答下列问题.(1)2007年,我国风力发电装机容量已达万千瓦;从2003年到2009年,我国风力发电装机容量平均每年增长......万千瓦;(2)求2007~2009这两年装机容量的年平均增长率......;(参考数据: 2.24,1.123.74)(3)按(2)的增长率,请你预测2010年我国风力发电装机容量.(结果保留到0.1万千瓦)24.(本题满分10分)某住宅小区计划购买并种植甲、乙两种树苗共300株.已知甲种树苗每株60元,乙种树苗每株90元.(1)若购买树苗共用21000元,问甲、乙两种树苗应各买多少株?(2)据统计,甲、乙两种树苗每株树苗对空气的净化指数分别为0.2和0.6,问如何购买甲、乙两种树苗才能保证该小区的空气净化指数之和不低于90而且费用最低?图11如图12,AB 为O ⊙直径,且弦CD AB ⊥于E ,过点B 的切线与AD 的延长线交于点F . (1)若M 是AD 的中点,连接ME 并延长ME 交BC 于N .求证:MN BC ⊥. (2)若4cos 35C DF ∠==,,求O ⊙的半径. 26.(本题满分12分)如图13,过点(43)P -,作x 轴、y 轴的垂线,分别交x 轴、y 轴于A B 、两点,交双曲线(2)ky k x=≥于E F 、两点. (1)点E 的坐标是 ,点F 的坐标是 ;(均用含k 的式子表示) (2)判断EF 与AB 的位置关系,并证明你的结论; (3)记PEF OEF S S S =-△△,S 是否有最小值?若有,求出其最小值;若没有,请说明理由.2015年初中毕业升学考试 数学参考答案及评分标准图12图13(说明:第17题只写对一个结果给2分,两个结果都写对给3分;第18题每写对一个结果给1分) 三、解答题: 19.本题满分6分.解:原式=811-+- ························································································ 3分=8- ································································································ 6分20.本题满分6分.(1)135ABC ∠=°,BC = ·········································· 2分(2)(说明:D 的位置有四处,分别是图中的1234D D D D 、、、.此处画出D 在1D 处的位置及证明,D 在其余位置的画法及证明参照此法给分)解:EFD △的位置如图所示. ········································· 3分证明:FD BC === ··············································· 4分9045135EFD ABC ∠=∠==°+?° ·································································· 5分 2EF AB ==EFD ABC ∴△≌△ ······················································································· 6分(说明:其他证法参照此法给分) 21.本题满分6分. 解:(1)12··································································································· 2分 (2)(方法一)这个游戏不公平. ··························································································· 3分 理由如下:任意抽取两个数,共有6种不同的抽法,其中和为奇数的抽法共有4种.P ∴(和为奇数)=4263= ················································································ 4分 P (和为偶数)=13························································································ 5分(方法二)设2008年的风力发电装机容量为a 万千瓦.5002520500a aa--= ······················································································· 4分 21260000a = ························································································· 0a >1122a ∴≈ ····························································································· 5分经检验,1122a ≈是所列方程的根. 则2007到2009这两年装机容量的年增长率为11225001.24124%500-=≈ ················· 6分答:2007到2009这两年装机容量的年平均增长率约为124%. (3)(1 1.24)25205644.8+⨯= ····································································· 7分∴2010年我国风力发电装机容量约为5644.8万千瓦. ··········································· 8分 24.本题满分10分.解:(1)设甲种树苗买x 株,则乙种树苗买(300)x -株. ······································ 1分6090(300)21000x x +-= ·············································································· 3分200x = ·················································································· 4分300200100-= ················································································ 5分答:甲种树苗买200株,乙种树苗买100株.(2)设买x 株甲种树苗,(300)x -株乙种树苗时该小区的空气净化指数之和不低于90.0.20.6(300)90x x +-≥ ················································································ 6分 0.21800.690x x +-≥0.490x --≥225x ≤ ·············································································· 7分此时费用6090(300)y x x =+-3027000y x =-+ ············································································· 8分y 是x 的一次函数,y 随x 的增大而减少∴当225x =最大时,302252700020250y =-⨯+=最小(元) ······························ 9分 即应买225株甲种树苗,75株乙种树苗时该小区的空气净化指数之和不低于90,费用最小为20250元. ······························································································· 10分 (说明:其他解法参照此法给分) 25.本题满分10分 (1)(方法一) 连接AC .AB 为O ⊙的直径,且AB CD ⊥于E ,由垂径定理得:点E 是CD 的中点. ··························· 1分 又M 是AD 的中点ME ∴是DAC △的中位线 ········································ 2分MN AC ∴∥ ························································· 3分 AB 为O ⊙直径,90ACB ∴∠=°, ························· 4分90MNB ∴∠=°即MN BC ⊥ ···································· 5分(方法二)AB CD ⊥,90AED BEC ∴∠=∠=° ····················· 1分M 是AD 的中点,ME AM ∴=,即有MEA A ∠=∠ ··········································· 2分又MEA BEN ∠=∠,由A ∠与C ∠同对BD 知C A ∠=∠C BEN ∴∠=∠ ····························································································· 3分又90C CBE ∠+∠=°90CBE BEN ∴∠+∠=° ················································································· 4分 90BNE ∴∠=°,即MN BC ⊥. ····································································· 5分(方法三)AB CD ⊥,90AED ∴∠=° ········································································· 1分由于M 是AD 的中点,ME MD ∴=,即有MED EDM ∠=∠ 又CBE ∠与EDA ∠同对AC ,CBE EDA ∴∠=∠ ············································ 2分 又MED NEC ∠=∠ NEC CBE ∴∠=∠ ························································································ 3分 又90C CBE ∠+∠=°90NEC C ∴∠+∠=° ···················································································· 4分即有90CNE ∠=°,MN BC ∴⊥ ···································································· 5分 (2)连接BDBCD ∠与BAF ∠同对BD ,C A ∴∠=∠4cos cos 5A C ∴∠=∠=······································ 6分 BF 为O ⊙的切线,90ABF ∴∠=°在Rt ABF △中,4cos 5AB A AF ∠== 设4AB x =,则5AF x =,由勾股定理得:3BF x =··········································································7分 又AB 为O ⊙直径,BD AD ∴⊥ABF BDF ∴△∽△ BF DF AF BF∴= ································································································ 8分即3353x x x= 53x = ··································································································· 9分∴直径5204433AB x ==⨯= 则O ⊙的半径为103······················································································· 10分(说明:其他解法参照此法给分) 26.本题满分12分. 解:(1)44k E ⎛⎫--⎪⎝⎭,,33k F ⎛⎫ ⎪⎝⎭, ······································································ 3分 (说明:只写对一个点的坐标给2分,写对两个点的坐标给3分)(2)(证法一)结论:EF AB ∥ ······································································ 4分 证明:(43)P -,44k E ⎛⎫∴-- ⎪⎝⎭,,33k F ⎛⎫⎪⎝⎭,,即得:3443k kPE PF =+=+, ······································································· 5分 31241212123443PA PB k k PE k PF k ====++++, APB EPF ∠=∠PAB PEF ∴△∽△PAB PEF ∴∠=∠ ························································································· 6分 EF AB ∴∥ ································································································· 7分(证法二)结论:EF AB ∥ ············································································ 4分 证明:(43)P -,44k E ⎛⎫∴-- ⎪⎝⎭,,33k F ⎛⎫⎪⎝⎭,,即得:3443k kPE PF =+=+, ······································································· 5分 在Rt PAB △中,4tan 3PB PAB PA ∠== 在Rt PEF △中,443tan 334k PF PEF k PE +∠===+tan tan PAB PEF ∴∠=∠PAB PEF ∴∠=∠ ························································································· 6分 EF AB ∴∥ ································································································· 7分。

2015年中考数学试卷及答案

2015年中考数学试卷及答案

海南省 2015 年初中毕业生学业水平考试数 学 科 试 题(考试时间 100 分钟,满分 120 分)一、选择题(本大题满分 42 分,每小题 3 分)在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的 答案的字母代号按.要.求.用 2B 铅笔涂黑. 1.- 2015 的倒数是A .- 1B . 20151 C .- 2015 D .2015 2015 2.下列运算中,正确的是 A .a 2+a 4= a6 B .a 6÷a 3=a 2 C .(- a 4)2= a 6 D .a 2·a 4= a 6 3.已知 x = 1,y = 2,则代数式 x - y 的值为 A .1B .- 1C .2D .- 3 4.有一组数据:1、4、- 3、 3、4,这组数据的中位数为 A .- 3B .1C .3D .4 5.图 1 是由 5 个完全相同的小正方体组成的几何体,则这个几何体的主视图是正面A BC D 图16.据报道,2015 年全国普通高考报考人数约 9 420 000 人,数据 9 420 000 用科学记数法表 示为9.42×10n ,则 n 的值是A .4B .5C .6D .7 7.如图 2,下列条件中,不.能.证明△ABC ≌△DCB 的是 A D A .AB =DC ,AC =DBC .BO =CO ,∠A =∠D 3 2 B .AB =DC ,∠ABC =∠DCB O D .AB =DC ,∠A =∠DB C 8.方程 = x x - 2的解为 图 2 A .x = 2B .x = 6C .x = - 6D .无解 9.某企业今年 1 月份产值为 x 万元,2 月份比 1 月份减少了 10%,3 月份比 2 月份增加了 15% 则 3 月份的产值是A .(1- 10%)(1+15%)x 万元C .(x - 10%)( x +15%)万元 B .(1- 10%+15%)x 万元D .(1+10%- 15%)x 万元AMB M P O A B Q P10.点 A (- 1,1)是反比例函数 y =m + 1 的图象上一点,则 m 的值为 x A .- 1 B .- 2 C .0 D .111.某校开展“文明小卫士”活动,从学生会“督查部”的 3 名学生(2 男 1 女)中随机选 两名进行督导,则恰好选中两名男学生的概率是A . 1 3B . 4 9C . 2 3D . 2 912.甲、乙两人在操场上赛跑,他们赛跑的路程 S (米)与时间 t (分钟)之间的函数关系如 图 3所示,则下列说法错.误.的是 A .甲、乙两人进行 1000 米赛跑C .比赛到 2 分钟时,甲、乙两人跑过的路程相等B .甲先慢后快,乙先快后慢 D .甲先到达终点 13.如图 4,点 P 是□ABCD 边 A B 上的一点,射线C P 交D A 的延长线于点E ,则图中相 似的三角形有A .0 对 S (米) 1000 700 600 500 02 2.5 图3 B .1 甲 乙3.25 4 对 E t () B C .2 对 A P C 图 4D .3 对 D 图 5 14.如图 5, 将⊙O 沿弦 A B 折叠,圆弧恰好经过圆心 O∠ A PB 的度数为, 点 P 是优弧 ⌒ 上一点,则 A .45°B .30°C .75°D .60° 二、填空题(本大题满分 16 分,每小题 4 分)15.分解因式:x 2- 9 =. 16.点(- 1,y 1)、(2,y 2)是直线 y = 2x +1 上的两点,则 y 1y 2(填“>”或“=”或“<”) 17.如图 6,在平面直角坐标系中,将点 P (- 4,2)绕原点 O 顺时针旋转 90°,则其对应点 Q 的坐标为. A DB C图 7 18.如图 7,矩形 A BCD 中,AB = 3,BC = 4,则图中四个小矩形的周长之和为⎨ x + 天数 48 42 36 30 24 18 12 6 0 24 18 15 9 6 三、解答题(本大题满分 62 分)⎧2x -1≤3 19 (满分 10 分)(1)计算:(- 1)3+ 9 - 12× 2-2; (2)解不等式组: ⎪ 3>1 . ⎛⎪ 2 20 (满分 8 分)小明想从“天猫”某网店购买计算器,经查询,某品牌 A 型号计算器的单 价比B 型号计算器的单价多 10 元,5 台 A 型号的计算器与 7 台 B 型号的计算器的价钱相 同,问 A 、B 两种型号计算器的单价分别是多少?21 (满分 8 分)为了治理大气污染,我国中部某市抽取了该市 2014 年中 120 天的空气质量 指数,绘制了如下不完整的统计图表:空气质量指数条形统计图优 良请根据图表中提供的信息,解答下面的问题:轻度 中度 重度 污染 污染 污染 严重级别 污染 (1)空气质量指数统计表中的 a = ,m =;(2)请把空气质量指数条形统计图补充完整; (3)若绘制“空气质量指数扇形统计图”,级别为“优”所对应扇形的圆心角是 度(4)估计该市 2014 年(365 天)中空气质量指数大于 100 的天数约有天.22 (满分 9 分)如图 8,某渔船在小岛 O 南偏东 75°方向的 B 处遇险,在小岛 O 南偏西 45° 方向 A处巡航的中国渔政船接到求救信号后立刻前往救援,此时,中国渔政船与小岛 O 相距 8 海里,渔船在中国渔政船的正东方向上.(1)求∠BAO 与∠ABO 的度数(直接写出答案);(2)若中国渔政船以每小时 28 海里的速度沿 A B 方向赶往 B 处救援,能否在 1 小时内赶到?请说明理由 (参考数据: t an 75°˜ 3.73,tan 15°˜ 0.27, 2 ˜ 1.41, 6 ˜ 2.45 北A 图 8 BO东23 (满分 13 分)如图 9-1,菱形 A BCD 中,点 P 是 C D 的中点,∠BCD = 60°,射线 A P 交BC 的延长线于点 E ,射线 B P 交 D E 于点 K ,点 O 是线段 B K 的中点.(1)求证:△ADP ≌△ECP ;(2)若 B P = n ·PK ,试求出 n 的值;(3)作 B M ⊥AE 于点 M ,作 K N ⊥AE 于点 N ,连结 M O 、NO ,如图 9-2 所示. 请证明△MON是等腰三角形,并直接写出∠MON 的度数.A DA D KM KPP O O N B C 图 9-1E B C E 图 9-2 24 (满分 14 分)如图 10-1,二次函数 y = ax 2+bx +3 的图象与 x 轴相交于点 A (- 3,0)、B (1,0) 与 y 轴相交于点 C ,点 G 是二次函数图象的顶点,直线 G C 交 x 轴于点 H (3,0),AD 平 行 G C 交 y 轴于点 D .(1)求该二次函数的表达式;(2)求证:四边形 A CHD 是正方形;(3)如图 10-2,点 M (t ,p )是该二次函数图象上的动点,并且点 M 在第二象限内,过 点 M的直线 y = kx 交二次函数的图象于另一点 N .①若四边形 A DCM 的面积为 S ,请求出 S 关于 t 的函数表达式,并写出 t 的取值范围②若△CMN 的面积等于21 ,请求出此时①中 S 的值. 4图 10-1 图 10-2Gy M C A B H O xD NG yC A B H O x D。

2015年中考数学试卷(word解析版)

2015年中考数学试卷(word解析版)

省2015年中考数学试卷一、选择题〔共10小题,每题3分,计30分,每题只有一个选项是符合题意的〕1.计算:〔﹣〕0=〔〕A.1 B.﹣C.0 D.考点:零指数幂.分析:根据零指数幂:a0=1〔a≠0〕,求出〔﹣〕0的值是多少即可.解答:解:〔﹣〕0=1.应选:A.点评:此题主要考察了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1〔a≠0〕;②00≠1.2.〔3分〕〔2015•〕如图是一个螺母的示意图,它的俯视图是〔〕A.B.C.D.考点:简单组合体的三视图.分析:根据从上面看得到的图形是俯视图,可得答案.解答:解:从上面看外面是一个正六边形,里面是一个没有圆心的圆,应选:B.点评:此题考察了简单组合体的三视图,从上面看得到的图形是俯视图.3.〔3分〕〔2015•〕以下计算正确的选项是〔〕A.a2•a3=a6B.〔﹣2ab〕2=4a2b2C.〔a2〕3=a5D.3a2b2÷a2b2=3ab考点:整式的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的乘法、积的乘方、幂的乘方、整式的除法,即可解答.解答:解:A、a2•a3=a5,故正确;B、正确;C、〔a2〕3=a6,故错误;D、3a2b2÷a2b2=3,故错误;应选:B.点评:此题考察了同底数幂的乘法、积的乘方、幂的乘方、整式的除法,解决此题的关键是熟记同底数幂的乘法、积的乘方、幂的乘方、整式的除法的法那么.4.〔3分〕〔2015•〕如图,AB∥CD,直线EF分别交直线AB,CD于点E,F.假设∠1=46°30′,那么∠1的度数为〔〕A.43°30′B.53°30′C.133°30′D.153°30′考点:平行线的性质.分析:先根据平行线的性质求出∠EFD的度数,再根据补角的定义即可得出结论.解答:解:∵AB∥CD,∠1=46°30′,∴∠EFD=∠1=46°30′,∴∠2=180°﹣46°30′=133°30′.应选C.点评:此题考察的是平行线的性质,用到的知识点为:两线平行,同位角相等.5.〔3分〕〔2015•〕设正比例函数y=mx的图象经过点A〔m,4〕,且y的值随x值的增大而减小,那么m=〔〕A.2 B.﹣2 C.4 D.﹣4考点:正比例函数的性质.分析:直接根据正比例函数的性质和待定系数法求解即可.解答:解:把x=m,y=4代入y=mx中,可得:m=±2,因为y的值随x值的增大而减小,所以m=﹣2,应选B点评:此题考察了正比例函数的性质:正比例函数y=kx〔k≠0〕的图象为直线,当k>0,图象经过第一、三象限,y值随x的增大而增大;当k<0,图象经过第二、四象限,y值随x的增大而减小.6.〔3分〕〔2015•〕如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.假设在边AB上截取BE=BC,连接DE,那么图中等腰三角形共有〔〕A.2个B.3个C.4个D.5个考点:等腰三角形的判定与性质.分析:根据条件分别求出图中三角形的角度数,再根据等腰三角形的判定即可找出图中的等腰三角形.解答:解:∵AB=AC,∴△ABC是等腰三角形;∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=∠ABC=36°,∴∠A=∠ABD=36°,∴BD=AD,∴△ABD是等腰三角形;在△BCD中,∵∠BDC=180°﹣∠DBC﹣∠C=180°﹣36°﹣72°=72°,∴∠C=∠BDC=72°,∴BD=BC,∴△BCD是等腰三角形;∵BE=BC,∴BD=BE,∴△BDE是等腰三角形;∴∠BED=〔180°﹣36°〕÷2=72°,∴∠ADE=∠BED﹣∠A=72°﹣36°=36°,∴∠A=∠ADE,∴DE=AE,∴△ADE是等腰三角形;∴图中的等腰三角形有5个.应选D.点评:此题考察了等腰三角形的判定,用到的知识点是等腰三角形的判定、三角形角和定理、三角形外角的性质、三角形的角平分线定义等,解题时要找出所有的等腰三角形,不要遗漏.7.〔3分〕〔2015•〕不等式组的最大整数解为〔〕A.8 B.6 C.5 D.4考点:一元一次不等式组的整数解.分析:先求出各个不等式的解集,再求出不等式组的解集,最后求出答案即可.解答:解:∵解不等式①得:x≥﹣8,解不等式②得:x<6,∴不等式组的解集为﹣8≤x<6,∴不等式组的最大整数解为5,应选C.点评:此题考察了解一元一次不等式组,不等式组的整数解的应用,解此题的关键是能根据不等式的解集求出不等式组的解集,难度适中.8.〔3分〕〔2015•陕西〕在平面直角坐标系中,将直线l1:y=﹣2x﹣2平移后,得到直线l2:y=﹣2x+4,那么以下平移作确的是〔〕A.将l向右平移3个单位长度B.将l1向右平移6个单位长度1C.将l向上平移2个单位长度D.将l1向上平移4个单位长度1考点:一次函数图象与几何变换.分析:利用一次函数图象的平移规律,左加右减,上加下减,得出即可.解答:解:∵将直线l:y=﹣2x﹣2平移后,得到直线l2:y=﹣2x+4,1∴﹣2〔x+a〕﹣2=﹣2x+4,解得:a=﹣3,故将l1向右平移3个单位长度.应选:A.点评:此题主要考察了一次函数图象与几何变换,正确把握变换规律是解题关键.9.〔3分〕〔2015•陕西〕在▱ABCD中,AB=10,BC=14,E,F分别为边BC,AD上的点,假设四边形AECF为正方形,那么AE的长为〔〕A.7 B.4或10 C.5或9 D.6或8考点:平行四边形的性质;勾股定理;正方形的性质.专题:分类讨论.分析:设AE的长为x,根据正方形的性质可得BE=14﹣x,根据勾股定理得到关于x的方程,解方程即可得到AE的长.解答:解:如图:设AE的长为x,根据正方形的性质可得BE=14﹣x,在△ABE中,根据勾股定理可得x2+〔14﹣x〕2=102,解得x1=6,x2=8.故AE的长为6或8.应选:D.点评:考察了平行四边形的性质,正方形的性质,勾股定理,关键是根据勾股定理得到关于AE的方程.10.〔3分〕〔2015•〕以下关于二次函数y=ax2﹣2ax+1〔a>1〕的图象与x轴交点的判断,正确的选项是〔〕A.没有交点B.只有一个交点,且它位于y轴右侧C.有两个交点,且它们均位于y轴左侧D.有两个交点,且它们均位于y轴右侧考点:抛物线与x轴的交点.分析:根据函数值为零,可得相应的方程,根据根的判别式,公式法求方程的根,可得答案.解答:解:当y=0时,ax2﹣2ax+1=0,∵a>1∴△=〔﹣2a〕2﹣4a=4a〔a﹣1〕>0,ax2﹣2ax+1=0有两个根,函数与有两个交点,x=>0,应选:D.点评:此题考察了抛物线与x轴的交点,利用了函数与方程的关系,方程的求根公式.二、填空题〔共5小题,每题3分,计12分,其中12、13题为选做题,任选一题作答〕11.〔3分〕〔2015•〕将实数,π,0,﹣6由小到大用“<〞号连起来,可表示为﹣6 .考点:实数大小比拟.分析:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.解答:解:≈2.236,π≈3.14,∵﹣6<0<2.236<3.14,∴﹣6.故答案为:﹣6.点评:此题主要考察了实数大小比拟的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.12.〔3分〕〔2015•〕正八边形一个角的度数为135°.考点:多边形角与外角.分析:首先根据多边形角和定理:〔n﹣2〕•180°〔n≥3且n为正整数〕求出角和,然后再计算一个角的度数.解答:解:正八边形的角和为:〔8﹣2〕×180°=1080°,每一个角的度数为×1080°=135°.故答案为:135°.点评:此题主要考察了多边形角和定理,关键是熟练掌握计算公式:〔n﹣2〕•180 〔n≥3〕且n为整数〕.13.〔2015•〕如图,有一滑梯AB,其水平宽度AC为5.3米,铅直高度BC为2.8米,那么∠A的度数约为27.8°〔用科学计算器计算,结果准确到0.1°〕.考点:解直角三角形的应用-坡度坡角问题.分析:直接利用坡度的定义求得坡角的度数即可.解答:解:∵tan∠A==≈0.5283,∴∠A=27.8°,故答案为:27.8°.点评:此题考察了坡度坡角的知识,解题时注意坡角的正切值等于铅直高度与水平宽度的比值,难度不大.14.〔3分〕〔2015•〕如图,在平面直角坐标系中,过点M〔﹣3,2〕分别作x轴、y轴的垂线与反比例函数y=的图象交于A,B两点,那么四边形MAOB的面积为10 .考点:反比例函数系数k的几何意义.分析:设点A的坐标为〔a,b〕,点B的坐标为〔c,d〕,根据反比例函数y=的图象过A,B 两点,所以ab=4,cd=4,进而得到S△AOC=|ab|=2,S△BOD=|cd|=2,S矩形MCDO=3×2=6,根据四边形MAOB的面积=S△AOC+S△BOD+S矩形MCDO,即可解答.解答:解:如图,设点A的坐标为〔a,b〕,点B的坐标为〔c,d〕,∵反比例函数y=的图象过A,B两点,∴ab=4,cd=4,∴S△AOC=|ab|=2,S△BOD=|cd|=2,∵点M〔﹣3,2〕,∴S矩形MCDO=3×2=6,∴四边形MAOB的面积=S△AOC+S△BOD+S矩形MCDO=2+2+6=10,故答案为:10.点评:此题主要考察反比例函数的对称性和k的几何意义,根据条件得出S=|ab|=2,△AOC S△BOD=|cd|=2是解题的关键,注意k的几何意义的应用.15.〔3分〕〔2015•〕如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.假设点M,N分别是AB,BC的中点,那么MN长的最大值是 3 .考点:三角形中位线定理;等腰直角三角形;圆周角定理.分析:根据中位线定理得到MN的最大时,AC最大,当AC最大时是直径,从而求得直径后就可以求得最大值.解答:解:∵点M,N分别是AB,BC的中点,∴MN=AC,∴当AC取得最大值时,MN就取得最大值,当AC时直径时,最大,如图,∵∠ACB=∠D=45°,AB=6,∴AD=6,∴MN=AD=3故答案为:3.点评:此题考察了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是了解当什么时候MN的值最大,难度不大.三、解答题〔共11小题,计78分,解答时写出过程〕16.〔5分〕〔2015•〕计算:×〔﹣〕+|﹣2|+〔〕﹣3.考点:二次根式的混合运算;负整数指数幂.专题:计算题.分析:根据二次根式的乘法法那么和负整数整数幂的意义得到原式=﹣+2+8,然后化简后合并即可.解答:解:原式=﹣+2+8=﹣3+2+8=8﹣.点评:此题考察了二次根式的计算:先把各二次根式化为最简二次根式,再进展二次根式的乘除运算,然后合并同类二次根式.也考察了负整数整数幂、17.〔5分〕〔2015•〕解分式方程:﹣=1.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x2﹣5x+6﹣3x﹣9=x2﹣9,解得:x=,经检验x=是分式方程的解.点评:此题考察了解分式方程,解分式方程的根本思想是“转化思想〞,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18.〔5分〕〔2015•〕如图,△ABC,请用尺规过点A作一条直线,使其将△ABC分成面积相等的两局部.〔保存作图痕迹,不写作法〕考点:作图—复杂作图.分析:作BC边上的中线,即可把△ABC分成面积相等的两局部.解答:解:如图,直线AD即为所求:点评:此题主要考察三角形中线的作法,同时要掌握假设两个三角形等底等高,那么它们的面积相等.19.〔5分〕〔2015•〕某校为了了解本校九年级女生体育测试项目“仰卧起坐〞的训练情况,让体育教师随机抽查了该年级假设干名女生,并严格地对她们进展了1分钟“仰卧起坐〞测试,同时统计了每个人做的个数〔假设这个个数为x〕,现在我们将这些同学的测试结果分为四个等级:优秀〔x≥44〕、良好〔36≤x≤43〕、及格〔25≤x≤35〕和不及格〔x≤24〕,并将统计结果绘制成如下两幅不完整的统计图.根据以上信息,解答以下问题:〔1〕补全上面的条形统计图和扇形统计图;〔2〕被测试女生1分钟“仰卧起坐〞个数的中位数落在良好等级;〔3〕假设该年级有650名女生,请你估计该年级女生中1分钟“仰卧起坐〞个数到达优秀的人数.考点:条形统计图;用样本估计总体;扇形统计图.分析:〔1〕根据各个等级的百分比得出答案即可;〔2〕根据中位数的定义知道中位数是第25和26个数的平均数,由此即可得出答案;〔3〕首先根据扇形图得出优秀人数占的百分比,条形统计图可以求出平均数的最小值,然后即可求出答案.解答:解:〔1〕;〔2〕∵13+20+12+5=50,50÷2=25,25+1=26,∴中位数落在良好等级,故答案为:良好;〔3〕650×26%=169〔人〕,即该年级女生中1分钟“仰卧起坐〞个数到达优秀的人数是169.点评:此题难度中等,主要考察统计图表的识别;解此题要懂得频率分布直分图的意义.同时考察了平均数和中位数的定义.20.〔7分〕〔2015•〕如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作AE∥BD,CE⊥AC,且AE,CE相交于点E,求证:AD=CE.考点:全等三角形的判定与性质.专题:证明题.分析:根据平行线的性质得出∠EAC=∠ACB,再利用ASA证出△ABD≌△CAE,从而得出AD=CE.解答:证明:∵AE∥BD,∴∠EAC=∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠B=∠EAC,在△ABD和△CAE中,,∴△ABD≌△CAE,∴AD=CE.点评:此题考察了全等三角形的判定与性质,用到的知识点是全等三角形的判定与性质、平行线的性质,关键是利用ASA证出△ABD≌△CAE.21.〔7分〕〔2015•〕晚饭后,小聪和小军在社区广场散步,小聪问小军:“你有多高?〞小军一时语塞.小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点〔距N点5块地砖长〕时,其影长AD恰好为1块地砖长;当小军正好站在广场的B点〔距N点9块地砖长〕时,其影长BF恰好为2块地砖长.广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC 为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小军身高BE的长.〔结果准确到0.01米〕考点:相似三角形的应用.分析:先证明△CAD~△MND,利用相似三角形的性质求得MN=9.6,再证明△EFB~△MFN,即可解答.解答:解:由题意得:∠CAD=∠MND=90°,∠CDA=MDN,∴△CAD~△MND,∴,∴,∴MN=9.6,又∵∠EBF=∠MNF=90°,∠EFB=∠MFN,∴△EFB~△MFN,∴,∴∴EB≈1.75,∴小军身高约为1.75米.点评:此题考察的是相似三角形的判定及性质,解答此题的关键是相似三角形的判定.22.〔7分〕〔2015•〕胡教师计划组织朋友暑假去革命圣地两日游,经了解,现有甲、乙两家旅行社比拟适宜,报价均为每人640元,且提供的效劳完全一样,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,假设人数不超过20人,每人都按九折收费,超过20人,那么超出局部每人按七五折收费,假设组团参加甲、乙两家旅行社两日游的人数均为x人.〔1〕请分别写出甲、乙两家旅行社收取组团两日游的总费用y〔元〕与x〔人〕之间的函数关系式;〔2〕假设胡教师组团参加两日游的人数共有32人,请你计算,在甲、乙两家旅行社中,帮助胡教师选择收取总费用较少的一家.考点:一次函数的应用.专题:应用题.分析:〔1〕根据总费用等于人数乘以打折后的单价,易得y=640×0.85x,对于乙两家旅甲行社的总费用,分类讨论:当0≤x≤20时,y乙=640×0.9x;当x>20时,y乙=640×0.9×20+640×0.75〔x﹣20〕;〔2〕把x=32分别代入〔1〕中对应得函数关系计算y甲和y乙的值,然后比拟大小即可.解答:解:〔1〕甲两家旅行社的总费用:y=640×0.85x=544x;甲乙两家旅行社的总费用:当0≤x≤20时,y乙=640×0.9x=576x;当x>20时,y乙=640×0.9×20+640×0.75〔x﹣20〕=480x+1920;〔2〕当x=32时,y甲=544×32=17408〔元〕,y乙=480×32+1920=17280,因为y甲>y乙,所以胡教师选择乙旅行社.点评:此题考察了一次函数的应用:利用实际问题中的数量关系建立一次函数关系,特别对乙旅行社的总费用要采用分段函数解决问题.23.〔7分〕〔2015•陕西〕某中学要在全校学生中举办“中国梦•我的梦〞主题演讲比赛,要求每班选一名代表参赛.九年级〔1〕班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛〔胜者参赛〕.规那么如下:两人同时随机各掷一枚完全一样且质地均匀的骰子一次,向上一面的点数都是奇数,那么小亮胜;向上一面的点数都是偶数,那么小丽胜;否那么,视为平局,假设为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规那么各掷一次骰子,那么请你解答以下问题:〔1〕小亮掷得向上一面的点数为奇数的概率是多少?〔2〕该游戏是否公平?请用列表或树状图等方法说明理由.〔骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体〕考点:游戏公平性;列表法与树状图法.分析:〔1〕首先判断出向上一面的点数为奇数有3种情况,然后根据概率公式,求出小亮掷得向上一面的点数为奇数的概率是多少即可.〔2〕首先应用列表法,列举出所有可能的结果,然后分别判断出小亮、小丽获胜的概率是多少,再比拟它们的大小,判断出该游戏是否公平即可.解答:解:〔1〕∵向上一面的点数为奇数有3种情况,∴小亮掷得向上一面的点数为奇数的概率是:.〔2〕填表如下:1 2 3 4 5 61 〔1,1〕〔1,2〕〔1,3〕〔1,4〕〔1,5〕〔1,6〕2 〔2,1〕〔2,2〕〔2,3〕〔2,4〕〔2,5〕〔2,6〕3 〔3,1〕〔3,2〕〔3,3〕〔3,4〕〔3,5〕〔3,6〕4 〔4,1〕〔4,2〕〔4,3〕〔4,4〕〔4,5〕〔4,6〕5 〔5,1〕〔5,2〕〔5,3〕〔5,4〕〔5,5〕〔5,6〕6 〔6,1〕〔6,2〕〔6,3〕〔6,4〕〔6,5〕〔6,6〕由上表可知,一共有36种等可能的结果,其中小亮、小丽获胜各有9种结果.∴P〔小亮胜〕=,P〔小丽胜〕==,∴游戏是公平的.点评:〔1〕此题主要考察了判断游戏公平性问题,要熟练掌握,首先计算每个事件的概率,然后比拟概率的大小,概率相等就公平,否那么就不公平.〔2〕此题主要考察了列举法〔树形图法〕求概率问题,解答此类问题的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.24.〔8分〕〔2015•〕如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,与AC的延长线交于点D,作AE⊥AC交DE于点E.〔1〕求证:∠BAD=∠E;〔2〕假设⊙O的半径为5,AC=8,求BE的长.考点:切线的性质;勾股定理;相似三角形的判定与性质.分析:〔1〕根据切线的性质,和等角的余角相等证明即可;〔2〕根据勾股定理和相似三角形进展解答即可.解答:〔1〕证明:∵AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,∴∠ABE=90°,∴∠BAE+∠E=90°,∵∠DAE=90°,∴∠BAD+∠BAE=90°,∴∠BAD=∠E;〔2〕解:连接BC,如图:∵AB是⊙O的直径,∴∠ACB=90°,∵AC=8,AB=2×5=10,∴BC=,∵∠BCA=∠ABE=90°,∠BAD=∠E,∴△ABC∽△EAB,∴,∴,∴BE=.点评:此题考察了切线的性质、相似三角形等知识点,关键是根据切线的性质和相似三角形的性质分析.25.〔10分〕〔2015•〕在平面直角坐标系中,抛物线y=x2+5x+4的顶点为M,与x轴交于A,B两点,与y轴交于C点.〔1〕求点A,B,C的坐标;〔2〕求抛物线y=x2+5x+4关于坐标原点O对称的抛物线的函数表达式;〔3〕设〔2〕中所求抛物线的顶点为M′,与x轴交于A′,B′两点,与y轴交于C′点,在以A,B,C,M,A′,B′,C′,M′这八个点中的四个点为顶点的平行四边形中,求其中一个不是菱形的平行四边形的面积.考点:二次函数综合题.分析:〔1〕令y=0,求出x的值;令x=0,求出y,即可解答;〔2〕先求出A,B,C关于坐标原点O对称后的点为〔4,0〕,〔1,0〕,〔0,﹣4〕,再代入解析式,即可解答;〔3〕取四点A,M,A′,M′,连接AM,MA′,A′M′,M′A,MM′,由中心对称性可知,MM′过点O,OA=OA′,OM=OM′,由此判定四边形AMA′M′为平行四边形,又知AA′与MM′不垂直,从而平行四边形AMA′M′不是菱形,过点M作MD⊥x轴于点D,求出抛物线的顶点坐标M,根据,即可解答.解答:解:〔1〕令y=0,得x2+5x+4=0,∴x1=﹣4,x2=﹣1,令x=0,得y=4,∴A〔﹣4,0〕,B〔﹣1,0〕,C〔0,4〕.〔2〕∵A,B,C关于坐标原点O对称后的点为〔4,0〕,〔1,0〕,〔0,﹣4〕,∴所求抛物线的函数表达式为y=ax2+bx﹣4,将〔4,0〕,〔1,0〕代入上式,得解得:,∴y=﹣x2+5x﹣4.〔3〕如图,取四点A,M,A′,M′,连接AM,MA′,A′M′,M′A,MM′,由中心对称性可知,MM′过点O,OA=OA′,OM=OM′,∴四边形AMA′M′为平行四边形,又知AA′与MM′不垂直,∴平行四边形AMA′M′不是菱形,过点M作MD⊥x轴于点D,∵y=,∴M〔〕,又∵A〔﹣4,0〕,A′〔4,0〕∴AA′=8,MD=,∴=点评:此题考察了二次函数的性质与图象、中心对称、平行四边形的判定、菱形的判定,综合性较强,解决此题的关键是根据中心对称,求出抛物线的解析式,在〔3〕中注意菱形的判定与数形结合思想的应用.26.〔12分〕〔2015•〕如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.〔1〕如图①,点M是四边形ABCD边AD上的一点,那么△BMC的面积为24 ;〔2〕如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;〔3〕如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?假设存在,求出此时cos∠BPC的值;假设不存在,请说明理由.考点:四边形综合题.专题:综合题.分析:〔1〕如图①,过A作AE⊥BC,可得出四边形AECF为矩形,得到EC=AD,BE=BC﹣EC,在直角三角形ABE中,求出AE的长,即为三角形BMC的高,求出三角形BMC面积即可;〔2〕如图②,作点C关于直线AD的对称点C′,连接C′N,C′D,C′B交AD于点N′,连接CN′,那么BN+NC=BN+NC′≥BC′=BN′+CN′,可得出△BNC周长的最小值为△BN′C的周长=BN′+CN′+BC=BC′+BC,求出即可;〔3〕如图③所示,存在点P,使得cos∠BPC的值最小,作BC的中垂线PQ交BC于点Q,交AD于点P,连接BP,CP,作△BPC的外接圆O,圆O与直线PQ交于点N,那么PB=PC,圆心O在PN上,根据AD与BC平行,得到圆O与AD相切,根据PQ=DC,判断得到PQ大于BQ,可得出圆心O在BC上方,在AD上任取一点P′,连接P′B,P′C,P′B交圆O于点M,连接MC,可得∠BPC=∠BMC≥∠BP′C,即∠BPC最小,cos∠BPC 的值最小,连接OB,求出即可.解答:解:〔1〕如图①,过A作AE⊥BC,∴四边形AECD为矩形,∴EC=AD=8,BE=BC﹣EC=12﹣8=4,在Rt△ABE中,∠ABE=60°,BE=4,∴AB=2BE=8,AE==4,那么S△BMC=BC•AE=24;故答案为:24;〔2〕如图②,作点C关于直线AD的对称点C′,连接C′N,C′D,C′B交AD于点N′,连接CN′,那么BN+NC=BN+NC′≥BC′=BN′+CN′,∴△BNC周长的最小值为△BN′C的周长=BN′+CN′+BC=BC′+BC,∵AD∥BC,AE⊥BC,∠ABC=60°,∴过点A作AE⊥BC,那么CE=AD=8,∴BE=4,AE=BE•tan60°=4,∴CC′=2CD=2AE=8,∵BC=12,∴BC′==4,∴△BNC周长的最小值为4+12;〔3〕如图③所示,存在点P,使得cos∠BPC的值最小,作BC的中垂线PQ交BC于点Q,交AD于点P,连接BP,CP,作△BPC的外接圆O,圆O与直线PQ交于点N,那么PB=PC,圆心O在PN上,∵AD∥BC,∴圆O与AD相切于点P,∵PQ=DC=4>6,∴PQ>BQ,∴∠BPC<90°,圆心O在弦BC的上方,在AD上任取一点P′,连接P′B,P′C,P′B交圆O于点M,连接MC,∴∠BPC=∠BMC≥∠BP′C,∴∠BPC最大,cos∠BPC的值最小,连接OB,那么∠BON=2∠BPN=∠BPC,∵OB=OP=4﹣OQ,在Rt△BOQ中,根据勾股定理得:OQ2+62=〔4﹣OQ〕2,解得:OQ=,∴OB=,∴cos∠BPC=cos∠BOQ==,那么此时cos∠BPC的值为.点评:此题属于四边形综合题,涉及的知识有:勾股定理,矩形的判定与性质,对称的性质,圆的切线的判定与性质,以及锐角三角函数定义,熟练掌握定理及性质是解此题的关键.。

2015年河南省中招数学试题及解析

2015年河南省中招数学试题及解析

2015年河南省中招数学试题及解析2015河南中考数学试卷一、选择题(每小题3分,满分24分)1.下列各数中最大的数是()A。

πB。

-5C。

0D。

-82.如图所示的几何体的俯视图是()A.B.C.D.3.据统计2014年我国高新技术产品出口总额亿元,将数据亿用科学记数法表示为()A。

4.0570×10^9B。

4.0570×10^10C。

4.0570×10^12D。

40.570×10^114.如图,直线a、b被直线c、d所截,若∠1=∠2,∠3=125°,则∠4的度数为()A。

55°B。

6°C。

7°D。

75°6.___参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是()A。

255分B。

84分C。

84.5分D。

86分7.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A。

4B。

5C。

8D。

18.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的虚线,点P从原点O出发,沿这条曲线向右运动,速度为每秒6度,则第2015秒时,点P的坐标是()A。

(2014,0)B。

(2015,-1)C。

(2015,1)D。

(2016,0)二、填空题(共7小题,每小题3分,满分21分)9.计算:(-3)+31= 28.10.如图,△ABC中,点D、E分别在边AB、BC上,DE∥AC.若BD=4,DA=2,BE=3,则EC= 9.11.如图,直线y=kx与双曲线y=(x>0)交于点A(1,2),则k= 2.12.已知点A(4,y1),B(2,y2),C(-2,y3)都在二次函数y=(x-2)^2-1的图象上,则y1>y2>y3.13.现有四张分别标有1,2,2,3的卡片,它们除数字外完全相同,把卡片背面向上洗匀,从中随机抽取一张后放回,再背面朝上洗匀,从中随机抽出一张,则两次抽出的卡片所标数字不同的概率是 7/16.22.(10分)1)问题发现①当α=0°时,BD=8;②当α=180°时,BD=0.2)拓展探究试判断:当0°<α<360°时,BD的大小有无变化?请仅就图2的情形给出证明.当0°<α<90°时,BD>8;当90°<α<180°时,8>BD>0;当180°<α<270°时,BD<0;当270°<α<360°时,BD<8.证明:当0°<α<90°时,由于△EDC顺时针旋转,所以点D、E、C的位置关系为D在E的左下方,E在C的左下方,所以BD>8;当90°<α<180°时,由于△EDC继续顺时针旋转,所以点D、E、C的位置关系为D在E的右上方,E在C的右上方,所以8>BD>0;当180°<α<270°时,由于△EDC继续顺时针旋转,所以点D、E、C的位置关系为D在E的右下方,E在C的右下方,所以BD<0;当270°<α<360°时,由于△EDC继续顺时针旋转,所以点D、E、C的位置关系为D在E的左上方,E在C的左上方,所以BD<8.所以当0°<α<360°时,BD的大小有变化.3)问题解决当△EDC旋转至A,D,E三点共线时,此时α=360°,所以BD=8.23.(11分)1)请直接写出抛物线的解析式;设抛物线的顶点为V(h。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015 年全国中考数学真题选择题1.分解因式:5x2-10x2=5x=_________.2.R如图是由射线AB,BC,CD,DE,组成的平面图形,则∠1+∠2+∠3+∠4+∠5=_____.3.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架。

它的代数成就主要包括开放术、正负术和方程术。

其中,方程术是《九章算术》最高的数学成就。

《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两。

问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两。

问每头牛、每只羊各值金多少两”设每头牛值金x,每只羊各值金y两,可列方程组为_____________.4.关于x的一元二次方程a x2+bx+=0有两个相等的实数根,写出一组满足条件的实数a,b的值:a=______,b=______.5.北京市2009-2014年轨道交通日均客运量统计如图所示。

根据统计图中提供信息,预估2015年北京市轨道交通日均客运量约________万人次,你的预估理由是________________________.6.阅读下面材料:在数学课上,老师提出如下问题:小芸的作法如下:老师说:“小芸的作法正确.”请回答:小芸的作图依据是_________________________.7.分解因式a 2-9的结果是 . 8.计算(x-l )(x+2)的结果是9.一个反比例函数图象过点A(-2, -3),则这个反比例函数的解析式是 . 10.一组数据: 2015,2015,2015,2015,2015,2015的方差是 .11.一个工件,外部是圆柱体,内部凹槽是正方体,如图所示。

其中,正方体一个面的四个顶点都在圆柱底面的圆周上,若圆柱底面周长为2πcm ,则正方体的体积为 cm 312.如图,在Rt △ABC 中,ABC ∠=900,AB=BC=2,将△ABC 绕点C 逆时针转600,,得到△MNC ,则BM 的长是 .13.若一元二次方程020152=--bx ax 有一根为1-=x ,则b a +=________ 14.如果k fed c b a ===(0≠++f d b ),且)(3f d be c a ++=++,那么k =_____ 15.在一个不透明的袋子中装有除颜色外其余均相同的n 个小球,其中5个黑球,从袋中随机摸出一球,记下其颜色,这称为依次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球。

以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:摸球试验次数 100 1000 5000 10000 50000 100000 ZXXK] 摸出黑球次数46487250650082499650007根据列表,可以估计出n 的值是________ 16.如图,点P ,Q 是反比例函数xky =图象上的两点,PA ⊥y 轴于点A ,QN ⊥x 轴于点N ,作PM ⊥x 轴于点M ,QB ⊥y 轴于点B ,连结PB ,QM ,记△ABP 的面积为S 1,△QMN 的面积为S 2,则S 1_____S 2(填“>”或“<”或“=”)17.正五边形的外角和等于 (度).18.如图,菱形ABCD 的边长为6,∠ABC=60°,则对角线AC 的长是.19.分式方程321x x=+的解是 .20.若两个相似三角形的周长比为2:3,则它们的面积比是.21.观察下列一组数:13,25,37,49,511,…,根据该组数的排列规律,可推出第10个数是. 22.如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是.23.单项式327a b 的次数是 .24.2015中国﹣东盟博览会旅游展5月29日在桂林国际会展中心开馆,展览规模约达23000平方米,将23000平方米用科学记数法表示为平方米.25.在一个不透明的纸箱内放有除颜色外无其他差别的2个红球,8个黄球和10个白球,从中随机摸出一个球为黄球的概率是 .26.如图,在Rt △ABC 中,∠ACB=90°,AC=8,BC=6,CD ⊥AB ,垂足为D ,则tan ∠BCD 的值是 .27.如图,以▱ABCO 的顶点O 为原点,边OC 所在直线为x 轴,建立平面直角坐标系,顶点A 、C 的坐标分别是(2,4)、(3,0),过点A 的反比例函数ky x=的图象交BC 于D ,连接AD ,则四边形AOCD 的面积是 .28.如图是一个点阵,从上往下有无数多行,其中第一行有2个点,第二行有5个点,第三行有11个点,第四行有23个点,…,按此规律,第n 行有个点.29.分解因式:26mx my -= .30.某水库的水位在5小时内持续上涨,初始水位高度为6米,水位以每小时0.3米的速度匀速上升, 则水库的水位y 与上涨时间x 之间的函数关系式是 .31.如图,ABC ∆中,DE 是BC 的垂直平分线,DE 交AC 于点E,连接BE ,若BE=9,BC=12,则cosC= .32.如图,四边形ABCD 中,∠A=90°,AB=33,AD=3,点M ,N 分别为线段BC ,AB 上的动点(含端点,但点M 不与点B 重合),点E ,F 分别为DM ,MN 的中点,则EF 长度的最大值为 .33.计算:(-3)0÷3-1= .34.如图,△ABC 中,点D 、E 分别在边A B ,BC 上,DE//AC ,若DB=4,DA=2,BE=3,则EC= .35.如图,直线y=kx 与双曲线)0(2>=x xy 交于点A (1,a ),则k= .36.已知点A(4,y1),B(2,y2),C(-2,y3)都在二次函数y=(x-2)2-1的图象上,则y1,y2,y3的大小关系是 .37.现有四张分别标有数字1,2,3,4的卡片,它们除数字外完全相同,把卡片背面朝上洗匀,从中随机抽取一张后放回,再背面朝上洗匀,从中随机抽取一张,则两次抽出的卡片所标数字不同的概率是 .38.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交 AB于点E,以点O为圆心,OC的长为半径作 CD交OB于点D,若OA=2,则阴影部分的面积为 .39. 如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B、C重合的一个动点,把△EBF沿EF折叠,点B落在B′处,若△CDB′恰为等腰三角形,则DB′的长为 .40.某企业去年为国家缴纳税金达到4100000元,用科学记数法表示为__________元.41.分解因式:x3-x =__________.42.如图,四边形 ABCD是菱形, E、F、G、H分别是各边的中点,随机地向菱形ABCD内掷一粒米,则米粒落到阴影区域内的概率是__________.43.一个圆锥的侧面积为8π,母线长为4,则这个圆锥的全面积为__________.44.若实数a、b满足(4a+4b) (4a+4b-2)-8=0,则a+b=__________.45.以下四个命题:①若一个角的两边和另一个角的两边分别互相垂直,则这两个角互补.②边数相等的两个正多边形一定相似.③等腰三角形ABC中, D是底边BC上一点, E是一腰AC上的一点,若∠BAD=60°且AD=AE,则∠EDC=30°.④任意三角形的外接圆的圆心一定是三角形三条边的垂直平分线的交点.其中正确命题的序号为__________.46.计算:-10+(+6)=_________47.中国的领水面积约为370 000 km2,将数370 000用科学记数法表示为_________48.一组数据2、3、6、8、11的平均数是_________49.如图,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省_________元.50.定义运算“*”,规定x*y=ax2+by,其中a、b为常数,且1*2=5,2*1=6,则2*3=_________51.如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q分别在边OB、OA上,则MP+PQ+QN的最小值是_________52.计算:28⨯=.53.已知y是x的反比例函数,当x > 0时,y随x的增大而减小.请写出一个..满足以上条件的函数表达式.54.甲、乙、丙三位好朋友随机站成一排照合影,甲没有站在中间的概率为.55.如图,正六边形ABCDEF内接于⊙O,⊙O的半径为1,则 AB的长为.56.如图,是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…,则第n个图案中有根小棒.57.不等式3+2x>5的解集是.58.计算:•= .59.若关于x的一元二次方程x2﹣x+m=0有两个不相等的实数根,则m的值可能是(写出一个即可).60.图中是对顶角量角器,用它测量角的原理是.61.如图,在矩形ABCD中,AB=6cm,点E、F分别是边BC、AD上一点,将矩形ABCD沿EF折叠,使点C、D 分别落在点C′、D′处.若C′E⊥AD,则EF的长为cm.62.如图,在菱形ABCD中,点A在x轴上,点B的坐标为(8,2),点D的坐标为(0,2),则点C的坐标为.63.如图,利用标杆BE测量建筑物的高度,标杆BE高1.5m,测得AB=2m,BC=14cm,则楼高CD为m.64.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为cm.65.4的算术平方根是.66.杨絮纤维的直径约为0.000 010 5m,该直径用科学记数法表示为.67.小丽近6个月的手机话费(单位:元)分别为:18,24,37,28,24,26,这组数据的中位数是元.68.若正多边形的一个内角等于140°,则这个正多边形的边数是.69.已知关于x的一元二次方程x2﹣2x﹣k=0有两个相等的实数根,则k值为.70.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠C=20°,则∠CDA= °.71.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC.若∠CAB=22.5°,CD=8cm,则⊙O的半径为cm.72.如图,在△ABC中,∠C=31°,∠ABC的平分线BD交AC于点D,如果DE垂直平分BC,那么∠A= °.73.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为.74.用一个圆心角为90°,半径为4的扇形围成一个圆锥的侧面,该圆锥底面圆的半径.75.一个角的度数为20°,则它的补角的度数为.76.不等式组110239xx⎧-⎪⎨⎪-<⎩≤,的解集是.77.如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB.则图中有对全等三角形.78.如图,点A ,B ,C 在⊙O 上,CO 的延长线交AB 于点D ,∠A =50°,∠B =30°,则∠ADC 的度数为 .79.已知一元二次方程x 2-4x -3=0的两根为m ,n ,则m 2-mn +n 2= .80.两组数据:3,a ,2b ,5与a ,6,b 的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为 .81.如图1,是小志同学书桌上的一个电子相框,将其侧面抽象为如图2所示的几何图形,已知BC =BD =15cm ,∠CBD=40°,则点B 到CD 的距离为 cm(参考数据:sin20°≈0.342,cos20°≈0.940,sin40°≈0.643,cos40°≈0.766.计算结果精确到0.1cm ,可用科学计算器).82.如图,在△ABC 中,AB=BC=4,AO=BO ,P 是射线CO 上的一个动点,∠AOC=60°,则当△PAB 为直角三角形时,AP 的长为 .83.因式分解:=+ay ax . 84.要使分式11-x 有意义,则字母x 的取值范围是 . 85.一个不透明的口袋中有5个完全相同的小球,把它们分别标号为1,2,3,4,5,随机提取一个小球,则取出的小球标号是奇数的概率是 .86.如图,在正方形ABCD 的外侧,作等边△ADE ,则∠BED 的度数是 .87.如图,点A 在双曲线)0(32>=x xy 上,点B 在双曲线)0(>=x xk y 上(点B 在点A 的右侧),且AB//x 轴,若四边形OABC 是菱形,且∠AOC=60°,则=k .88.如图,在数轴上,点A 表示1,现将点A 沿x 轴做如下移动,第一次点A 向左移动3 个单位长度到达点A 1,第二次将点A 1向右移动6个单位长度到达点A 2,第三次将点A 2向左移动9个单位长度到达点A 3,按照这种移动规律移动下去,第n 次移动到点A N ,如果点A N 与原点的距离不小于20,那么n 的最小值是 .89.直线y= -3x+5不经过的象限为_______________.90.已知一组数据6,2,4,2,3,5,2,4,这组数据的中位数为____________. 91.已知A(-1, m) 与B(2, m-3)是反比例函数y =xk图象上的两个点,则m 的值为________. 92.若)n x )(3x (m x x 2+-=++对x 恒成立,则n=_________.93.不等式组⎪⎩⎪⎨⎧+<-≤-41x 3x )1x (3)2x (2的解集是___________. 94.二次函数y=2x 3的图象如图,点O 为坐标原点,点A 在y 轴的正半轴上,点B 、C 在二次函数y=2x 3的图象上,四边形OBAC 为菱形,且∠OBA=120°,则菱形OBAC 的面积为___________.95.将实数,π,0,﹣6由小到大用“<”号连起来,可表示为 .96.正八边形一个内角的度数为 .97.如图,有一滑梯AB ,其水平宽度AC 为5.3米,铅直高度BC 为2.8米,则∠A 的度数约为 27.8° (用科学计算器计算,结果精确到0.1°).98.如图,在平面直角坐标系中,过点M (﹣3,2)分别作x 轴、y 轴的垂线与反比例函数y=的图象交于A ,B 两点,则四边形MAOB 的面积为 .99.如图,AB 是⊙O 的弦,AB=6,点C 是⊙O 上的一个动点,且∠ACB=45°.若点M ,N 分别是AB ,BC 的中点,则MN 长的最大值是 .100.计算:=+-22_______.101.方程223=-x 的解是_______________. 102.如果分式32+x x有意义,那么x 的取值范围是____________. 103.如果关于x 的一元二次方程x 2+4x -m =0没有实数根,那么m 的取值范围是________. 104.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数关系是y =59x +32.如果某一温度的摄氏度数是25℃,那么它的华氏度数是________℉.105.如果将抛物线y =x 2+2x -1向上平移,使它经过点A(0,3),那么所得新抛物线的表达式是_______________.106.某校学生会提倡双休日到养老院参加服务活动,首次活动需要7位同学参加,现有包括小杰在内的50位同学报名,因此学生会将从这50位同学中随机抽取7位,小杰被抽到参加首次活动的概率是__________. 107.已知某校学生“科技创新社团”成员的年龄与人数情况如下表所示:年龄(岁) 11 12 13 14 15 人数55 16 15 12那么“科技创新社团”成员年龄的中位数是_______岁.108.已知E 是正方形ABCD 的对角线AC 上一点,AE=AD ,过点E 作AC 的垂线,交边CD 于点F ,那么∠FAD=________度.109.在矩形ABCD 中,AB=5,BC=12,点A 在⊙B 上.如果⊙D 与⊙B 相交,且点B 在⊙D 内,那么⊙D 的半径长可以等于___________.(只需写出一个符合要求的数)110.已知在△ABC 中,AB=AC=8,∠BAC=30°.将△ABC 绕点A 旋转,使点B 落在原△ABC 的点C 处,此时点C 落在点D 处.延长线段AD ,交原△ABC 的边BC 的延长线于点E ,那么线段DE 的长等于___________. 111.若二次根式1-x 有意义,则x 的取值范围是 . 112.分解因式:=-a a 22 .113.火星与地球的距离约为00000056千米,这个数据用科学记数法表示为 千米. 114.一组数据866878,,,,,的众数是 .115.如图,在△ABC 与△ADC 中,已知AD=AB ,在不添加任何辅助线的前提下,要使△ABC ≌△ADC ,只需要再添加的一个条件可以是 .116.如图,点D 、E 、F 分别是△ABC 各边的中点,连接DE 、EF 、DF ,若△ABC 的周长为10,则△DEF 的周长为 .117.若422=-n m ,则代数式22410n m -+的值为 .118.如图,在矩形ABCD 中,AB=4,AD=3,以顶点D 为圆心作半径为r 的圆,若要求另外三个顶点A 、B 、C 中至少有一个点在圆内,且至少有一个点在圆外,则r 的取值范围是 .119.如图,在矩形ABCD 中,AB=4,AD=2,以点A 为圆心,AB 长为半径画圆弧交边DC 于点E ,则弧BE 的长度为 .120.设△ABC 的面积为1,如图①将边BC 、AC 分别2等份,BE 1、AD1相交于点O ,△AOB 的面积记为S 1;如图②将边BC 、AC 分别3等份,BE 1、AD 1相交于点O ,△AOB 的面积记为S 2;……, 依此类推,则Sn 可表示为 .(用含n 的代数式表示,其中n 为正整数)121.比较大小:2 1.(填“>”,“<”或“=”) 122.不等式3120x -≥的解集为 .123.如图,PA 为O 的切线,A 为切点,B 是OP 与O 的交点,若203P OA ∠=︒=,,则 AB 的长为 (结果保留π) .BAPO124.如图,在平面直角坐标系中,点P 在函数6(0)y x x=>的图象上,过点P 分别作x 轴、y 轴的垂线,垂足分别为A,B ,取线段OB 的中点C ,连结PC 并延长交x 轴于点D ,则APD △的面积为 .B C DOPAy x125.如图,点E 在正方形ABCD 的边CD 上,若ABE △的面积为83CE =,,则线段BE 的长为 . EADCB126.如图,在平面直角坐标系中,点A 在抛物线222y x x =-+上运动,过点A 作AC x ⊥轴于点C ,以AC为对角线作矩形ABCD,连结BD 则对角线BD 的最小值为 .CBD A O yx127.数据1,2,3,5,5的众数是____________,平均数是____________128.分解因式:m 3n −4mn=__________________129.函数y=x 2+2x+1,当y=0时,x=_______;当1<x<2时,y 随x 的增大而_________(填写“增大”或“减小”)130.如图,点A ,C ,F ,B 在同一直线上,CD 平分∠ECB ,FG ∥CD ,若∠ECA 为α度,则∠GFB 为_________________________度(用关于α的代数式表示)131.在平面直角坐标系中,O 为坐标原点,设点P(1,t)在反比例函数y=的图象上,过点P 作直线l 与x 轴平行,点Q 在直线l 上,满足QP=OP ,若反比例函数y=的图象经过点Q ,则k=________132.如图,在四边形纸片ABCD 中,AB=BC ,AD=CD ,∠A=∠C=90°,∠B=150°,将纸片先沿直线BD 对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平,若铺平后的图形中有一个是面积为2的平行四边形,则CD=_________133.因式分解:ab a -=134.把二次函数212y x x =-化为形如()2y a x h k =-+的形式: 135.把一枚均匀的硬币连续抛掷两次,两次正面朝上的概率是136.一张三角形纸片ABC ,AB=AC=5. 折叠该纸片,使点A 落在BC 的中点上,折痕经过AC 上的点E ,则AE 的长为137.如图,多边形的各顶点都在方格纸的格点(横竖格子线的交错点)上,这样的多边形称为格点多边形,它的面积S 可用公式112S a b =+-(a 是多边形内的格点数,b 是多边形边界上的格点数)计算,这个公式称为“皮克定理”. 现有一张方格纸共有200个格点,画有一个格点多边形,它的面积S=40. (1)这个格点多边形边界上的格点数b = (用含a 的代数式表示);(2)设该格点多边形外的格点数为c ,则c a -=138.在-1,0,-2这三个数中,最小的数是 .139.如图,已知直线a ∥b ,∠1=120°,则∠2的度数是 . 140.计算:82-=2. 141.方程132x x =-的解为1x =-. 142.圆心角为120°的扇形的半径为3,则这个扇形的面积为 (结果保留π). 143.如图,小明为了测量学校里一池塘的宽度AB ,选取可以直达A 、B 两点的点O 处,再分别取OA 、OB 的中点M 、N ,量得MN=20m ,则池塘的宽度AB 为 m .144.已知3a b +=,1a b -=-,则22a b -的值为 .145.如图,△112A B A ,△223A B A ,△334A B A ,…,△n n n 1A B A +,都是等腰直角三角形.其中点1A ,2A ,…,n A 在x 轴上,点1B ,2B ,…,n B ,在直线y x =上.已知1OA 1=,则2015OA 的长为 .146.计算:.________232723=÷-⋅a a a a147.如图,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标变为原来的31,那么 点A 的对应点A '的坐标是_______.148.把一个长、宽、高分别为3cm 、2cm 、1cm 的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积S (2cm )与高)(cm h 之间的函数关系是为_________________________149.如图,平面直角坐标系的原点O 是正方形ABCD 的中心,顶点A ,B 的坐标分别为(1,1)、(-1,1), 把正方形ABCD 绕原点O 逆时针旋转45°得到正方形A 'B'C'D'则正方形ABCD 与正方形A 'B'C'D' 重叠部分形成的正八边形的边长为_____________________°.150.如图,圆内接四边形ABCD 中两组对边的延长线分别相交于点E ,F ,且∠A=55°,∠E=30°,则∠F= .151.如图,在一次数学活动课上,张明用17个边长为1的小正方体搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭的几何体拼成一个大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要 个小正方体,王亮所搭几何体表面积为________________.152.我国“南仓”级远洋综合补给舰满载排水量为37000吨,把数37000用科学记数法表示为 。

相关文档
最新文档