直线与角含答案

合集下载

直线与角试题及答案

直线与角试题及答案

直线与角试题(1)一、选择题.(每小题3分,共30分)1.下列说法中,正确的个数有()(1)射线AB和射线BA是同一条射线(2)延长射线MN到C(3)延长线段MN到A使NA=2MN (4)连接两点的线段叫做两点间的距离A.1B.2C.3D.4解:(1)射线AB与射线BA表示方向相反的两条射线,故本选项错误;(2)射线可沿一个方向无限延伸,故不能说延长射线,故本选项错误;(3)可以延长线段MN到A使NA=2MN,故本项正确;(4)连接两点的线段的长度叫做两点间的距离,故本选项错误;综上可得只有(3)正确.故选A.2.如图,C是线段AB的中点,D是CB上一点,下列说法中错误的是()A.C D=AC﹣BD B.CD=BC C.CD=AB﹣BDD.C D=AD﹣BC解:∵C是线段AB的中点,∴AC=BC=AB,A、CD=BC﹣BD=AC﹣BD,故本选项正确;B、D不一定是BC的中点,故CD=BC不一定成立;C、CD=AD﹣AC=AD﹣BC,故本选项正确;D、CD=BC﹣BD=AB﹣BD,故本选项正确.故选B.3.如果线段AB=13厘米,MA+MB=17厘米,那么下面说法正确的是()A.M点在线段AB上B.M点在直线AB上C.M点在直线AB外D.M点可能在直线AB上,也可能在直线AB外解:(1)当M点在直线外时,M,A,B构成三角形,两边之和大于第三边,能出现MA+MB=17;(2)当M点在线段AB延长线上,也可能出现MA+MB=17.故选D.4.下列图形中,能够相交的是()A.B.C.D.解:A、射线只能沿延伸方向延伸可得不能相交,故本选项错误;B、射线只能沿延伸方向延伸而线段不能延伸,两者不可能相交,故本选项错误;C、射线只能沿延伸方向延伸可得两者不能相交,故本选项错误;D、射线在延伸方向上延伸两者可相交,故本选项正确;故选D.5.如图,小华的家在A处,书店在B处,星期日小明到书店去买书,他想尽快的赶到书店,请你帮助他选择一条最近的路线()A.A⇒C⇒D⇒B B.A⇒C⇒F⇒B C.A⇒C⇒E⇒F⇒B D.A⇒C⇒M⇒B解:∵从C到B的所有线中,直线段最短,所以选择路线为A⇒C⇒F⇒B.故选B.6.下列各角中是钝角的是()A.周角B.平角C.周角D.2直角解:A、×360°=72°,是直角;B、×180°=120°,是钝角;C、×360°=90°,是锐角;D、2×90°=180°,是锐角.故选B.7.利用一副三角板,可以画出小于平角的角有()A.9个B.10个C.11个D.12个解:(1)30°,45°,60°,90°;(2)30°+45°=75°,30°+90°=120°,45°+60°=105°,45°+90°=135°,60°+90°=150°,30°+45°+90°=165°;(3)45°﹣30°=15°.故小于平角的角共11个.故选C.8.锐角加上锐角的和是()A.锐角B.直角C.钝角D.以上三种都有可能解:设α、β是两个锐角,那么0°<α<90°,0°<β<90°,∴0°<α+β<180°,而0°~180°之间既有锐角、也有直角、还有钝角.故选D.9.将一正方体纸盒沿如图所示的线剪开,展开成平面图,其展开图的形状为()A.B.C.D.解:如图,沿右图裁剪线剪开,上面,右面,底面相连,前面、左面、后面相连,且底面与后面相连,是正方形展开图的“3 3“结构.故选:B.10.如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种视图都是同一种几何图形,则另一个几何体是()A.长方体B.圆柱体C.球体D.三棱柱解:长方体、圆柱体、三棱体为柱体,它们的主视图都是矩形;球的三种视图都是圆形.故选:C.二、填空题.(每小题3分,共24分)11.小朋友在用玩具枪瞄准时,总是用一只眼对准准星和目标,用数学知识解释为:两点确定一条直线.解:∵准星与目标两点,∴利用的数学知识是:两点确定一条直线.故答案为:两点确定一条直线.12.三条直线两两相交,则交点有1或3个.解:如图所示:故三条直线两两相交,则交点有1或3个.故答案为:1或3.13.一个角等于它的补角的5倍,则这个角的补角的余角是60°.解:设这个角为x°,补角为(180°﹣x),由题意知x=5(180°﹣x),解得:x=150°,它补角的余角为90﹣(180﹣150)=60°,故答案为60°.14.图中的锐角共有15个.解:一共有5个锐角三角形,除锐角三角形的内角是锐角外,没有其他内角,故有15个锐角.故答案为:15.15.如图,该图形经过折叠可以围成一个正方体形,折好以后,与“静”字相对的字是着.解:正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,所以与“静”字相对的字是着.16.153°19′42″+26°40′18″=180°.解:153°19′42″+26°40′18″=180°.故答案为180°.17.110°31′3″÷9=12°16′47″.解:110°31′3″÷9=12°16′47″.故答案为12°16′47″.18.线段AB=5,延长AB到C,使BC=2AB,若D为AB的中点,则DC的长是12.5.(用小数表示)解:由题意知:DC=DB+BC,又线段AB=5,∴BC=2AB=10,且D为AB的中点,∴DB=2.5,∴DC=DB+BC=12.5.故答案为:12.5.三、画图题:19.根据下列要求画图:(1)连接线段AB;(2)画射线OA,射线OB;(3)在线段AB上取一点C,在射线OA上取一点D(点C、D不与点A重合),画直线CD,使直线CD与射线OB交于点E.解:如图:20.根据下列要求画图(不写画法,保留作图痕迹):(1)已知线段a、b,求作线段AB,使AB=2a﹣b.(2)已知∠α、∠β,求作∠AOB,使∠AOB=∠α﹣∠β.解:(1)如图线段AB就是所求;(2)∠AOB就是所求.21.如图所示,A、B两条海上巡逻艇同时发现海面上有一不明物体,A艇发现该不明物体在它的东北方向,B艇发现该不明物体在它的南偏东60°的方向上,请你试着在图中确定这个不明物体的位置.解:根据题意,分别以A和B所在位置作出不明物体所在它们的方向上的射线,两线的交点D即为不明物体所处的位置.如下图所示:四、解答题.22.如图,C为线段AB的中点,N为线段CB的中点,CN=1cm.求图中所有线段的长度的和.解:∵N为线段CB的中点,CN=1cm,∴BC=CN+NB=2cm,又∵C为线段AB的中点,∴AC=BC=2cm,AB=2AC=4cm,∴AN=AC+CN=3cm,图中所有线段的长度的和为:AC+AN+AB+CN+CB+NB=2+3+4+1+2+1=13cm.23.如图,OC平分∠BOD,∠AOD=110°,∠COD=35°,求∠AOB的度数.解:∵OC平分∠BOD,∠COD=35°,∴∠BOD=2∠COD=70°,又∵∠AOD=110°,∴∠AOB=∠AOD﹣∠BOD=40°.故答案为:40°.24.线段MN上有P、Q两点,MN=32cm,MP=17cm,PQ=6cm.求NQ的长.解:①若点Q在点P左边,由题意得:PN=MN﹣MP=15,∴NQ=QP+PN=6+15=21;②若点Q在点P右边,由题意得:PN=MN﹣MP=15,∴NQ=PN﹣PQ=9.综上可得NQ的长度为:9cm或21cm.五、附加题:(共1小题,10分,当总分已达95分时,此题得分不计入总分;当总分不到95分时,计入总分.但计入总分后,总分不得超过95分.)25.如图为3×3的正方形,求∠1+∠2+∠3+…+∠7+∠8+∠9的和.解:根据图形可得:∠1+∠9=90°,∠2+∠6=90°,∠4+∠8=90°,∠3=∠5=∠7=45°,∴∠1+∠2+∠3+…+∠7+∠8+∠9=90°×3+45°×3=405°.故答案为:405°.。

小学数学认识角和直线练习题及答案

小学数学认识角和直线练习题及答案

小学数学认识角和直线练习题及答案在小学数学的学习过程中,认识角和直线是非常基础也非常重要的内容。

通过练习题的形式,我们可以提高对角和直线的理解程度,下面是一些关于认识角和直线的练习题及答案。

题目一:请判断下面的图形中是否有直线。

(1)A---B---C(2)D|E---F---G答案一:(1) 有直线,直线为BC;(2) 无直线。

题目二:请判断下面的图形中是否有直角。

(1)A|B--C--D(2)E|F--G|H答案二:(1) 无直角;(2) 有直角,直角为FGH。

题目三:请你根据下面的问题,选择正确的角。

(1) 如图所示,角ECB是()角。

A/ \E---C----BA. 直角B. 钝角C. 锐角(2) 如图所示,下列角中是锐角的是()角。

F/ \E GA. BCGB. ECFC. BCF答案三:(1) 角ECB是锐角;(2) 角ECF是锐角。

题目四:请你根据下面的问题,在图中标出符合要求的角。

如图所示,找出一对互补角。

HG I| |F J|_______|答案四:符合要求的角为GHI和GFJ,它们互补。

题目五:请你根据下面问题,在图中找出一对相邻角。

如图所示,找出一对相邻角。

C---D---E答案五:相邻角为角CDE和角CDE。

题目六:请你回答下面的问题,选择正确的答案。

(1) 一个直线可以确定()个角。

A. 1B. 2C. 3(2) 锐角的度数一定是()。

A. 大于90度B. 小于90度C. 等于90度(3) 直角的度数一定是()。

A. 大于90度B. 小于90度C. 等于90度答案六:(1) 一个直线可以确定2个角;(2) 锐角的度数一定是小于90度;(3) 直角的度数一定是等于90度。

通过以上的练习题,我们可以更好地掌握小学数学中关于认识角和直线的知识。

希望大家在做题的过程中,多动手思考,充分理解题目的要求,并使用图形或线段进行辅助,加深对于角和直线的认识。

参考资料:无注意:以上为练习题及答案示例,供参考学习之用,实际练习中建议使用纸笔进行作答。

线与角练习题答案

线与角练习题答案

线与角练习题答案一、选择题:1. 直线AB与直线CD相交于点O,若∠AOC=60°,则∠BOC的度数为()。

A. 120°B. 60°C. 30°D. 90°2. 已知两条直线相交,其中一个角为直角,那么这两条直线的关系是()。

A. 平行B. 垂直C. 相交D. 异面3. 如果两条直线的夹角小于90°,则这两条直线的关系是()。

A. 平行B. 垂直C. 相交D. 异面4. 已知一个角的补角是130°,则这个角的度数为()。

A. 50°B. 40°C.30°D. 20°5. 在一个三角形中,如果一个内角为90°,则这个三角形是()。

A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形二、填空题:1. 两条平行线被第三条直线所截,同位角相______。

2. 如果一个角的余角是40°,那么这个角的度数为______。

3. 一个三角形的两个内角分别是70°和50°,那么第三个内角的度数是______。

4. 两条直线相交,如果一个内角为45°,那么它的对顶角的度数是______。

5. 已知一个角的补角比它的余角大100°,求这个角的度数,设这个角为x,则方程为______。

三、解答题:1. 已知直线AB与直线CD相交于点O,且∠AOD=70°,求∠BOC的度数。

2. 一个三角形的两个内角分别为30°和60°,求第三个内角的度数,并说明这个三角形的类型。

3. 已知一个角的补角比它的余角大60°,求这个角的度数。

4. 两条平行线被第三条直线所截,若内错角的度数为50°,求同位角的度数。

5. 如果一个三角形的三个内角的度数之和为180°,且一个内角为45°,另一个内角为75°,求第三个内角的度数,并判断这个三角形的类型。

沪科版七年级上册数学第4章 直线与角含答案

沪科版七年级上册数学第4章 直线与角含答案

沪科版七年级上册数学第4章直线与角含答案一、单选题(共15题,共计45分)1、下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程.其中可用基本事实“两点之间,线段最短”来解释的现象有( )A.①②B.①③C.②④D.③④2、下列说法中,正确的是()A.两条射线组成的图形叫做角B.直线l经过点A,那么点A在直线l上 C.把一个角分成两个角的射线叫角的平分线 D.若AB=BC,则点B 是线段AC的中点3、下图中标注的角可以用∠O来表示的是()A. B. C. D.4、如图中,在下列表示角的方法中正确的是()A.∠FB.∠DC.∠AD.∠B5、下列说法正确的是()A.两点之间的连线中,直线最短B.若AP=BP,则P是线段AB的中点 C.时钟8:30这一时刻,时钟上的时针和分针之间的夹角为75° D.两点之间的线段叫做这两点之间的距离6、把一条弯曲的河流改成直道,可以缩短航程,用数学知识解释其道理为()A.两点确定一条直线B.经过两点有且仅有一条直线C.直线可以向两端无限延伸D.两点之间,线段最短7、将一张长方形纸条折成如图所示的形状,BC为折痕.若∠DBA=70°,则∠ABC等于( )A.45°B.55°C.70°D.110°8、如图,在中,,以点O为圆心,2为半径的圆与交于点C,过点C作交于点D,点P是边上的动点.当最小时,的长为()A. B. C.1 D.9、如图,已知AB∥CD,则图中与∠1互补的角有()A.2个B.3个C.4个D.5个10、如图是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面上的字是A.设B.和C.中D.山11、如图,下列说法中错误的是()A.OC方向是南偏西25ºB.OB方向是北偏西15ºC.OA方向是北偏东30ºD.OD方向是东南方向12、如图是正方体的平面展开图,每个面上都标有一个汉字,与“国”字相对的面上的字为()A.建B.设C.美D.丽13、如图,已知,,平分,平分,则的度数是()A. B. C. D.14、已知,则的余角等于()A. B. C. D.15、如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面,与“友”相对的面上的汉字是()A.爱B.国C.善D.诚二、填空题(共10题,共计30分)16、如图,∠1,∠2表示的角可分别用大写字母表示为________,________;∠A也可表示为________,还可以表示为________.17、“仁义礼智信孝”是我们中华民族的传统美德,小明同学将这六个字分别写在一个正方体六个表面上,这个正方体的表面展开图如图所示,那么与“孝”所在面相对的面上的字是________18、∠1的对顶角等于,∠1的余角等于________.19、A(a, 0),B(3,4)是平面直角坐标系中的两点,线段AB长度的最小值为________.20、22.5°=________°________′;12°24′=________°.21、若一个角的补角是120°,则这个角的余角是________°22、已知点A在数轴上对应的数为a,点B对应的数为b,且|a+2|+(b﹣1)2=0,A、B之间的距离记作|AB|,定义:|AB|=|a﹣b|.①线段AB的长|AB|=3;②设点P在数轴上对应的数为x,当|PA|﹣|PB|=2时,x=0.5;③若点P在A的左侧,M、N分别是PA、PB的中点,当P在A的左侧移动时|PM|+|PN|的值不变;④在③的条件下,|PN|﹣|PM|的值不变.以上①②③④结论中正确的是________(填上所有符合题意结论的序号)23、在灯塔处观测到轮船位于北偏西的方向,同时轮船在南偏东的方向,那么的大小为________.24、直线AB、CD相交于点O,∠AOC=30°,若OE⊥AB,OF平分∠DOE,则∠COF的度数为________.25、如图所示的网格是正方形网格,是网格线的交点,则与的大小关系为:________ (填“>”,“=”或“<”).三、解答题(共5题,共计25分)26、一个角的余角的3倍比这个角的补角少24°,那么这个角是多少度?27、如图,如果约定用字母S表示正方体的侧面,用T表示上面,B表示底面.请把相应的字母配置在已知加上某些面的记号的正方体的展开图中.28、已知∠α=34°26′,求∠α的余角的度数。

沪科版七年级上册数学第4章 直线与角 含答案

沪科版七年级上册数学第4章 直线与角 含答案

沪科版七年级上册数学第4章直线与角含答案一、单选题(共15题,共计45分)1、下面现象中,能反映“两点之间,线段最短”这一基本事实的是()A.用两根钉子将细木条固定在墙上B.木锯木料先在木板上画出两个点,再用墨盒过这两个点弹出一条墨线C.测量两棵树之间的距离时,要拉直尺子D.砌墙时,经常在两个墙角的位置分别插一根木桩,然后拉一条直的参照线2、将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是()A. B. C.D.3、如图是每个面都标注了字母的立方体的表面展开图.在展开前,与标注字母c的面相对的面上的字母为()A.aB.bC.eD.f4、如图,钟表8时30分时,时针与分针所成的角的度数为()A.30°B.60°C.75°D.90°5、如图的立体图形可由哪个平面图形绕轴旋转而成()A. B. C. D.6、如图,射线AB与AC所组成的角不正确的表示方法是()A.∠1B.∠AC.∠BACD.∠CAB7、某正方体的每个面上都有一个汉字,它的一个展开图如图说是,正原正方体中,与“考”字所在面相对的面上的汉字是()A.祝B.你C.成D.功8、某正方体的每个面上都有一个汉字.它的一种平面展开图如图所示,那么在原正方体中,与“筑”字所在面相对的面上的汉字是()A.抗B.疫C.长D.城9、下列四种说法:①线段AB是点A与点B之间的距离;②射线AB与射线BA 表示同一条射线;③两点确定一条直线;④两点之间线段最短.其中正确的个数是 ( )A.1个B.2个C.3个D.4个10、如图,在6×4的小正方形网格中,小正方形的边长均为1,点A,B,C,D,E均在格点上.则∠ABC﹣∠DCE=()A.30°B.42°C.45°D.50°11、已知OA⊥OC,如果∠AOC:∠AOB=3:2,那么∠BOC的大小为()A.30°B.150°C.30°或150°D.90°12、棱长是1cm的小立方体组成如图所示的几何体,那么这个几何体的表面积为()A.36cm 2B.33cm 2C.30cm 2D.27cm 213、如果∠1与∠2互补,∠2与∠3互余,则∠1与∠3的关系是()A.∠1=∠3B.∠1=180°﹣∠3C.∠1=90°+∠3D.以上都不对14、如果∠A=50°,那么∠A的余角是()A.30°B.40°C.90°D.130°15、已知抛物线与x轴交于两点,则线段AB的长度为()A.1B.2C.3D.4二、填空题(共10题,共计30分)16、长方体有________ 个顶点,有________ 个面,有________ 条棱.17、如图,直线、相交于点,将量角器的中心与点重合,发现表示的点在直线上,表示的点在直线上,则________ .18、如图,,交于点,与互余,则是________度.19、如图,将一张长方形纸片分別沿着EP,FP对折,使点B落在点B,点C落在点C′.若点P,B′,C′不在一条直线上,且两条折痕的夹角∠EPF=85°,则∠B′PC′=________.20、在数轴上,若点P表示-2,则距P点5个单位长度的点表示的数是________.21、如图是一个几何体的展开图,则这个几何体是________22、阅读下面材料:在数学课上,老师提出如下问题:小芸的作法如下:老师说:“小芸的作法正确.”请回答:小芸的作图依据是________ .23、已知:如图,AB=BC,∠ABC=90°,以AB为直径的⊙O交OC与点D,AD的延长线交BC于点E,过D作⊙O的切线交BC于点F.下列结论:①CD2=CE·CB;②4EF 2=ED ·EA;③∠OCB=∠EAB;④.其中正确的只有________.(填序号)24、棱长分别为4cm,3cm两个正方体如图放置,点P在E1F1上,且E1P=E 1F1,一只蚂蚁如果要沿着长方体的表面从点A爬到点P,需要爬行的最短距离是________.25、一个长方体的墨水盒长5.8cm,宽5.5cm,高6cm,则它的表面积为________ cm2.三、解答题(共5题,共计25分)26、我们知道,将一个长方形绕它的一边旋转一周得到的几何体是圆柱,现有一个长是5cm,宽是3cm的长方形,分别绕它的长和宽所在的直线旋转一周,得到不同的圆柱几何体,分别求出它们的体积.27、加图.已知∠AOB和∠COD都是∠BOC的余角,OE、OF分别为∠AOB和∠COD的角平分线,如果∠BOC=50°,求∠AOE、∠AOD、∠EOF的度数.28、已知:如图,∠AOB=70°,∠AOC=30°,OD平分∠BOC.请依题意补全图形,并求∠AOD的度数.29、如图,圆柱形容器高为16cm,底面周长为24cm,在杯内壁离杯底的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯子的上沿蜂蜜相对的点A处,则蚂蚁A处到达B处的最短距离为多少?30、如图,AE∥CF,AG,CG分别平分∠EAC和∠FCA,过点G的直线BD⊥AE,交AE 于B,交CF于D.求证:AB+CD=AC.参考答案一、单选题(共15题,共计45分)1、C2、C3、D4、C5、D6、B7、C9、B10、C11、C12、A13、C14、B15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、27、29、。

沪科版七年级上册数学第4章 直线与角 含答案

沪科版七年级上册数学第4章 直线与角 含答案

沪科版七年级上册数学第4章直线与角含答案一、单选题(共15题,共计45分)1、利用一副三角板上已知度数的角,不能画出的角是().A.15°B.135°C.165°D.100°2、如图,是一个几何体的表面展开图,则该几何体是A.正方体B.长方体C.三棱柱D.四棱锥3、某物体的侧面展开图如图所示,那么它的左视图为()A. B. C. D.4、如图:如果∠1=∠3,那么()A.∠1=∠2B.∠2=∠3C.∠AOC=∠BODD.∠1= ∠BOD5、用六根长度相等的火柴棒搭等边三角形,最多搭成()个.A.2B.3C.4D.56、将一把直尺和一块三角板如图叠放,直尺的一边刚好经过直角三角板的直角顶点且与斜边相交,则与一定满足的数量关系是()A. B. C. D.7、下面图形是棱柱的是()A. B. C. D.8、下列说法正确的是()A.线段AB和线段BA表示的不是同一条线段B.射线AB和射线BA表示的是同一条射线C.若点P是线段AB的中点,则PA=ABD.线段AB 叫做A,B两点间的距离9、下列说法正确的是()A.角的边越长,角度就越大B.周角就是一条射线C.一条直线可以看成平角D.平角的两边可以构成一条直线10、已知∠AOB=3∠BOC,若∠BOC=30°,则∠AOC等于()A.120°B.120°或60°C.30°D.30°或90°11、下列结论正确的是()A.直线比射线长B.过两点有且只有一条直线C.过三点一定能作三条直线D.一条直线就是一个平角12、已知点A(3,4),B(3,1),C(4,1),则AB与AC的大小关系是()A.AB<ACB.AB=ACC.AB>ACD.无法判断13、已知∠ =32º,则∠ 的补角为()A.58ºB.68ºC.148ºD.168º14、下列说法中正确的是()A.四棱锥有4个面B.连接两点间的线段叫做两点间的距离C.如果线段,则M是线段AB的中点D.射线和射线不是同一条射线15、下列4个图形中,能用,,三种方法表示同一个角的图形是()A. B.. C. D.二、填空题(共10题,共计30分)16、如图,BO⊥AO,∠BOC 与∠BOA 的度数之比为1:5,那么∠AOC 的补角=________度.17、如图,直线 、 相交于点 ,将量角器的中心与点 重合,发现表示的点在直线 上,表示 的点在直线 上,则 ________ .18、以下说法:①两点确定一条直线;②两点之间直线最短;③线段AB 是点A 与点B 之间的距离;④若|a|=﹣a ,则a <0;⑤单项式﹣a 2b 3c 4的系数是﹣1,次数是9.其中正确的是________ (请填序号)19、如图,△ABC 中,点E 是BC 上的一点,EC=2BE ,BD 是边AC 上的中线,若S △ABC =18,则S △ADF -S △BEF =________.20、根据图,比较∠AOC,∠BOD,∠BOC,∠COD,∠AOD 的大小,它们从小到大排列为________.21、如图,点E 为正方形ABCD 的边DC 上一点,且EC =3DE , F 为AC 上的一动点,连接FD 和FE , 若AB =8,则DF +EF 的最小值是________.22、在同一平面内,已知∠AOB=48°,∠BOC=20°,则∠AOC=________.23、如右图所示,是一正方体的表面展开图,把展开图折叠成小正方体后,与“害”字一面的相对面上的字是________.24、如图所示,已知∠AOB,求作射线OC,使OC平分∠AOB,作法的合理顺序是________ .(将①②③重新排列)①作射线OC;②以O为圆心,任意长为半径画弧交OA、OB于D、E;③分别以D、E为圆心,大于DE的长为半径作弧,在∠AOB内,两弧交于点C.25、如图,该图中不同的线段数共有________条.三、解答题(共5题,共计25分)26、计算:①96°﹣18°26′59″②83°46′+52°39′16″③20°30′×8④105°24′15″÷327、如图,一副三角板的两个直角顶点重合在一起.⑴比较∠EOM与∠FON的大小,并写出理由;⑵求∠EON+∠MOF的度数.28、如图,中,高为AD,∠BAC角平分线为AE,若∠B=28°,∠ACD=60°,求∠EAD的度数.29、如图,在△ABC中,AB=AC,D是AB上的一点,过点D作DE⊥BC于E,并与CA 的延长线交于点F.求证:△ADF是等腰三角形.30、已知:线段AB=6厘米,点C是AB的中点,点D在AC的中点,求线段BD 的长.参考答案一、单选题(共15题,共计45分)1、D2、C3、B5、C6、D7、A8、C9、D10、B11、B12、A13、C14、D15、:二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、28、29、30、。

直线与角(有答案)

直线与角(有答案)

直线与角一、选择题(共10小题)1.如图,C是线段AB的中点,D是线段AC上一点,且DC=,若BC=4,则DC等于()3.从济南开往青岛的列车,途中停靠三个站点,如果任意两站间的票价都不同,不同的票4.如图所示,下列语句不正确的是()5.如图,已知线段AB=8cm,点C是AB上任一点,点M、N分别是AC和CB的中点,则MN的长度为()6.如图,图中共有()条线段.7.如图,线段AB长4cm,C为AB上一点,M为AC中点,N为BC中点,已知AM=1.5cm,则CN的长为()8.若∠A=30°18′,∠B=30°15′30″,∠C=30.25°,则这三个角的大小关系正确的是()9.如图所示,几何体截面的形状是( )B10.如图,点C 为线段AB 上一点,若线段AC=12cm ,AC :CB=3:2,D 、E 两点分别为AC 、AB 的中点,则DE 的长为( )二、填空题(共10小题)(除非特别说明,请填准确值) 11.周角= _________ 平角= _________ 直角.12.如图,点C 、点D 在线段AB 上,E 、F 分别是AC 、DB 的中点,若AB=m ,CD=n ,则线段EF 的长为 _________ (用含m ,n 的式子表示).13.60°角的余角是 _________ ,130°角的补角是 _________ .14.若a+b+c=0,且a >b >c ,以下结论: ①a >0,c >0;②关于x 的方程ax+b+c=0的解为x=1; ③a 2=(b+c )2; ④的值为0或2; ⑤在数轴上点A 、B 、C 表示数a 、b 、c ,若b <0,则线段AB 与线段BC 的大小关系是AB>BC .其中正确的结论是 _________ (填写正确结论的序号).15.已知∠A=21°24′,它的余角为 _________ . 16.如图,点C 、点D 在线段AB 上,E 、F 分别是AC 、DB 的中点,若AB=16cm ,CD=7cm ,则线段EF 的长为 _________ cm .17.如图,是正方体的平面展开图,每个面上标有一个汉字,则在正方体上与“河”字相对的面上的字是_________.18.钟面上从3点到4点,时针与分针夹角成60°角时,此时是3点_________分.19.如图所示,直线AB、EF相交于点D,∠ADC=90°,若∠1与∠2的度数之比为1:4,则∠CDF、∠EDB的度数分别是_________.20.如图,将一根绳子对折以后用线段AB表示,现从P处将绳子剪断,剪断后的各段绳子中最长的一段为30cm,若AP=PB,则这条绳子的原长为_________.三、解答题(共10小题)(选答题,不自动判卷)21.阅读材料:我们知道:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.所以式子|x﹣3|的几何意义是数轴上表示有理数3的点与表示有理数x的点之间的距离.根据上述材料,解答下列问题:(1)若|x﹣3|=|x+1|,则x=_________;(2)式子|x﹣3|+|x+1|的最小值为_________;(3)若|x﹣3|+|x+1|=7,求x的值.22.指出如图所示的立体图形中的柱体、锥体、球.23.如图①②③④都为平面图形.(1)数一数每个图形各有多少个顶点、多少条边(不重叠)、这些边围成了多少块区域(不24.如图,O是AC的中点,M是AB的中点,N是BC的中点,试判断MN与OC的大小关系.25.两条相等线段AB,CD有三分之一部分重合,M,N分别为AB,CD中点.若MN=12cm,求AB的长.26.在一条直线型的流水线上,依次有A1、A2、A3、A4、A55个机器人在工作,如图所示,现需要设计一个零件供应点,问设在何处与5个机器人距离的和最小.27.如图,线段AB=8cm,C为AB上一点,且AC=3.2cm,又知M是AB的中点,N是AC的中点,求M、N两点间的距离.28.数一数图中每个图形的线段总数:(1)如图①,线段总数是2+1=3条.(2)如图②,线段总数是3+2+1=6条.(3)如图③,线段总数是4+3+2+1=10条.(4)如图④,线段的总数是_________条.根据以上求线段的总数的规律:当线段上共有n个点(包括两个端点)时,线段的总数表示为_________,利用以上规律,当n=22时,线段的总数是_________条.由以上规律,解答:如果10位同学聚会,互相握手致意,一共需要握多少次手?29.把一个正方体截去一个角剩下的几何体最多有几个面?30.建筑工人在砌墙时,总是在墙角的地方立两根标志杆,并要两根杆之间拉一根准线,这样做的道理是什么?【章节训练】第4章直线与角-6参考答案与试题解析一、选择题(共10小题)1.如图,C是线段AB的中点,D是线段AC上一点,且DC=,若BC=4,则DC等于()DC=AC×3.从济南开往青岛的列车,途中停靠三个站点,如果任意两站间的票价都不同,不同的票价有()种.4.如图所示,下列语句不正确的是()5.如图,已知线段AB=8cm,点C是AB上任一点,点M、N分别是AC和CB的中点,则MN的长度为()MC+CN=AM+BN=AC CN=BN=MN=MC+CN=AC+(6.如图,图中共有()条线段.7.如图,线段AB长4cm,C为AB上一点,M为AC中点,N为BC中点,已知AM=1.5cm,则CN的长为()CN=CB=0.5cm9.如图所示,几何体截面的形状是()B10.如图,点C为线段AB上一点,若线段AC=12cm,AC:CB=3:2,D、E两点分别为AC、AB的中点,则DE的长为()AC=6cm AE=AC二、填空题(共10小题)(除非特别说明,请填准确值)11.周角=平角=1直角.周角的度数,根据周角,周角平角故答案为:,12.如图,点C、点D在线段AB上,E、F分别是AC、DB的中点,若AB=m,CD=n,则线段EF的长为(用含m,n的式子表示).CE=AC DB((,故答案为:.13.60°角的余角是30°,130°角的补角是50°.14.若a+b+c=0,且a>b>c,以下结论:①a>0,c>0;②关于x的方程ax+b+c=0的解为x=1;③a2=(b+c)2;④的值为0或2;⑤在数轴上点A、B、C表示数a、b、c,若b<0,则线段AB与线段BC的大小关系是AB >BC.其中正确的结论是②③⑤(填写正确结论的序号).+++时,去掉绝对值符号得出++时,+++时,+++15.已知∠A=21°24′,它的余角为68°36′.16.如图,点C、点D在线段AB上,E、F分别是AC、DB的中点,若AB=16cm,CD=7cm,则线段EF的长为11.5cm cm.CE=AC BD×17.如图,是正方体的平面展开图,每个面上标有一个汉字,则在正方体上与“河”字相对的面上的字是拉.18.钟面上从3点到4点,时针与分针夹角成60°角时,此时是3点分.,即,即分.故答案为:,.19.如图所示,直线AB、EF相交于点D,∠ADC=90°,若∠1与∠2的度数之比为1:4,则∠CDF、∠EDB的度数分别是162°、108°.20.如图,将一根绳子对折以后用线段AB表示,现从P处将绳子剪断,剪断后的各段绳子中最长的一段为30cm,若AP=PB,则这条绳子的原长为75cm或50cm.x=三、解答题(共10小题)(选答题,不自动判卷)21.阅读材料:我们知道:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.所以式子|x﹣3|的几何意义是数轴上表示有理数3的点与表示有理数x的点之间的距离.根据上述材料,解答下列问题:(1)若|x﹣3|=|x+1|,则x=1;(2)式子|x﹣3|+|x+1|的最小值为4;(3)若|x﹣3|+|x+1|=7,求x的值.;﹣或﹣或.22.指出如图所示的立体图形中的柱体、锥体、球.23.如图①②③④都为平面图形.(1)数一数每个图形各有多少个顶点、多少条边(不重叠)、这些边围成了多少块区域(不24.如图,O是AC的中点,M是AB的中点,N是BC的中点,试判断MN与OC的大小关系.BM=AB BC MN=BM+BN=ACACBM=MN=BM+BN=ACMN=ACAC25.两条相等线段AB,CD有三分之一部分重合,M,N分别为AB,CD中点.若MN=12cm,求AB的长.acm CN=代入得出a+BM=AB=CD=acma a=1226.在一条直线型的流水线上,依次有A1、A2、A3、A4、A55个机器人在工作,如图所示,现需要设计一个零件供应点,问设在何处与5个机器人距离的和最小.27.如图,线段AB=8cm,C为AB上一点,且AC=3.2cm,又知M是AB的中点,N是AC的中点,求M、N两点间的距离.AM=AC=1.6cm28.数一数图中每个图形的线段总数:(1)如图①,线段总数是2+1=3条.(2)如图②,线段总数是3+2+1=6条.(3)如图③,线段总数是4+3+2+1=10条.(4)如图④,线段的总数是15条.根据以上求线段的总数的规律:当线段上共有n个点(包括两个端点)时,线段的总数表示为,利用以上规律,当n=22时,线段的总数是231条.由以上规律,解答:如果10位同学聚会,互相握手致意,一共需要握多少次手?,时,线段的总数是为同学聚会,共握手29.把一个正方体截去一个角剩下的几何体最多有几个面?30.建筑工人在砌墙时,总是在墙角的地方立两根标志杆,并要两根杆之间拉一根准线,这样做的道理是什么?。

线与角单元测试题及答案

线与角单元测试题及答案

线与角单元测试题及答案一、选择题(每题2分,共10分)1. 直线AB与直线CD相交于点O,点O是两条直线的______。

A. 交点B. 端点C. 焦点D. 垂足2. 两条平行线之间的距离处处相等,这种说法是______。

A. 正确B. 错误3. 如果两条直线相交成直角,则这两条直线互相______。

A. 平行B. 垂直C. 重合D. 相交4. 一个角的度数为90°,这个角被称为______。

A. 锐角B. 直角C. 钝角D. 平角5. 两条直线互相垂直,它们的交点处的角是______。

A. 锐角B. 直角C. 钝角D. 平角二、填空题(每空1分,共10分)6. 两条直线相交所构成的四个角中,有______个直角时,这两条直线互相垂直。

7. 直线外一点与直线上各点的连线中,______最短。

8. 如果一个角的度数是30°,那么它的余角是______。

9. 根据平行公理,经过直线外一点,可以画______条已知直线的平行线。

10. 当两条直线被第三条直线所截,如果同侧的内角和为180°,则这两条直线______。

三、简答题(每题5分,共10分)11. 解释什么是垂线,并给出垂线的性质。

12. 描述如何使用直尺和三角板构造一个直角。

四、计算题(每题10分,共20分)13. 若直线AB和CD相交于点E,且∠AED=90°,∠CED=45°,求∠BEC的度数。

14. 在一个直角三角形中,已知一个锐角为30°,求另一个锐角的度数。

五、解答题(每题15分,共30分)15. 证明:如果两条直线被第三条直线所截,且同侧的内角和小于180°,则这两条直线相交。

16. 已知点A、B、C在一条直线上,点D不在直线上,且AB=CD,证明:AD=BC。

答案:一、1. A2. B3. B4. B5. B二、6. 47. 垂线段8. 60°9. 110. 平行三、11. 垂线是指一条直线与另一条直线相交,并且相交角为90°的直线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《第4章直线与角》一、选择题(共15小题,每小题3分,满分45分)1.经过刨平的木板上的两点,能弹出一条笔直的墨线,而且只能弹出一条这样的墨线,请说出理由是.2.如图,从甲地到乙地有四条道路,其中最短的路线是,最长的路线是.3.一列往返于北京和广州的火车,沿途要经过石家庄、郑州、武汉、长沙四站,铁路部门要为这趟列车准备印制()种车票.A.6 B.12 C.15 D.304.点A、B、C在同一条数轴上,其中点A、B表示的数分别为﹣3、1,若BC=2,则AC等于()A.3 B.2 C.3或5 D.2或65.已知线段AB,画出它的中点C,再画出BC的中点D,再画出AD的中点E,再画出AE的中点F,那么AF等于AB的()A.B.C.D.6.已知线段AB=10cm,点C是直线AB上一点,BC=4cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.7cm B.3cm C.7cm或3cm D.5cm7.如图,C,D,E将线段AB分成四部分,且AC:CD:DE:EB=2:3:4:5,M,P,Q,N分别是AC,CD,DE,BE的中点,若MN=a,求PQ的长.8.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);(2)动点R从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少秒时追上点R?点P追上点R时在什么位置?9.如图,直线AB、CD交于点O,射线OM平分∠AOC,若∠BOD=76°,则∠BOM等于()A.38°B.104° C.142° D.144°10.学校、电影院、公园在平面图上分别用点A,B,C表示,电影院在学校的正东方向,公园在学校的南偏西35°方向,那么平面图上的∠BAC等于()A.115° B.35°C.125° D.55°11.中午闹钟响了,正在午睡的小明睁眼一看闹钟(如图所示),这时分针与时针所成的角的度数是度.12.如图所示,OE平分∠AOB,OD平分∠BOC,∠AOB=90°,∠EOD=80°,则∠BOC的度数为.13.如图,已知∠AOC=∠BOD=100°,且∠AOB:∠AOD=2:7,试求∠BOC的大小.14.一个角的补角是这个角的余角的4倍,那么这个角的大小是()A.60°B.75°C.90°D.45°15.如图,两块三角板的直角顶点O重合在一起,且OB平分∠COD,则∠AOD的度数()A.45°B.120° C.135° D.150°二、解答题16.如图,已知直线AB和CD相交于点O,OM平分∠BOD,∠MON是直角,∠AOC=50°.(1)求∠AON的度数;(2)求∠DON的余角.17.平面内两两相交的8条直线,其交点个数最少为m个,最多为n个,则m+n等于()A.16 B.18 C.29 D.2818.归纳与猜想:(1)观察图填空:图①中有个角;图②中有个角;图③中有个角;(2)根据(1)题猜想:在一个角内引(n﹣2)条射线可组成几个角?19.如图.已知∠A0B=60°,OC是∠A0B内的一条射线,OD平分∠BOC,OE 平分∠AOC.(1)求∠EOD的度数;(2)若其他条件不变,OC在∠AOB内部绕O点转动,则OD,OE的位置是否发生变化?(3)在(2)的条件下,∠EOD的大小是否发生变化?如果不变,请求出其度数;如果变化,请求出其度数的范围.《第4章直线与角》参考答案与试题解析一、选择题(共15小题,每小题3分,满分45分)1.经过刨平的木板上的两点,能弹出一条笔直的墨线,而且只能弹出一条这样的墨线,请说出理由是过两点有且只有一条直线.【考点】直线的性质:两点确定一条直线.【分析】根据直线公理:经过两点有且只有一条直线,解题.【解答】解:在锯木料时,一般先在木板上画出两点,然后过这两点弹出一条墨线,这是因为过两点有且只有一条直线.故答案为:过两点有且只有一条直线.【点评】此题考查了直线的性质:两点确定一条直线,此题比较简单,但从中可以看出,数学来源于生活,又用于生活.2.如图,从甲地到乙地有四条道路,其中最短的路线是从甲经A到乙,最长的路线是从甲经D到乙.【考点】线段的性质:两点之间线段最短.【分析】考查最短,最长路径问题,结合图形,即可求解.【解答】解:由图可得,因为两点之间,线段最短,所以最短的路线为从甲经A到乙,而最长路线则为从甲经D到乙.【点评】能够看懂一些简单的图形,会结合图形进行求解.3.一列往返于北京和广州的火车,沿途要经过石家庄、郑州、武汉、长沙四站,铁路部门要为这趟列车准备印制()种车票.A.6 B.12 C.15 D.30【考点】直线、射线、线段.【分析】分别求出从北京出发的有5种车票,从石家庄出发的有4种车票,从郑州出发的有3种车票,从武汉出发的有2种车票,从长沙出发的有1种车票,即可得出答案.【解答】解:∵从北京出发的有5种车票,从石家庄出发的有4种车票,从郑州出发的有3种车票,从武汉出发的有2种车票,从长沙出发的有1种车票,∴一列往返于北京和广州的火车,沿途要经过石家庄、郑州、武汉、长沙四站,铁路部门要为这趟列车准备印制2×(5+4+3+2+1)=30种车票,故选D.【点评】本题考查了用数学知识解决实际问题的应用,主要考查学生的理解能力和计算能力.4.点A、B、C在同一条数轴上,其中点A、B表示的数分别为﹣3、1,若BC=2,则AC等于()A.3 B.2 C.3或5 D.2或6【考点】两点间的距离;数轴.【专题】压轴题.【分析】要求学生分情况讨论A,B,C三点的位置关系,即点C在线段AB 内,点C在线段AB外.【解答】解:此题画图时会出现两种情况,即点C在线段AB内,点C在线段AB外,所以要分两种情况计算.点A、B表示的数分别为﹣3、1,AB=4.第一种情况:在AB外,AC=4+2=6;第二种情况:在AB内,AC=4﹣2=2.故选:D.【点评】在未画图类问题中,正确画图很重要.本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.5.已知线段AB ,画出它的中点C ,再画出BC 的中点D ,再画出AD 的中点E ,再画出AE 的中点F ,那么AF 等于AB 的( )A .B .C .D .【考点】比较线段的长短.【分析】根据题意AF=AE=AD ,那么只需求出AD 、AB 的关系即可;因为AD=AB ﹣BD ,而BD=BC=AB ,由此求得AF 、AB 的比例关系.【解答】解:由题意可作出下图:结合上图和题意可知:AF=AE=AD ;而AD=AB ﹣BD=AB ﹣BC=AB ﹣AB=AB ,∴AF=AD=×AB=AB ,故选D .【点评】本题考查了比较线段的长短,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.6.已知线段AB=10cm ,点C 是直线AB 上一点,BC=4cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是( )A .7cmB .3cmC .7cm 或3cmD .5cm【考点】比较线段的长短.【专题】分类讨论.【分析】本题应考虑到A、B、C三点之间的位置关系的多种可能,即当点C 在线段AB上时和当点C在线段AB的延长线上时.【解答】解:(1)当点C在线段AB上时,则MN=AC+BC=AB=5;(2)当点C在线段AB的延长线上时,则MN=AC﹣BC=7﹣2=5.综合上述情况,线段MN的长度是5cm.故选D.【点评】首先要根据题意,考虑所有可能情况,画出正确图形.再根据中点的概念,进行线段的计算.7.如图,C,D,E将线段AB分成四部分,且AC:CD:DE:EB=2:3:4:5,M,P,Q,N分别是AC,CD,DE,BE的中点,若MN=a,求PQ的长.【考点】两点间的距离.【分析】根据线段的比例,可用x表示每条线段,根据中点的性质,可得AM,BN,根据线段的和差,可得关于x的方程,根据解方程,可得x的值,根据线段的和差,可得答案.【解答】解:由AC:CD:DE:EB=2:3:4:5,得AC=2x,CD=3x,DE=4x,EB=5x.由M是AC的中点,N是BE的中点,得AM=AC=x,NB=EB=.由线段的和差,得MN=MC+CD+DE+EN=x+3x+4x+x=.又MN=a,=a.解得x=.由P是CD的中点,Q是DE的中点,得PD=CD=,DQ=DE=2x.PQ=PD+DQ=+2x=PQ=×=a.【点评】本题考查了两点间的距离,利用线段的和差得出关于x的方程是解题关键.8.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数﹣4 ,点P表示的数6(1﹣t)(用含t的代数式表示);(2)动点R从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少秒时追上点R?点P追上点R时在什么位置?【考点】一元一次方程的应用;数轴;列代数式.【专题】计算题.【分析】(1)根据数轴表示数的方法得到B表示的数为6﹣10,P表示的数为6﹣6t;(2)点P运动t秒时追上点R,由于点P要多运动10个单位才能追上点R,则6t=10+4t,然后解方程得到t=5,此时4t=20,此时P点与R点都在﹣24表示的点的位置.【解答】解:(1)∵A表示的数为6,且AB=10,∴B表示的数为6﹣10=﹣4,∵PA=6t,∴P表示的数为6﹣6t=6(1﹣t);故答案为﹣4,6(1﹣t);(2)点P运动t秒时追上点R,根据题意得6t=10+4t,解得t=5,所以4t=20,所以点P在数﹣24表示的点追上点R.答:点P运动5秒时追上点R,点P追上点R时在数﹣24表示的点.【点评】本题考查了一元一次方程的应用:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.9.如图,直线AB、CD交于点O,射线OM平分∠AOC,若∠BOD=76°,则∠BOM等于()A.38°B.104° C.142° D.144°【考点】对顶角、邻补角;角平分线的定义.【专题】常规题型.【分析】根据对顶角相等求出∠AOC的度数,再根据角平分线的定义求出∠AOM的度数,然后根据平角等于180°列式计算即可得解.【解答】解:∵∠BOD=76°,∴∠AOC=∠BOD=76°,∵射线OM平分∠AOC,∴∠AOM=∠AOC=×76°=38°,∴∠BOM=180°﹣∠AOM=180°﹣38°=142°.故选:C.【点评】本题考查了对顶角相等的性质,角平分线的定义,准确识图是解题的关键.10.学校、电影院、公园在平面图上分别用点A,B,C表示,电影院在学校的正东方向,公园在学校的南偏西35°方向,那么平面图上的∠BAC等于()A.115° B.35°C.125° D.55°【考点】方向角.【分析】根据方位角的概念,正确画出方位图表示出方位角,即可求解.【解答】解:从图中发现平面图上的∠CAB=∠1+∠2=125°.故选:C.【点评】本题考查了方向角.解答此类题需要从运动的角度,正确画出方位角,找准中心是做这类题的关键.11.中午闹钟响了,正在午睡的小明睁眼一看闹钟(如图所示),这时分针与时针所成的角的度数是135 度.【考点】钟面角.【分析】根据时针与分针相距的份数乘以每份的度数,可得答案.【解答】解:时针与分针相距份,时分针与时针所成的角的度数30×=135°故答案为:135.【点评】本题考查了钟面角,确定时针与分针相距的份数是解题关键.12.如图所示,OE平分∠AOB,OD平分∠BOC,∠AOB=90°,∠EOD=80°,则∠BOC的度数为70°.【考点】角平分线的定义.【分析】根据角平分线定义可得∠BOE=∠AOE=∠AOB,∠DOB=∠COD=∠COB,然后求出∠BOE的度数,进而可得∠BOD的度数,然后可得∠BOC的度数.【解答】解:∵OE平分∠AOB,OD平分∠BOC,∴∠BOE=∠AOE=∠AOB,∠DOB=∠COD=∠COB,∵∠AOB=90°,∴∠BOE=45°,∵∠EOD=80°,∴∠BOD=80°﹣45°=35°,∴∠BOC=70°.故答案为:70°.【点评】此题主要考查了角平分线定义,关键是掌握角平分线的定义从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.13.如图,已知∠AOC=∠BOD=100°,且∠AOB:∠AOD=2:7,试求∠BOC的大小.【考点】角的计算.【分析】根据∠AOB:∠AOD=2:7,设∠AOB=2x°,可得∠BOD的大小,根据角的和差,可得∠BOC的大小,根据∠AOC、∠AOB和∠BOC的关系,可得答案.【解答】解:设∠AOB=2x°,∵∠AOB:∠AOD=2:7,∴∠B OD=5x°,∵∠AOC=∠BOD,∴∠COD=∠AOB=2x°,∴∠BOC=5x﹣2x=3x°∵∠AOC=∠AOB+∠BOC=2x+3x=5x=100°,∴x=20°,∠BOC=3x=60°.【点评】本题考查了角的计算,先用x表示出∠BOD,在表示出∠BOC,由∠AOC的大小,求出x,最后求出答案.14.一个角的补角是这个角的余角的4倍,那么这个角的大小是()A.60°B.75°C.90°D.45°【考点】余角和补角.【分析】设这个角为x,则补角=180°﹣x,余角=90°﹣x,根据题意可得出方程,解出即可.【解答】解:设这个角为x,则补角=180°﹣x,余角=90°﹣x,由题意得,180°﹣x=4(90°﹣x),解得:x=60°.故选A.【点评】本题考查了余角和补角的知识,属于基础题,关键是掌握互余的两个角的和是90°,互补的两个角的和是180°.15.如图,两块三角板的直角顶点O重合在一起,且OB平分∠COD,则∠AOD的度数()A.45°B.120° C.135° D.150°【考点】角平分线的定义.【分析】根据角平分线的定义求出∠BOD,再根据∠AOD=∠AOB+∠BOD代入数据计算即可得解.【解答】解:∵OB平分∠COD,∴∠BOD=×90°=45°,∴∠AOD=∠AOB+∠BOD=90°+45°=135°.故选C.【点评】本题考查了角平分线的定义,是基础题,准确识图是解题的关键.二、解答题16.如图,已知直线AB和CD相交于点O,OM平分∠BOD,∠MON是直角,∠AOC=50°.(1)求∠AON的度数;(2)求∠DON的余角.【考点】对顶角、邻补角;角平分线的定义;余角和补角.【分析】(1)根据角平分线的定义求出∠MOB的度数,根据邻补角的性质计算即可.(2)根据题意得到:∠DOM为∠DON的余角.【解答】解:(1)∵∠AOC+∠AOD=∠AOD+∠BOD=180°,∴∠BOD=∠AOC=50°,∵OM平分∠BOD,∴∠BOM=∠DOM=25°,又由∠MON=90°,∴∠AON=180°﹣(∠MON+∠BOM)=180°﹣(90°+25°)=65°;(2)由∠DON+∠DOM=∠MON=90°知∠DOM为∠DON的余角,故∠DON的余角为25°.【点评】本题考查的是邻补角的概念以及角平分线的定义,掌握邻补角的性质是邻补角互补是解题的关键.17.平面内两两相交的8条直线,其交点个数最少为m个,最多为n个,则m+n等于()A.16 B.18 C.29 D.28【考点】相交线.【分析】由题意可得8条直线相交于一点时交点最少,任意两直线相交都产生一个交点时交点最多,由此可得出m,n的值,从而得出答案.【解答】解:根据题意可得:8条直线相交于一点时交点最少,此时交点为1个,即m=1;任意两直线相交都产生一个交点时交点最多,∵任意三条直线不过同一点,∴此时交点为:8×(8﹣1)÷2=15,即n=28;则m+n=29.故选C.【点评】本题考查直线的交点问题,难度不大,注意掌握直线相交于一点时交点最少,任意三条直线不过同一点交点最多.18.归纳与猜想:(1)观察图填空:图①中有 3 个角;图②中有 6 个角;图③中有10 个角;(2)根据(1)题猜想:在一个角内引(n﹣2)条射线可组成几个角?【考点】角的概念.【分析】(1)根据图形沿一个方向数出角,即可得出答案;(2)3=,6=,10=,根据以上结果得出,即可得出答案.【解答】解:(1)图①中有3个角,图②中有6个角,图③中有10个角,(2)在一个角内引(n﹣2)条射线可组成个角.故答案为:3,6,10.【点评】本题考查了角的定义的应用,关键是能根据(1)中的结果得出规律.19.如图.已知∠A0B=60°,OC是∠A0B内的一条射线,OD平分∠BOC,OE 平分∠AOC.(1)求∠EOD的度数;(2)若其他条件不变,OC在∠AOB内部绕O点转动,则OD,OE的位置是否发生变化?(3)在(2)的条件下,∠EOD的大小是否发生变化?如果不变,请求出其度数;如果变化,请求出其度数的范围.【考点】角的计算;角平分线的定义.【分析】(1)由于OD平分∠BOC,OE平分∠AOC,那么利用角平分线有∠COD=∠BOC,∠COE=∠AOC,再利用等式性质,可得∠COD+∠COE=(∠BOC+∠AOC),即可求∠DOE;(2)若其他条件不变,OC在∠AOB内部绕O点转动,则OD,OE的位置发生变化;(3)由(1)的结论可知∠DOE=∠AOB,而∠AOB的度数不变,则∠DOE就不变,也就是OC在∠A0B内绕点O转动时,∠DOE的值不会改变.【解答】解:(1)∵OD平∠BOC,OE平分∠AOC.∴∠COD=∠BOC,∠COE=∠AOC,∴∠COD+∠COE=(∠BOC+∠AOC),即∠DOE=∠AOB=×60°=30°;若其他条件不变,OC在∠AOB内部绕O点转动,则OD,OE的位置发生变化;(3)当OC在∠A0B内绕点O转动时,∠DOE的值不会改变.∵由(1)知∠DOE=∠AOB,而∠AOB的度数不变,∴∠DOE就不变.【点评】本题考查了角的计算、角平分线的定义、等式的性质,解决本题的关键是熟记角平分线的性质.。

相关文档
最新文档