安徽省合肥2016-2017学年七年级下期中数学试卷及答案解析

合集下载

安徽合肥市初中数学七年级下期中经典测试题(含答案解析)

安徽合肥市初中数学七年级下期中经典测试题(含答案解析)

一、选择题1.无理数23的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.在平面直角坐标系中,将点P 先向左平移5个单位,再向上平移3个单位得到点()2,1,Q -则点P 的坐标是( )A .(32)-,B .()3,4C .()7,4-D .(72)--,3.如图,直线a b ∥,三角板的直角顶点放在直线b 上,两直角边与直线a 相交,如果160∠=︒,那么2∠等于( )A .30B .︒40C .50︒D .60︒ 4.下列语句中,假命题的是( ) A .对顶角相等B .若直线a 、b 、c 满足b ∥a ,c ∥a ,那么b ∥cC .两直线平行,同旁内角互补D .互补的角是邻补角5.已知x 、y 满足方程组2827x y x y +=⎧⎨+=⎩,则x +y 的值是( ) A .3 B .5C .7D .9 6.已知∠A 、∠B 互余,∠A 比∠B 大30°,设∠A 、∠B 的度数分别为x°、y°,下列方程组中符合题意的是( )A .18030x y x y +=⎧⎨=-⎩B .180+30x y x y +=⎧⎨=⎩C .9030x y x y +=⎧⎨=-⎩D .90+30x y x y +=⎧⎨=⎩7.解方程组229229232x y y z z x +=⎧⎪+=⎨⎪+=⎩得x 等于( )A .18B .11C .10D .98.若a <b <0,则在ab <1、1a >b 1、ab >0、b a >1、-a >-b 中正确的有( ) A .2个B .3个C .4个D .5个 9.一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的度数是( ) A .第一次右拐50°,第二次左拐130°B .第一次左拐50°,第二次右拐50°C .第一次左拐50°,第二次左拐130°D .第一次右拐50°,第二次右拐50°10.如图,AB∥CD,∠1=45°,∠3=80°,则∠2的度数为()A.30°B.35°C.40°D.45°11.如图,AB∥CD,EF平分∠GED,∠1=50°,则∠2=()A.50°B.60°C.65°D.70°12.过一点画已知直线的垂线,可画垂线的条数是()A.0B.1C.2D.无数13.下列调查方式,你认为最合适的是()A.调查市场上某种白酒的塑化剂的含量,采用普查方式B.调查鞋厂生产的鞋底能承受的弯折次数,采用普查方式C.旅客上飞机前的安检,采用抽样调查方式D.了解我市每天的流动人口数,采用抽样调查方式14.下列图中∠1和∠2是同位角的是( )A.(1)、(2)、(3)B.(2)、(3)、(4)C.(3)、(4)、(5)D.(1)、(2)、(5)15.点P为直线m外一点,点A,B,C为直线m上三点,PA=4cm,PB=5cm,PC=2cm,则点P 到直线m的距离为( )A.4cm B.2cm;C.小于2cm D.不大于2cm 二、填空题16.在平面直角坐标系中,点A,B的坐标分别为(1,0),(0,2),若将线段AB平移到A1B1,点A1,B1的坐标分别为(2,a),(b,3),则a2-2b的值为______.17.已知12xy=⎧⎨=⎩是关于x、y的二元一次方程3210mx y--=的解,则m=__________.18.如果∠A与∠B的两边分别平行,∠A比∠B的3倍少36°,则∠A的度数是________.19.已知△ABC 中,AB =AC ,求证:∠B <90°.用反证法证明,第一步是假设_________.20.如图,直线a 和b 被直线c 所截,∠1=110°,当∠2=_____时,直线a ∥b 成立21.10的整数部分是_____.22.如图,已知AB ∥CD ,F 为CD 上一点,∠EFD=60°,∠AEC=2∠CEF ,若6°<∠BAE <15°,∠C 的度数为整数,则∠C 的度数为_____.23.根据不等式的基本性质,可将“mx <2”化为“x >2m”,则m 的取值范围是_____. 24.如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达O '点,那么O '点对应的数是______.你的理由是______.25.如果一个正数的两个平方根为a+1和2a-7,则这个正数为_____________.三、解答题26.如图,ABC 的三个顶点的坐标分别是()()()2,33,1,5,2A B C ---,,将ABC 先向右平移6个单位长度,再向下平移3个单位长度得到111A B C △.(1)在平面直角坐标系中,画出平移后的111A B C △;(2)求出111A B C △的面积;(3)点P 是x 轴上的一点,若11PA C 的面积等于111A B C △的面积,求点P 的坐标.27.如图,直线AB 、CD 相交于O 点,AOC ∠与AOD ∠的度数比为4:5,OE AB ⊥,OF 平分DOB ∠,求EOF ∠的度数.28.1x +2y -z 是64的方根,求x y z -+的平方根29.探索与应用.先填写下表,通过观察后再回答问题: a … 0.0001 0.01 1 100 10000 … a … 0.01 x 1 y 100 … (1)表格中x= ;y= ;(2)从表格中探究a a 10≈3.161000≈ ;②已知 3.24a =180,则a= ; (3312 2.289≈3b 0.2289=,则b= .30.观察下列关于自然数的等式:① 223415-⨯=;② 225429-⨯=;③ 2274313-⨯=;…根据上述规律解决下列问题:(1)请仿照①、②、③,直接写出第4个等式: ;(2)请写出你猜想的第n 个等式(用含n 的式子表示),并证明该等式成立.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.B2.A3.A4.D5.B6.D7.C8.B9.B10.B11.C12.B13.D14.D15.D二、填空题16.-1【解析】【分析】根据点A和点B的坐标以及对应点的坐标确定出平移的方法从而求出ab的值再代入代数式进行计算即可【详解】解:∵A(10)A1(2a)B(02)B1(b3)∴平移方法为向右平移1个单位17.【解析】【分析】把与的值代入方程计算即可求出的值【详解】解:把代入二元一次方程得:解得:故答案为:【点睛】此题考查了二元一次方程的解方程的解即为能使方程左右两边相等的未知数的值18.18°或126°【解析】【分析】根据题意可知∠A+∠B=180°∠A=3∠B-36°或∠A=∠B∠A=3∠B-36°将其组成方程组即可求得【详解】根据题意得:当∠A+∠B=180°∠A=3∠B-3619.∠B≥90°【解析】【分析】熟记反证法的步骤直接填空即可【详解】解:用反证法证明:第一步是:假设∠B≥90°故答案是:∠B≥90°【点睛】考查反证法解题关键要懂得反证法的意义及步骤反证法的步骤是:(20.70°【解析】【分析】根据平行的判定要使直线a∥b成立则∠2=∠3再根据∠1=110°即可把∠2的度数求解出来【详解】解:要使直线a∥b成立则∠2=∠3(同位角相等两直线平行)∵∠1=110°∴∠321.3【解析】【分析】根据实数的估算由平方数估算出的近似值可得到整数部分【详解】∵3<<4∴的整数部分是3故答案为:3【点睛】此题考查实数的估算熟记常见的平方数22.36°或37°【解析】分析:先过E作EG∥AB根据平行线的性质可得∠AEF=∠BAE+∠DFE再设∠CEF=x则∠AEC=2x根据6°<∠BAE<15°即可得到6°<3x-60°<15°解得22°<23.m<0【解析】因为mx<2化为x>根据不等式的基本性质3得:m<0故答案为:m<024.π圆的周长=π•d=1×π=π【解析】【分析】直径为1个单位长度的圆从原点沿数轴向右滚动一周说明OO′之间的距离为圆的周长=π由此即可确定O′点对应的数【详解】因为圆的周长为π•d=1×π=π所以圆25.9【解析】【分析】根据一个正数的平方根有2个且互为相反数求出a的值即可确定出这个正数【详解】解:根据一个正数的两个平方根为a+1和2a-7得:解得:则这个正数是故答案为:9【点睛】本题主要考查了平方三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题1.B解析:B【解析】【分析】.【详解】∵1.52=2.25,22=4,2.25<3<4,∴1.52<,∴34<<,故选B.【点睛】本题考查了无理数的估算,熟练掌握和灵活运用相关知识是解题的关键.2.A解析:A【解析】【分析】根据向左平移横坐标减,向上平移纵坐标加即可求解,注意始点和终点的区别.【详解】解:由题意可知点P 的坐标为()25,13-+-,即P ()3,2-;故选:A .【点睛】本题考查了平移,熟记平移中点的变化规律:横坐标右移加,坐移减;纵坐标上移加,下移减是解题的关键.3.A解析:A【解析】【分析】先由直线a∥b,根据平行线的性质,得出∠3=∠1=60°,再由已知直角三角板得∠4=90°,然后由∠2+∠3+∠4=180°求出∠2.【详解】已知直线a∥b,∴∠3=∠1=60°(两直线平行,同位角相等),∠4=90°(已知),∠2+∠3+∠4=180°(已知直线),∴∠2=180°-60°-90°=30°.故选:A.【点睛】此题考查平行线性质的应用,解题关键是由平行线性质:两直线平行,同位角相等,求出∠3.4.D解析:D【解析】分析:分别判断是否是假命题.详解:选项A. 对顶角相等 ,正确.选项B. 若直线a、b、c满足b∥a,c∥a,那么b∥c,正确.选项C. 两直线平行,同旁内角互补,正确.选项D. 互补的角是邻补角,错误,不相邻的两个补角不是邻补角.故选D.点睛:(1)真命题就是正确的命题,即如果命题的题设成立,那么结论一定成立.简单来说就是成立的、对的就是真命题.比如太阳是圆的...就是真命题.(2)条件和结果相矛盾的命题是假命题,即不成立的、错的就是假命题.比如太阳是方的...就是假命题5.B解析:B【解析】【分析】把两个方程相加可得3x+3y=15,进而可得答案.【详解】两个方程相加,得3x+3y=15,∴x+y=5,故选B.【点睛】本题主要考查解二元一次方程组,灵活运用整体思想是解题关键.6.D解析:D【解析】试题解析:∠A 比∠B 大30°,则有x=y+30,∠A ,∠B 互余,则有x+y=90.故选D .7.C解析:C【解析】【分析】利用加减消元法解方程组即可.【详解】229229232x y y z z x +=⎧⎪+=⎨⎪+=⎩①②③,①+②+③得:3x+3y+3z=90.∴x+y+z=30 ④②-①得:y+z-2x=0 ⑤④-⑤得:3x=30∴x=10故答案选:C .【点睛】本题考查的是三元一次方程组的解法,掌握加减消元法是解题的关键.8.B解析:B【解析】【分析】根据不等式的性质即可求出答案.【详解】解:①∵a<b<0,∴ab不一定小于1,故①错误;②∵a<b<0,∴1a>b1,故②正确;③∵a<b<0,ab>0,故③正确;④∵a<b<0,ba<1,故④错误;⑤∵a<b<0,-a>-b,故⑤正确,故选B.【点睛】此题考查不等式的性质,解题的关键是熟练运用不等式的性质,本题属于基础题型.9.B解析:B【解析】【分析】根据两条直线平行的性质:两条直线平行,同位角相等.再根据题意得:两次拐的方向不相同,但角度相等.【详解】解:如图,第一次拐的角是∠1,第二次拐的角是∠2,由于平行前进,可以得到∠1=∠2.因此,第一次与第二次拐的方向不相同,角度要相同,故只有B选项符合,故选B.【点睛】此题主要考查了平行线的性质,注意要想两次拐弯后,仍在原来的方向上平行前进,则拐的方向应相反,角度应相等.10.B解析:B分析:根据平行线的性质和三角形的外角性质解答即可.详解:如图,∵AB∥CD,∠1=45°,∴∠4=∠1=45°,∵∠3=80°,∴∠2=∠3-∠4=80°-45°=35°,故选B.点睛:此题考查平行线的性质,关键是根据平行线的性质和三角形的外角性质解答.11.C解析:C【解析】【分析】由平行线性质和角平分线定理即可求.【详解】∵AB∥CD∴∠GEC=∠1=50°∵EF平分∠GED∴∠2=∠GEF= 12∠GED=12(180°-∠GEC)=65°故答案为C.【点睛】本题考查的知识点是平行线性质和角平分线定理,解题关键是熟记角平分线定理. 12.B解析:B【解析】【分析】根据垂直的性质:过直线外或直线上一点画已知直线的垂线,可以画一条,据此解答.【详解】在平面内,过一点有且只有一条直线与已知直线垂直,故选:B【点睛】此题考查了直线的垂直的性质,注意基础知识的识记和理解.解析:D【解析】【分析】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.据此对各项进行判断即可.【详解】解:A、调查市场上某种白酒的塑化剂的含量,采用抽样调查比较合适,故此选项错误;B、调查鞋厂生产的鞋底能承受的弯折次数,采用抽样调查比较合适,故此选项错误;C、旅客上飞机前的安检,必须进行普查,故此选项错误;D、了解我市每天的流动人口数,采用抽样调查方式,比较合适,故此选项正确.故选D.【点睛】此题主要考查了全面调查与抽样调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.14.D解析:D【解析】【分析】根据同位角的定义,对每个图进行判断即可.【详解】(1)图中∠1和∠2是同位角;故本项符合题意;(2)图中∠1和∠2是同位角;故本项符合题意;(3)图中∠1和∠2不是同位角;故本项不符合题意;(4)图中∠1和∠2不是同位角;故本项不符合题意;(5)图中∠1和∠2是同位角;故本项符合题意.图中是同位角的是(1)、(2)、(5).故选D.【点睛】本题考查了同位角,两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.15.D解析:D【解析】【分析】根据点到直线的距离是直线外的点与直线上垂足间的线段的长,再根据垂线段最短,可得答案.【详解】当PC⊥l时,PC是点P到直线l的距离,即点P到直线l的距离2cm,当PC不垂直直线l时,点P到直线l的距离小于PC的长,即点P到直线l的距离小于2cm,综上所述:点P到直线l的距离不大于2cm,故选:D.【点睛】考查了点到直线的距离,利用了垂线段最短的性质.二、填空题16.-1【解析】【分析】根据点A和点B的坐标以及对应点的坐标确定出平移的方法从而求出ab的值再代入代数式进行计算即可【详解】解:∵A(10)A1(2a)B(02)B1(b3)∴平移方法为向右平移1个单位解析:-1【解析】【分析】根据点A和点B的坐标以及对应点的坐标确定出平移的方法,从而求出a、b的值,再代入代数式进行计算即可.【详解】解:∵A(1,0),A1(2,a),B(0,2),B1(b,3),∴平移方法为向右平移1个单位,向上平移1个单位,∴a=0+1=1,b=0+1=1,∴a2-2b=1²-2×1=-1;故答案为:-1.【点睛】本题考查了坐标与图形变化,注意到平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.17.【解析】【分析】把与的值代入方程计算即可求出的值【详解】解:把代入二元一次方程得:解得:故答案为:【点睛】此题考查了二元一次方程的解方程的解即为能使方程左右两边相等的未知数的值解析:5 3【解析】【分析】把x与y的值代入方程计算即可求出m的值.【详解】解:把12xy=⎧⎨=⎩代入二元一次方程3210mx y--=,得:32210m,解得:53 m=.故答案为:5 3【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.18.18°或126°【解析】【分析】根据题意可知∠A+∠B=180°∠A=3∠B-36°或∠A=∠B∠A=3∠B-36°将其组成方程组即可求得【详解】根据题意得:当∠A+∠B=180°∠A=3∠B-36解析:18°或126°【解析】【分析】根据题意可知,∠A+∠B=180°,∠A=3∠B-36°,或∠A=∠B,∠A=3∠B-36°,将其组成方程组即可求得.【详解】根据题意得:当∠A+∠B=180°,∠A=3∠B-36°,解得:∠A=126°;当∠A=∠B,∠A=3∠B-36°,解得:∠A=18°;∴∠A=18°或∠A=126°.故答案为18°或126°.【点睛】本题考查了平行线的性质,如果两角的两边分别平行,则这两个角相等或互补,本题还考查了方程组的解法.19.∠B≥90°【解析】【分析】熟记反证法的步骤直接填空即可【详解】解:用反证法证明:第一步是:假设∠B≥90°故答案是:∠B≥90°【点睛】考查反证法解题关键要懂得反证法的意义及步骤反证法的步骤是:(解析:∠B≥90°【解析】【分析】熟记反证法的步骤,直接填空即可.【详解】解:用反证法证明:第一步是:假设∠B≥90°.故答案是:∠B≥90°.【点睛】考查反证法,解题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.20.70°【解析】【分析】根据平行的判定要使直线a∥b成立则∠2=∠3再根据∠1=110°即可把∠2的度数求解出来【详解】解:要使直线a∥b成立则∠2=∠3(同位角相等两直线平行)∵∠1=110°∴∠3解析:70°【解析】【分析】根据平行的判定,要使直线a∥b成立,则∠2=∠3,再根据∠1=110°,即可把∠2的度数求解出来.【详解】解:要使直线a∥b成立,则∠2=∠3(同位角相等,两直线平行),∵∠1=110°,∴∠3=180°-∠1=180°-110°=70°,∴∠2=∠3=70°,故答案为:70°.【点睛】本题主要考查了平行的判定(同位角相等,两直线平行),掌握直线平行的判定方法是解题的关键.21.3【解析】【分析】根据实数的估算由平方数估算出的近似值可得到整数部分【详解】∵3<<4∴的整数部分是3故答案为:3【点睛】此题考查实数的估算熟记常见的平方数解析:3【解析】【分析】的近似值可得到整数部分【详解】∵3<4,3.故答案为:3.【点睛】此题考查实数的估算,熟记常见的平方数22.36°或37°【解析】分析:先过E作EG∥AB根据平行线的性质可得∠AEF=∠BAE+∠DFE再设∠CEF=x则∠AEC=2x根据6°<∠BAE<15°即可得到6°<3x-60°<15°解得22°<解析:36°或37°.【解析】分析:先过E作EG∥AB,根据平行线的性质可得∠AEF=∠BAE+∠DFE,再设∠CEF=x,则∠AEC=2x,根据6°<∠BAE<15°,即可得到6°<3x-60°<15°,解得22°<x<25°,进而得到∠C的度数.详解:如图,过E作EG∥AB,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,设∠CEF=x,则∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x-60°,又∵6°<∠BAE<15°,∴6°<3x-60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角,∠C的度数为整数,∴∠C=60°-23°=37°或∠C=60°-24°=36°,故答案为:36°或37°.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解决问题的关键是作平行线,解题时注意:两直线平行,内错角相等.23.m<0【解析】因为mx<2化为x>根据不等式的基本性质3得:m<0故答案为:m<0解析:m<0【解析】因为mx<2化为x>2m,根据不等式的基本性质3得:m<0,故答案为:m<0.24.π圆的周长=π•d=1×π=π【解析】【分析】直径为1个单位长度的圆从原点沿数轴向右滚动一周说明OO′之间的距离为圆的周长=π由此即可确定O′点对应的数【详解】因为圆的周长为π•d=1×π=π所以圆解析:π圆的周长=π•d=1×π=π【解析】【分析】直径为1个单位长度的圆从原点沿数轴向右滚动一周,说明OO′之间的距离为圆的周长=π,由此即可确定O′点对应的数.【详解】因为圆的周长为π•d=1×π=π,所以圆从原点沿数轴向右滚动一周OO'=π.故答案为:π,圆的周长=π•d=1×π=π.【点睛】此题考查实数与数轴,解题关键在于注意:确定点O′的符号后,点O′所表示的数是距离原点的距离.25.9【解析】【分析】根据一个正数的平方根有2个且互为相反数求出a 的值即可确定出这个正数【详解】解:根据一个正数的两个平方根为a+1和2a-7得:解得:则这个正数是故答案为:9【点睛】本题主要考查了平方解析:9【解析】【分析】根据一个正数的平方根有2个,且互为相反数求出a 的值,即可确定出这个正数.【详解】解:根据一个正数的两个平方根为a+1和2a-7得: 1270a a ++-=,解得:2a =,则这个正数是2(21)9+=.故答案为:9.【点睛】本题主要考查了平方根,熟练掌握平方根的定义是解本题的关键.三、解答题26.(1)详见解析;(2)52;(3)()-1,0P 或()90,. 【解析】【分析】(1)根据点的平移规律确定平移后点的坐标,再将所得点顺次连接即可解答; (2)用割补法求解可得答案;(3)由(2)可知111A B C △的面积是52,所以11PA C 的面积也是52,因为1P A 、都在x 轴上,所以直接以1PA 为底可得1PA 的长为5,再分P 在A 1的左侧和右侧两种情况讨论即可求出P 的坐标.【详解】解:∵()()()2,33,1,5,2A B C ---,向右平移6个单位长度,再向下平移3个单位长度, ()()()1114,0,3,2,1,1A B C ∴--,将这三个点描出并依次连接得到答案如图:;(2)用割补法可得:1111115231312122222△S =⨯-⨯⨯-⨯⨯-⨯⨯=A B C ; (3)由(2)可知111A B C △的面积是52, ∴11PA C 的面积也是52, ∵1P A 、都在x 轴上,1151=22PA ∴⨯, 解得1=5PA ,∵()140A ,, ()-1,0P ∴或()90,.【点睛】本题考查的是作图中的平移变换,熟知图形平移不变性的性质是解答此题的关键. 27.50∠=EOF .【解析】【分析】根据AOC ∠与AOD ∠互补且度数比为4:5,求得80AOC ∠=,由OE AB ⊥得到90BOE =∠,根据对顶角相等得80AOC BOD ∠=∠=,则可求得DOE ∠的度数,根据角平分线的定义可求得∠DOF 的度数,进而得到答案.【详解】解:4AOC x ∠=,则5AOD x ∠=, ∵180AOC AOD ∠+∠=, ∴45180x x +=,解得:20x =, ∴480AOC x ∠==,∵OE AB ⊥,∴90BOE =∠,∵80AOC BOD ∠=∠=,∴10DOE BOE BOD ∠=∠-∠=,又∵OF 平分DOB ∠, ∴1402DOF BOD ∠=∠=, ∴104050EOF EOD DOF ∠=∠+∠=+=.【点睛】本题主要考查角平分线的定义,角的计算,解此题的关键在于准确掌握题图中各角的位置关系.28.【解析】【分析】根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列方程求出x 、y 的值,然后求出z 的值,再根据平方根的定义解答.【详解】,∴x+1=0,2-y=0,解得x=-1,y=2,∵z 是64的方根,∴z=8所以,x y z -+=-1-2+8=5,所以,x y z -+的平方根是【点睛】此题考查非负数的性质,相反数,平方根的定义,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.29.(1)0.1,10;(2)31.6,32400;(3)0.012.【解析】【分析】(1)由表格得出规律,求出x 与y 的值即可;(2)根据算术平方根的被开方数扩大100倍,算术平方根扩大10倍,可得答案; (3)根据立方根的被开方数缩小1000倍,立方根缩小10倍,可得答案.【详解】(1)x=0.1,y=10,故答案为:0.1,10;(2,, ② 3.24=1.8,∴a=32400,故答案为:31.6,32400;(4 2.289≈,∴b=0.012,故答案为:0.012.【点睛】考查了算术平方根和立方根,注意被开方数扩大100(1000)倍,算术平方根(立方根)扩大10倍.30.(1)2294417-⨯=;(2)22(21)441n n n +-=+;证明见解析.【解析】【分析】(1)由①②③三个等式可得,被减数是从3开始连续奇数的平方,减数是从1开始连续自然数的平方的4倍,计算的结果是被减数的底数的2倍减1,由此规律得出答案即可;(2)根据前面的式子得出一般性的式子,然后根据多项式的乘法计算法则进行证明.【详解】解:(1)故答案为:2294417-⨯=;(2)猜想第n 个等式为:()2221441n n n +-=+,证明如下:∵左式=22441441n n n n ++-=+,右式=41n =+,∴左式=右式,∴该等式成立.【点睛】本题主要考查的就是规律的发现与证明,属于中等难度题型.解答这个问题的时候,关键就是找出各数之间存在的联系,然后得出答案.。

合肥市七年级数学下学期期中试卷(含解析)

合肥市七年级数学下学期期中试卷(含解析)

1安徽省合肥市2017-2018学年七年级数学下学期期中试卷选择题(本大题共10小题,共30.0 分)F 列各图中,与 是对顶角的是A. 2B. 在下列所给出坐标的点中,在第二象限的是A.B.在实数一,-, ,0, ,", ,中,无理数有A. 2个B. 3个C. 4个D. 5个如图所示,点 E 在AC 的延长线上, 下列条件中不能判断亠 /AC EA.B.C.如图,表示一的点在数轴上表示时,所在哪两个字母之间I I I4耳G 玖0 11.5 22.5 3A. C 与 DB. A 与 BC. A 与 CD. B 与 C那么点P 的坐标是在平面直角坐标系中,线段CF 是由线段AB 平移得到的;点的对应点为则点的对应点F 的坐标为1.2. 3.4.5.6.7.8. 9.10._ 、 11. 12.C. C.D. D.D.下列命题是假命题的是A.对顶角相等C.平行于同一条直线的两直线平行B. 两直线平行,同旁内角相等 D.同位角相等,两直线平行点P 位于x 轴下方,y 轴左侧,距离 x 轴4个单位长度,距离y 轴2个单位长度, A. B.C.D.A.B. C.如图所示,将含有角的三角板的直角顶点放在相互平行的两条直线其中一条上,若,则 的度数A.填空题(本大题共 若整数x 满足B.C.4小题,共20.0分),则使一为整数的x 的值是 ______________如图,直线 AB CD EF 交于点 O OG 平分,且一的平方根是,则17.如图,直线 ,点B 在直线b 上,, 度数.13. 把9的平方根和立方根按从小到大的顺序排列为 ______________ .14. 如图,在平面直角坐标系中,一动点从原点 0出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位,得到点 ,,,,那么点 为自然数的坐标为 ______________ 用n 表示.三、解答题(本大题共 9小题,共50.0 分)15. 计算:16. 求下列各式中x 的值:;业 冬 禺的Bb18. 完成下面的证明如图,点E在直线DF上,点B在直线AC上,若求证:证明:_______对顶角相等19.已知的立方根是3, 的算术平方根是4, c是—的整数部分.求a,b, c的值;求的平方根.20.如图,直线AB是某天然气公司的主输气管道,点 C D是在AB异侧的两个小区,现在主输气管道上寻找支管道连接点,向两个小区铺设管道有以下两个方案:方案一:只取一个连接点P,使得像两个小区铺设的支管道总长度最短,在图中标出点P的位置,保留画图痕迹;方案二:取两个连接点M和N,使得点M到C小区铺设的支管道最短,使得点N到D小区铺设的管道最短在途中标出M N的位置,保留画图痕迹;设方案一中铺设的支管道总长度为,方案二中铺设的支管道总长度为,则与的大小关系为: _________ 填“ ”、“ ”或“ ”理由是 ________________ .322.如图,长方形OAB(中, O为直角坐标系的原点,A、C两点的坐标分别为,,点B在第一象限内.写出点B的坐标,并求长方形OABC勺周长;若有过点C的直线CD把长方形OABC勺周长分成3:5两部分,D为直线CD与长方形的边的交点,求点D的坐标.23.如图1,已知射线求证:如图2, E、F在CB上,且满足,0E平分 .当时,求的度数.若平行移动AB那么:的值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值.图】5答案和解析【答案】I. B 2. D 3. B 4. A 5. B 6. B 8. B9. D10. BII. 一答案不唯一12. 13. -14.14. 解:原式;原式 ■15. 解:;解得:_;解得:18. ;同位角相等,两直线平行;C;两直线平行,同位角相等;两直线平行;两直线平行,内错角相等19. 解:的立方根是3,的算术平方根是 4,是—的整数部分,将, , 代入得:的平方根是•20. ; 垂线段最短 21. ;22.解:17.解: 7. AAC 内错角相等,四边形OABC长方形,点B的坐标为长方形OAB(的周长为:.把长方形OABC勺周长分为3: 5两部分, 被分成的两部分的长分别为12和20.当点D在AB上时,所以点D的坐标为当点D在OA上时,所以点D的坐标为23. 证明:,OE平分的值不发生变化:2【解析】1. 解:A、与不是对顶角,故A选项错误;B、与是对顶角,故B选项正确;C 与不是对顶角,故C选项错误;D 与不是对顶角,故D选项错误.故选:B.根据对顶角的定义对各选项分析判断后利用排除法求解. 本题主要考查了对顶角的定义,熟记对顶角的图形是解题的关键.2. 解:一,一的平方根是".故选:D.先化简一,然后再根据平方根的定义求解即可.本题考查了平方根的定义以及算术平方根,先把—正确化简是解题的关键,本题比较容易出错.3. 解:根据每个象限内点的坐标符号可得在第二象限内的点是,故选:B.根据第二象限内点的坐标符号进行判断即可.本题考查了各象限内点的坐标的符号,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限;第二象限;第三象限;第四象限74. 解:无理数有:一,共2个,故选:A利用无理数的定义判断即可.此题考查了无理数,算术平方根,以及立方根,弄清无理数的定义是解本题的关键.5. 解:A,,故本选项错误;B、根据不能推出,故本选项正确;C、,,故本选项错误;D ,,故本选项错误;故选:B.根据平行线的判定逐个判断即可.本题考查了平行线的判定的应用,能熟记平行线的判定定理是解此题的关键,注意:平行线的判定有:同位角相等,两直线平行,内错角相等,两直线平行,同旁内角互补,两直线平行.6. 解:A、对顶角相等是真命题;B、两直线平行,同旁内角互补,B是假命题;C平行于同一条直线的两直线平行是真命题;D同位角相等,两直线平行是真命题;故选:B.根据对顶角的性质、平行线的判定和性质判断即可.本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题判断命题的真假关键是要熟悉课本中的性质定理.7. 解:,则表示一的点在数轴上表示时,所在C和D两个字母之间.故选:A确定出7的范围,利用算术平方根求出—的范围,即可得到结果.此题考查了估算无理数的大小,以及实数与数轴,解题关键是确定无理数的整数部分即可解决问题.8. 解:点P位于x轴下方,y轴左侧,点P在第三象限;距离y轴2个单位长度,点P的横坐标为;距离x轴4个单位长度,点P的纵坐标为;点P的坐标为,故选:B.位于x轴下方,y轴左侧,那么所求点在第三象限;距离x轴4个单位长度,可得点P 的纵坐标;距离y轴2个单位长度,可得点P的横坐标.用到的知识点为:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值;易错点的判断出所求点所在的象限.9. 解:线段CF是由线段AB平移得到的;点的对应点为,点的对应点F的坐标为:故选:D.直接利用平移的性质得出对应点坐标的变化规律进而得出答案. 此题主要考查了平移变换,正确得出坐标变化规律是解题关键.10.解:如图,延长AB交CF于E,故选:B.延长AB交CF于E,求出,根据三角形外角性质求出,根据平行线性质得出代入求出即可.本题考查了三角形的内角和定理,三角形外角性质,平行线性质的应用,解题时注意: 两直线平行,内错角相等.11. 解:,则使-为整数的x的值是:.等故答案为:一答案不唯一.直接得出x的取值范围,进而得出符合题意的答案.此题主要考查了估算无理数的大小,正确得出x的取值范围是解题关键.12. 解:,平分,故答案为:首先根据对顶角相等可得,再根据角平分线的性质可得,然后再算出,进而可以根据角的和差关系算出的度数.此题主要考查了角的计算,关键是掌握对顶角相等,垂直定义,角平分线的性质.13. 解:的平方根为,3,9的立方根为_,把9的平方根和立方根按从小到大的顺序排列为一 .故答案为:一 .先分别得到3的平方根和立方根,然后比较大小.本题考查了平方根、立方根、有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.14. 解:由图可知,时,,点,时,,点,时,,点,9所以,点故答案为:11 根据图形分别求出 、2、3时对应的点 的坐标,然后根据变化规律写出即可.本题考查了点的坐标的变化规律,仔细观察图形,分别求出 、2、3时对应的点的 对应的坐标是解题的关键. 15. 直接利用算术平方根以及立方根的性质分别化简得出答案;直接利用绝对值以及二次根式的性质化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.16. 直接利用平方根的定义计算得出答案;直接利用立方根的定义计算得出答案.此题主要考查了平方根和立方根,正确把握相关定义是解题关键.17. 根据垂直定义和邻补角求出,根据平行线的性质得出 ,代入求出即可. 本题考查了垂直定义,平行线的性质的应用,注意:两直线平行,同位角相等.18. 证明:, 对顶角相等, 同位角相等,两直线平行 ,两直线平行,同位角相等 ,内错角相等,两直线平行, 两直线平行,内错角相等 故答案为: ;同位角相等,两直线平行; C ;两直线平行,同位角相等; AC ;内错角相等,两直线平行;两直线平行,内错角相等. 根据对顶角相等推知 ,从而证得两直线;然后由平行线的性质得到即可根据平行线的判定定理,推知两直线;最后由平行线的性质,证得 本题考查了平行线的判定与性质解答此题的关键是注意平行线的性质和判定定理的综合运用. 19. 直接利用立方根以及算术平方根的定义得出 利用 中所求,代入求出答案. 此题主要考查了估算无理数的大小以及算术平方根和立方根, 关键.20. 解:图形如右图所示,由题意可得,支管道总长度为为线段CD 的长, 支管道总长度为为线段CD 与线..段DN 的长,垂线段最短,故答案为:,垂线段最短.根据题意可以作出合适的图形,并得到本题考查作图 应用与设计作图,最短路径,解答本题的关键是明确题意,作出相应的 图形. 21. 解: 如图所示:如图所示:的面积b ,c 的值;a , 正确把握相关定义是解题 与 的大小关系和相应的理由,本题得以解决.市场坐标 ,超市坐标:以火车站为原点建立直角坐标系即可;根据平面直角坐标系写出点的坐标即可;根据题目要求画出三角形,利用矩形面积减去四周多余三角形的面积即可.此题主要考查了作图,平移,坐标确定位置,以及求三角形的面积,关键是正确画出图 形. 22. 根据矩形的性质,点 B 的横坐标与点 A 的横坐标相等,纵坐标与点 C 的纵坐标 相等解答,进而利用长方形的周长解答即可;求出被分成的两个部分的周长, 再根据点D 在边0A 上或AB 上确定出点D 坐标即可; 考查了点的坐标的确定, 矩形的性质,熟练掌握矩形的性质是解题的关键,难点在于 求出被分成的两个部分的周长并确定出点 D 的位置.23. 根据平行线的性质即可得出 的度数,再根据 ,可得 ;出: 的值为1: 2.本题主要考查了平行线、 角平分线的性质以及三角形内角和定理, 图理清图中各角度之间的关系是解题的关键.根据0B 平分,0E 平分,即可得出 ,从而得出答案;根据平行线的性质,即可得出,再根据 ,即可得 熟记各性质并准确识。

【一中】2016-2017学年第二学期初一数学期中试卷及答案

【一中】2016-2017学年第二学期初一数学期中试卷及答案

D . (a)6 a3 a3 .
故选 D .
D. (a)6 a3 a3
3.下列命题:①两直线平行,同旁内角互补;②如果 a ∥b , b∥c ,那么 a ∥c ;③直角都相等;④
相等的角是对应角.其中,真命题有( ).
A.1 个
B. 2 个
C. 3 个
D. 4 个
【答案】C
【解析】①两直线平行,同旁内角互补(正确).

二、填空题(本大题共 10 小题,每小题 2 分,共 20 分.不需写出解题过程,请把答案直接填写在答. 题.卷.相.应.位.置.上)
9.钓鱼岛列岛是我国固有领土,共由 8 个岛屿组成,其中最大的岛是钓鱼岛,面积约为 4.3 平方公里, 最小的岛是飞濑岛,面积约为 0.0008 平方公里,请用科学记数法表示飞濑岛的面积约为__________ 平方公里.
【答案】 3
【解析】

1 3
100

3101



1 3
100

3100

3
(1)100 3
3.
12.如图,将三角尺的顶点放在直尺的一边上,∠1 30 .∠3 20 ,则∠2 __________.
1 3
2
【答案】 50 【解析】∵∠1 30 ,∠3 20 , ∴∠4 50 , ∵ AB ∥CD , ∴∠2 ∠4 , ∴∠2 50 .
南京中小学辅导 1对1、3人班、8人班
∵∠BAC 70 , ∴∠AGD 110 .

22.( 8 分)如图,每个小正方形的边长为1,在方格纸内将 △ABC 经过一次平移后得到 △ABC ;,图 中标出了点 B 的对应点 B .

安徽省合肥2016-2017学年七年级下期中数学试卷及答案解析(必备优质)

安徽省合肥2016-2017学年七年级下期中数学试卷及答案解析(必备优质)

2016-2017学年安徽省合肥七年级(下)期中数学试卷一、选择题(每小题3分,共30分)1.等于()A.﹣3 B.3 C.D.﹣2.下列运算正确的是()A.3a+2b=5ab B.a3•a2=a5 C.a8•a2=a4 D.(2a2)3=﹣6a63.已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.001244.计算的平方根为()A.±4 B.±2 C.4 D.±5.若2x=3,4y=5,则2x﹣2y的值为()A.B.﹣2 C.D.6.加上下列单项式后,仍不能使4x2+1成为一个整式的完全平方式的是()A.4x4B.4x C.﹣4x D.2x7.长方形的面积为4a2﹣6ab+2a,若它的一边长为2a,则它的周长为()A.4a﹣3b B.8a﹣6b C.4a﹣3b+1 D.8a﹣6b+28.若使代数式的值在﹣1和2之间,m可以取的整数有()A.1个B.2个C.3个D.4个9.已知关于x的不等式组整数解有4个,则b的取值范围是()A.7≤b<8 B.7≤b≤8 C.8≤b<9 D.8≤b≤910.7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.a=b B.a=3b C.a=b D.a=4b二、填空题(每小题4分,共20分)11.因式分解:4mn﹣mn3= .12.若与|x+2y﹣5|互为相反数,则(x﹣y)2017= .13.某数的平方根是2a+3和a﹣15,则这个数为.14.已知不等式组的解集为﹣1<x<2,则(m+n)2012= .15.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a﹣b|=2016,且AO=2BO,则a+b的值为.三、解答题(第16、17、18题各6分,第19、20题各10分,第21题12分,共50分)16.计算:17.解不等式组,并将解集在数轴上表示出来.18.先化简,再求值,(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣.19.已知:a+b=2,ab=1.求:(1)a﹣b(2)a2﹣b2+4b.20.若2(x+4)﹣5<3(x+1)+4的最小整数解是方程的解,求代数式m2﹣2m+11的平方根的值.21.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?2016-2017学年安徽省合肥七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.等于()A.﹣3 B.3 C.D.﹣【考点】24:立方根.【分析】运用开立方的方法计算.【解答】解: =﹣3,故选A.2.下列运算正确的是()A.3a+2b=5ab B.a3•a2=a5 C.a8•a2=a4 D.(2a2)3=﹣6a6【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【解答】解:A、不是同类项,不能合并,选项错误;B、正确;C、a8•a2=a10,选项错误;D、(2a2)3=8a6,选项错误.故选B.3.已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.00124【考点】1K:科学记数法—原数.【分析】科学记数法的标准形式为a×10n(1≤|a|<10,n为整数).本题把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到.24.故选D.4.计算的平方根为()A.±4 B.±2 C.4 D.±【考点】21:平方根;22:算术平方根.【分析】首先根据算术平方根的定义求出的值,然后根据平方根的定义即可求出结果.【解答】解:∵=4,又∵(±2)2=4,∴4的平方根是±2,即的平方根±2.故选B.5.若2x=3,4y=5,则2x﹣2y的值为()A.B.﹣2 C.D.【考点】48:同底数幂的除法.【分析】利用同底数幂除法的逆运算法则计算即可.【解答】解:∵2x=3,4y=5,∴2x﹣2y=2x÷22y,=2x÷4y,=3÷5,=0.6.故选:A.6.加上下列单项式后,仍不能使4x2+1成为一个整式的完全平方式的是()A.4x4B.4x C.﹣4x D.2x【考点】4E:完全平方式.【分析】根据完全平方公式的结构对各选项进行验证即可得解.【解答】解:A、4x4+4x2+1=(2x2+1)2,故本选项错误;B、4x+4x2+1=(2x+1)2,故本选项错误;C、﹣4x+4x2+1=(2x﹣1)2,故本选项错误;D、2x+4x2+1不能构成完全平方公式结构,故本选项正确.7.长方形的面积为4a2﹣6ab+2a,若它的一边长为2a,则它的周长为()A.4a﹣3b B.8a﹣6b C.4a﹣3b+1 D.8a﹣6b+2【考点】4H:整式的除法.【分析】首先利用面积除以一边长即可求得令一边长,则周长即可求解.【解答】解:另一边长是:(4a2﹣6ab+2a)÷2a=2a﹣3b+1,则周长是:2[(2a﹣3b+1)+2a]=8a﹣6b+2.故选D.8.若使代数式的值在﹣1和2之间,m可以取的整数有()A.1个B.2个C.3个D.4个【考点】CC:一元一次不等式组的整数解.【分析】由题意可得不等式组,解不等式组,得到不等式组的解集,然后求其整数解.【解答】解:由题意可得,由①得m>﹣,由②得m<,所以不等式组的解集为﹣<x<,则m可以取的整数有0,1共2个.故选:B.9.已知关于x的不等式组整数解有4个,则b的取值范围是()A.7≤b<8 B.7≤b≤8 C.8≤b<9 D.8≤b≤9【考点】CC:一元一次不等式组的整数解.【分析】首先确定不等式组的解集,先利用含b的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于b的不等式,从而求出b的范围.【解答】解:由不等式x﹣b≤0,得:x≤b,由不等式x﹣2≥3,得:x≥5,∵不等式组有4个整数解,∴其整数解为5、6、7、8,则8≤b<9,10.7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.a=b B.a=3b C.a=b D.a=4b【考点】4I:整式的混合运算.【分析】表示出左上角与右下角部分的面积,求出之差,根据差与BC无关即可求出a 与b的关系式.【解答】解:左上角阴影部分的长为AE,宽为AF=3b,右下角阴影部分的长为PC,宽为a,∵AD=BC,即AE+ED=AE+a,BC=BP+PC=4b+PC,∴AE+a=4b+PC,即AE﹣PC=4b﹣a,∴阴影部分面积之差S=AE•AF﹣PC•CG=3bAE﹣aPC=3b(PC+4b﹣a)﹣aPC=(3b﹣a)PC+12b2﹣3ab,则3b﹣a=0,即a=3b.解法二:既然BC是变化的,当点P与点C重合开始,然后BC向右伸展,设向右伸展长度为X,左上阴影增加的是3bX,右下阴影增加的是aX,因为S不变,∴增加的面积相等,∴3bX=aX,∴a=3b.故选:B.二、填空题(每小题4分,共20分)11.因式分解:4mn﹣mn3= mn(2+n)(2﹣n).【考点】55:提公因式法与公式法的综合运用.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=mn(4﹣n2)=mn(2+n)(2﹣n),故答案为:mn(2+n)(2﹣n)12.若与|x+2y﹣5|互为相反数,则(x﹣y)2017= ﹣1 .【考点】98:解二元一次方程组;16:非负数的性质:绝对值;23:非负数的性质:算术平方根.【分析】利用相反数性质及非负数性质列出方程组,求出方程组的解得到x与y的值,代入原式计算即可得到结果.【解答】解:∵与|x+2y﹣5|互为相反数,∴+|x+2y﹣5|=0,∴,①×2+②得:5x=5,解得:x=1,把x=1代入②得:y=2,则原式=﹣1,故答案为:﹣113.某数的平方根是2a+3和a﹣15,则这个数为121 .【考点】21:平方根;86:解一元一次方程.【分析】根据正数有两个平方根,这两个平方根互为相反数,据此即可得到关于a的方程即可求得a的值,进而求得这个数的值.【解答】解:根据题意得:2a+3+(a﹣15)=0,解得a=4,则这个数是(2a+3)2=121.故答案为:121.14.已知不等式组的解集为﹣1<x<2,则(m+n)2012= 1 .【考点】CB:解一元一次不等式组;98:解二元一次方程组;C6:解一元一次不等式.【分析】求出不等式组的解集,根据已知不等式组的解集得出m+n﹣2=﹣1,m=2,求出m、n的值,再代入求出即可.【解答】解:,解不等式②得:x<m,∴不等式组的解集为:m+n﹣2<x<m,∵不等式组的解集为﹣1<x<2,∴m+n﹣2=﹣1,m=2,解得:m=2,n=﹣1,∴(m+n)2012=(2﹣1)2012=1.故答案为:1.15.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a﹣b|=2016,且AO=2BO,则a+b的值为﹣672 .【考点】33:代数式求值;13:数轴.【分析】依据绝对自的定义可知b﹣a=2016,﹣a=2b,从而可求得a、b的值,故此可求得a+b的值.【解答】解:∵点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧,∴a<0,b>0.又∵|a﹣b|=2016,∴b﹣a=2016.∵AO=2BO,∴﹣a=2b.∴3b=2016.解得:b=672.∴a=﹣1344.∴a+b=﹣1344+672=﹣672.故答案为:﹣672.三、解答题(第16、17、18题各6分,第19、20题各10分,第21题12分,共50分)16.计算:【考点】73:二次根式的性质与化简;15:绝对值;6E:零指数幂;6F:负整数指数幂.个数的负指数次幂等于这个数的正指数次幂的倒数;任何不等于0的数的0次幂都等于1.【解答】解:原式=2﹣+﹣1=1.17.解不等式组,并将解集在数轴上表示出来.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】分别解出两不等式的解集再求其公共解.【解答】解:解不等式①得x<﹣解不等式②得x≥﹣1∴不等式组的解集为﹣1≤x<﹣.其解集在数轴上表示为:如图所示.18.先化简,再求值,(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣.【考点】4J:整式的混合运算—化简求值.【分析】首先根据整式相乘的法则和平方差公式、完全平方公式去掉括号,然后合并同类项,最后代入数据计算即可求解.【解答】解:原式=9x2﹣4﹣(5x2﹣5x)﹣(4x2﹣4x+1)=9x2﹣4﹣5x2+5x﹣4x2+4x﹣1=9x﹣5,当时,原式==﹣3﹣5=﹣8.19.已知:a+b=2,ab=1.求:(1)a﹣b(2)a2﹣b2+4b.【考点】4C:完全平方公式.【分析】根据完全平方公式进行变形,再整体代入求出即可.【解答】解:(1)∵a+b=2,ab=1,∴(a﹣b)2=(a+b)2﹣4ab=4﹣4=0,(2)∵a+b=2,ab=1,a﹣b=0∴a2﹣b2+4b=420.若2(x+4)﹣5<3(x+1)+4的最小整数解是方程的解,求代数式m2﹣2m+11的平方根的值.【考点】C7:一元一次不等式的整数解;21:平方根;85:一元一次方程的解.【分析】首先计算出不等式的解集,从而确定出最小整数解,进而得到x的值,再把x的值代入方程算出m的值,然后再次把m的值代入代数式m2﹣2m+11计算出结果,再算出平方根即可.【解答】解:解不等式得:x>﹣4则x的最小整数解为﹣3,当x=﹣3时,×(﹣3)+3m=5,解得:m=2,把m=2代入m2﹣2m+11得:22﹣2×2+11=11,11平方根为±.故代数式m2﹣2m+11的平方根的值为±.21.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?【考点】CE:一元一次不等式组的应用.【分析】(1)设租用甲车x辆,则乙车(10﹣x)辆.不等关系:①两种车共坐人数不小于340人;②两种车共载行李不小于170件.(2)因为车的总数是一定的,所以费用少的车越多越省.【解答】解:(1)设租用甲车x辆,则乙车(10﹣x)辆.根据题意,得,解,得4≤x≤7.5.又x是整数,∴x=4或5或6或7.共有四种方案:①甲4辆,乙6辆;②甲5辆,乙5辆;③甲6辆,乙4辆;④甲7辆,乙3辆.(2)①甲4辆,乙6辆;总费用为4×2000+6×1800=18800元;②甲5辆,乙5辆;总费用5×2000+5×1800=19000元;③甲6辆,乙4辆;总费用为6×2000+4×1800=19200元;④甲7辆,乙3辆.总费用为7×2000+3×1800=19400元;因为乙车的租金少,所以乙车越多,总费用越少.故选方案①.2017年5月24日。

安徽省合肥七年级下学期期中考试数学试卷有答案

安徽省合肥七年级下学期期中考试数学试卷有答案

安徽省合肥市长陔中心学校七年级下学期期中考试数学试卷本试卷一共五大题,24小题,总分100分,答题时间为100分钟.一、精心挑选,小心有陷阱哟!(本大题共8小题,每小题3分,共24分.每小题四个选项中只有一个正确,请把正确选项的代号写在题后的括号内) 1. 如图,与∠1是内错角的是 ( ) A .∠2 B .∠C .∠ 4 D .∠5(第1题) (6题图) (7题图) 2、一个数的平方根和它的立方根相等,则这个数是 ( ) A 、0 B 、1 C 、1或0 D 、1或0或-13、已知()2230a b -++=,则P(a ,b)的坐标为 ( )A .(2,3) B. (2,-3) C. (-2,3) D. (-2,-3)4、将点A(-2,-3)向左平移3个单位长度得到点B,则点B的坐标是 ( ) A、(1,-3) B、(-2,0)C、(-5,-3) D、(-2,-6)5、直角坐标系中,点P (x ,y )在第三象限,且P 到x 轴和y 轴的距离分别为3、7,则 点P 的坐标为 ( )A. (-3,-7)B. (-7,-3)C. (3,7)D. (7,3)6、如图,把长方形ABCD 沿EF 对折,若∠1=500,则∠AEF 的度数等于 ( ) A 、25º B 、50º C 、100º D 、115º7.如图是丁丁画的一张脸的示意图,如果用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成 ( ) A(1,0) B .(-1,0) C .(-1,1) D .(1,-1)8. 在-1.414,2,π, 3.41 ,2+3,3.212212221…,3.14这些数中,无理数的个数为( )A.5B.2C.3D.4二、细心填空,看谁又对又快哟!(本大题共8小题,每小题3分,共24分) 9.已知点A (-3+a ,2a+9)在y 轴上,则点A 的坐标是 . 10. 一个正数x 的平方根是2a -3与5-a ,则x= .11.把命题“垂直于同一条直线的两条直线互相平行”改写成“如果…那么…”的形式 . 12、如图所示,AB ∥CD ,直线EF 分别交AB 、CD 于E 、F ,EG 平分∠BEF ,若∠1=72°,A B D E121F EDCBAG则∠2= 度.(12题图) (15题图) (16题图) 13、先阅读理解,再回答下列问题: 因为2112=+,且221<<,所以112+的整数部分为1;因为6222=+,且362<<,所以222+的整数部分为2; 因为12332=+,且4123<<,所以332+的整数部分为3;以此类推,我们会发现n n n (2+为正整数)的整数部分为 . 14.81的算术平方根是 ,364 的平方根是 。

安徽省合肥2016-2017学年七年级下期中数学试卷及答案解析

安徽省合肥2016-2017学年七年级下期中数学试卷及答案解析

2016-2017学年安徽省合肥七年级(下)期中数学试卷一、选择题(每小题3分,共30分)1.等于()A.﹣3 B.3 C.D.﹣2.下列运算正确的是()A.3a+2b=5ab B.a3•a2=a5 C.a8•a2=a4 D.(2a2)3=﹣6a63.已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.001244.计算的平方根为()A.±4 B.±2 C.4 D.±5.若2x=3,4y=5,则2x﹣2y的值为()A.B.﹣2 C.D.6.加上下列单项式后,仍不能使4x2+1成为一个整式的完全平方式的是()A.4x4B.4x C.﹣4x D.2x7.长方形的面积为4a2﹣6ab+2a,若它的一边长为2a,则它的周长为()A.4a﹣3b B.8a﹣6b C.4a﹣3b+1 D.8a﹣6b+28.若使代数式的值在﹣1和2之间,m可以取的整数有()A.1个B.2个C.3个D.4个9.已知关于x的不等式组整数解有4个,则b的取值范围是()A.7≤b<8 B.7≤b≤8 C.8≤b<9 D.8≤b≤910.7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.a= b B.a=3b C.a= b D.a=4b二、填空题(每小题4分,共20分)11.因式分解:4mn﹣mn3= .12.若与|x+2y﹣5|互为相反数,则(x﹣y)2017= .13.某数的平方根是2a+3和a﹣15,则这个数为.14.已知不等式组的解集为﹣1<x<2,则(m+n)2012= .15.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a﹣b|=2016,且AO=2BO,则a+b的值为.三、解答题(第16、17、18题各6分,第19、20题各10分,第21题12分,共50分)16.计算:17.解不等式组,并将解集在数轴上表示出来.18.先化简,再求值,(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣.19.已知:a+b=2,ab=1.求:(1)a﹣b(2)a2﹣b2+4b.20.若2(x+4)﹣5<3(x+1)+4的最小整数解是方程的解,求代数式m2﹣2m+11的平方根的值.21.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?2016-2017学年安徽省合肥七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.等于()A.﹣3 B.3 C.D.﹣【考点】24:立方根.【分析】运用开立方的方法计算.【解答】解: =﹣3,故选A.2.下列运算正确的是()A.3a+2b=5ab B.a3•a2=a5 C.a8•a2=a4 D.(2a2)3=﹣6a6【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【解答】解:A、不是同类项,不能合并,选项错误;B、正确;C、a8•a2=a10,选项错误;D、(2a2)3=8a6,选项错误.故选B.3.已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.00124【考点】1K:科学记数法—原数.【分析】科学记数法的标准形式为a×10n(1≤|a|<10,n为整数).本题把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到.【解答】解:把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到为0.001 24.故选D.4.计算的平方根为()A.±4 B.±2 C.4 D.±【考点】21:平方根;22:算术平方根.【分析】首先根据算术平方根的定义求出的值,然后根据平方根的定义即可求出结果.【解答】解:∵=4,又∵(±2)2=4,∴4的平方根是±2,即的平方根±2.故选B.5.若2x=3,4y=5,则2x﹣2y的值为()A.B.﹣2 C.D.【考点】48:同底数幂的除法.【分析】利用同底数幂除法的逆运算法则计算即可.【解答】解:∵2x=3,4y=5,∴2x﹣2y=2x÷22y,=2x÷4y,=3÷5,=0.6.故选:A.6.加上下列单项式后,仍不能使4x2+1成为一个整式的完全平方式的是()A.4x4B.4x C.﹣4x D.2x【考点】4E:完全平方式.【分析】根据完全平方公式的结构对各选项进行验证即可得解.【解答】解:A、4x4+4x2+1=(2x2+1)2,故本选项错误;B、4x+4x2+1=(2x+1)2,故本选项错误;C、﹣4x+4x2+1=(2x﹣1)2,故本选项错误;D、2x+4x2+1不能构成完全平方公式结构,故本选项正确.故选D.7.长方形的面积为4a2﹣6ab+2a,若它的一边长为2a,则它的周长为()A.4a﹣3b B.8a﹣6b C.4a﹣3b+1 D.8a﹣6b+2【考点】4H:整式的除法.【分析】首先利用面积除以一边长即可求得令一边长,则周长即可求解.【解答】解:另一边长是:(4a2﹣6ab+2a)÷2a=2a﹣3b+1,则周长是:2[(2a﹣3b+1)+2a]=8a﹣6b+2.故选D.8.若使代数式的值在﹣1和2之间,m可以取的整数有()A.1个B.2个C.3个D.4个【考点】CC:一元一次不等式组的整数解.【分析】由题意可得不等式组,解不等式组,得到不等式组的解集,然后求其整数解.【解答】解:由题意可得,由①得m>﹣,由②得m<,所以不等式组的解集为﹣<x<,则m可以取的整数有0,1共2个.故选:B.9.已知关于x的不等式组整数解有4个,则b的取值范围是()A.7≤b<8 B.7≤b≤8 C.8≤b<9 D.8≤b≤9【考点】CC:一元一次不等式组的整数解.【分析】首先确定不等式组的解集,先利用含b的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于b的不等式,从而求出b 的范围.【解答】解:由不等式x﹣b≤0,得:x≤b,由不等式x﹣2≥3,得:x≥5,∵不等式组有4个整数解,∴其整数解为5、6、7、8,则8≤b<9,故选:C.10.7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.a= b B.a=3b C.a= b D.a=4b【考点】4I:整式的混合运算.【分析】表示出左上角与右下角部分的面积,求出之差,根据差与BC无关即可求出a与b的关系式.【解答】解:左上角阴影部分的长为AE,宽为AF=3b,右下角阴影部分的长为PC,宽为a,∵AD=BC,即AE+ED=AE+a,BC=BP+PC=4b+PC,∴AE+a=4b+PC,即AE﹣PC=4b﹣a,∴阴影部分面积之差S=AE•AF﹣PC•CG=3bAE﹣aPC=3b(PC+4b﹣a)﹣aPC=(3b﹣a)PC+12b2﹣3ab,则3b﹣a=0,即a=3b.解法二:既然BC是变化的,当点P与点C重合开始,然后BC向右伸展,设向右伸展长度为X,左上阴影增加的是3bX,右下阴影增加的是aX,因为S不变,∴增加的面积相等,∴3bX=aX,∴a=3b.故选:B.二、填空题(每小题4分,共20分)11.因式分解:4mn﹣mn3= mn(2+n)(2﹣n).【考点】55:提公因式法与公式法的综合运用.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=mn(4﹣n2)=mn(2+n)(2﹣n),故答案为:mn(2+n)(2﹣n)12.若与|x+2y﹣5|互为相反数,则(x﹣y)2017= ﹣1 .【考点】98:解二元一次方程组;16:非负数的性质:绝对值;23:非负数的性质:算术平方根.【分析】利用相反数性质及非负数性质列出方程组,求出方程组的解得到x与y的值,代入原式计算即可得到结果.【解答】解:∵与|x+2y﹣5|互为相反数,∴+|x+2y﹣5|=0,∴,①×2+②得:5x=5,解得:x=1,把x=1代入②得:y=2,则原式=﹣1,故答案为:﹣113.某数的平方根是2a+3和a﹣15,则这个数为121 .【考点】21:平方根;86:解一元一次方程.【分析】根据正数有两个平方根,这两个平方根互为相反数,据此即可得到关于a的方程即可求得a的值,进而求得这个数的值.【解答】解:根据题意得:2a+3+(a﹣15)=0,解得a=4,则这个数是(2a+3)2=121.故答案为:121.14.已知不等式组的解集为﹣1<x<2,则(m+n)2012= 1 .【考点】CB:解一元一次不等式组;98:解二元一次方程组;C6:解一元一次不等式.【分析】求出不等式组的解集,根据已知不等式组的解集得出m+n﹣2=﹣1,m=2,求出m、n的值,再代入求出即可.【解答】解:,解不等式①得:x>m+n﹣2,解不等式②得:x<m,∴不等式组的解集为:m+n﹣2<x<m,∵不等式组的解集为﹣1<x<2,∴m+n﹣2=﹣1,m=2,解得:m=2,n=﹣1,∴(m+n)2012=(2﹣1)2012=1.故答案为:1.15.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a﹣b|=2016,且AO=2BO,则a+b的值为﹣672 .【考点】33:代数式求值;13:数轴.【分析】依据绝对自的定义可知b﹣a=2016,﹣a=2b,从而可求得a、b的值,故此可求得a+b的值.【解答】解:∵点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧,∴a<0,b>0.又∵|a﹣b|=2016,∴b﹣a=2016.∵AO=2BO,∴﹣a=2b.∴3b=2016.解得:b=672.∴a=﹣1344.∴a+b=﹣1344+672=﹣672.故答案为:﹣672.三、解答题(第16、17、18题各6分,第19、20题各10分,第21题12分,共50分)16.计算:【考点】73:二次根式的性质与化简;15:绝对值;6E:零指数幂;6F:负整数指数幂.【分析】理解绝对值的意义:负数的绝对值是它的相反数;表示的算术平方根即;一个数的负指数次幂等于这个数的正指数次幂的倒数;任何不等于0的数的0次幂都等于1.【解答】解:原式=2﹣+﹣1=1.17.解不等式组,并将解集在数轴上表示出来.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】分别解出两不等式的解集再求其公共解.【解答】解:解不等式①得x<﹣解不等式②得x≥﹣1∴不等式组的解集为﹣1≤x<﹣.其解集在数轴上表示为:如图所示.18.先化简,再求值,(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣.【考点】4J:整式的混合运算—化简求值.【分析】首先根据整式相乘的法则和平方差公式、完全平方公式去掉括号,然后合并同类项,最后代入数据计算即可求解.【解答】解:原式=9x2﹣4﹣(5x2﹣5x)﹣(4x2﹣4x+1)=9x2﹣4﹣5x2+5x﹣4x2+4x﹣1=9x﹣5,当时,原式==﹣3﹣5=﹣8.19.已知:a+b=2,ab=1.求:(1)a﹣b(2)a2﹣b2+4b.【考点】4C:完全平方公式.【分析】根据完全平方公式进行变形,再整体代入求出即可.【解答】解:(1)∵a+b=2,ab=1,∴(a﹣b)2=(a+b)2﹣4ab=4﹣4=0,则a﹣b=0,(2)∵a+b=2,ab=1,a﹣b=0∴a2﹣b2+4b=420.若2(x+4)﹣5<3(x+1)+4的最小整数解是方程的解,求代数式m2﹣2m+11的平方根的值.【考点】C7:一元一次不等式的整数解;21:平方根;85:一元一次方程的解.【分析】首先计算出不等式的解集,从而确定出最小整数解,进而得到x的值,再把x的值代入方程算出m的值,然后再次把m的值代入代数式m2﹣2m+11计算出结果,再算出平方根即可.【解答】解:解不等式得:x>﹣4则x的最小整数解为﹣3,当x=﹣3时,×(﹣3)+3m=5,解得:m=2,把m=2代入m2﹣2m+11得:22﹣2×2+11=11,11平方根为±.故代数式m2﹣2m+11的平方根的值为±.21.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?【考点】CE:一元一次不等式组的应用.【分析】(1)设租用甲车x辆,则乙车(10﹣x)辆.不等关系:①两种车共坐人数不小于340人;②两种车共载行李不小于170件.(2)因为车的总数是一定的,所以费用少的车越多越省.【解答】解:(1)设租用甲车x辆,则乙车(10﹣x)辆.根据题意,得,解,得4≤x≤7.5.又x是整数,∴x=4或5或6或7.共有四种方案:①甲4辆,乙6辆;②甲5辆,乙5辆;③甲6辆,乙4辆;④甲7辆,乙3辆.(2)①甲4辆,乙6辆;总费用为4×2000+6×1800=18800元;②甲5辆,乙5辆;总费用5×2000+5×1800=19000元;③甲6辆,乙4辆;总费用为6×2000+4×1800=19200元;④甲7辆,乙3辆.总费用为7×2000+3×1800=19400元;因为乙车的租金少,所以乙车越多,总费用越少.故选方案①.2017年5月24日。

安徽省合肥七年级下期中数学试卷及答案【精品】

安徽省合肥七年级下期中数学试卷及答案【精品】

2016-2017学年安徽省合肥七年级(下)期中数学试卷一、选择题(每小题3分,共30分)1.等于()A.﹣3 B.3 C.D.﹣2.下列运算正确的是()A.3a+2b=5ab B.a3•a2=a5 C.a8•a2=a4 D.(2a2)3=﹣6a63.已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.001244.计算的平方根为()A.±4 B.±2 C.4 D.±5.若2x=3,4y=5,则2x﹣2y的值为()A.B.﹣2 C.D.6.加上下列单项式后,仍不能使4x2+1成为一个整式的完全平方式的是()A.4x4B.4x C.﹣4x D.2x7.长方形的面积为4a2﹣6ab+2a,若它的一边长为2a,则它的周长为()A.4a﹣3b B.8a﹣6b C.4a﹣3b+1 D.8a﹣6b+28.若使代数式的值在﹣1和2之间,m可以取的整数有()A.1个B.2个C.3个D.4个9.已知关于x的不等式组整数解有4个,则b的取值范围是()A.7≤b<8 B.7≤b≤8 C.8≤b<9 D.8≤b≤910.7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.a= b B.a=3b C.a= b D.a=4b二、填空题(每小题4分,共20分)11.因式分解:4mn﹣mn3= .12.若与|x+2y﹣5|互为相反数,则(x﹣y)2017= .13.某数的平方根是2a+3和a﹣15,则这个数为.14.已知不等式组的解集为﹣1<x<2,则(m+n)2012= .15.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a ﹣b|=2016,且AO=2BO,则a+b的值为.三、解答题(第16、17、18题各6分,第19、20题各10分,第21题12分,共50分)16.计算:17.解不等式组,并将解集在数轴上表示出来.18.先化简,再求值,(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣.19.已知:a+b=2,ab=1.求:(1)a﹣b(2)a2﹣b2+4b.20.若2(x+4)﹣5<3(x+1)+4的最小整数解是方程的解,求代数式m2﹣2m+11的平方根的值.21.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?2016-2017学年安徽省合肥七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.等于()A.﹣3 B.3 C.D.﹣【考点】24:立方根.【分析】运用开立方的方法计算.【解答】解: =﹣3,故选A.2.下列运算正确的是()A.3a+2b=5ab B.a3•a2=a5 C.a8•a2=a4 D.(2a2)3=﹣6a6【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【解答】解:A、不是同类项,不能合并,选项错误;B、正确;C、a8•a2=a10,选项错误;D、(2a2)3=8a6,选项错误.故选B.3.已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.00124【考点】1K:科学记数法—原数.【分析】科学记数法的标准形式为a×10n(1≤|a|<10,n为整数).本题把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到.【解答】解:把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到为0.001 24.故选D.4.计算的平方根为()A.±4 B.±2 C.4 D.±【考点】21:平方根;22:算术平方根.【分析】首先根据算术平方根的定义求出的值,然后根据平方根的定义即可求出结果.【解答】解:∵=4,又∵(±2)2=4,∴4的平方根是±2,即的平方根±2.故选B.5.若2x=3,4y=5,则2x﹣2y的值为()A.B.﹣2 C.D.【考点】48:同底数幂的除法.【分析】利用同底数幂除法的逆运算法则计算即可.【解答】解:∵2x=3,4y=5,∴2x﹣2y=2x÷22y,=2x÷4y,=3÷5,=0.6.故选:A.6.加上下列单项式后,仍不能使4x2+1成为一个整式的完全平方式的是()A.4x4B.4x C.﹣4x D.2x【考点】4E:完全平方式.【分析】根据完全平方公式的结构对各选项进行验证即可得解.【解答】解:A、4x4+4x2+1=(2x2+1)2,故本选项错误;B、4x+4x2+1=(2x+1)2,故本选项错误;C、﹣4x+4x2+1=(2x﹣1)2,故本选项错误;D、2x+4x2+1不能构成完全平方公式结构,故本选项正确.故选D.7.长方形的面积为4a2﹣6ab+2a,若它的一边长为2a,则它的周长为()A.4a﹣3b B.8a﹣6b C.4a﹣3b+1 D.8a﹣6b+2【考点】4H:整式的除法.【分析】首先利用面积除以一边长即可求得令一边长,则周长即可求解.【解答】解:另一边长是:(4a2﹣6ab+2a)÷2a=2a﹣3b+1,则周长是:2[(2a﹣3b+1)+2a]=8a﹣6b+2.故选D.8.若使代数式的值在﹣1和2之间,m可以取的整数有()A.1个B.2个C.3个D.4个【考点】CC:一元一次不等式组的整数解.【分析】由题意可得不等式组,解不等式组,得到不等式组的解集,然后求其整数解.【解答】解:由题意可得,由①得m>﹣,由②得m<,所以不等式组的解集为﹣<x<,则m可以取的整数有0,1共2个.故选:B.9.已知关于x的不等式组整数解有4个,则b的取值范围是()A.7≤b<8 B.7≤b≤8 C.8≤b<9 D.8≤b≤9【考点】CC:一元一次不等式组的整数解.【分析】首先确定不等式组的解集,先利用含b的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于b的不等式,从而求出b的范围.【解答】解:由不等式x﹣b≤0,得:x≤b,由不等式x﹣2≥3,得:x≥5,∵不等式组有4个整数解,∴其整数解为5、6、7、8,则8≤b<9,故选:C.10.7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.a= b B.a=3b C.a= b D.a=4b【考点】4I:整式的混合运算.【分析】表示出左上角与右下角部分的面积,求出之差,根据差与BC无关即可求出a与b的关系式.【解答】解:左上角阴影部分的长为AE,宽为AF=3b,右下角阴影部分的长为PC,宽为a,∵AD=BC,即AE+ED=AE+a,BC=BP+PC=4b+PC,∴AE+a=4b+PC,即AE﹣PC=4b﹣a,∴阴影部分面积之差S=AE•AF﹣PC•CG=3bAE﹣aPC=3b(PC+4b﹣a)﹣aPC=(3b﹣a)PC+12b2﹣3ab,则3b﹣a=0,即a=3b.解法二:既然BC是变化的,当点P与点C重合开始,然后BC向右伸展,设向右伸展长度为X,左上阴影增加的是3bX,右下阴影增加的是aX,因为S不变,∴增加的面积相等,∴3bX=aX,∴a=3b.故选:B.二、填空题(每小题4分,共20分)11.因式分解:4mn﹣mn3= mn(2+n)(2﹣n).【考点】55:提公因式法与公式法的综合运用.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=mn(4﹣n2)=mn(2+n)(2﹣n),故答案为:mn(2+n)(2﹣n)12.若与|x+2y﹣5|互为相反数,则(x﹣y)2017= ﹣1 .【考点】98:解二元一次方程组;16:非负数的性质:绝对值;23:非负数的性质:算术平方根.【分析】利用相反数性质及非负数性质列出方程组,求出方程组的解得到x与y的值,代入原式计算即可得到结果.【解答】解:∵与|x+2y﹣5|互为相反数,∴+|x+2y﹣5|=0,∴,①×2+②得:5x=5,解得:x=1,把x=1代入②得:y=2,则原式=﹣1,故答案为:﹣113.某数的平方根是2a+3和a﹣15,则这个数为121 .【考点】21:平方根;86:解一元一次方程.【分析】根据正数有两个平方根,这两个平方根互为相反数,据此即可得到关于a的方程即可求得a的值,进而求得这个数的值.【解答】解:根据题意得:2a+3+(a﹣15)=0,解得a=4,则这个数是(2a+3)2=121.故答案为:121.14.已知不等式组的解集为﹣1<x<2,则(m+n)2012= 1 .【考点】CB:解一元一次不等式组;98:解二元一次方程组;C6:解一元一次不等式.【分析】求出不等式组的解集,根据已知不等式组的解集得出m+n﹣2=﹣1,m=2,求出m、n 的值,再代入求出即可.【解答】解:,解不等式①得:x>m+n﹣2,解不等式②得:x<m,∴不等式组的解集为:m+n﹣2<x<m,∵不等式组的解集为﹣1<x<2,∴m+n﹣2=﹣1,m=2,解得:m=2,n=﹣1,∴(m+n)2012=(2﹣1)2012=1.故答案为:1.15.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a﹣b|=2016,且AO=2BO,则a+b的值为﹣672 .【考点】33:代数式求值;13:数轴.【分析】依据绝对自的定义可知b﹣a=2016,﹣a=2b,从而可求得a、b的值,故此可求得a+b 的值.【解答】解:∵点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧,∴a<0,b>0.又∵|a﹣b|=2016,∴b﹣a=2016.∵AO=2BO,∴﹣a=2b.∴3b=2016.解得:b=672.∴a=﹣1344.∴a+b=﹣1344+672=﹣672.故答案为:﹣672.三、解答题(第16、17、18题各6分,第19、20题各10分,第21题12分,共50分)16.计算:【考点】73:二次根式的性质与化简;15:绝对值;6E:零指数幂;6F:负整数指数幂.【分析】理解绝对值的意义:负数的绝对值是它的相反数;表示的算术平方根即;一个数的负指数次幂等于这个数的正指数次幂的倒数;任何不等于0的数的0次幂都等于1.【解答】解:原式=2﹣+﹣1=1.17.解不等式组,并将解集在数轴上表示出来.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】分别解出两不等式的解集再求其公共解.【解答】解:解不等式①得x<﹣解不等式②得x≥﹣1∴不等式组的解集为﹣1≤x<﹣.其解集在数轴上表示为:如图所示.18.先化简,再求值,(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣.【考点】4J:整式的混合运算—化简求值.【分析】首先根据整式相乘的法则和平方差公式、完全平方公式去掉括号,然后合并同类项,最后代入数据计算即可求解.【解答】解:原式=9x2﹣4﹣(5x2﹣5x)﹣(4x2﹣4x+1)=9x2﹣4﹣5x2+5x﹣4x2+4x﹣1=9x﹣5,当时,原式==﹣3﹣5=﹣8.19.已知:a+b=2,ab=1.求:(1)a﹣b(2)a2﹣b2+4b.【考点】4C:完全平方公式.【分析】根据完全平方公式进行变形,再整体代入求出即可.【解答】解:(1)∵a+b=2,ab=1,∴(a﹣b)2=(a+b)2﹣4ab=4﹣4=0,则a﹣b=0,(2)∵a+b=2,ab=1,a﹣b=0∴a2﹣b2+4b=420.若2(x+4)﹣5<3(x+1)+4的最小整数解是方程的解,求代数式m2﹣2m+11的平方根的值.【考点】C7:一元一次不等式的整数解;21:平方根;85:一元一次方程的解.【分析】首先计算出不等式的解集,从而确定出最小整数解,进而得到x的值,再把x的值代入方程算出m的值,然后再次把m的值代入代数式m2﹣2m+11计算出结果,再算出平方根即可.【解答】解:解不等式得:x>﹣4则x的最小整数解为﹣3,当x=﹣3时,×(﹣3)+3m=5,解得:m=2,把m=2代入m2﹣2m+11得:22﹣2×2+11=11,11平方根为±.故代数式m2﹣2m+11的平方根的值为±.21.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?【考点】CE:一元一次不等式组的应用.【分析】(1)设租用甲车x辆,则乙车(10﹣x)辆.不等关系:①两种车共坐人数不小于340人;②两种车共载行李不小于170件.(2)因为车的总数是一定的,所以费用少的车越多越省.【解答】解:(1)设租用甲车x辆,则乙车(10﹣x)辆.根据题意,得,解,得4≤x≤7.5.又x是整数,∴x=4或5或6或7.共有四种方案:①甲4辆,乙6辆;②甲5辆,乙5辆;③甲6辆,乙4辆;④甲7辆,乙3辆.(2)①甲4辆,乙6辆;总费用为4×2000+6×1800=18800元;②甲5辆,乙5辆;总费用5×2000+5×1800=19000元;③甲6辆,乙4辆;总费用为6×2000+4×1800=19200元;④甲7辆,乙3辆.总费用为7×2000+3×1800=19400元;因为乙车的租金少,所以乙车越多,总费用越少.故选方案①.2017年5月24日。

安徽省合肥市七年级下期中调研数学试题附答案-精选

安徽省合肥市七年级下期中调研数学试题附答案-精选

安徽省合肥市2017-2018学年度下第2学期期中调研试卷七年级数学试题完成时间:120分钟满分:150分A. B. C. D.2.4的平方根是()A.2 B.±2 C.2D.±23.在下列所给出的坐标中,在第二象限的是()A.(2,3)B.(2,-3)C.(-2,-3)D.(-2,3)4.在实数5,227,38-,0,-1.414,2π,36,0.1010010001中,无理数有()A.2个B.3个C.4个D.5个5.如图,点E在AC的延长线上,下列条件中不能判断AC∥BD的是()A. ∠1=∠2B. ∠3=∠4C. ∠D=∠DCED. ∠D+∠ACD=180°6.下列命题是假命题的是()A. 对顶角相等B. 两直线平行,同旁内角相等C. 平行于同一条直线的两直线平行D. 同位角相等,两直线平行7.如图,表示7的点在数轴上表示时,应在哪两个字母之间()A. C与DB. A与BC. A与CD. B与C8.点P位于x轴下方,y轴左侧,距离x轴4个单位长度,距离y轴2个单位长度,那么点P的坐标是()A.(4,2)B.(-2,-4)C.(-4,-2)D.(2,4)9.在平面直角坐标系中,线段CF是由线段AB平移得到的;点A(-1,4)的对应点为C(4,1);则点B(a,b)的对应点F的坐标为()A.(a+3,b+5)B.(a+5,b+3)C.(a-5,b+3)D.(a+5,b-3)10.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上.若∠1=35°,则∠2的度数为()A. 10°B. 15°C. 25°D. 35°二、填空题(每题5分,共20分)7−x为整数的x的值是(只需填一个).12.如图所示,直线AB、CD、EF交于点O,OG平分∠BOF,且CD⊥EF,∠AOE=70°,则∠DOG= .第12题图第14题图13.把9的平方根和立方根按从小到大的顺序排列为.14.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向依次不断地移动,每次移动一个单位,得到点A1(0,1)、A2(1,1)、A3(1,0)、A(2,0),…,那么点A4n+1(n是自然数)的坐标为.三、解答题(共90分)15.(8分)计算:(1)100+38-(2)|3-2|-2)2(-16.(8分)求下列各式中x的值:(1)2x2=4;(2)64x3 + 27=017.(8分)如图,直线a∥b,点B在直线b上,AB⊥BC,∠1=55°,求∠2的度数. 18.(8分)完成下面的证明如图,点E在直线DF上,点B在直线AC上,若∠AGB=∠EHF,∠C=∠D.求证:∠A=∠F.证明:∵∠AGB=∠EHF∠AGB= (对顶角相等)∴∠EHF=∠DGF∴DB∥EC()∴∠=∠DBA()又∵∠C=∠D∴∠DBA=∠D∴DF∥()∴∠A=∠F().19.(10分)已知5a+2的立方根是3,3a+b-1的算术平方根是4,c是13的整数部分.(1)求a,b,c的值;(2)求3a-b+c的平方根.20.(10分)如图,直线AB是某天然气公司的主输气管道,点C、D是在AB异侧的两个小区,现在主输气管道上寻找支管道连接点,向两个小区铺设管道。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年安徽省合肥七年级(下)期中数学试卷一、选择题(每小题3分,共30分)1.等于()A.﹣3 B.3 C.D.﹣2.下列运算正确的是()A.3a+2b=5ab B.a3•a2=a5 C.a8•a2=a4 D.(2a2)3=﹣6a63.已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.001244.计算的平方根为()A.±4 B.±2 C.4 D.±5.若2x=3,4y=5,则2x﹣2y的值为()A.B.﹣2 C.D.6.加上下列单项式后,仍不能使4x2+1成为一个整式的完全平方式的是()A.4x4 B.4x C.﹣4x D.2x7.长方形的面积为4a2﹣6ab+2a,若它的一边长为2a,则它的周长为()A.4a﹣3b B.8a﹣6b C.4a﹣3b+1 D.8a﹣6b+28.若使代数式的值在﹣1和2之间,m可以取的整数有()A.1个B.2个C.3个D.4个9.已知关于x的不等式组整数解有4个,则b的取值范围是()A.7≤b<8 B.7≤b≤8 C.8≤b<9 D.8≤b≤910.7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.a= b B.a=3b C.a= b D.a=4b二、填空题(每小题4分,共20分)11.因式分解:4mn﹣mn3= .12.若与|x+2y﹣5|互为相反数,则(x﹣y)2017= .13.某数的平方根是2a+3和a﹣15,则这个数为.14.已知不等式组的解集为﹣1<x<2,则(m+n)2012= .15.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a﹣b|=2016,且AO=2BO,则a+b的值为.三、解答题(第16、17、18题各6分,第19、20题各10分,第21题12分,共50分)16.计算:17.解不等式组,并将解集在数轴上表示出来.18.先化简,再求值,(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣.19.已知:a+b=2,ab=1.求:(1)a﹣b(2)a2﹣b2+4b.20.若2(x+4)﹣5<3(x+1)+4的最小整数解是方程的解,求代数式m2﹣2m+11的平方根的值.21.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?2016-2017学年安徽省合肥七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.等于()A.﹣3 B.3 C.D.﹣【考点】24:立方根.【分析】运用开立方的方法计算.【解答】解: =﹣3,故选A.2.下列运算正确的是()A.3a+2b=5ab B.a3•a2=a5 C.a8•a2=a4 D.(2a2)3=﹣6a6【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【解答】解:A、不是同类项,不能合并,选项错误;B、正确;C、a8•a2=a10,选项错误;D、(2a2)3=8a6,选项错误.故选B.3.已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.00124【考点】1K:科学记数法—原数.【分析】科学记数法的标准形式为a×10n(1≤|a|<10,n为整数).本题把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到.【解答】解:把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到为0.001 24.故选D.4.计算的平方根为()A.±4 B.±2 C.4 D.±【考点】21:平方根;22:算术平方根.【分析】首先根据算术平方根的定义求出的值,然后根据平方根的定义即可求出结果.【解答】解:∵=4,又∵(±2)2=4,∴4的平方根是±2,即的平方根±2.故选B.5.若2x=3,4y=5,则2x﹣2y的值为()A.B.﹣2 C.D.【考点】48:同底数幂的除法.【分析】利用同底数幂除法的逆运算法则计算即可.【解答】解:∵2x=3,4y=5,∴2x﹣2y=2x÷22y,=2x÷4y,=3÷5,=0.6.故选:A.6.加上下列单项式后,仍不能使4x2+1成为一个整式的完全平方式的是()A.4x4 B.4x C.﹣4x D.2x【考点】4E:完全平方式.【分析】根据完全平方公式的结构对各选项进行验证即可得解.【解答】解:A、4x4+4x2+1=(2x2+1)2,故本选项错误;B、4x+4x2+1=(2x+1)2,故本选项错误;C、﹣4x+4x2+1=(2x﹣1)2,故本选项错误;D、2x+4x2+1不能构成完全平方公式结构,故本选项正确.故选D.7.长方形的面积为4a2﹣6ab+2a,若它的一边长为2a,则它的周长为()A.4a﹣3b B.8a﹣6b C.4a﹣3b+1 D.8a﹣6b+2【考点】4H:整式的除法.【分析】首先利用面积除以一边长即可求得令一边长,则周长即可求解.【解答】解:另一边长是:(4a2﹣6ab+2a)÷2a=2a﹣3b+1,则周长是:2[(2a﹣3b+1)+2a]=8a﹣6b+2.故选D.8.若使代数式的值在﹣1和2之间,m可以取的整数有()A.1个B.2个C.3个D.4个【考点】CC:一元一次不等式组的整数解.【分析】由题意可得不等式组,解不等式组,得到不等式组的解集,然后求其整数解.【解答】解:由题意可得,由①得m>﹣,由②得m<,所以不等式组的解集为﹣<x<,则m可以取的整数有0,1共2个.故选:B.9.已知关于x的不等式组整数解有4个,则b的取值范围是()A.7≤b<8 B.7≤b≤8 C.8≤b<9 D.8≤b≤9【考点】CC:一元一次不等式组的整数解.【分析】首先确定不等式组的解集,先利用含b的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于b的不等式,从而求出b的范围.【解答】解:由不等式x﹣b≤0,得:x≤b,由不等式x﹣2≥3,得:x≥5,∵不等式组有4个整数解,∴其整数解为5、6、7、8,则8≤b<9,故选:C.10.7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.a= b B.a=3b C.a= b D.a=4b【考点】4I:整式的混合运算.【分析】表示出左上角与右下角部分的面积,求出之差,根据差与BC无关即可求出a与b的关系式.【解答】解:左上角阴影部分的长为AE,宽为AF=3b,右下角阴影部分的长为PC,宽为a,∵AD=BC,即AE+ED=AE+a,BC=BP+PC=4b+PC,∴AE+a=4b+PC,即AE﹣PC=4b﹣a,∴阴影部分面积之差S=AE•AF﹣PC•CG=3bAE﹣aPC=3b(PC+4b﹣a)﹣aPC=(3b﹣a)PC+12b2﹣3ab,则3b﹣a=0,即a=3b.解法二:既然BC是变化的,当点P与点C重合开始,然后BC向右伸展,设向右伸展长度为X,左上阴影增加的是3bX,右下阴影增加的是aX,因为S 不变,∴增加的面积相等,∴3bX=aX,∴a=3b.故选:B.二、填空题(每小题4分,共20分)11.因式分解:4mn﹣mn3= mn(2+n)(2﹣n).【考点】55:提公因式法与公式法的综合运用.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=mn(4﹣n2)=mn(2+n)(2﹣n),故答案为:mn(2+n)(2﹣n)12.若与|x+2y﹣5|互为相反数,则(x﹣y)2017= ﹣1 .【考点】98:解二元一次方程组;16:非负数的性质:绝对值;23:非负数的性质:算术平方根.【分析】利用相反数性质及非负数性质列出方程组,求出方程组的解得到x与y的值,代入原式计算即可得到结果.【解答】解:∵与|x+2y﹣5|互为相反数,∴+|x+2y﹣5|=0,∴,①×2+②得:5x=5,解得:x=1,把x=1代入②得:y=2,则原式=﹣1,故答案为:﹣113.某数的平方根是2a+3和a﹣15,则这个数为121 .【考点】21:平方根;86:解一元一次方程.【分析】根据正数有两个平方根,这两个平方根互为相反数,据此即可得到关于a的方程即可求得a的值,进而求得这个数的值.【解答】解:根据题意得:2a+3+(a﹣15)=0,解得a=4,则这个数是(2a+3)2=121.故答案为:121.14.已知不等式组的解集为﹣1<x<2,则(m+n)2012= 1 .【考点】CB:解一元一次不等式组;98:解二元一次方程组;C6:解一元一次不等式.【分析】求出不等式组的解集,根据已知不等式组的解集得出m+n﹣2=﹣1,m=2,求出m、n的值,再代入求出即可.【解答】解:,解不等式①得:x>m+n﹣2,解不等式②得:x<m,∴不等式组的解集为:m+n﹣2<x<m,∵不等式组的解集为﹣1<x<2,∴m+n﹣2=﹣1,m=2,解得:m=2,n=﹣1,∴(m+n)2012=(2﹣1)2012=1.故答案为:1.15.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a﹣b|=2016,且AO=2BO,则a+b的值为﹣672 .【考点】33:代数式求值;13:数轴.【分析】依据绝对自的定义可知b﹣a=2016,﹣a=2b,从而可求得a、b的值,故此可求得a+b的值.【解答】解:∵点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧,∴a<0,b>0.又∵|a﹣b|=2016,∴b﹣a=2016.∵AO=2BO,∴﹣a=2b.∴3b=2016.解得:b=672.∴a=﹣1344.∴a+b=﹣1344+672=﹣672.故答案为:﹣672.三、解答题(第16、17、18题各6分,第19、20题各10分,第21题12分,共50分)16.计算:【考点】73:二次根式的性质与化简;15:绝对值;6E:零指数幂;6F:负整数指数幂.【分析】理解绝对值的意义:负数的绝对值是它的相反数;表示的算术平方根即;一个数的负指数次幂等于这个数的正指数次幂的倒数;任何不等于0的数的0次幂都等于1.【解答】解:原式=2﹣+﹣1=1.17.解不等式组,并将解集在数轴上表示出来.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】分别解出两不等式的解集再求其公共解.【解答】解:解不等式①得x<﹣解不等式②得x≥﹣1∴不等式组的解集为﹣1≤x<﹣.其解集在数轴上表示为:如图所示.18.先化简,再求值,(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣.【考点】4J:整式的混合运算—化简求值.【分析】首先根据整式相乘的法则和平方差公式、完全平方公式去掉括号,然后合并同类项,最后代入数据计算即可求解.【解答】解:原式=9x2﹣4﹣(5x2﹣5x)﹣(4x2﹣4x+1)=9x2﹣4﹣5x2+5x﹣4x2+4x﹣1=9x﹣5,当时,原式==﹣3﹣5=﹣8.19.已知:a+b=2,ab=1.求:(1)a﹣b(2)a2﹣b2+4b.【考点】4C:完全平方公式.【分析】根据完全平方公式进行变形,再整体代入求出即可.【解答】解:(1)∵a+b=2,ab=1,∴(a﹣b)2=(a+b)2﹣4ab=4﹣4=0,则a﹣b=0,(2)∵a+b=2,ab=1,a﹣b=0∴a2﹣b2+4b=420.若2(x+4)﹣5<3(x+1)+4的最小整数解是方程的解,求代数式m2﹣2m+11的平方根的值.【考点】C7:一元一次不等式的整数解;21:平方根;85:一元一次方程的解.【分析】首先计算出不等式的解集,从而确定出最小整数解,进而得到x的值,再把x的值代入方程算出m的值,然后再次把m的值代入代数式m2﹣2m+11计算出结果,再算出平方根即可.【解答】解:解不等式得:x>﹣4则x的最小整数解为﹣3,当x=﹣3时,×(﹣3)+3m=5,解得:m=2,把m=2代入m2﹣2m+11得:22﹣2×2+11=11,11平方根为±.故代数式m2﹣2m+11的平方根的值为±.21.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?【考点】CE:一元一次不等式组的应用.【分析】(1)设租用甲车x辆,则乙车(10﹣x)辆.不等关系:①两种车共坐人数不小于340人;②两种车共载行李不小于170件.(2)因为车的总数是一定的,所以费用少的车越多越省.【解答】解:(1)设租用甲车x辆,则乙车(10﹣x)辆.根据题意,得,解,得4≤x≤7.5.又x是整数,∴x=4或5或6或7.共有四种方案:①甲4辆,乙6辆;②甲5辆,乙5辆;③甲6辆,乙4辆;④甲7辆,乙3辆.(2)①甲4辆,乙6辆;总费用为4×2000+6×1800=18800元;②甲5辆,乙5辆;总费用5×2000+5×1800=19000元;③甲6辆,乙4辆;总费用为6×2000+4×1800=19200元;④甲7辆,乙3辆.总费用为7×2000+3×1800=19400元;因为乙车的租金少,所以乙车越多,总费用越少.故选方案①.2017年5月24日。

相关文档
最新文档