应力与结合力的关系
材料力学中的应力与应变关系

材料力学中的应力与应变关系材料力学是研究材料在受力作用下的力学行为和性能的学科,应力与应变关系是其中的核心内容之一。
本文将讨论材料力学中的应力与应变的概念及其数学表示,以及应力与应变之间的线性关系与非线性关系。
一、应力的概念及表示应力是指材料单位面积上的内部力,常用符号σ表示。
根据受力情况的不同,可以分为正应力、切应力和体积应力。
正应力是指与作用力方向垂直的内部力,常用符号σ表示;切应力是指与作用力方向平行的内部力,常用符号τ表示;体积应力是指作用在体积内的内部力,常用符号p表示。
正应力的数学表示为σ = F/A,其中F为作用力的大小,A为受力面积。
切应力的数学表示为τ = F/A,其中F为切力的大小,A为受力面积。
体积应力的数学表示为p = F/V,其中F为体积力的大小,V为受力体积。
二、应变的概念及表示应变是指材料在受力作用下产生的形变程度,常用符号ε表示。
根据变形方式的不同,可以分为线性应变和体积应变。
线性应变是指在受力作用下,材料产生的长度或角度发生变化,常用符号ε表示;体积应变是指在受力作用下,材料产生的体积发生变化,常用符号η表示。
线性应变的数学表示为ε = ΔL/L0,其中ΔL为长度变化量,L0为原始长度。
体积应变的数学表示为η = ΔV/V0,其中ΔV为体积变化量,V0为原始体积。
三、应力与应变的线性关系在一定范围内,应力与应变之间可以表现为线性关系。
根据胡克定律(Hooke's Law),线性弹性材料的应力与应变之间满足σ = Eε,其中E为弹性模量。
弹性模量是材料刚度的度量,表示材料单位应力产生的单位应变。
常见的弹性模量有杨氏模量、剪切模量和泊松比。
杨氏模量的数学表示为E = σ/ε,其中σ为应力,ε为线性应变。
剪切模量的数学表示为G = τ/γ,其中τ为切应力,γ为切应变。
泊松比的数学表示为ν = -εv/εh,其中εv为垂直方向的线性应变,εh为水平方向的线性应变。
材料力学公式总结

材料力学公式总结材料力学是研究材料在外力作用下的力学性能和变形规律的学科,它是材料科学的基础和核心。
在材料力学中,有许多重要的公式,它们可以帮助我们理解材料的性能和行为。
本文将对材料力学中的一些重要公式进行总结,希望能对大家的学习和工作有所帮助。
1. 应力和应变的关系公式。
在材料力学中,应力和应变是两个非常重要的概念。
应力是单位面积上的力,通常用σ表示,而应变是材料单位长度的变形量,通常用ε表示。
它们之间的关系可以用胡克定律来描述,即σ = Eε,其中E为杨氏模量,是描述材料抵抗变形能力的一个重要参数。
2. 弹性模量的计算公式。
弹性模量是描述材料在受力后能够恢复原状的能力的一个重要参数。
对于各向同性材料,弹性模量E可以用杨氏模量和泊松比来表示,即E = 2G(1+μ),其中G 为剪切模量,μ为泊松比。
3. 应力-应变曲线的公式。
材料在受力时,应力和应变之间的关系通常通过应力-应变曲线来描述。
对于线弹性材料来说,应力-应变曲线是一条直线,其斜率就是杨氏模量E。
而对于非线性材料来说,应力-应变曲线通常是一条曲线,可以用一些复杂的数学公式来描述。
4. 塑性变形的公式。
当材料受到超过其屈服强度的应力时,就会发生塑性变形。
塑性变形的特点是应力和应变不再呈线性关系,而是出现了一定的变形硬化。
塑性变形的公式通常比较复杂,需要根据具体的材料和加载条件来确定。
5. 断裂力学的公式。
材料在受到过大的应力时会发生断裂,断裂力学是研究材料断裂行为的学科。
在断裂力学中,有许多重要的公式,如格里菲斯断裂准则、弗兰克-雷迪公式等,它们可以帮助我们预测材料的断裂行为。
总结。
材料力学中的公式是我们理解材料性能和行为的重要工具,通过对这些公式的学习和掌握,我们可以更好地应用材料力学知识,解决工程实际问题。
希望本文对大家有所帮助,也希望大家能够深入学习材料力学,为材料科学的发展做出贡献。
工程材料力学名词解释

应变(strain):为一微小材料(元素)承受应力时所产生的单位长度变形量(力学定义,无量纲)弹性变形(elastic deformation): 材料在外力作用下产生变形,当外力去除后恢复其原来形状,这种随外力消失而消失的变形。
重要特征:可逆性、胡克定律(是力学基本定律之一。
适用于一切固体材料的弹性定律,它指出:在弹性限度内,物体的形变跟引起形变的外力成正比)4)塑性变形(plastic deformation):材料在外力作用下产生的永久不可恢复的变形。
(5)断裂(fracture,rupture 破裂、crack裂纹):物体在外力作用下产生裂纹以至断开的现象。
脆性断裂(未发生较明显的塑性变形)、韧性断裂(发生较明显的塑性变形),宏观特征(1)弹性(elasticity):是指物体(材料)本身的一种特性,发生形变后可以恢复原来的状态的一种性质。
(2)弹性变形(elastic deformation):材料在外力作用下产生变形,当外力去除后恢复其原来形状,这种随外力消失而消失的变形。
(3)弹性模量(elastic modulus,modulus of elasticity):是表征材料弹性的物理参数,是指材料在弹性变形范围内,应力和对应的应变的比值E=σ/ε,也是材料内部原子之间结合力强弱的直接量度。
(4)刚度(stiffness):指物体(固体)在外力作用下抵抗变形的能力,可用使产生单位形变所需的外力值来量度。
刚度越高,物体表现越硬。
(5)弹性比功(elastic specific work):表示材料吸收弹性变形功的能力,弹性比能、应变比能,决定于弹性模量和弹性极限(即材料由弹性变形过渡到弹-塑性变形时的应力)。
(6)滞弹性(anelasticity):在弹性范围内加快加载或卸载后,随时间延长产生附加弹性应变的现象。
7)循环弹性(cyclic elasticity):在交变载荷(振动)下材料吸收不可逆变形功的能力。
工程力学中的应力和应变分析

工程力学中的应力和应变分析工程力学是应用力学原理解决工程问题的学科,它研究物体受外力作用下的力学性质。
应力和应变是工程力学中的重要概念,它们对于分析材料的强度和变形特性具有重要意义。
本文将就工程力学中的应力和应变进行详细分析。
一、应力分析应力是指物体单位面积上的内部分子间相互作用力。
根据作用平面的不同,可以分为法向应力和剪切应力两种。
1. 法向应力法向应力是指力作用垂直于物体某一截面上的应力。
根据物体受力状态的不同,可以分为拉应力和压应力两种。
- 拉应力拉应力是指作用于物体截面上的拉力与截面面积的比值。
拉应力的计算公式为:σ = F/A其中,σ表示拉应力,F表示作用力,A表示截面面积。
- 压应力压应力是指作用于物体截面上的压力与截面面积的比值。
压应力的计算公式与拉应力类似。
2. 剪切应力剪切应力是指作用在物体截面上切向方向上的力与截面面积的比值。
剪切应力的计算公式为:τ = F/A其中,τ表示剪切应力,F表示作用力,A表示截面面积。
二、应变分析应变是指物体由于外力的作用而产生的形变程度。
根据变形情况,可以分为线性弹性应变和非线性应变。
1. 线性弹性应变线性弹性应变是指物体在小应力下,应变与应力成正比,且随应力消失而恢复原状的应变现象。
线性弹性应变的计算公式为:ε = ΔL/L其中,ε表示线性弹性应变,ΔL表示物体的长度变化,L表示物体的原始长度。
2. 非线性应变非线性应变是指物体在较大应力下,应变与应力不再呈线性关系的应变现象。
非线性应变的计算公式较为复杂,需要根据具体情况进行分析。
三、应力和应变的关系应力和应变之间存在一定的关系,常用的关系模型有胡克定律和杨氏模量。
1. 胡克定律胡克定律是描述线性弹性材料的应力和应变之间关系的基本模型。
根据胡克定律,拉应力和拉应变之间的关系可以表示为:σ = Eε其中,σ表示拉应力,E表示弹性模量,ε表示拉应变。
2. 杨氏模量杨氏模量是描述材料抵抗拉伸或压缩变形能力的物理量。
构造地质学(3)地质构造分析的力学基础

• 屈服点
• 屈服极限
• 岩石在断裂前塑性变形应变达5—8%为中等韧性,超 过10%的材料性质为韧性,而脆性材料在弹性变形阶 段后,和断裂变形阶段前就没有或只有极小的塑性变 形(3—5%)
塑性变形的显微机制
• 由于岩石类型、围压条件、温度、应变速率和施加应力类型的不同,出现脆性到韧性的一系列变化现象, 在压缩和拉伸条件下,其变化有五种情况。
2. 剪应变: (1)定义:
角应变:变形前相互垂直的两条直线, 变形后其夹角偏离直角的量(ψ)
剪应变:角应变的正切( γ ) (2)应变量计算:γ= tgψ
(右偏为正;左偏为负)
应变轴的规定及与主应力轴之关系
• 通过变形物体内部任意点总可以截取这样一个 立方体,在其三个互相垂直的面上都只有线应 变而无剪应变,即只有伸长和缩短,这三个互 相垂直的面称为主应变面,三个主应变方向称 为主应变轴。并规定:最大伸长方向为最大应 变轴(A轴),最大缩短方向为最小应变轴(C 轴),介于两者之间为中间应变轴(B轴),B 轴方向既可是拉伸,也可以是缩短
3.2 变形分析
•3.2.1 变形和应变
• 物体受到力的作用后,其内部各点间相互位置 发生改变,称为变形。变形可以是体积的改变, 也可以是形状的改变,或二者均有改变。
• 物体变形的程度用应变来量度,即以其相对变 形来量度,应变所涉及的物体形态的变化,总 是与物体的两个状况有关—初态和始态,所以 下面所指的应变,只涉及到系统的两个特定的 状态。
A.平移;B.旋转;C.形变;D.体变
物体变形的泥巴实验
Brittle Deformation Ductile Deformation
M.S. Patterson
Fig. 10.7
石块与混凝土结合的原理

石块与混凝土结合的原理
石块与混凝土结合的原理是通过混凝土的材料特性和施工工艺,使混凝土与石块之间形成结合力,从而提高结构的强度与稳定性。
具体原理如下:
1. 物理锚固:混凝土在凝固硬化的过程中,会产生收缩应力,这种应力会使混凝土与石块之间互相挤压,形成物理上的锚固效应,从而增加结合力。
2. 化学结合:混凝土中的水与水泥反应生成水化产物,其中包括水化硅酸钙等胶状物质,这些物质在硬化过程中会渗透到石块的表面,与石块表面的颗粒产生力学键合,因此形成了化学上的结合。
3. 粘结力:混凝土中的水化产物填充了石块表面的微缝隙,形成了颗粒与颗粒之间的粘结力。
同时,水化产物中的物质也渗透到石块内部,与石块内部的晶体结构发生反应,增加了粘结力。
4. 抗剪力:当外部施加剪切力时,混凝土及石块之间产生摩擦力,从而抵抗剪切力的作用。
总之,石块与混凝土结合的原理主要通过物理锚固、化学结合、粘结力和抗剪力等相互作用,使其形成结合力,达到增强结构的效果。
黏结应力的组成

黏结应力的组成
黏结应力是指材料或物体在外力作用下,由于表面的吸附和亲和力而产生的抵抗相对运动的力。
黏结应力的组成主要包括以下几个方面:
1. 张力:张力是由于表面张力的存在而产生的阻碍相对滑动的力。
表面张力是由于液体分子之间的相互作用力导致的,它使得液体分子倾向于聚集在一起,形成一个具有相对固定形状的界面。
这种张力使得液体与固体表面之间有一个有效的吸附区域,并能够提供一定的黏结应力。
2. 亲和力:亲和力是物体表面上两种不同材料之间形成的一种力,它使得两种材料之间有一定的结合力。
亲和力的大小取决于材料之间的化学性质和表面形态。
亲和力的存在使得物体能够有一定的黏附性,从而产生黏结应力。
3. 表面粗糙度:表面粗糙度是指材料表面的不平整程度。
当两个表面接触时,表面粗糙度会增加接触面积,从而增加黏结应力。
这是因为更多的接触面积可以提供更多的吸附区域,使得黏结力增大。
4. 渗透力:渗透力是指液体或气体在固体表面上透入微孔、缝隙或表面毛细的能力。
当液体或气体透入微孔或表面毛细时,会产生一定的渗透力,使得物体间的结合更加牢固。
这些因素共同作用,形成了黏结应力,使得物体能够有一定的黏附性和抗拉性。
无机材料物理性能题库(1)

名词解释1、包申格效应——金属材料经预先加载产生少量塑性变形(残余应变小于4%),而后再同向加载,规定残余伸长应为增加,反向加载,规定残余伸长应力降低的现象。
2、塑性——材料的微观结构的相邻部分产生永久性位移,并不引起材料破裂的现象。
3、硬度——材料表面上不大体积内抵抗变形或破裂的能力,是材料的一种重要力学性能。
4、应变硬化——材料在应力作用下进入塑性变形阶段后,随着变形量的增大,形变应力不断提高的现象。
5、弛豫——施加恒定应变,则应力将随时间而减小,弹性模量也随时间而降低。
6、蠕变——当对粘弹性体施加恒定应力,其应变随时间而增加,弹性模量也随时间而减小。
6、滞弹性——当应力作用于实际固体时,固体形变的产生与消除需要一定的时间,这种与时间有关的弹性称为滞弹性。
7、压电性——某些晶体材料按所施加的机械应力成比例地产生电荷的能力。
8、电解效应——离子的迁移伴随着一定的质量变化,离子在电极附近发生电子得失,产生新的物质。
9、逆压电效应——某些晶体在一定方向的电场作用下,则会产生外形尺寸的变化,在一定范围内,其形变与电场强度成正比。
10、压敏效应——指对电压变化敏感的非线性电阻效应,即在某一临界电压以下,电阻值非常高,几乎无电流通过;超过该临界电压(敏压电压),电阻迅速降低,让电流通过。
11、热释电效应——晶体因温度均匀变化而发生极化强度改变的现象。
12、光电导——光的照射使材料的电阻率下降的现象。
13、磁阻效应——半导体中,在与电流垂直的方向施加磁场后,使电流密度降低,即由于磁场的存在使半导体的电阻增大的现象。
14、光伏效应——指光照使不均匀半导体或半导体与金属组合的不同部位之间产生电位差的现象。
15、电介质——在外电场作用下,能产生极化的物质。
16、极化——介质在电场作用下产生感应电荷的现象。
16、自发极化——极化并非由外电场所引起,而是由极性晶体内部结构特点所引起,使晶体中的每个晶胞内存在固有电偶极矩,这种极化机制为自发极化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应力与结合力的关系
当镀层张应力过大,镀层收缩力大于结合力时,镀层易脱皮。
当压应力过大,镀层膨胀力大于结合力时,镀层易起泡。
电镀层产生内应力的影响因素及其它原因:
1:电镀前处理或电镀时产生(渗氢产生的内应力)
2:在电沉积金属形成结晶时(镀层结晶形态产生的内应力)
3:电镀添加剂会给镀层带来内应力,甚至是相反性质的内应力
(电镀添加剂对应力的影响)
4:基体应力的影响。
5:基体渗氢的影响。
6:应力与结合力的关系。
7:应力与抗蚀力及脆性的关系。
8:电镀层的脆性是指材料在受到外力作用下并无明显变型而突然断裂的现象。
所受外力可以是机械力,也可以是热胀冷缩的热力等, 当镀层脆性大时,镀层易开裂,但不一定脱皮, (脆性的概念)
Simon 2017.07.12。