偏心同轴电缆特性阻抗的分析和计算
特征阻抗公式

特征阻抗公式特征阻抗公式特征阻抗是电磁波在传播过程中的重要参量,它描述了电磁波在不同介质中传播时的阻抗匹配情况。
在电磁学和电路理论中,特征阻抗公式是一组用于计算特征阻抗的数学公式。
以下是一些常见的特征阻抗公式及其解释。
1. 自由空间中的特征阻抗公式自由空间是指真空中没有任何介质的区域。
在自由空间中,特征阻抗公式如下:Z0 = sqrt(μ0 / ε0)其中,Z0表示自由空间的特征阻抗,μ0表示真空的磁导率,ε0表示真空的介电常数。
这个公式的解释是,自由空间中电磁波的特征阻抗等于真空中的磁场特征阻抗和电场特征阻抗的乘积的平方根。
例如,假设真空的磁导率为μ0 = 4π×10^(-7) H/m,介电常数为ε0 = ×10^(-12) F/m,代入特征阻抗公式计算得到:Z0 = sqrt(4π×10^(-7) / ×10^(-12)) ≈ Ω因此,在自由空间中,电磁波的特征阻抗约等于Ω。
2. 平面导体波导中的特征阻抗公式平面导体波导是一种常见的电磁波传输介质,它由两个平行的导体板组成。
在平面导体波导中,特征阻抗公式如下:Z0 = sqrt(μ / ε)其中,Z0表示平面导体波导的特征阻抗,μ表示波导内介质的磁导率,ε表示波导内介质的介电常数。
这个公式的解释是,平面导体波导中电磁波的特征阻抗等于波导内介质的磁场特征阻抗和电场特征阻抗的乘积的平方根。
举例来说,假设平面导体波导的磁导率为μ = 4π×10^(-7)H/m,介电常数为ε = ×10^(-10) F/m,代入特征阻抗公式计算得到:Z0 = sqrt(4π×10^(-7) / ×10^(-10)) ≈ Ω因此,在平面导体波导中,电磁波的特征阻抗约等于Ω。
3. 同轴电缆中的特征阻抗公式同轴电缆是一种常见的电磁波传输介质,它由一个内导体环绕着一个外导体组成。
在同轴电缆中,特征阻抗公式如下:Z0 = sqrt(μ / ε) ln(b/a)其中,Z0表示同轴电缆的特征阻抗,μ表示同轴电缆内介质的磁导率,ε表示同轴电缆内介质的介电常数,b表示内导体的半径,a表示外导体的半径。
同轴电缆的特性阻抗计算

同轴电缆的特性阻抗计算同轴电缆特性阻抗拉普拉斯方程矩形网格同轴电缆的横截面可以看做是两个同心圆。
外圆半径为2,内圆半径为1。
外圆上的电势为1,内圆上的电势为0。
我们依据这些条件,通过编写matlab程序来计算出同轴缆线的特性阻抗。
首先介绍一下计算中所用到的物理学公式。
特性阻抗的公式为如下所示,C 为电容,C0为光速。
由这两个公式,我们可将求解阻抗的问题转化为求解电量的问题。
此时我们可以使用高斯公式。
为了处理截面上的问题,我们将面积分化为线积分。
本次计算过程中编程采用的方法是逐次超松弛迭代法。
先将同轴电缆的截面按矩形网格进行划分。
由于同轴电缆截面具有对称性,为了缩短程序运行时间,我们可以先计算四分之一截面内的电位分布。
电位的迭代公式如下。
由于这个程序采用矩形网格来处理圆的问题,所以处理精度和处理速度都没有采用极坐标处理理想。
如果希望得到跟极坐标情况下同样误差的结果,则需要耗费更多的计算时间。
图一为基本算法。
图二、图三、图四分别是将代误差率为百万分之一时的特性阻抗、电势分布图和电场分布图。
在文章的最后附有程序的代码。
建立一个所有元素均是nan的矩阵U在U中将1/4个圆环离散化(圆环所包括的点取0)将所有点的c1 c2 c3c4分别存入四个与U同维的矩阵C1 C2C3 C4中U(i,j)=0时上下左右是否有nan有没有U(i,j)为边界点计算c1 c2 c3 c4中不等于1的值U(i,j)不为边界c1=c2=c3=c4=1将边界上的电势值和C1 C2 C3 C4带入迭代公式开始反复迭代矩阵U若干次迭代后便得出在四分之一个圆环内的电势分布图一图二图三图四程序代码:clcclear all;ticr1=2;r2=1;n=.01;c=299792458;%err=8.854e-12;wuchalv=.0001;x=-r1:n:r1;y=r1:-n:-r1;l=length(x);dones=ones((l+1)/2);dlens=n*dones;dianwei_1=NaN((l+1)/2);[X,Y]=meshgrid(x,y);for i=1:(l+1)/2for j=1:(l+1)/2if X(i,j)^2+Y(i,j)^2<=4&&X(i,j)^2+Y(i,j)^2>=1dianwei_1(i,j)=0;elseendendenddianwei_2=isnan(dianwei_1);len3=dlens;for i=1:(l+1)/2for j=1:(l+1)/2-1if dianwei_2(i,j)==1&&dianwei_2(i,j+1)==0len3(i,j+1)=abs(abs(sqrt(r1^2-Y(i,j+1)^2))-abs(X(i,j+1)));elseendendendlen3((l+1)/2,1)=0;len2=len3';len1=dlens;for i=1:(l+1)/2for j=1:(l+1)/2-1if dianwei_2(i,j)==0&&dianwei_2(i,j+1)==1len1(i,j)=abs(abs(sqrt(r2^2-Y(i,j)^2))-abs(X(i,j)));elseendendendlen4=len1';c1=len1./n;c2=len2./n;c3=len3./n;c4=len4./n;dianwei_3=[dianwei_1 dianwei_1(:,(l+1)/2);dianwei_1((l+1)/2,:) NaN]; dianwei_4=dianwei_3;dianwei_5=dianwei_3;maxerl=1;en=1;while maxerl>=0for i=1:(l+1)/2for j=1:(l+1)/2if c1(i,j)==1&&c2(i,j)==0&&c3(i,j)==0&&c4(i,j)==1dianwei_3(i,j)=1;elseifc1(i,j)==1&&c2(i,j)<1&&c2(i,j)>0&&c3(i,j)==0&&c4(i,j)==1dianwei_3(i,j)=1;elseifc1(i,j)==1&&c3(i,j)<1&&c3(i,j)>0&&c2(i,j)==0&&c4(i,j)==1dianwei_3(i,j)=1;elseif c1(i,j)==0&&c2(i,j)==1&&c3(i,j)==1&&c4(i,j)==0dianwei_3(i,j)=0;elseifc1(i,j)==0&&c2(i,j)==1&&c3(i,j)==1&&c4(i,j)<1&&c4(i,j)>0dianwei_3(i,j)=0;elseifc1(i,j)<1&&c1(i,j)>0&&c2(i,j)==1&&c3(i,j)==1&&c4(i,j)==0dianwei_3(i,j)=0;endendendfor i=2:(l+1)/2forj=2:(l+1)/2 %c1(i,j)*c2(i,j)*c3(i,j)*c4(i,j)*(((c3(i,j)*dianwei_3(i,j +1)+c1(i,j)*dianwei_3(i,j-1))/(c1(i,j)*c3(i,j)*(c1(i,j)+c3(i,j))))+(( c4(i,j)*dianwei_3(i-1,j)+c2(i,j)*dianwei_3(i+1,j))/(c2(i,j)*c4(i,j)*( c2(i,j)+c4(i,j)))))/((c1(i,j)*c3(i,j))+(c2(i,j)*c4(i,j)));ifc1(i,j)==1&&c2(i,j)==1&&c3(i,j)<1&&c3(i,j)>0&&c4(i,j)==1dianwei_4(i,j)=c1(i,j)*c2(i,j)*c3(i,j)*c4(i,j)*(((c3(i,j)*dianwei_3(i ,j+1)+c1(i,j))/(c1(i,j)*c3(i,j)*(c1(i,j)+c3(i,j))))+((c4(i,j)*dianwei _3(i-1,j)+c2(i,j)*dianwei_3(i+1,j))/(c2(i,j)*c4(i,j)*(c2(i,j)+c4(i,j) ))))/((c1(i,j)*c3(i,j))+(c2(i,j)*c4(i,j)));elseifc1(i,j)==1&&c2(i,j)<1&&c2(i,j)>0&&c3(i,j)==1&&c4(i,j)==1dianwei_4(i,j)=c1(i,j)*c2(i,j)*c3(i,j)*c4(i,j)*(((c3(i,j)*dianwei_3(i ,j+1)+c1(i,j)*dianwei_3(i,j-1))/(c1(i,j)*c3(i,j)*(c1(i,j)+c3(i,j))))+ ((c4(i,j)+c2(i,j)*dianwei_3(i+1,j))/(c2(i,j)*c4(i,j)*(c2(i,j)+c4(i,j) ))))/((c1(i,j)*c3(i,j))+(c2(i,j)*c4(i,j)));elseifc1(i,j)<1&&c1(i,j)>0&&c2(i,j)==1&&c3(i,j)==1&&c4(i,j)==1dianwei_4(i,j)=c1(i,j)*c2(i,j)*c3(i,j)*c4(i,j)*(((c1(i,j)*dianwei_3(i ,j-1))/(c1(i,j)*c3(i,j)*(c1(i,j)+c3(i,j))))+((c4(i,j)*dianwei_3(i-1,j )+c2(i,j)*dianwei_3(i+1,j))/(c2(i,j)*c4(i,j)*(c2(i,j)+c4(i,j)))))/((c 1(i,j)*c3(i,j))+(c2(i,j)*c4(i,j)));elseifc1(i,j)==1&&c2(i,j)==1&&c3(i,j)==1&&c4(i,j)<1&&c4(i,j)>0dianwei_4(i,j)=c1(i,j)*c2(i,j)*c3(i,j)*c4(i,j)*(((c3(i,j)*dianwei_3(i ,j+1)+c1(i,j)*dianwei_3(i,j-1))/(c1(i,j)*c3(i,j)*(c1(i,j)+c3(i,j))))+ ((c4(i,j)*dianwei_3(i-1,j))/(c2(i,j)*c4(i,j)*(c2(i,j)+c4(i,j)))))/((c 1(i,j)*c3(i,j))+(c2(i,j)*c4(i,j)));elseifc1(i,j)==1&&c2(i,j)<1&&c2(i,j)>0&&c3(i,j)<1&&c3(i,j)>0&&c4(i,j)==1dianwei_4(i,j)=c1(i,j)*c2(i,j)*c3(i,j)*c4(i,j)*(((c3(i,j)*dianwei_3(i ,j+1)+c1(i,j))/(c1(i,j)*c3(i,j)*(c1(i,j)+c3(i,j))))+((c4(i,j)+c2(i,j) *dianwei_3(i+1,j))/(c2(i,j)*c4(i,j)*(c2(i,j)+c4(i,j)))))/((c1(i,j)*c3 (i,j))+(c2(i,j)*c4(i,j)));elseifc1(i,j)<1&&c1(i,j)>0&&c4(i,j)<1&&c4(i,j)>0&&c2(i,j)==1&&c3(i,j)==1dianwei_4(i,j)=c1(i,j)*c2(i,j)*c3(i,j)*c4(i,j)*(((c1(i,j)*dianwei_3(i ,j-1))/(c1(i,j)*c3(i,j)*(c1(i,j)+c3(i,j))))+((c4(i,j)*dianwei_3(i-1,j ))/(c2(i,j)*c4(i,j)*(c2(i,j)+c4(i,j)))))/((c1(i,j)*c3(i,j))+(c2(i,j)* c4(i,j)));elseif c1(i,j)==c2(i,j)==c3(i,j)==c4(i,j)dianwei_4(i,j)=0.25*(dianwei_3(i-1,j)+dianwei_3(i+1,j)+dianwei_3(i,j+ 1)+dianwei_3(i,j-1));endendenddianwei_4((l+1)/2+1,:)=dianwei_3((l+1)/2-1,:);dianwei_4(:,(l+1)/2+1)=dianwei_3(:,(l+1)/2-1);dianwei_5=dianwei_4;dianwei_4=dianwei_3;dianwei_3=dianwei_5;er=abs(dianwei_3-dianwei_4);maxer=max(max(er));[q,w]=find(er==maxer);e=length(q);erl=zeros(1,e);for o=1:eerl(1,o)=er(q(o),w(o))-(wuchalv)*dianwei_3(q(o),w(o));endmaxerl=max(max(erl));for i=2:(l-1)/2p(i-1)=(dianwei_3(i-1,i-1)-dianwei_3(i,i))/(n*sqrt(2))*2*pi*(2-(i-1)* n)*sqrt(2);endk1=1;for k=1:(l-1)/2-1if ~isnan(p(k))==1Q(k1)=p(k);k1=k1+1;endendQ1=mean(Q');for i=2:(l-1)/4p1(i)=(dianwei_3((l+1)/2,i-1)-dianwei_3((l+1)/2,i))/(n)*2*pi*(2-(i-1) *n);endP1=mean(p1');R1=[Q1 P1];dianrong=mean(R1)*err;Z(en)=1/(c*dianrong);en=en+1;endplot(Z);hold onM=1/c/(2*pi*err/log(r1/r2));plot(M*ones(1,length(Z)),'-r');xlabel('迭代次数');ylabel('特性阻抗');text(1000,M,'理论值')hold offdianwei_6_1=fliplr(dianwei_3);dianwei_6_2=dianwei_3;dianwei_6_3=flipud(dianwei_3);dianwei_6_4=fliplr(dianwei_6_3);figure(2)dianwei_6=[dianwei_6_2(1:(l+1)/2,1:(l+1)/2)dianwei_6_1(1:(l+1)/2,3:(l+1)/2+1);dianwei_6_3(3:(l+1)/2+1,1:(l+1)/2) dianwei_6_4(3:(l+1)/2+1,3:(l+1)/2+1)];contourf(X,Y,dianwei_6);figure(3)[cc ch]=contour(X,Y,dianwei_6,15);clabel(cc);hold on[FX,FY]=gradient(dianwei_6,1,-1);quiver(X(1:20:401,1:20:401),Y(1:20:401,1:20:401),-FX(1:20:401,1:20:40 1),-FY(1:20:401,1:20:401));hold offtoc个人总结a) 本次作业的主要目的是练习一下用计算机处理FDM 。
同轴电缆的阻抗计算

同轴电缆的阻抗计算
同轴电缆的阻抗是由内导体半径、外导体半径和绝缘材料介电常数等参数决定的。
通常,同轴电缆的阻抗可以根据以下公式计算:Zo = ln(D/d)/(2π∈),
其中Zo表示同轴电缆的特性阻抗,D表示内导体直径,d表示外导体直径,∈表示绝缘材料的介电常数。
如果需要计算不同频率下的阻抗,可以使用L和C值的组合公式,其中L为同轴电缆的感应值,C为同轴电缆的电容值。
具体公式如下:Zo = (L/C)^(1/2)。
以上是同轴电缆阻抗的基本计算方法,但实际计算中还需要考虑许多因素,如分布电容、信号频率等。
所以在实际应用中,建议根据具体情况选用符合实际需要的同轴电缆,并按照制造商提供的参数进行匹配和调试。
同轴线缆特性阻抗的介绍及测量

同轴线缆特性阻抗的介绍及测量特性阻抗是长线传输中的概念,通常用来衡量高频领域下系统的对信号的传输能力大小。
对于低频线路,根据欧姆定律:R=U/I 。
在高频下,还需要计算信号的波动性,反映传输线任一点特性的参量为反射系数τ和特性阻抗Z,因为传输线上的阻抗不可能始终为一个恒定的值,即阻抗不连续,在这些阻抗变化的点就会产生波的反射,任意传输线上的波均是由入射波和反射波的叠加组成,区别在于入射波与反射波成分的不同。
因此,传输线有两种极限状态:1. 无反射波,反射系数=0,称之为行波状态或匹配;2. 全反射,反射系数模=1,称之为驻波状态。
传输线上任意点Z’上的反射系数τ(z’)与特性阻抗Z(z’)的关系如下:其中:Z0:负载阻抗传输线上任一点都可以等效为一段匹配线路与一个阻抗为Z’的负载,特性阻抗即为负载上入射波电压与入射波电流之比,类似地,特性阻抗也等于反射波电压与反射波电流之比:根据阻抗计算公式:其中:Z:特性阻抗R:电阻L:电感G:电导C:电容j:复数虚部w:2πf(f=频率)可知特性阻抗是一个与频率相关的复数。
FAKRA匹配的线路为同轴线缆,在实际应用中,同轴线缆的阻抗可以按如下公式计算:其中:Z:特性阻抗εr:绝缘体的相对介电常数D:外导体内径d:内导体外径可以通过调节连接器及线缆的结构及材质来限制特性阻抗,但FAKRA连接器的导体与线缆需要通过压接装配在一起,这势必会导致连接部位的尺寸变化,因此对于完整的线缆组件,我们也需要验证其特性阻抗是否满足也在规定的范围之内。
阻抗特性测试使用“时域反射法”,特性阻抗分析仪本质上是“高速脉冲源+高宽带取样示波器”模块的有机结合并辅以复杂的校准算法。
如下图所示,测试时通过带宽测试探头向被测线缆组件输入高速脉冲信号,取样接头接受反射信号,采样得到其反射电压,因为入射的阶跃脉冲的幅度是已知的,这样就可以计算出被测线路的反射系数τ,而仪器的输出阻抗为50Ω,根据上述公式,可以计算出反射点的特性阻抗值Z。
关于同轴电缆特性阻抗的测试方法

关于同轴电缆特性阻抗的测试方法自动化工程学院 闵亚军 201421070142摘要:特性阻抗是指当电缆无限长时电磁波沿着没有反射情况下的均匀回路传输时所遇到的阻抗,特性阻抗是射频同轴电缆传输的重要参数之一。
本文主要介绍几种同轴电缆特性阻抗的常用测试方法,包括TDR(时域测试法)、史密斯图法、谐振频率法,并简单介绍其基于的原理。
关键字:同轴电缆 特性电阻 时域测试法 史密斯图法引言特性阻抗是指当电缆无限长时电磁波沿着没有反射情况下的均匀回路传输时所遇到的阻抗,它是由电缆的电导率、电容以及阻值组合后的综合特性,正常的物理运行依靠整个系统电缆与连接器具有恒定的特性阻抗。
传输线匹配的条件就是线路终端的负载的阻抗正好等于该传输线的特性阻抗,此时没有能量的反射,因而有最高的传输效率,相反,传输效率会受到影响,所以特性阻抗值是整个传输回路中非常重要的一个参数。
接下来将简单介绍下测试这一参数的各种方法及其所基于的原理。
一、特性阻抗同轴电缆的特性阻抗定义为:入射电压跟入射电流的比值或者反射电压跟反射电流的比值,所以也称作波阻抗。
通过传输线理论的推导 ,我们可以很容易地得到特性阻抗的公式 :Cj G L j R Z c ωω++= (1) 输人阻抗定义为从电缆的某一个方向看进去,其电压和电流的比值 。
局部特性阻抗:电缆沿线长度方向上各点的特性阻抗。
平均特性阻抗:为特性阻抗在高频时的渐进值。
平均特性阻抗是沿线的所有局部特性阻抗的算术平均值。
二、常用测试方法2.1 时域测试法TDR(time domain reflection ,时域测试法)是一种通用的时域测试技术,广泛应用于PCB 、电缆、连接器等测试领域。
这种技术可以测出传输线的特性阻抗,并显示出每个阻抗不连续点的位置和特性(阻抗、感抗和容抗)。
相对于其他技术,TDR 能够给出更多的关于系统宽带相应的信息。
TDR 基于一个简单的概念:当能量沿着媒介传播时,遇到阻抗变化,就会有一部分能量反射回来。
同轴电缆的电气参数计算

同轴电缆的电气参数计算:同轴电缆的一个回路是同轴对,它是对地不对称的.在金属圆管(称为外导体)内配置另一圆形导体(称为内导体),用绝缘介质使两者相互绝缘并保持轴心重合,如此所构成的线对称同轴对。
同轴电缆可用于开通多路栽波通信或传输电视节目,也可用同轴电缆传输高数码的数据信息(如UL2919屏幕线)1.一次传输参数:同轴电缆的一次传输参数要紧随电流的频率及电缆结构尺寸D/d 变化而变化.(1).有效电阻,随频率的增大而增大.而与内外导体直径比没直接的关系.(2).电感随频率的增大而减小,随内外导体直径比增大而增大.(3).电容与频率无关,随直径比的增大而减小.(4).电导与频率差不多上成正比,随直径的增大而减小.具体计算公式如下:1.1.有效电阻:同轴电缆的有效电阻包括内导体的有效电阻及外导体的有效电阻,当内外导体差不多上铜导体时,总的有效电阻为:(欧姆/公里)1.2有效电感:同轴回路的电感由内.外导体的内电感和内外导体之间的外电感组成,当内外导体差不多上铜时,回路的电感为:(亨/公里)1.3同轴电缆电容﹕同于同轴电缆无外部电场,因此同轴对的工作电容就等于同轴对内外导体间的部分电容,电容计算可按圆柱形电容器的电容公式来计算:Dw-外导体结构的修正系数(理想外导体Dw=0,非理想外导体Dw=编织外导体中的单线直径)K1-内导体结构的修正系数,D1-同轴线外导体内径(mm)1.4绝缘电导:同轴对的绝缘导体G由两部分组成: 一是由绝缘介质极化作用引起的交流电导G~,另一个部分是由于绝缘不完善而引起的直流电导G0:G=G0+G~G~=ωCtg(δ)G0------直流损耗G~------交流损耗ω------电流频率C-------工作电容tg(δ)---介质损耗角正切2.二次传输参数:二次传输参数是用以表征传输线的特性参数,它包括特性阻抗ZC,衰减常数α,及相移常数.2.1.同轴电缆特性阻抗﹕2.1.1.关于斜包,铝箔纵包可近似看作是理想外导体,计算如下:2.1.2.编织外导体,绞线内导体计算如下:D---外导体外径d----内导体外径Dw---编织导体直径K1----导体结构修正系数2.2同轴电缆衰减的计算公式:αR-导体电阻损耗引起的衰减重量,导体衰减(电阻衰减)当内外导体都为圆柱形导体时:d b/km当内导体是绞线,外导体是编织时:db/kmD.d----外导体内径.内导体外径K1-----导体结构修正系数ε-----绝缘介电常数K S-----绞线引起射苹电缆电阻增大的系数,K S=1.25 K B-----编织引起射苹电缆电阻增大的系数Dw----编织外导体中的单线直径K P1,K P2-分不表示内,外导体与标准软铜不同时引起射频电阻增大或减小的系数.编织系数KB还可用如下计算方法求出:m----为编织的锭数n-----为每锭编织线中的导线根数β-----为编织角(编织导线的方向与电缆轴线方向之间的夹角)αG----介质损耗而引起的衰减重量,称为介质衰减(电导衰减)tgσe----等效介质损耗角正切εe-------等效介电常数2.3延时﹕延时是指信号沿电缆传输时,其单位长度上的延迟时刻.同轴电缆的延时与电缆尺寸无关,仅仅取决于介质的介电常数.秒/米V-----信号在电缆中的传播速度εe----等效介电常数.。
常见的同轴电缆阻抗测试方法

这里:
Ravg
Ri i 1 n
n
X avg ห้องสมุดไป่ตู้
Xi i 1 n
n
Ri 为电缆尾部端接负载时所测得的电缆各个频率下阻抗的实部值 Xi 为电缆尾部端接负载时所测得的电缆各个频率下阻抗的虚部值
二、
实际测试所得到的结果(以 100m RG6 电缆为例)
Miles.li@ Miles.li@
Zc
R jL
R jL j G jC G jC
L C
高频时,即 ωL>>R,ωC>>G,则 Z c
这里: R 为电阻 L 为电感 G 为电导 C 为电容 γ为传播常数 α为衰减 β为相位常数 2. 输入阻抗(Zin),定义为:在电缆一端端接(任意频率下)与电缆阻抗 一致的负载时的电缆阻抗。这种完全一致的负载实际上是不存在的,一 般认为端接的负载回波在-40dB 以上是认为是完全一致的负载。
Miles.li@ Miles.li@
性阻抗可能需要通过计算机来辅助实现)
Miles.li@ Miles.li@
常见的同轴电缆阻抗测试方法
李谦若
特性阻抗作为电缆的重要指标一直是生产以及测试人员主要关注的对象,随 着测试技术的不断发展,测试方法变的多种多样,现就同轴电缆的阻抗测试方法 的异同做一个总结和归纳(时域的测试方法暂不做总结) 一、 1. 阻抗的定义: 特性阻抗(Zc),定义为:入射电压与入射电流之比或反射电压与反射 电流之比(即波阻抗)。他的表示式为 一般我们通常所说的同轴电缆的特性阻抗,一般包含四种概念:
由测试数据和图可以得到以下结论: 1. 随着电缆频率的不断升高、 衰减变大,在电缆衰减接近 10dB 时, Zin≈Zc(开 短路法) 见下图
特性阻抗

五、影响同轴电缆特性阻抗(Zc)的因素
5.1 影响同轴电缆特性阻抗的因素及比例关系:
影响Zc的因素 影响因素与Zc的变化关系 影响因素的变化 ↑ 等效介电常数ε e ↓ ↑ 内导体直径d ↓ ↑ 外导体内/外径D ↓ ↑ 编织导体直径Dw ↓ ↓ ↓ ↑ 正比 ↑ ↑ 正比 ↑ ↓ 反比 Zc的随之变化 ↓ 反比 比例关系
特性阻抗是指当电缆无限长时该电缆所具有的阻抗,是阻止电流通过导体的一
种电阻名称,它不是常规意义上的直流电阻。 一条电缆的特性阻抗是由电缆的电导率、电容以及阻值组合后的综合特性。假设 一根均匀电缆无限延伸,其发射端在某一频率下的阻抗称为特性阻抗 (Characteristic Impedance)。它由诸如导体的集合尺寸、导体间的中心距离、传输 线本身的结构、电缆绝缘材料的介电常数等因素决定,与数据传输线的长短无关。 数据传输线的瞬间阻抗或者是特征阻抗是影响信号品质及完整性的最重要的因素 。如果信号传播过程中,相邻的信号传播间隔之间阻抗保持一致,那么信号就可以十 分平稳地向前传播,因而情况变得十分简单。如果相邻的信号传播间隔之间存在差异 ,或者说阻抗发生了改变,信号中能量的一部分就会往回反射,信号传输的连续性也 会被破坏,由此会带来诸如回波损耗偏大、信号传输辐射增大、信号传输完整性不足 等问题。
解析特性阻抗 Characteristic Resistance
目
一. 特性阻抗的定义
录
二. 对称电缆的特性阻抗计算 三. 影响对称电缆特性阻抗的因素
四. 同轴电缆的特性阻抗计算
五. 影响同轴电缆特性阻抗的因素 六. NB Cable特性阻抗控制的实验数据分析
一、特性阻抗(Zc)的定义
1. 特性阻抗(Zc)的定义
4.1.2.编织外导体,绞线内导体同轴电缆的特性阻抗计算如下: