2016年内蒙古包头市昆区中考数学二模试卷(解析版)
内蒙古包头2016中考试题数学卷

一、选择题:本大题共有12小题,每小题3分,共36分。
1.若2(a+3)的值与4互为相反数,则a的值为()A.﹣1 B.﹣C.﹣5 D.2.下列计算结果正确的是()A.2+=2B. =2 C.(﹣2a2)3=﹣6a6D.(a+1)2=a2+13.不等式﹣≤1的解集是()A.x≤4 B.x≥4 C.x≤﹣1 D.x≥﹣14.一组数据2,3,5,4,4,6的中位数和平均数分别是()A.4.5和4 B.4和4 C.4和4.8 D.5和45.120°的圆心角对的弧长是6π,则此弧所在圆的半径是()A.3 B.4 C.9 D.186.同时抛掷三枚质地均匀的硬币,至少有两枚硬币正面向上的概率是()A. B. C. D.7.若关于x的方程x2+(m+1)x+=0的一个实数根的倒数恰是它本身,则m的值是()A.﹣B. C.﹣或D.18.化简()•ab,其结果是()A. B. C. D.9.如图,点O在△ABC内,且到三边的距离相等.若∠BOC=120°,则tanA的值为()A. B. C. D.10.已知下列命题:①若a >b ,则a 2>b 2;②若a >1,则(a ﹣1)0=1;③两个全等的三角形的面积相等;④四条边相等的四边形是菱形.其中原命题与逆命题均为真命题的个数是( )A .4个B .3个C .2个D .1个11.如图,直线y=x+4与x 轴、y 轴分别交于点A 和点B ,点C 、D 分别为线段AB 、OB 的中点,点P 为OA 上一动点,PC+PD 值最小时点P 的坐标为( )A .(﹣3,0)B .(﹣6,0)C .(﹣,0)D .(﹣,0)12.如图,在四边形ABCD 中,AD∥BC,∠ABC=90°,E 是AB 上一点,且DE⊥CE.若AD=1,BC=2,CD=3,则CE 与DE 的数量关系正确的是( )A .CE=DEB .CE=DEC .CE=3DED .CE=2DE二、填空题:本大题共有8小题,每小题3分,共24分13.据统计,2015年,我国发明专利申请受理量达1102000件,连续5年居世界首位,将1102000用科学记数法表示为 .14.若2x ﹣3y ﹣1=0,则5﹣4x+6y 的值为 .15.计算:6﹣(+1)2= .16.已知一组数据为1,2,3,4,5,则这组数据的方差为 .17.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点A 作AE⊥BD,垂足为点E ,若∠EAC=2∠CAD,则∠BAE= 度.18.如图,已知AB 是⊙O 的直径,点C 在⊙O 上,过点C 的切线与AB 的延长线交于点P ,连接AC ,若∠A=30°,PC=3,则BP 的长为 .19.如图,在平面直角坐标系中,点A 在第二象限内,点B 在x 轴上,∠AOB=30°,AB=BO ,反比例函数y=(x <0)的图象经过点A ,若S △ABO =,则k 的值为 .20.如图,已知△ABC 是等边三角形,点D 、E 分别在边BC 、AC 上,且CD=CE ,连接DE 并延长至点F ,使EF=AE ,连接AF ,CF ,连接BE 并延长交CF 于点G .下列结论: ①△ABE≌△ACF;②BC=DF;③S △ABC =S △ACF +S △DCF ;④若BD=2DC ,则GF=2EG .其中正确的结论是 .(填写所有正确结论的序号)三、解答题:本大题共有6小题,共60分。
内蒙古包头市昆区2016年中考数学一模试卷(解析版)

内蒙古包头市昆区2016年中考数学一模试卷(解析版)一、选择题(共12小题,每小题3分,满分36分)1.27的立方根是()A.3 B.﹣3 C.9 D.﹣92.计算(xy3)2的结果是()A.xy6B.x2y3C.x2y6D.x2y53.截至2013年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表示为()A.0.423×107 B.4.23×106C.42.3×105D.423×1044.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.5.端午节吃粽子是中华民族的传统习俗,妈妈买了2只红豆粽、3只碱水粽、5只干肉粽,粽子除内部馅料不同外其它均相同,小颖随意吃一个,吃到红豆粽的概率是()A.B.C.D.6.已知在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A.B.C.D.7.一元二次方程x2+x+=0的根的情况是()A.有两个不等的实数根B.有两个相等的实数根C.无实数根 D.无法确定8.不等式组的解集在数轴上表示正确的是()A .B .C .D .9.现给出四个命题:①等边三角形既是轴对称图形,又是中心对称图形;②相似三角形的面积比等于它们的相似比;③菱形的面积等于两条对角线的积;④一组数据2,5,4,3,3的中位数是4,众数是3,其中不正确的命题的个数是( )A .1个B .2个C .3个D .4个10.如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形BEF 的半径为2,圆心角为60°,则图中阴影部分的面积是( )A .﹣B .﹣C .π﹣D .π﹣11.如图,AC 是矩形ABCD 的对角线,AB=2,BC=2,点E ,F 分别是线段AB ,AD 上的点,连接CE ,CF .当∠BCE=∠ACF ,且CE=CF 时,AE+AF=( )A .2B .332C .334D .312.如图,抛物线y=ax 2+bx+c 与x 轴交于点A (﹣1,0),顶点坐标为(1,n ),与y 轴的交点在(0,2)、(0,3)之间(包含端点).有下列结论:①当x >3时,y <0;②3a+b >0;③﹣1≤a ≤﹣;④≤n ≤4.其中正确的是( )A.①②B.③④C.①③D.①③④二、填空题(共8小题,每小题3分,满分24分)13.÷=.14.函数的自变量x的取值范围是.15.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC.若AB=2,∠BCD=30°,则⊙O的半径为.16.如图,在平面直角坐标系中,点A的坐标为(0,4),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A′是直线y=x上一点,则点B与其对应点B′间的距离为.17.如图,DE是△ABC的中位线,F是DE的中点,CF的延长线交AB于点G,则AG:GD的值为.18.如图①,在梯形ABCD中,AD∥BC,∠A=60°,动点P从A点出发,以1cm/s的速度沿着A→B→C→D的方向不停移动,直到点P到达点D后才停止.已知△PAD的面积S (单位:cm2)与点P移动的时间(单位:s)的函数如图②所示,则点P从开始移动到停止移动一共用了秒(结果保留根号).19.如图,若双曲线y=与边长为5的等边△AOB的边OA、AB分别相交于C、D两点,且OC=3BD.则实数k的值为.20.如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC 绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:①△AED≌△AEF;②△ABC 的面积等于四边形AFBD的面积;③BE2+DC2=DE2;④BE+DC=DE,其中正确的是(只填序号)三、解答题(共6小题,满分60分)21.为推进“传统文化进校园”活动,某校准备成立“经典诵读”、“传统礼仪”、“民族器乐”和“地方戏曲”等四个课外活动小组.学生报名情况如图(每人只能选择一个小组):(1)报名参加课外活动小组的学生共有人,将条形图补充完整;(2)扇形图中m=,n=;(3)根据报名情况,学校决定从报名“经典诵读”小组的甲、乙、丙、丁四人中随机安排两人到“地方戏曲”小组,甲、乙恰好都被安排到“地方戏曲”小组的概率是多少?请用列表或画树状图的方法说明.22.如图,甲、乙两只捕捞船同时从A港出海捕鱼.甲船以每小时千米的速度沿西偏北30°方向前进,乙船以每小时15千米的速度沿东北方向前进.甲船航行2小时到达C处,此时甲船发现渔具丢在乙船上,于是甲船快速(匀速)沿北偏东75°的方向追赶,结果两船在B处相遇.(1)甲船从C处追赶上乙船用了多少时间?(2)甲船追赶乙船的速度是每小时多少千米?23.某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购买羽毛球拍和羽毛球的费用为y A(元),在B超市购买羽毛球拍和羽毛球的费用为y B(元).请解答下列问题:(1)分别写出y A、y B与x之间的关系式;(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.24.如图1,AB为半圆的直径,O为圆心,C为圆弧上一点,AD垂直于过C点的切线,垂足为D,AB的延长线交直线CD于点E.(1)求证:AC平分∠DAB;(2)若AB=4,B为OE的中点,CF⊥AB,垂足为点F,求CF的长;(3)如图2,连接OD交AC于点G,若=,求sin∠E的值.25.在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图①,当点E自D向C,点F自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的位置关系,并说明理由;(2)如图②,当E,F分别移动到边DC,CB的延长线上时,连接AE和DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不须证明)(3)如图③,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由;(4)如图④,当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最小值.26.如图,直线AD对应的函数关系式为y=﹣x﹣1,与抛物线交于点A(在x轴上)、点D,抛物线与x轴另一交点为B(3,0),抛物线与y轴交点C(0,﹣3),(1)求抛物线的解析式;(2)P是线段AD上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;(3)若点F是抛物线的顶点,点G是直线AD与抛物线对称轴的交点,在线段AD上是否存在一点P,使得四边形GFEP为平行四边形;(4)点H抛物线上的动点,在x轴上是否存在点Q,使A、D、H、Q这四个点为顶点的四边形是平行四边形?如果存在,直接写出所有满足条件的Q点坐标;如果不存在,请说明理由.2016年内蒙古包头市昆区中考数学一模试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.27的立方根是()A.3 B.﹣3 C.9 D.﹣9【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵3的立方等于27,∴27的立方根等于3.故选A.【点评】此题主要考查了求一个数的立方根,解题时先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.2.计算(xy3)2的结果是()A.xy6B.x2y3C.x2y6D.x2y5【分析】根据幂的乘方的性质,积的乘方的性质,进行计算求解即可.【解答】解:原式=(xy3)2=x2y3×2=x2y6,故选C.【点评】本题考查了幂的乘方,积的乘方,理清指数的变化是解题的关键.3.截至2013年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表示为()A.0.423×107 B.4.23×106C.42.3×105D.423×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将4 230 000用科学记数法表示为:4.23×106.故选:B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、既是轴对称图形,又是中心对称图形,故本选项正确;B、不是轴对称图形,也是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、不是轴对称图形,又是中心对称图形,故本选项错误.故选A.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.端午节吃粽子是中华民族的传统习俗,妈妈买了2只红豆粽、3只碱水粽、5只干肉粽,粽子除内部馅料不同外其它均相同,小颖随意吃一个,吃到红豆粽的概率是()A.B.C.D.【分析】让红豆粽的总个数除以粽子的总个数即为小颖吃到红豆粽的概率.【解答】解:P(红豆粽)==.故选:B.【点评】本题考查了统计与概率中概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.6.已知在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A.B.C.D.【分析】本题可以利用锐角三角函数的定义求解,也可以利用互为余角的三角函数关系式求解.【解答】解:解法1:利用三角函数的定义及勾股定理求解.∵在Rt△ABC中,∠C=90°,∴sinA=,tanB=和a2+b2=c2.∵sinA=,设a=3x,则c=5x,结合a2+b2=c2得b=4x.∴tanB=.故选A.解法2:利用同角、互为余角的三角函数关系式求解.∵A、B互为余角,∴cosB=sin(90°﹣B)=sinA=.又∵sin2B+cos2B=1,∴sinB==,∴tanB===.故选A.【点评】求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值,或者利用同角(或余角)的三角函数关系式求三角函数值.7.一元二次方程x2+x+=0的根的情况是()A.有两个不等的实数根B.有两个相等的实数根C.无实数根 D.无法确定【分析】先计算△=b2﹣4ac,然后根据△的意义进行判断根的情况.【解答】解:∵△=b2﹣4ac=12﹣41=0,∴原方程有两个相等的实数根.故选B.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的根判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.8.不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】先求出每个不等式的解集再求出其公共解集.【解答】解:该不等式组的解集为1<x≤2,故选C.【点评】本题考查了不等式组解集表示.按照不等式的表示方法1<x≤2在数轴上表示如选项C所示,解答这类题时常常因表示解集时不注意数轴上圆圈和黑点所表示意义的区别而误选D.9.现给出四个命题:①等边三角形既是轴对称图形,又是中心对称图形;②相似三角形的面积比等于它们的相似比;③菱形的面积等于两条对角线的积;④一组数据2,5,4,3,3的中位数是4,众数是3,其中不正确的命题的个数是()A.1个B.2个C.3个D.4个【分析】由等边三角形的性质得出①不正确;由相似三角形的性质得出②不正确;由菱形的面积公式得出③不正确;由中位数和众数的定义得出④正确,即可得出结论.【解答】解:①根据等边三角形的性质知,等边三角形是轴对称图形,不是中心对称图形,错误;②由相似三角形的性质知,相似三角形的面积比等于它们的相似比的平方,错误;③根据菱形的面积公式,错误;④根据中位数和众数的定义知,一组数据2,5,4,3,3的中位数是4,众数是3,正确.综合以上分析,不正确的命题包括①②③.故选C.【点评】本题主要考查了命题、等边三角形、相似三角形的性质、菱形的面积公式、中位数以及众数;本题难度适中,范围较广.10.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是()A.﹣B.﹣C.π﹣D.π﹣【分析】根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.【解答】解:连接BD,∵四边形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等边三角形,∵AB=2,∴△ABD的高为,∵扇形BEF的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD、BE相交于点G,设BF、DC相交于点H,在△ABG和△DBH中,,∴△ABG≌△DBH(ASA),∴四边形GBHD的面积等于△ABD的面积,∴图中阴影部分的面积是:S扇形EBF﹣S△ABD=﹣×2×=﹣.故选:B.【点评】此题主要考查了扇形的面积计算以及全等三角形的判定与性质等知识,根据已知得出四边形EBFD的面积等于△ABD的面积是解题关键.11.如图,AC是矩形ABCD的对角线,AB=2,BC=2,点E,F分别是线段AB,AD 上的点,连接CE,CF.当∠BCE=∠ACF,且CE=CF时,AE+AF=( ).A.2 B.332C.334D.3【分析】过点F作FG⊥AC于点G,证明△BCE≌△GCF,得到CG=CB=2,根据勾股定理得AC=4,所以AG=4﹣2,易证△AGF∽△CBA,求出AF、FG,再求出AE,得出AE+AF的值.【解答】解:过点F作FG⊥AC于点G,如图所示,在△BCE和△GCF中,,∴△BCE≌△GCF(AAS),∴CG=BC=2,∵AC==4,∴AG=4﹣2,∵△AGF∽△CBA∴,∴AF==,FG==,∴AE=2﹣=,∴AE+AF=+=.故选C:.【点评】本题主要考查了三角形全等的判定和性质以及三角形相似的判定与性质,有一定的综合性,难易适中.12.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点).有下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④≤n≤4.其中正确的是()A.①②B.③④C.①③D.①③④【分析】①由抛物线的对称轴为直线x=1,一个交点A(﹣1,0),得到另一个交点坐标,利用图象即可对于选项①作出判断;②根据抛物线开口方向判定a的符号,由对称轴方程求得b与a的关系是b=﹣2a,将其代入(3a+b),并判定其符号;③根据两根之积=﹣3,得到a=,然后根据c的取值范围利用不等式的性质来求a的取值范围;④把顶点坐标代入函数解析式得到n=a+b+c=c,利用c的取值范围可以求得n的取值范围.【解答】解:①∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),对称轴直线是x=1,∴该抛物线与x轴的另一个交点的坐标是(3,0),∴根据图示知,当x>3时,y<0.故①正确;②根据图示知,抛物线开口方向向下,则a<0.∵对称轴x==1,∴b=﹣2a,∴3a+b=3a﹣2a=a<0,即3a+b<0.故②错误;③∵抛物线与x轴的两个交点坐标分别是(﹣1,0),(3,0),∴﹣1×3=﹣3,=﹣3,则a=.∵抛物线与y轴的交点在(0,2)、(0,3)之间(包含端点),∴2≤c≤3,∴﹣1≤≤,即﹣1≤a≤.故③正确;④根据题意知,a=,=1,∴b=﹣2a=,∴n=a+b+c=c.∵2≤c≤3,≤≤4,≤n≤4.故④正确.综上所述,正确的说法有①③④.故选D.【点评】本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.二、填空题(共8小题,每小题3分,满分24分)13.÷=﹣2.【分析】将分子、分母能因式分解得因式分解,同时将除法转化为乘法,依据分式的基本性质整体约分可得答案.【解答】解:原式==﹣2,故答案为:﹣2.【点评】本题主要考查分式的混合运算,熟练掌握分式的混合运算顺序和运算法则是解题的关键.14.函数的自变量x的取值范围是x≥2.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:根据二次根式有意义,分式有意义得:x﹣2≥0且x+3≠0,解得:x≥2,x≠﹣3,即x≥2,故答案为:x≥2.【点评】本题考查了函数自变量的取值范围.涉及的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.15.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC.若AB=2,∠BCD=30°,则⊙O的半径为.【分析】连接OB,根据垂径定理求出BE,求出∠BOE=60°,解直角三角形求出OB即可.【解答】解:连接OB,∵OC=OB,∠BCD=30°,∴∠BCD=∠CBO=30°,∴∠BOE=∠BCD+∠CBO=60°,∵直径CD⊥弦AB,AB=2,∴BE=AB=,∠OEB=90°,∴OB==,即⊙O的半径为,故答案为:.【点评】本题考查了垂径定理,等腰三角形的性质,解直角三角形,三角形外角性质的应用,能根据垂径定理求出BE和解直角三角形求出OB长是解此题的关键,难度适中.16.如图,在平面直角坐标系中,点A的坐标为(0,4),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A′是直线y=x上一点,则点B与其对应点B′间的距离为5.【分析】根据平移的性质知BB′=AA′.由一次函数图象上点的坐标特征可以求得点A′的坐标,所以根据两点间的距离公式可以求得线段AA′的长度,即BB′的长度.【解答】解:如图,连接AA′、BB′.∵点A的坐标为(0,4),△OAB沿x轴向右平移后得到△O′A′B′,∴点A′的纵坐标是4.又∵点A的对应点在直线y=x上一点,∴4=x,解得x=5.∴点A′的坐标是(5,4),∴AA′=5.∴根据平移的性质知BB′=AA′=5.故答案为:5.【点评】本题考查了一次函数图象上点的坐标特征、坐标与图形变化﹣﹣平移.根据平移的性质得到BB′=AA′是解题的关键.17.如图,DE是△ABC的中位线,F是DE的中点,CF的延长线交AB于点G,则AG:GD的值为2.【分析】根据三角形中位线定理,推出DF:BC=GD:GB=1:4,推出DG:DB=GD:AD=1:3由此即可解决问题.【解答】解:∵DE是△ABC的中位线,∴DE=BC,DE∥BC,∵DF=FE,∴DF=BC,∴==,∴=,∵AD=BD,∴GD:AD=1:3,∴AG:GD=2:1,故答案为2.【点评】本题考查三角形中位线性质、平行线分线段成比例定理等知识,解题的关键是灵活运用三角形中位线定理,推出GD:GB=DF:BC=1:4这个突破口,属于中考常考题型.18.如图①,在梯形ABCD中,AD∥BC,∠A=60°,动点P从A点出发,以1cm/s的速度沿着A→B→C→D的方向不停移动,直到点P到达点D后才停止.已知△PAD的面积S (单位:cm2)与点P移动的时间(单位:s)的函数如图②所示,则点P从开始移动到停止移动一共用了(4+2)秒(结果保留根号).【分析】根据图②判断出AB、BC的长度,过点B作BE⊥AD于点E,然后求出梯形ABCD 的高BE,再根据t=2时△PAD的面积求出AD的长度,过点C作CF⊥AD于点F,然后求出DF的长度,利用勾股定理列式求出CD的长度,然后求出AB、BC、CD的和,再根据时间=路程÷速度计算即可得解.【解答】解:由图②可知,t在2到4秒时,△PAD的面积不发生变化,∴在AB上运动的时间是2秒,在BC上运动的时间是4﹣2=2秒,∵动点P的运动速度是1cm/s,∴AB=2cm,BC=2cm,过点B作BE⊥AD于点E,过点C作CF⊥AD于点F,则四边形BCFE是矩形,∴BE=CF,BC=EF=2cm,∵∠A=60°,∴BE=ABsin60°=2×=,AE=ABcos60°=2×=1,∴×AD×BE=3,即×AD×=3,解得AD=6cm,∴DF=AD﹣AE﹣EF=6﹣1﹣2=3,在Rt△CDF中,CD===2,所以,动点P运动的总路程为AB+BC+CD=2+2+2=4+2,∵动点P的运动速度是1cm/s,∴点P从开始移动到停止移动一共用了(4+2)÷1=4+2(秒).故答案为:(4+2).【点评】本题考查了动点问题的函数图象,根据图②的三角形的面积的变化情况判断出AB、BC的长度是解题的关键,根据梯形的问题中,经常作过梯形的上底边的两个顶点的高线作出辅助线也很关键.19.如图,若双曲线y=与边长为5的等边△AOB的边OA、AB分别相交于C、D两点,且OC=3BD.则实数k的值为.【分析】过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,设OC=2x,则BD=x,分别表示出点C、点D的坐标,代入函数解析式求出k,继而可建立方程,解出x的值后即可得出k的值.【解答】解:过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,设BD=x,则OC=3x,在Rt△OCE中,∠COE=60°,则OE=x,CE=x,则点C坐标为(x,x),在Rt△BDF中,BD=x,∠DBF=60°,则BF=x,DF=x,则点D的坐标为(5﹣x,x),将点C的坐标代入反比例函数解析式可得:k=x2,将点D的坐标代入反比例函数解析式可得:k=x﹣x2,则x2=x﹣x2,解得:x1=1,x2=0(舍去),故k=.故答案为:.【点评】本题考查了反比例函数图象上点的坐标特征,解答本题关键是利用k的值相同建立方程,有一定难度.20.如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC 绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:①△AED≌△AEF;②△ABC 的面积等于四边形AFBD的面积;③BE2+DC2=DE2;④BE+DC=DE,其中正确的是①②③(只填序号)【分析】首先根据旋转的性质得到∠FAD=90°,DC=BF,∠FBE=90°,AD=AF,而∠DAE=45°,即可利用SAS判定△AED≌△AEF;由旋转的性质易得△AFB≌△ADC,又由S△ABC=S△ABD+S△ADC,S=S△ABD+S△AFB,即可判定△ABC的面积等于四边形四边形AFBDAFBD的面积;由在Rt△BEF中,BE2+BF2=EF2,即可得BE2+DC2=DE2.【解答】解:∵△ADC绕点A顺时针90°旋转后,得到△AFB,∴∠FAD=90°,DC=BF,∠FBE=90°,AD=AF,∵∠DAE=45°,∴∠EAF=90°﹣45°=45°,在△AED和△AEF中,,∴△AED≌△AEF(SAS);故①正确;∵将△ADC绕点A顺时针旋转90°后,得到△AFB,∴△AFB≌△ADC,∴S△AFB=S△ADC,∵S△ABC=S△ABD+S△ADC,S=S△ABD+S△AFB,四边形AFBD∴△ABC的面积等于四边形AFBD的面积;故②正确;∵△AED≌△AEF,∴EF=ED,在Rt△BEF中,BE2+BF2=EF2,∴BE2+DC2=DE2.故③正确;④错误.故答案为:①②③.【点评】此题属于三角形的综合题.考查了旋转的性质、全等三角形的判定与性质以及勾股定理等知识.注意掌握旋转前后图形的对应关系是解此题的关键.三、解答题(共6小题,满分60分)21.为推进“传统文化进校园”活动,某校准备成立“经典诵读”、“传统礼仪”、“民族器乐”和“地方戏曲”等四个课外活动小组.学生报名情况如图(每人只能选择一个小组):(1)报名参加课外活动小组的学生共有100人,将条形图补充完整;(2)扇形图中m=25,n=108;(3)根据报名情况,学校决定从报名“经典诵读”小组的甲、乙、丙、丁四人中随机安排两人到“地方戏曲”小组,甲、乙恰好都被安排到“地方戏曲”小组的概率是多少?请用列表或画树状图的方法说明.【分析】(1)用地方戏曲的人数除以其所占的百分比即可求得总人数,减去其它小组的频数即可求得民族乐器的人数,从而补全统计图;(2)根据各小组的频数和总数分别求得m和n的值即可;(3)列树状图将所有等可能的结果列举出来,然后利用概率公式求解即可.【解答】解:(1)∵根据两种统计图知地方戏曲的有13人,占13%,∴报名参加课外活动小组的学生共有13÷13%=100人,参加民族乐器的有100﹣32﹣25﹣13=30人,统计图为:(2)∵m%=×100%=25%,∴m=25,n=×360=108,故答案为:25,108;(3)树状图分析如下:∵共有12种情况,恰好选中甲、乙的有2种,∴P(选中甲、乙)==.【点评】本题考查了扇形统计图、条形统计图及列表与树状图法求概率的知识,解题的关键是能够列树状图将所有等可能的结果列举出来,难度不大.22.如图,甲、乙两只捕捞船同时从A港出海捕鱼.甲船以每小时千米的速度沿西偏北30°方向前进,乙船以每小时15千米的速度沿东北方向前进.甲船航行2小时到达C处,此时甲船发现渔具丢在乙船上,于是甲船快速(匀速)沿北偏东75°的方向追赶,结果两船在B处相遇.(1)甲船从C处追赶上乙船用了多少时间?(2)甲船追赶乙船的速度是每小时多少千米?【分析】(1)根据方向角可以得到∠BCA=45°,∠B=30度,过A作AD⊥BC于点D,在直角△ACD中,根据三角函数就可求得AD的长,再在直角△ABD中,根据三角函数即可求得AB的长,就可求得时间;(2)求出BC的长,根据(1)中的结果求得时间,即可求得速度.【解答】解:(1)如图,过A作AD⊥BC于点D.作CG∥AE交AD于点G.∵乙船沿东北方向前进,∴∠HAB=45°,∵∠EAC=30°,∴∠CAH=90°﹣30°=60°∴∠CAB=60°+45°=105°.∵CG∥EA,∴∠GCA=∠EAC=30°.∵∠FCD=75°,∴∠BCG=15°,∠BCA=15°+30°=45°,∴∠B=180°﹣∠BCA﹣∠CAB=30°.在直角△ACD中,∠ACD=45°,AC=2×15=30.AD=ACsin45°=30×=30千米.CD=ACcos45°=30千米.在直角△ABD中,∠B=30°.则AB=2AD=60千米.则甲船从C处追赶上乙船的时间是:60÷15﹣2=2小时;(2)BC=CD+BD=30+30千米.则甲船追赶乙船的速度是每小时(30+30)÷2=15+15千米/小时.答:甲船从C处追赶上乙船用了2小时,甲船追赶乙船的速度是每小时15+15千米.【点评】一般三角形的计算可以通过作高线转化为直角三角形的计算,正确作辅助线是解决本题的关键.23.某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购买羽毛球拍和羽毛球的费用为y A(元),在B超市购买羽毛球拍和羽毛球的费用为y B(元).请解答下列问题:(1)分别写出y A、y B与x之间的关系式;(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.【分析】(1)根据购买费用=单价×数量建立关系就可以表示出y A、y B的解析式;(2)分三种情况进行讨论,当y A=y B时,当y A>y B时,当y A<y B时,分别求出购买划算的方案;(3)分两种情况进行讨论计算求出需要的费用,再进行比较就可以求出结论.【解答】解:(1)由题意,得y A=(10×30+3×10x)×0.9=27x+270;y B=10×30+3(10x﹣20)=30x+240;(2)当y A=y B时,27x+270=30x+240,得x=10;当y A>y B时,27x+270>30x+240,得x<10;当y A<y B时,27x+270<30x+240,得x>10∴当2≤x<10时,到B超市购买划算,当x=10时,两家超市一样划算,当x>10时在A超市购买划算.(3)由题意知x=15,15>10,∴选择A超市,y A=27×15+270=675(元),先选择B超市购买10副羽毛球拍,送20个羽毛球,然后在A超市购买剩下的羽毛球:(10×15﹣20)×3×0.9=351(元),共需要费用10×30+351=651(元).∵651元<675元,∴最佳方案是先选择B超市购买10副羽毛球拍,然后在A超市购买130个羽毛球.【点评】本题考查了一次函数的解析式的运用,分类讨论的数学思想的运用,方案设计的运用,解答时求出函数的解析式是关键.24.如图1,AB为半圆的直径,O为圆心,C为圆弧上一点,AD垂直于过C点的切线,垂足为D,AB的延长线交直线CD于点E.(1)求证:AC平分∠DAB;(2)若AB=4,B为OE的中点,CF⊥AB,垂足为点F,求CF的长;(3)如图2,连接OD交AC于点G,若=,求sin∠E的值.【分析】(1)连结OC,如图1,根据切线的性质得OC⊥DE,而AD⊥DE,根据平行线的性质得OC∥AD,所以∠2=∠3,加上∠1=∠3,则∠1=∠2,所以AC平分∠DAB;(2)如图1,由B为OE的中点,AB为直径得到OB=BE=2,OC=2,在Rt△OCE中,由于OE=2OC,根据含30度的直角三角形三边的关系得∠OEC=30°,则∠COE=60°,由CF⊥AB 得∠OFC=90°,所以∠OCF=30°,再根据含30度的直角三角形三边的关系得OF=OC=1,CF=OF=;(3)连结OC,如图2,先证明△OCG∽△DAG,利用相似的性质得==,再证明△ECO∽△EDA,利用相似比得到==,设⊙O的半径为R,OE=x,代入求得OE=3R;最后在Rt△OCE中,根据正弦的定义求解.【解答】(1)证明:连结OC,如图1,∵DE与⊙O切于点C,∴OC⊥DE,∵AD⊥DE,∴OC∥AD,∴∠2=∠3,∵OA=OC,∴∠1=∠3,∴∠1=∠2,即AC平分∠DAB;(2)解:如图1,∵直径AB=4,B为OE的中点,∴OB=BE=2,OC=2,。
内蒙古包头市中考二模数学考试试卷

内蒙古包头市中考二模数学考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2016七上·阳信期中) 如果|a|=a,则()A . a是正数B . a是负数C . a是零D . a 是正数或零2. (2分)(2016·南通) 太阳半径约为696000km,将696000用科学记数法表示为()A . 696×103B . 69.6×104C . 6.96×105D . 0.696×1063. (2分)(2018·南山模拟) 下列计算正确的是()A . (-x2)3 =x5B . x8 ÷x4 =x2C . x3 +3x3 =3x6D . (-x2)3 =-x64. (2分)(2017·奉贤模拟) 如果把一个锐角△ABC的三边的长都扩大为原来的3倍,那么锐角A的余切值()A . 扩大为原来的3被B . 缩小为原来的C . 没有变化D . 不能确定5. (2分) (2017九下·盐都期中) 不等式组的解集是()A . x>1B . 1<x≤2C . x≤2D . 无解6. (2分)已知一组数据:15,13,15,16,17,16,14,15,则这组数据的极差与众数分别是A . 4,15B . 3,15C . 4,16D . 3,167. (2分)(2017·姜堰模拟) 下列由若干个单位立方体搭成的几何体中,左视图如图所示的为()A .B .C .D .8. (2分)在多次抛掷一枚正六面体骰子的实验中,出现点数小于3的概率记为P1 ,出现点数是奇数的概率记为P2 .则P1与P2的大小比较,下列正确的是()A . P1≥P2B . P1>P2C . P1≤P2D . P1<P29. (2分)如图,已知ABCD,∠A=45°,AD=4,以AD为直径的半圆O与BC相切于点B,则图中阴影部分的面积为A . 4B . π+2C . 4D . 210. (2分) (2017九上·罗湖期末) 下列命题正确的是()A . 有一组邻边相等的四边形是菱形B . 有一个角是直角的平行四边形是矩形C . 对角线互相垂直的平行四边形是正方形D . 对角线相等且互相垂直的四边形是正方形11. (2分)如图,将矩形ABCD沿对角线BD折叠,使点C和点C′重合,若AB=2,则C′D的长为()A . 1B . 2C . 3D . 412. (2分) (2016九上·罗庄期中) 如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c <0的解集是()A . ﹣1<x<5B . x>5C . x<﹣1且x>5D . x<﹣1或x>5二、填空题 (共8题;共8分)13. (1分) (2017八上·西安期末) 计算 - + =________14. (1分)(2016·昆都仑模拟) 计算:(﹣) =________.15. (1分) (2017八上·丹东期末) 已知一组数﹣1,x,0,1,﹣2的平均数是0,则这组数据的方差是________.16. (1分)等腰三角形的两边长分别为2cm和5cm,则它的周长是________cm17. (1分)(2016·安陆模拟) 如图,直线y=﹣ x+4与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是________.18. (1分)如图所示,在半圆O中,AB为直径,P为弧AB的中点,分别在弧AP和弧PB上取中点A1和B1 ,再在弧PA1和弧PB1上分别取中点A2和B2 ,若一直这样取中点,求∠AnPBn= ________.19. (1分)(2017·顺德模拟) 如图,等腰△ABC的周长是36cm,底边为10cm,则底角的正切值是________.20. (1分) (2018九下·游仙模拟) 如图,CD为大半圆的直径,小半圆的圆心O1在线段CD上,大半圆O 的弦AB与小半圆O1交于E、F,AB=6cm,EF=2cm,且AB∥CD。
内蒙古包头市2016年中考数学试题(word版,含答案)

2016年内蒙古包头市中考数学试卷一、选择题:本大题共有12小题,每小题3分,共36分。
1.若2(a+3)的值与4互为相反数,则a的值为()A.﹣1 B.﹣C.﹣5 D.C2.下列计算结果正确的是()A.2+=2B.=2 C.(﹣2a2)3=﹣6a6D.(a+1)2=a2+1B3.不等式﹣≤1的解集是()A.x≤4 B.x≥4 C.x≤﹣1 D.x≥﹣1A.4.一组数据2,3,5,4,4,6的中位数和平均数分别是()A.4.5和4 B.4和4 C.4和4.8 D.5和4B.5.120°的圆心角对的弧长是6π,则此弧所在圆的半径是()A.3 B.4 C.9 D.18C.6.同时抛掷三枚质地均匀的硬币,至少有两枚硬币正面向上的概率是()A.B.C.D.D.7.若关于x的方程x2+(m+1)x+=0的一个实数根的倒数恰是它本身,则m的值是()A.﹣B.C.﹣或D.1C.8.化简()•ab,其结果是()A.B.C.D.B9.如图,点O在△ABC内,且到三边的距离相等.若∠BOC=120°,则tanA的值为()A.B.C.D.A.10.已知下列命题:①若a>b,则a2>b2;②若a>1,则(a﹣1)0=1;③两个全等的三角形的面积相等;④四条边相等的四边形是菱形.其中原命题与逆命题均为真命题的个数是()A.4个B.3个C.2个D.1个D.11.如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB 的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(﹣3,0)B.(﹣6,0)C.(﹣,0)D.(﹣,0)C.12.如图,在四边形ABCD中,AD∥BC,∠ABC=90°,E是AB上一点,且DE⊥CE.若AD=1,BC=2,CD=3,则CE与DE的数量关系正确的是()A.CE=DE B.CE=DE C.CE=3DE D.CE=2DEB.二、填空题:本大题共有8小题,每小题3分,共24分13.据统计,2015年,我国发明专利申请受理量达1102000件,连续5年居世界首位,将1102000用科学记数法表示为 1.102×106.14.若2x﹣3y﹣1=0,则5﹣4x+6y的值为3.15.计算:6﹣(+1)2=﹣4.16.已知一组数据为1,2,3,4,5,则这组数据的方差为2.17.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=22.5度.18.如图,已知AB是⊙O的直径,点C在⊙O上,过点C的切线与AB的延长线交于点P,连接AC,若∠A=30°,PC=3,则BP的长为.19.如图,在平面直角坐标系中,点A在第二象限内,点B在x轴上,∠AOB=30°,AB=BO,反比例函数y=(x<0)的图象经过点A,若S△ABO=,则k的值为﹣3.20.如图,已知△ABC是等边三角形,点D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF,CF,连接BE并延长交CF于点G.下列结论:①△ABE≌△ACF;②BC=DF;③S△ABC=S△ACF+S△DCF;④若BD=2DC,则GF=2EG.其中正确的结论是①②③④.(填写所有正确结论的序号)三、解答题:本大题共有6小题,共60分。
内蒙古包头市昆都仑区中考数学二模试卷

中考数学二模试卷题号一二三总分得分一、选择题(本大题共12小题,共36.0分)1.下列各数中,最小的数是( )A. -|-2|B. (-)2C. -(-2)D. (-2)0.2.不等式组的所有整数解的积为( )A. 5050B. -5050C. 0D. -13.一个不透明布袋里有3个红球,4个白球和m个黄球,这些球除颜色外其余都相同,若从中随机摸出1个球是红球的概率为,则m的值为( )A. 2B. 3C. 5D. 74.下列图形中,不是中心对称图形的是( )A. 圆B. 菱形C. 矩形D. 等边三角形5.三棱柱的三视图如图所示,已知△EFG中,EF=8cm,EG=12cm,∠EFG=45°.则AB的长为( )cm.A. 8B. 12C.D.6.如果一组数据3、4、5、6、x、8的众数是4,那么这组数据的中位数是( )A. 4B. 4.5C. 5D. 5.57.关于x的一元一次不等式组有三个整数解,则m的取值范围是( )A. 5≤m<6B. 5<m<6C. 5≤m≤6D. 5<m≤68.如图,△ABC中,以B为圆心,BC长为半径画弧,分别交AC、AB于D,E两点,并连接BD,DE.若∠A=30°,AB=AC,则∠BDE的度数为何( )A. 45B. 52.5C. 67.5D. 759.若方程x2-7x+12=0的两个实数根恰好是直角△ABC的两边的长,则△ABC的周长为( )A.12 B. 7+ C. 12或 D. 1110.下列命题为真命题的是( )A. 有两边及一角对应相等的两个三角形全等B. 方程x2-x+2=0有两个不相等的实数根C. 面积之比为1:4的两个相似三角形的周长之比是1:4D. 顺次连接任意四边形各边中点得到的四边形是平行四边形11.如图,菱形ABCD的两个顶点B、D在反比例函数y=的图象上,对角线AC与BD的交点恰好是坐标原点O,已知点A(1,1),∠ABC=60°,则k的值是()A. ﹣5B. ﹣4C. ﹣3D. ﹣212.如图,四边形ABCD中,AC平∠DAB,∠ADC=∠ACB=90°,E为AB的中点,若AD=4,AB=6,则的值为( )A. 2B.C.D.二、填空题(本大题共8小题,共24.0分)13.已知(a-)2+=0,则=______.14.从一副洗匀的普通扑克牌(共54张)中随机抽取一张,则抽出黑桃的概率是______15.若x=tan45°+,则代数式的值为______.16.如图,▱ABCD中,∠B=70°,BC=6,以AD为直径的⊙O交CD于点E,则弧DE的长为______.17.甲、乙两个搬运工搬运某种货物.已知乙比甲每小时多搬运600kg,甲搬运5000kg所用的时间与乙搬运8000kg所用的时间相等.设甲每小时搬运xkg货物,则可列方程为______.18.如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且.若,则=______.19.如图,点P1,P3在y轴上,P2,P4在x轴上,且P1P2⊥P2P3,P2P3⊥P3P4,若点P1,P2的坐标分别为(0,-1),(-2,0),则点P4的坐标为______.20.如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与B,C重合),CN⊥DM,CN与AB交于点N,连接OM,ON,MN.下列四个结论:①△CNB≌△DMC;②△CON≌△DOM;③△OMN≌△OAD;④AN2+CM2=MN2;其中正确的结论是______.(填写所有正确结论的序号)三、解答题(本大题共6小题,共60.0分)21.在“书香八桂,阅读圆梦”读书活动中,某中学设置了书法、国学诵读、演讲、征文四个比赛项目(每人只参加一个项目),九(2)班全班同学都参加了比赛,该班班长为了了解本班同学参加各项比赛的情况,收集整理数据后,绘制以下不完整的折线统计图(图1)和扇形统计图(图2),根据图表中的信息解答下列各题:(1)请求出九(2)全班人数;(2)请把折线统计图补充完整;(3)南南和宁宁参加了比赛,请用“列表法”或“画树状图法”求出他们参加的比赛项目相同的概率.22.小宇想测量位于池塘两端的A、B两点的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到点D处,测得∠BDF=60°.若直线AB与EF之间的距离为60米,求A、B两点的距离.23.为迎接“世界华人炎帝故里寻根节”,某工厂接到一批纪念品生产订单,按要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第x天(1≤x≤15,且x为整数)每件产品的成本是p元,p与x之间符合一次函数关系,部分数据如下表:天数(x)13610每件成本p(元)7.58.51012任务完成后,统计发现工人李师傅第x天生产的产品件数y(件)与x(天)满足如下关系:y=设李师傅第x天创造的产品利润为W元.(1)直接写出p与x,W与x之间的函数关系式,并注明自变量x的取值范围;(2)求李师傅第几天创造的利润最大?最大利润是多少元?(3)任务完成后,统计发现平均每个工人每天创造的利润为299元.工厂制定如下奖励制度:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金,请计算李师傅共可获得多少元奖金?24.如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留π)25.在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.(1)如图1,当t=3时,求DF的长.(2)如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值.(3)连结AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t的值.0)和点B(3,0),与y轴交于点C.(1)求该抛物线的解析式;(2)若点E为x轴下方抛物线上的一动点,当S△ABE=S△ABC时,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在点P,使∠BAP=∠CAE?若存在,求出点P的横坐标;若不存在,请说明理由.答案和解析1.【答案】A【解析】解:(A)原式=-2;(B)原式=2;(C)原式=2;(D)原式=1;故选:A.根据实数的大小比较法则即可求出答案.本题考查实数的大小比较,解题的关键是正确化简原数,本题属于基础题型.2.【答案】C【解析】解:,由①得:x≥-,由②得:x≤50,∴不等式组的解集为-≤x≤50,所有整数解为-1,0,1,2,3,4,…,50,之积为0,故选:C.分别求出不等式组中两不等式的解集,找出所有整数解求出之积即可.此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.3.【答案】A【解析】解:由题意可得,m=3÷-3-4=9-3-4=2.故选:A.根据题目中的数据可以计算出总的球的个数,从而可以求得m的值.本题考查概率公式,解答本题的关键是明确题意,求出相应的m的值.4.【答案】D【解析】解:A、B、C中,既是轴对称图形,又是中心对称图形;D、只是轴对称图形.故选:D.根据中心对称图形的概念和各图的性质求解.掌握中心对称与轴对称的概念.要注意,中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.【答案】C【解析】解:过点E作EQ⊥FG于点Q,由题意可得出:EQ=AB,∵EF=8cm,∠EFG=45°,∴EQ=AB=×8=4(cm).故选:C.根据三视图的对应情况可得出,△EFG中FG上的高即为AB的长,进而求出即可.此题主要考查了由三视图解决实际问题,根据已知得出EQ=AB是解题关键.6.【答案】B【解析】解:∵数据3、4、5、6、x、8的众数是4,∴x=4,这组数据按照从小到大的顺序排列为:3、4、4、5、6、8,则中位数为:(4+5)=4.5.故选:B.根据众数为4,可得x=4,然后把这组数据按照从小到大的顺序排列,找出中位数.本题考查了中位数的知识:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7.【答案】D【解析】解:由①得:x>2,由②得:x<m,则不等式组的解集是:2<x<m.不等式组有三个整数解,则整数解是3,4,5.则5<m≤6.故选:D.先求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据已知得出答案即可.本题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是能得出关于m的不等式组.8.【答案】C【解析】解:∵AB=AC,∴∠ABC=∠ACB,∵∠A=30°,∴∠ABC=∠ACB=(180°-30°)=75°,∵以B为圆心,BC长为半径画弧,∴BE=BD=BC,∴∠BDC=∠ACB=75°,∴∠CBD=180°-75°-75°=30°,∴∠DBE=75°-30°=45°,∴∠BED=∠BDE=(180°-45°)=67.5°.故选:C.根据AB=AC,利用三角形内角和定理求出∠ABC的度数,再利用等腰三角形的性质和三角形内角和定理求出∠DBC=30°,然后即可求出∠BDE的度数.本题考查了学生对等腰三角形的性质和三角形内角和定理等知识点的理解和掌握,此题的突破点是利用等腰三角形的性质和三角形内角和定理求出∠DBC=45°,然后即可求得答案.9.【答案】C【解析】解:(x-3)(x-4)=0,x-3=0或x-4=0,所以x1=3,x2=4,所以直角三角形的两边为3,4,当4为直角边时,斜边长==5,三角形的周长为3+4+5=12;当4为斜边时,另一条直角边长==,三角形的周长为3+4+=7+.故选:C.先利用因式分解法解方程得到直角三角形的两边为3,4,然后进行讨论:当4为直角边时,利用勾股定理计算斜边长,从而得到此时三角形的周长;当4为斜边时,利用勾股定理计算出另一条直角边长,从而得到此时三角形的周长.本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.10.【答案】D【解析】解:有两边及其夹角对应相等的两个三角形全等,选项A中的一角不一定是对应相等两边的夹角,故选项A错误;∵x2-x+2=0,∴△=(-1)2-4×1×2=1-8=-7<0,∴方程x2-x+2=0没有实数根,故选项B错误;面积之比为1:4的两个相似三角形的周长之比是1:2,故选项C错误;顺次连接任意四边形各边中点得到的四边形,这个四边形的对边都等于原来四边形与这组对边相对的对角线的一半,并且和这条对角线平行,故得到的中点四边形是平行四边形,故选项D正确;故选:D.根据各个选项中的命题,假命题举出反例或者说明错在哪,真命题说明理由即可解答本题.本题考查命题和定理,解题的关键是明确什么命题是真命题、什么命题的假命题,对真假命题可以说明理由,真命题说明根据,假命题举出反例或通过论证说明.11.【答案】C【解析】解:∵四边形ABCD是菱形,∴BA=BC,AC⊥BD,∵∠ABC=60°,∴△ABC是等边三角形,∵点A(1,1),∴OA=,∴BO=,∵直线AC的解析式为y=x,∴直线BD的解析式为y=-x,∵OB=,∴点B的坐标为(,),∵点B在反比例函数y=的图象上,∴,解得,k=-3.故选:C.根据题意可以求得点B的坐标,从而可以求得k的值.本题考查反比例函数图象上点的坐标特征、菱形的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.12.【答案】B【解析】解:∵E为AB的中点,∴CE=AB=AE,∴∠EAC=∠ECA;∵∠DAC=∠CAB,∴∠DAC=∠ECA,∴CE∥AD;∴△AFD∽△CFE,∴AD:CE=AF:CF;∵CE=AB=3,AD=4,∴==,∴=.故选:B.证明∠DAC=∠ECA,得到CE∥AD,进而得到△AFD∽△CFE,AD:CE=AF:CF;求得CE=3,AD=4,即可解决问题.该题主要考查了直角三角形的性质、相似三角形的判定及其性质等几何知识点及其应用问题;牢固掌握直角三角形的性质、相似三角形的判定及其性质是解题的关键.13.【答案】-【解析】解:∵(a-)2+=0,∴a=、b=-1,则==-,故答案为:-先根据非负数的性质得出a、b的值,再代入计算可得.本题主要考查非负数的性质,解题的关键是掌握偶次乘方的非负性和算术平方根的非负性.14.【答案】【解析】解:∵一副扑克牌共54张,其中黑桃13张,∴随机抽出一张牌得到黑桃的概率是;故答案为:.让黑桃的张数除以扑克牌的总张数即为所求的概率.本题考查概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15.【答案】【解析】解:原式=÷=•=,当x=tan45°+()-1时,∴x=1+2=3,∴原式=,故答案为:根据分式的运算法则进行化简,然后将x的值代入原式即可求出答案本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.16.【答案】π【解析】解:连接OE,∵四边形ABCD是平行四边形,∴AD=BC=6,∠D=∠B=70°,∵OD=OE,∴∠OED=∠D=70°,∴∠DOE=40°,∴弧DE的长==π,故答案为:π.连接OE,求出∠DOE=40°,根据弧长公式计算,得到答案.本题考查的是弧长计算、平行四边形的性质,掌握弧长公式是解题的关键.17.【答案】=【解析】解:设甲每小时搬运x千克,则乙每小时搬运(x+600)千克,由题意得:=.故答案是:=.设甲每小时搬运x千克,则乙每小时搬运(x+600)千克,根据甲搬运5000kg所用时间与乙搬运8000kg所用时间相等建立方程求出其解就可以得出结论.本题考查了由实际问题抽象出分式方程,解答时根据甲搬运5000kg所用时间与乙搬运8000kg所用时间相等建立方程是关键.18.【答案】1【解析】解:∵∠AED=∠B,∠DAE=∠CAB,∴∠ADF=∠C.又∵=,∴△ADF∽△ACG.∴=,∵=,∴=,∴==1.故答案为1.证明△ADF∽△ACG.可得==,可得结论.本题考查了相似三角形的判定与性质以及三角形内角和定理,熟记相似三角形的判定定理与性质定理是解题的关键.19.【答案】(8,0)【解析】解:∵点P1,P2的坐标分别为(0,-1),(-2,0),∴OP1=1,OP2=2,∵Rt△P1OP2∽Rt△P2OP3,∴=,即=,解得,OP3=4,∵Rt△P2OP3∽Rt△P3OP4,∴=,即=,解得,OP4=8,则点P4的坐标为(8,0),故答案为:(8,0).根据相似三角形的性质求出OP3的长,再根据相似三角形的性质计算求出OP4的长,得到答案.本题考查的是相似三角形的判定和性质以及坐标与图形的性质,掌握相似三角形的判定定理和性质定理是解题的关键.20.【答案】①②④【解析】解:∵正方形ABCD中,CD=BC,∠BCD=90°,∴∠BCN+∠DCN=90°,又∵CN⊥DM,∴∠CDM+∠DCN=90°,∴∠BCN=∠CDM,在△CNB和△DMC中,,∴△CNB≌△DMC(ASA),①正确;∴CM=BN,∵四边形ABCD是正方形,∴∠OCM=∠OBN=45°,OC=OB=OD,在△OCM和△OBN中,,∴△OCM≌△OBN(SAS),∴OM=ON,∠COM=∠BON,∴∠DOC+∠COM=∠COB+∠BPN,即∠DOM=∠CON,在△CON和△DOM中,,∴△CON≌△DOM(SAS),②正确;∵∠BON+∠BOM=∠COM+∠BOM=90°,∴∠MON=90°,即△MON是等腰直角三角形,又∵△AOD是等腰直角三角形,∴△OMN∽△OAD,③不正确;∵AB=BC,CM=BN,∴BM=AN,又∵Rt△BMN中,BM2+BN2=MN2,∴AN2+CM2=MN2,④正确;故答案为:①②④.根据正方形的性质,依次判定△CNB≌△DMC,△OCM≌△OBN,△CON≌△DOM,△OMN∽△OAD,根据全等三角形的性质以及勾股定理进行计算即可得出结论.本题主要考查了正方形的性质、全等三角形的判定与性质,相似三角形的判定以及勾股定理的综合应用,熟练掌握正方形的性质,证明三角形全等和三角形相似是解题的关键.21.【答案】解:(1)∵演讲人数12人,占25%,∴出九(2)全班人数为:12÷25%=48(人);(2)∵国学诵读占50%,∴国学诵读人数为:48×50%=24(人),∴书法人数为:48-24-12-6=6(人);补全折线统计图;(3)分别用A,B,C,D表示书法、国学诵读、演讲、征文,画树状图得:∵共有16种等可能的结果,他们参加的比赛项目相同的有4种情况,∴他们参加的比赛项目相同的概率为:=.【解析】(1)由演讲人数12人,占25%,即可求得九(2)全班人数;(2)首先求得书法与国学诵读人数,继而补全折线统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与他们参加的比赛项目相同的情况,再利用概率公式求解即可求得答案.此题考查了列表法或树状图法求概率以及折线与扇形统计图的知识.注意掌握折线统计图与扇形统计图的对应关系.22.【答案】解:作AM⊥EF于点M,作BN⊥EF于点N,如图所示,由题意可得,AM=BN=60米,CD=100米,∠ACF=45°,∠BDF=60°,∴CM=米,DN=米,∴AB=CD+DN-CM=100+20-60=(40+20)米,即A、B两点的距离是(40+20)米.【解析】本题考查解直角三角形的应用,解题的关键是明确题意,画出相应的图形,利用数形结合的思想解答问题.根据题意作出合适的辅助线,画出相应的图形,可以分别求得CM、DN的长,由于AB=CN-CM,从而可以求得AB的长.23.【答案】解:(1)设p与x之间的函数关系式为p=kx+b,,解得,,即p与x的函数关系式为p=0.5x+7(1≤x≤15,x为整数),当1≤x<10时,W=[20-(0.5x+7)](2x+20)=-x2+16x+260,当10≤x≤15时,W=[20-(0.5x+7)]×40=-20x+520,即W=;(2)当1≤x<10时,W=-x2+16x+260=-(x-8)2+324,∴当x=8时,W取得最大值,此时W=324,当10≤x≤15时,W=-20x+520,∴当x=10时,W取得最大值,此时W=320,∵324>320,∴李师傅第8天创造的利润最大,最大利润是324元;(3)当1≤x<10时,令-x2+16x+260=299,得x1=3,x2=13,当W>299时,3<x<13,∵1≤x<10,∴3<x<10,当10≤x≤15时,令W=-20x+520>299,得x<11.05,∴10≤x≤11,由上可得,李师傅获得奖金的天数是第4天到第11天,李师傅共获得奖金为:20×(11-3)=160(元),即李师傅共可获得160元奖金.【解析】(1)根据题意和表格中的数据可以求得p与x,W与x之间的函数关系式,并注明自变量x的取值范围:(2)根据题意和题目中的函数表达式可以解答本题;(3)根据(2)中的结果和不等式的性质可以解答本题.本题考查二次函数的应用、一元二次方程的应用,解不等式,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质解答.24.【答案】(1)证明:∵OC=OB,∴∠OCB=∠OBC,∵PF是⊙O的切线,CE⊥AB,∴∠OCP=∠CEB=90°,∴∠PCB+∠OCB=90°,∠BCE+∠OBC=90°,∴∠BCE=∠BCP,∴BC平分∠PCE.(2)证明:连接AC.∵AB是直径,∴∠ACB=90°,∴∠BCP+∠ACF=90°,∠ACE+∠BCE=90°,∵∠BCP=∠BCE,∴∠ACF=∠ACE,∵∠F=∠AEC=90°,AC=AC,∴△ACF≌△ACE,∴CF=CE.解法二:证明:连接AC.∵OA=OC∴∠BAC=∠ACO,∵CD平行AF,∴∠FAC=∠ACD,∴∠FAC=∠CAO,∵CF⊥AF,CE⊥AB,∴CF=CE.(3)解:作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=3a,PC=4a,PM=a,∵∠MCB+∠P=90°,∠P+∠PBM=90°,∴∠MCB=∠PBM,∵CD是直径,BM⊥PC,∴∠CMB=∠BMP=90°,∴△BMC∽△PMB,∴=,∴BM2=CM•PM=3a2,∴BM=a,∴tan∠BCM==,∴∠BCM=30°,∴∠OCB=∠OBC=∠BOC=60°,∴的长==π.【解析】(1)根据等角的余角相等证明即可;(2)欲证明CF=CE,只要证明△ACF≌△ACE即可;(3)作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=3a,PC=4a,PM=a,利用相似三角形的性质求出BM,求出tan∠BCM的值即可解决问题;本题考查切线的性质、角平分线的判定、全等三角形的判定和性质、相似三角形的判定和性质、锐角三角函数、弧长公式等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型.25.【答案】解:(1)当t=3时,点E为AB的中点,∵A(8,0),C(0,6),∴OA=8,OC=6,∵点D为OB的中点,∴DE∥OA,DE=OA=4,∵四边形OABC是矩形,∴OA⊥AB,∴DE⊥AB,∴∠OAB=∠DEA=90°,又∵DF⊥DE,∴∠EDF=90°,∴四边形DFAE是矩形,∴DF=AE=3;(2)∠DEF的大小不变;理由如下:作DM⊥OA于M,DN⊥AB于N,如图2所示:∵四边形OABC是矩形,∴OA⊥AB,∴四边形DMAN是矩形,∴∠MDN=90°,DM∥AB,DN∥OA,∴,=,∵点D为OB的中点,∴M、N分别是OA、AB的中点,∴DM=AB=3,DN=OA=4,∵∠EDF=90°,∴∠FDM=∠EDN,又∵∠DMF=∠DNE=90°,∴△DMF∽△DNE,∴=,∵∠EDF=90°,∴tan∠DEF==;(3)作DM⊥OA于M,DN⊥AB于N,若AD将△DEF的面积分成1:2的两部分,设AD交EF于点G,则点G为EF的三等分点;①当点E到达中点之前时,如图3所示,NE=3-t,由△DMF∽△DNE得:MF=(3-t),∴AF=4+MF=-t+,∵点G为EF的三等分点,∴G(,t),设直线AD的解析式为y=kx+b,把A(8,0),D(4,3)代入得:,解得:,∴直线AD的解析式为y=-x+6,把G(,t)代入得:t=;②当点E越过中点之后,如图4所示,NE=t-3,由△DMF∽△DNE得:MF=(t-3),∴AF =4-MF =-t +,∵点G 为EF 的三等分点,∴G (,t ),代入直线AD 的解析式y =-x +6得:t =;综上所述,当AD 将△DEF 分成的两部分的面积之比为1:2时,t 的值为或【解析】(1)当t =3时,点E 为AB 的中点,由三角形中位线定理得出DE ∥OA ,DE =OA =4,再由矩形的性质证出DE ⊥AB ,得出∠OAB =∠DEA =90°,证出四边形DFAE 是矩形,得出DF =AE =3即可;(2)作DM ⊥OA 于M ,DN ⊥AB 于N ,证明四边形DMAN 是矩形,得出∠MDN =90°,DM ∥AB ,DN ∥OA ,由平行线得出比例式,=,由三角形中位线定理得出DM =AB =3,DN =OA =4,证明△DMF ∽△DNE ,得出=,再由三角函数定义即可得出答案;(3)作作DM ⊥OA 于M ,DN ⊥AB 于N ,若AD 将△DEF 的面积分成1:2的两部分,设AD 交EF 于点G ,则点G 为EF 的三等分点;①当点E 到达中点之前时,NE =3-t ,由△DMF ∽△DNE 得:MF =(3-t ),求出AF =4+MF =-t +,得出G (,t ),求出直线AD 的解析式为y =-x +6,把G (,t )代入即可求出t 的值;②当点E 越过中点之后,NE =t -3,由△DMF ∽△DNE 得:MF =(t -3),求出AF =4-MF =-t +,得出G (,t ),代入直线AD 的解析式y =-x +6求出t 的值即可.本题是四边形综合题目,考查了矩形的性质、坐标与图形性质、三角形中位线定理、相似三角形的判定与性质、平行线分线段成比例定理、一次函数解析式的求法等知识;本题综合性强,难度较大.26.【答案】解:(1)把A 、B 两点坐标代入解析式可得,解得,∴抛物线解析式为y =x 2+x -5;(2)在y =x 2+x -5中,令x =0可得y =-5,∴C (0,-5),∵S △ABE =S △ABC ,且E 点在x 轴下方,∴E 点纵坐标和C 点纵坐标相同,当y =-5时,代入可得x 2+x -5=-5,解得x =-2或x =0(舍去),∴E 点坐标为(-2,-5);(3)假设存在满足条件的P点,其坐标为(m,m2+m-5),如图,连接AP、CE、AE,过E作ED⊥AC于点D,过P作PQ⊥x轴于点Q,则AQ=AO+OQ=5+m,PQ=|m2+m-5|,在Rt△AOC中,OA=OC=5,则AC=5,∠ACO=∠DCE=45°,由(2)可得EC=2,在Rt△EDC中,可得DE=DC=,∴AD=AC-DC=5-=4,当∠BAP=∠CAE时,则△EDA∽△PQA,∴=,即=,∴m2+m-5=(5+m)或m2+m-5=-(5+m),当m2+m-5=(5+m)时,整理可得4m2+5m-75=0,解得m=或m=-5(与A点重合,舍去),当m2+m-5=-(5+m)时,整理可得4m2+11m-45=0,解得m=或m=-5(与A点重合,舍去),∴存在满足条件的点P,其横坐标为或.【解析】(1)把A、B两点的坐标代入,利用待定系数法可求得抛物线的解析式;(2)当S△ABE=S△ABC时,可知E点和C点的纵坐标相同,可求得E点坐标;(3)在△CAE中,过E作ED⊥AC于点D,可求得ED和AD的长度,设出点P坐标,过P作PQ⊥x轴于点Q,由条件可知△EDA∽△PQA,利用相似三角形的对应边可得到关于P点坐标的方程,可求得P点坐标.本题主要考查二次函数的综合运用.涉及到的知识点有待定系数法、三角形的面积、相似三角形的判定和性质及分类讨论等.在(3)中利用∠BAP=∠CAE构造三角形相似是解题的关键.本题考查知识点较多,综合性很强,难度适中.。
2016年内蒙古包头市中考数学试卷

2016年内蒙古包头市中考数学试卷一、选择题:本大题共有12小题,每小题3分,共36分。
1.若2(a+3)的值与4互为相反数,则a的值为()A.﹣1 B.﹣C.﹣5 D.2.下列计算结果正确的是()A.2+=2B.=2 C.(﹣2a2)3=﹣6a6D.(a+1)2=a2+13.不等式﹣≤1的解集是()A.x≤4 B.x≥4 C.x≤﹣1 D.x≥﹣14.一组数据2,3,5,4,4,6的中位数和平均数分别是()A.4.5和4 B.4和4 C.4和4.8 D.5和45.120°的圆心角对的弧长是6π,则此弧所在圆的半径是()A.3 B.4 C.9 D.186.同时抛掷三枚质地均匀的硬币,至少有两枚硬币正面向上的概率是()A.B.C.D.7.若关于x的方程x2+(m+1)x+=0的一个实数根的倒数恰是它本身,则m的值是()A.﹣B.C.﹣或D.18.化简()•ab,其结果是()A.B.C.D.9.如图,点O在△ABC内,且到三边的距离相等.若∠BOC=120°,则tanA的值为()A.B.C.D.10.已知下列命题:①若a>b,则a2>b2;②若a>1,则(a﹣1)0=1;③两个全等的三角形的面积相等;④四条边相等的四边形是菱形.其中原命题与逆命题均为真命题的个数是()A.4个B.3个C.2个D.1个11.如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P 为OA上一动点,PC+PD值最小时点P的坐标为()A.(﹣3,0)B.(﹣6,0)C.(﹣,0)D.(﹣,0)12.如图,在四边形ABCD中,AD∥BC,∠ABC=90°,E是AB上一点,且DE⊥CE.若AD=1,BC=2,CD=3,则CE与DE的数量关系正确的是()A.CE=DE B.CE=DE C.CE=3DE D.CE=2DE二、填空题:本大题共有8小题,每小题3分,共24分13.据统计,2015年,我国发明专利申请受理量达1102000件,连续5年居世界首位,将1102000用科学记数法表示为.14.若2x﹣3y﹣1=0,则5﹣4x+6y的值为.15.计算:6﹣(+1)2=.16.已知一组数据为1,2,3,4,5,则这组数据的方差为.17.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=度.18.如图,已知AB是⊙O的直径,点C在⊙O上,过点C的切线与AB的延长线交于点P,连接AC,若∠A=30°,PC=3,则BP的长为.19.如图,在平面直角坐标系中,点A在第二象限内,点B在x轴上,∠AOB=30°,AB=BO,反比例函数y=(x<0)的图象经过点A,若S△ABO=,则k的值为.20.如图,已知△ABC是等边三角形,点D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF,CF,连接BE并延长交CF于点G.下列结论:①△ABE≌△ACF;②BC=DF;③S△ABC=S△ACF+S△DCF;④若BD=2DC,则GF=2EG.其中正确的结论是.(填写所有正确结论的序号)三、解答题:本大题共有6小题,共60分。
内蒙古包头市2016年中考数学试卷(解析版2)

内蒙古包头市2016年中考数学试卷一、选择题:本大题共有12小题,每小题3分,共36分。
1.若2(a+3)的值与4互为相反数,则a的值为()A.﹣1 B.﹣C.﹣5 D.【答案】C.【解析】试题分析:已知2(a+3)的值与4互为相反数,根据互为相反数的两个数的和为0可得2(a+3)+4=0,解得a=﹣5,故答案选C.考点:相反数.2.下列计算结果正确的是()A.2+=2B.=2 C.(﹣2a2)3=﹣6a6D.(a+1)2=a2+1【答案】B.考点:整式的运算.3.不等式﹣≤1的解集是()A.x≤4 B.x≥4 C.x≤﹣1 D.x≥﹣1【答案】A.【解析】试题分析::去分母,得:3x﹣2(x﹣1)≤6,去括号,得:3x﹣2x+2≤6,移项、合并,得:x≤4,故答案选A.考点:解一元一次不等式.4.一组数据2,3,5,4,4,6的中位数和平均数分别是()A.4.5和4 B.4和4 C.4和4.8 D.5和4【答案】B.【解析】试题分析:这组数据按从小到大的顺序排列为:2,3,4,4,5,6,所以中位数为:(4+4)÷2=4;平均数为:(2+3+4+4+5+6)÷6=4.故答案选B.考点:中位数;平均数.5.120°的圆心角对的弧长是6π,则此弧所在圆的半径是()A.3 B.4 C.9 D.18【答案】C.【解析】试题分析:已知120°的圆心角对的弧长是6π,根据弧长的公式l=可得6π=,解得r=9.故答案选C.考点:弧长的计算.6.同时抛掷三枚质地均匀的硬币,至少有两枚硬币正面向上的概率是()A.B.C.D.【答案】D.考点:列表法与树状图法.7.若关于x的方程x2+(m+1)x+12=0的一个实数根的倒数恰是它本身,则m的值是()A.﹣B.C.﹣或D.1 【答案】C.【解析】试题分析:由根与系数的关系可得x1+x2=﹣(m+1),x1•x2=12,又知个实数根的倒数恰是它本身,则该实根为1或﹣1,若是1时,即1+x2=﹣(m+1),而x2=12,解得m=﹣;若是﹣1时,则m=12.故答案选:C.考点:一元二次方程的解;根与系数的关系.8.化简()•ab,其结果是()A.B.C.D.【答案】B.【解析】试题分析::原式=••ab=,故答案选B.考点:分式的混合运算.9.如图,点O在△ABC内,且到三边的距离相等.若∠BOC=120°,则tanA的值为()A.B.C.D.【答案】A.考点:角平分线的性质;特殊角的三角函数值.10.已知下列命题:①若a>b,则a2>b2;②若a>1,则(a﹣1)0=1;③两个全等的三角形的面积相等;④四条边相等的四边形是菱形.其中原命题与逆命题均为真命题的个数是()A.4个B.3个C.2个D.1个【答案】D.【解析】考点:命题与定理.11.如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB 的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(﹣3,0)B.(﹣6,0)C.(﹣,0)D.(﹣,0)【答案】C.【解析】试题分析:作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.直线y=x+4与x轴、y轴的交点坐标为A(﹣6,0)和点B(0,4),因点C、D分别为线段AB、OB的中点,可得点C(﹣3,2),点D(0,2).再由点D′和点D关于x轴对称,可知点D′的坐标为(0,﹣2).设直线CD′的解析式为y=kx+b,直线CD′过点C(﹣3,2),D′(0,﹣2),所以,解得:,即可得直线CD′的解析式为y=﹣x ﹣2.令y=﹣x﹣2中y=0,则0=﹣x﹣2,解得:x=﹣,所以点P的坐标为(﹣,0).故答案选C.考点:一次函数图象上点的坐标特征;轴对称-最短路线问题.12.如图,在四边形ABCD中,AD∥BC,∠ABC=90°,E是AB上一点,且DE⊥CE.若AD=1,BC=2,CD=3,则CE与DE的数量关系正确的是()A.CE=DE B.CE=DE C.CE=3DE D.CE=2DE【答案】B.考点:勾股定理;矩形的判定与性质;相似三角形的判定与性质.二、填空题:本大题共有8小题,每小题3分,共24分13.据统计,2015年,我国发明专利申请受理量达1102000件,连续5年居世界首位,将1102000用科学记数法表示为.【答案】1.102×106.考点:科学记数法.14.若2x﹣3y﹣1=0,则5﹣4x+6y的值为.【答案】3.【解析】试题分析:由2x﹣3y﹣1=0可得2x﹣3y=1,所以5﹣4x+6y=5﹣2(2x﹣3y)=5﹣2×1=3.考点:代数式求值.15.计算:6﹣(+1)2=.【答案】﹣4.【解析】试题分析:原式=6×﹣(3+23+1)=23﹣4﹣23=﹣4.考点:二次根式的混合运算.16.已知一组数据为1,2,3,4,5,则这组数据的方差为.【答案】2.【解析】试题分析:这5个数的平均数为(1+2+3+4+5)÷5=3,,根据方差公式可得S2= [(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=2.考点:方差.17.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=度.【答案】22.5°.考点:矩形的性质;等腰三角形的性质.18.如图,已知AB是⊙O的直径,点C在⊙O上,过点C的切线与AB的延长线交于点P,连接AC,若∠A=30°,PC=3,则BP的长为.【答案】3.【解析】试题分析:连接OC,已知OA=OC,∠A=30°,所以∠OCA=∠A=30°,由三角形外角的性质可得∠COB=∠A+∠ACO=60°,又因PC是⊙O切线,可得∠PCO=90°,∠P=30°,再由PC=3,根据锐角三角函数可得OC=PC•tan30°=3,PC=2OC=23,即可得PB=PO﹣OB=3.考点:切线的性质;锐角三角函数.19.如图,在平面直角坐标系中,点A在第二象限内,点B在x轴上,∠AOB=30°,AB=BO,反比例函数y=(x<0)的图象经过点A,若S△ABO=,则k的值为.【答案】﹣3.考点:反比例函数系数k的几何意义.20.如图,已知△ABC是等边三角形,点D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF,CF,连接BE并延长交CF于点G.下列结论:①△ABE≌△ACF;②BC=DF;③S△ABC=S△ACF+S△DCF;④若BD=2DC,则GF=2EG.其中正确的结论是.(填写所有正确结论的序号)【答案】①②③④.【解析】考点:三角形综合题.三、解答题:本大题共有6小题,共60分。
内蒙古包头市青山区2016年中考数学二模试卷含答案解析

内蒙古包头市青山区2016年中考数学二模试卷(解析版)一、选择题:每题3分,共36分.1.﹣2016的绝对值是()A.2016 B.﹣2016 C.D.﹣2.如图是正方形切去一个角后形成的几何体,则该几何体的左视图为()A.B.C.D.3.若代数式+有意义,则实数x的取值范围是()A.x≠1 B.x≥0 C.x≠0 D.x≥0且x≠14.如图,△ABC中,∠B=90°,BC=2AB,则cosA=()A.B.C.D.5.下列说法正确的是()A.掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件B.“直角三角形三条边中垂线的交点是斜边的中点”这是必然事件C.“明天降雨的概率为”表示明天有半天都在降雨D.了解一批电视机的使用寿命,适合用普查的方法6.下列方程中有实数根的是()A.x2+2x+3=0 B.x2+1=0 C.x2+3x+1=0 D.7.某学校教研组对八年级360名学生就“分组合作学习”方式的支持程度进行了调查,随机抽取了若干名学生进行调查,并制作统计图,据此统计图估计该校八年级学生对“分组合作学习”方式非常喜欢和喜欢的人数约为()A.216 B.324 C.288 D.2528.如图,AB为⊙O的切线,切点为B,连接AO,AO与⊙O交于点C,BD为⊙O的直径,连接CD.若∠A=30°,⊙O的半径为2,则图中阴影部分的面积为()A.﹣B.﹣2C.π﹣D.﹣9.将抛物线y=﹣3x2﹣1向右平移1个单位长度,再向上平移1个单位长度后所得的抛物线的解析式为()A.y=﹣3(x﹣1)2B.y=﹣3(x+1)2C.y=﹣3(x﹣1)2+2D.y=﹣3(x﹣1)2﹣210.如图,P为平行四边形ABCD边AD上一点,E、F分别为PB、PC的中点,△PEF、△PDC、△PAB 的面积分别为S、S1、S2,若S=2,则S1+S2=()A.4 B.6 C.8 D.不能确定11.已知下列命题:(1)如果单项式3a4b y c与2a x b3c z是同类项,那么x=4,y=3,z=1.(2)如果两个有理数相等,那么它们的平方相等;(3)菱形的对角线互相垂直、平分;(4)圆的两条平行弦所夹的弧相等.其中原命题与逆命题均为真命题的个数为()A.1 B.2 C.3 D.412.如图,已知正方形ABCD的边长为2,E是边BC上的动点,BF⊥AE交CD于点F,垂足为点G,连接CG,下列说法:①AG>GE;②AE=BF;③点G运动的路径长为π;④CG的最小值﹣1.其中正确的说法有()个.A.4 B.3 C.2 D.1二、填空题:每题3分,共24分.13.(﹣5)0+cos30°﹣()﹣1=.14.分式方程的解为.15.已知关于x的方程2x+4=m﹣x的解为负数,则m的取值范围是.16.在盒子里放有三张分别写有整式a+1、a+2、2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是.17.如图,在平面直角坐标系中,点A(﹣1,m)在直线y=2x+3上,连接OA,将线段OA绕点O顺时针旋转90°,点A的对应点B恰好落在直线y=﹣x+b上,则b的值为.18.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1,反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为.19.如图,Rt△ABC,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为.20.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC,则下列结论:①abc<0;②;③ac﹣b+1=0;④OAOB=﹣.其中正确结论的序号是.三、解答题:共6小题,共60分.21.我市某中学举行“中国梦校园好声音”歌手大赛,初、高中部根据初赛成绩,各选出5名选手组成初中代表队和告知给你代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写表格;平均数/分中位数/分众数/分初中代表队85高中代表队85 100(2)计算两队决赛成绩的方差,并判断哪一个代表队选手成绩较为稳定.22.“为了安全,请勿超速”.如图,一条公路建成通车,在某直线路段MN限速60千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了5秒钟,已知∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由.(参考数据:≈1.41,≈1.73)23.鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?24.如图,在△ABC中,AB=AC,AE是∠BAC的平分线,∠ABC的平分线BM交AE于点M,点O 在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F.(1)求证:AE为⊙O的切线.(2)当BC=8,AC=12时,求⊙O的半径.(3)在(2)的条件下,求线段BG的长.25.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D以每秒1个单位长度的速度由点A向点B 匀速运动,到达B点即停止运动,M,N分别是AD,CD的中点,连接MN,设点D运动的时间为t.(1)判断MN与AC的位置关系;(2)求点D由点A向点B匀速运动的过程中,线段MN所扫过区域的面积;(3)若△DMN是等腰三角形,求t的值.26.已知直线y=kx+1经过点M(d,﹣2)和点N(1,2),交y轴于点H,交x轴于点F.(1)求d的值;(2)将直线MN绕点M顺时针旋转45°得到直线ME,点Q(3,e)在直线ME上,①证明ME∥x轴;②试求过M、N、Q三点的抛物线的解析式;(3)在(2)的条件下,连接NQ,作△NMQ的高NB,点A为MN上的一个动点,若BA将△NMQ的面积分为1:2两部分,且射线BA交过M、N、Q三点的抛物线于点C,试求点C的坐标.2016年内蒙古包头市青山区中考数学二模试卷参考答案与试题解析一、选择题:每题3分,共36分.1.﹣2016的绝对值是()A.2016 B.﹣2016 C.D.﹣【分析】根据正数的绝对值是本身,0的绝对值为0,负数的绝对值是其相反数.【解答】解:∵﹣2016的绝对值等于其相反数,∴﹣2016的绝对值是2016.故选A.【点评】本题考查了绝对值,解决本题的关键是明确绝对值的定义.2.如图是正方形切去一个角后形成的几何体,则该几何体的左视图为()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是一个正方形,正方形的左上角是一个三角形,故选:C.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看到的线都画实线.3.若代数式+有意义,则实数x的取值范围是()A.x≠1 B.x≥0 C.x≠0 D.x≥0且x≠1【分析】先根据分式及二次根式有意义的条件列出关于x的不等式组,求出x的取值范围即可.【解答】解:∵代数式+有意义,∴,解得x≥0且x≠1.故选D.【点评】本题考查的是二次根式及分式有意义的条件,熟知二次根式具有非负性是解答此题的关键.4.如图,△ABC中,∠B=90°,BC=2AB,则cosA=()A.B.C.D.【分析】首先根据∠B=90°,BC=2AB,可得AC==,然后根据余弦的求法,求出cosA的值是多少即可.【解答】解:∵∠B=90°,BC=2AB,∴AC==,∴cosA=.故选:D.【点评】(1)此题主要考查了锐角三角函数的定义,要熟练掌握,解答此题的关键是要明确:锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cosA.(2)此题还考查了直角三角形的性质,以及勾股定理的应用,要熟练掌握.5.下列说法正确的是()A.掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件B.“直角三角形三条边中垂线的交点是斜边的中点”这是必然事件C.“明天降雨的概率为”表示明天有半天都在降雨D.了解一批电视机的使用寿命,适合用普查的方法【分析】结合选项根据概率的意义、全面调查与抽样调查和随机事件的概念进行求解即可.【解答】解:A、掷一枚均匀的骰子,骰子停止转动后,6点朝上是随机事件,本选项错误;B、“直角三角形三条边中垂线的交点是斜边的中点”这是必然事件,本选项正确;C、“明天降雨的概率为”表示明天有50%的概率有降雨,本选项错误;D、了解一批电视机的使用寿命,适合用抽样调查的方法,本选项错误.故选B.【点评】本题考查了概率的意义、全面调查与抽样调查和随机事件的知识,解答本题的关键在于熟练掌握各知识点的概念.6.下列方程中有实数根的是()A.x2+2x+3=0 B.x2+1=0 C.x2+3x+1=0 D.【分析】本题是根的判别式的应用试题,不解方程而又准确的判断出方程解的情况,那只有根的判别式.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.【解答】解:由题意可知x2+2x+3=0△=b2﹣4ac=4﹣12=﹣8<0,所以没有是实数根;同理x2+1=0的△=b2﹣4ac=0﹣4<0,也没有实数根;x2+3x+1=0的△=b2﹣4ac=9﹣4=5>0,所以有实数根;而最后一个去掉分母后x=1有实数根,但是使分式方程无意义,所以舍去.故选C.【点评】本题是对方程实数根的考查,求解时一要注意是否有实数根,二要注意有实数根时是否有意义.7.某学校教研组对八年级360名学生就“分组合作学习”方式的支持程度进行了调查,随机抽取了若干名学生进行调查,并制作统计图,据此统计图估计该校八年级学生对“分组合作学习”方式非常喜欢和喜欢的人数约为()A.216 B.324 C.288 D.252【分析】直接利用条形统计图得出学习方式中非常喜欢和喜欢的人数所占比例,进而求出八年级学习方式中非常喜欢和喜欢的总人数.【解答】解:由条形统计图可得:非常喜欢和喜欢的人数为:360×=252(人).故选:D.【点评】此题主要考查了用样本估计总体以及条形统计图的应用,正确求出样本中学习方式中非常喜欢和喜欢的人数所占比例是解题关键.8.如图,AB为⊙O的切线,切点为B,连接AO,AO与⊙O交于点C,BD为⊙O的直径,连接CD.若∠A=30°,⊙O的半径为2,则图中阴影部分的面积为()A.﹣B.﹣2C.π﹣D.﹣【分析】过O点作OE⊥CD于E,首先根据切线的性质和直角三角形的性质可得∠AOB=60°,再根据平角的定义和三角形外角的性质可得∠COD=120°,∠OCD=∠ODC=30°,根据含30°的直角三角形的性质可得OE,CD的长,再根据阴影部分的面积=扇形OCD的面积﹣三角形OCD的面积,列式计算即可求解.【解答】解:过O点作OE⊥CD于E,∵AB为⊙O的切线,∴∠ABO=90°,∵∠A=30°,∴∠AOB=60°,∴∠COD=120°,∠OCD=∠ODC=30°,∵⊙O的半径为2,∴OE=1,CE=DE=,∴CD=2,∴图中阴影部分的面积为:﹣×2×1=π﹣.故选:A.【点评】考查了扇形面积的计算,切线的性质,本题关键是理解阴影部分的面积=扇形OCD的面积﹣三角形OCD的面积.9.将抛物线y=﹣3x2﹣1向右平移1个单位长度,再向上平移1个单位长度后所得的抛物线的解析式为()A.y=﹣3(x﹣1)2B.y=﹣3(x+1)2C.y=﹣3(x﹣1)2+2 D.y=﹣3(x﹣1)2﹣2【分析】直接根据平移规律“左加右减,上加下减”作答即可.【解答】解:抛物线y=﹣3x2﹣1向右平移1个单位长度后的解析式为:y=﹣3(x﹣1)2﹣1,再向上平移1个单位长度后所得的抛物线的解析式为:y=﹣3(x﹣1)2﹣1+1=﹣3(x﹣1)2,故选:A.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.10.如图,P为平行四边形ABCD边AD上一点,E、F分别为PB、PC的中点,△PEF、△PDC、△PAB 的面积分别为S、S1、S2,若S=2,则S1+S2=()A.4 B.6 C.8 D.不能确定【分析】过P作PQ平行于DC,由DC与AB平行,得到PQ平行于AB,可得出四边形PQCD与ABQP 都为平行四边形,进而确定出△PDC与△PCQ面积相等,△PQB与△ABP面积相等,再由EF为△BPC 的中位线,利用中位线定理得到EF为BC的一半,且EF平行于BC,得出△PEF与△PBC相似,相似比为1:2,面积之比为1:4,求出△PBC的面积,而△PBC面积=△CPQ面积+△PBQ面积,即为△PDC 面积+△PAB面积,即为平行四边形面积的一半,即可求出所求的面积.【解答】解:过P作PQ∥DC交BC于点Q,由DC∥AB,得到PQ∥AB,∴四边形PQCD与四边形APQB都为平行四边形,∴△PDC≌△CQP,△ABP≌△QPB,∴S△PDC=S△CQP,S△ABP=S△QPB,∵EF为△PCB的中位线,∴EF∥BC,EF=BC,∴△PEF∽△PBC,且相似比为1:2,∴S△PEF:S△PBC=1:4,S△PEF=2,∴S△PBC=S△CQP+S△QPB=S△PDC+S△ABP=S1+S2=8.故选:C.【点评】此题考查了平行四边形的性质,相似三角形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.11.已知下列命题:(1)如果单项式3a4b y c与2a x b3c z是同类项,那么x=4,y=3,z=1.(2)如果两个有理数相等,那么它们的平方相等;(3)菱形的对角线互相垂直、平分;(4)圆的两条平行弦所夹的弧相等.其中原命题与逆命题均为真命题的个数为()A.1 B.2 C.3 D.4【分析】首先判断该命题的真假,然后写出其逆命题判断其真假即可.【解答】解:(1)如果单项式3a4b y c与2a x b3c3是同类项,那么x=4,y=2,z=1,正确,其逆命题为如果x=4,y=3,z=1,那么单项式3a4b y c与2a x b3c z是同类项.正确,为真命题.(2)如果两个有理数相等,那么它们的平方相等,正确,为真命题;其逆命题为如果两个有理数的平方相等,那么它们相等,错误,为假命题;(3)菱形的对角线互相垂直、平分,正确,为真命题;其逆命题为对角线垂直、平分的四边形为菱形,正确,为真命题;(4)圆的两条平行弦所夹的弧相等,正确,为真命题;其逆命题为圆中两条弦所夹的弧相等,那么这两条弦平行,为假命题,原命题与逆命题均为真命题的个数为2,故选B.【点评】本题考查了命题与定理的知识,解题的关键是能够正确的写出该命题的逆命题,难度不大.12.如图,已知正方形ABCD的边长为2,E是边BC上的动点,BF⊥AE交CD于点F,垂足为点G,连接CG,下列说法:①AG>GE;②AE=BF;③点G运动的路径长为π;④CG的最小值﹣1.其中正确的说法有()个.A.4 B.3 C.2 D.1【分析】根据正方形对角线的性质可得出当E移动到与C重合时,F点和D点重合,此时G点为AC中点,故①错误;求得∠BAE=∠CBF,根据正方形的性质可得AB=BC,∠ABC=∠C=90°,然后利用“角角边”证明△ABE和△BCF全等,根据全等三角形对应角相等可得AE=BF,判断出②正确;根据题意,G点的轨迹是以AB中点O为圆心,AO为半径的圆弧,然后求出弧的长度,判断出③错误;由于OC 和OG的长度是一定的,因此当O、G、C在同一条直线上时,CG取最小值,根据勾股定理求出最小CG 长度.【解答】解:∵在正方形ABCD中,BF⊥AE,∴∠AGB保持90°不变,∴G点的轨迹是以AB中点O为圆心,AO为半径的圆弧,∴当E移动到与C重合时,F点和D点重合,此时G点为AC中点,∴AG=GE,故①错误;∵BF⊥AE,∴∠AEB+∠CBF=90°,∵∠AEB+∠BAE=90°,∴∠BAE=∠CBF,在△ABE和△BCF中,,∴△ABE≌△BCF(AAS),∴故②正确;∵当E点运动到C点时停止,∴点G运动的轨迹为圆,圆弧的长=π×2=π,故③错误;由于OC和OG的长度是一定的,因此当O、G、C在同一条直线上时,CG取最小值,OC==,CG的最小值为OC﹣OG=﹣1,故④正确;综上所述,正确的结论有②④.故选C.【点评】本题考查了正方形的性质,全等三角形的判定与性质,弧长的计算,勾股定理的应用,熟记性质并求出△ABE和△BCF全等是解题的关键,此题求运动轨迹有一定的难度.二、填空题:每题3分,共24分.13.(﹣5)0+cos30°﹣()﹣1=1.【分析】原式利用零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=1+2×﹣3=1+3﹣3=1,故答案为:1【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.14.分式方程的解为x=.【分析】方程两边都乘以3(x﹣1)化为整式方程,然后求解,再检验即可.【解答】解:方程两边都乘以3(x﹣1)得,3x=2,解得x=,检验:当x=时,3(x﹣1)=3(1﹣)=1≠0,所以,x=是方程的解,所以,原分式方程的解是x=.故答案为:x=.【点评】本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.15.已知关于x的方程2x+4=m﹣x的解为负数,则m的取值范围是m<4.【分析】把m看作常数,根据一元一次方程的解法求出x的表达式,再根据方程的解是负数列不等式并求解即可.【解答】解:由2x+4=m﹣x得,x=∵方程有负数解,∴解得m<4.故答案为:m<4.【点评】本题考查了一元一次方程的解与解不等式,把m看作常数求出x的表达式是解题的关键.16.在盒子里放有三张分别写有整式a+1、a+2、2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是.【分析】首先根据题意画树状图,然后根据树状图即可求得所有等可能的结果与能组成分式的情况数,然后根据概率公式求解即可求得答案.【解答】解:画树状图得:∴一共有6种等可能的结果,把两张卡片上的整式分别作为分子和分母,能组成分式的有4个,∴能组成分式的概率是=.故答案为:.【点评】此题考查了列表法或树状图法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.17.如图,在平面直角坐标系中,点A(﹣1,m)在直线y=2x+3上,连接OA,将线段OA绕点O顺时针旋转90°,点A的对应点B恰好落在直线y=﹣x+b上,则b的值为2.【分析】先把点A坐标代入直线y=2x+3,得出m的值,然后得出点B的坐标,再代入直线y=﹣x+b解答即可.【解答】解:把A(﹣1,m)代入直线y=2x+3,可得:m=﹣2+3=1,因为线段OA绕点O顺时针旋转90°,所以点B的坐标为(1,1),把点B代入直线y=﹣x+b,可得:1=﹣1+b,b=2,故答案为:2【点评】此题考查一次函数问题,关键是根据代入法解解析式进行分析.18.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1,反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为4.【分析】过点A作x轴的垂线,与CB的延长线交于点E,根据A,B两点的纵坐标分别为3,1,可得出横坐标,即可求得AE,BE,再根据勾股定理得出AB,根据菱形的面积公式:底乘高即可得出答案.【解答】解:过点A作x轴的垂线,与CB的延长线交于点E,∵A,B两点在反比例函数y=的图象上且纵坐标分别为3,1,∴A,B横坐标分别为1,3,∴AE=2,BE=2,∴AB=2,=底×高=2×2=4,S菱形ABCD故答案为4.【点评】本题考查了菱形的性质以及反比例函数图象上点的坐标特征,熟记菱形的面积公式是解题的关键.19.如图,Rt△ABC,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为.【分析】首先根据折叠可得CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,然后求得△ECF是等腰直角三角形,进而求得∠B′FD=90°,CE=EF=,ED=AE=,从而求得B′D=1,DF=,在Rt△B′DF中,由勾股定理即可求得B′F的长.【解答】解:根据折叠的性质可知CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,∴B′D=4﹣3=1,∠DCE+∠B′CF=∠ACE+∠BCF,∵∠ACB=90°,∴∠ECF=45°,∴△ECF是等腰直角三角形,∴EF=CE,∠EFC=45°,∴∠BFC=∠B′FC=135°,∴∠B′FD=90°,∵S△ABC=ACBC=ABCE,∴ACBC=ABCE,∵根据勾股定理求得AB=5,∴CE=,∴EF=,ED=AE=,∴DF=EF﹣ED=,∴B′F=.故答案为:.【点评】此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理的应用等,根据折叠的性质求得相等的相等相等的角是本题的关键.20.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC,则下列结论:①abc<0;②;③ac﹣b+1=0;④OAOB=﹣.其中正确结论的序号是①③④.【分析】观察函数图象,根据二次函数图象与系数的关系找出“a<0,c>0,﹣>0”,再由顶点的纵坐标在x轴上方得出>0.①由a<0,c>0,﹣>0即可得知该结论成立;②由顶点纵坐标大于0即可得出该结论不成立;③由OA=OC,可得出x A=﹣c,将点A(﹣c,0)代入二次函数解析式即可得出该结论成立;④结合根与系数的关系即可得出该结论成立.综上即可得出结论.【解答】解:观察函数图象,发现:开口向下⇒a<0;与y轴交点在y轴正半轴⇒c>0;对称轴在y轴右侧⇒﹣>0;顶点在x轴上方⇒>0.①∵a<0,c>0,﹣>0,∴b>0,∴abc<0,①成立;②∵>0,∴<0,②不成立;③∵OA=OC,∴x A=﹣c,将点A(﹣c,0)代入y=ax2+bx+c中,得:ac2﹣bc+c=0,即ac﹣b+1=0,③成立;④∵OA=﹣x A,OB=x B,x A x B=,∴OAOB=﹣,④成立.综上可知:①③④成立.故答案为:①③④.【点评】本题考查了二次函数图象与系数的关系以及根与系数的关系,解题的关键是观察函数图象逐条验证四条结论.本题属于基础题,难度不大,解决该题型题目时,观察函数图形,利用二次函数图象与系数的关系找出各系数的正负是关键.三、解答题:共6小题,共60分.21.我市某中学举行“中国梦校园好声音”歌手大赛,初、高中部根据初赛成绩,各选出5名选手组成初中代表队和告知给你代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写表格;平均数/分中位数/分众数/分初中代表队8585 85高中代表队85 80100(2)计算两队决赛成绩的方差,并判断哪一个代表队选手成绩较为稳定.【分析】(1)根据统计图中的具体数据以及平均数、中位数和众数的概念分别进行计算即可;(2)由方差的公式计算两队决赛成绩的方差,然后由方差的意义进行比较分析.【解答】解:(1)初中代表队:平均数=(75+80+85+85+100)÷5=85(分),众数为85(分);高中代表队:中位数为80(分);故答案为:85,85,80;(2)= [(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+(100﹣85)2]=70,= [(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=160,∵<,∴初中队选手成绩较稳定.【点评】本题考查的是条形统计图的综合运用、平均数、中位数、众数以及方差的意义.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22.“为了安全,请勿超速”.如图,一条公路建成通车,在某直线路段MN限速60千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了5秒钟,已知∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由.(参考数据:≈1.41,≈1.73)【分析】根据题意结合锐角三角函数关系得出BH,CH,AB的长进而求出汽车的速度,进而得出答案.【解答】解:此车没有超速.理由:过C作CH⊥MN,∵∠CBN=60°,BC=200米,∴CH=BCsin60°=200×=100(米),BH=BCcos60°=100(米),∵∠CAN=45°,∴AH=CH=100米,∴AB=100﹣100≈73(m),∵60千米/小时=m/s,∴=14.6(m/s)<≈16.7(m/s),∴此车没有超速.【点评】此题主要考查了勾股定理以及锐角三角函数关系的应用,得出AB的长是解题关键.23.鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?【分析】(1)根据y与x成一次函数解析式,设为y=kx+b,把x与y的两对值代入求出k与b的值,即可确定出y与x的解析式,并求出x的范围即可;(2)根据利润=单价×销售量列出W关于x的二次函数解析式即可;(3)利用二次函数的性质求出W的最大值,以及此时x的值即可.【解答】解:(1)设y=kx+b,根据题意得,解得:k=﹣2,b=200,∴y=﹣2x+200(30≤x≤60);(2)W=(x﹣30)(﹣2x+200)﹣450=﹣2x2+260x﹣6450=﹣2(x﹣65)2+2000;(3)W=﹣2(x﹣65)2+2000,∵30≤x≤60,∴x=60时,w有最大值为1950元,∴当销售单价为60元时,该公司日获利最大,为1950元.【点评】此题考查了二次函数的应用,待定系数法求一次函数解析式,以及二次函数的性质,熟练掌握二次函数性质是解本题的关键.24.如图,在△ABC中,AB=AC,AE是∠BAC的平分线,∠ABC的平分线BM交AE于点M,点O 在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F.(1)求证:AE为⊙O的切线.(2)当BC=8,AC=12时,求⊙O的半径.(3)在(2)的条件下,求线段BG的长.【分析】(1)连接OM.利用角平分线的性质和平行线的性质得到AE⊥OM后即可证得AE是⊙O的切线;(2)设⊙O的半径为R,根据OM∥BE,得到△OMA∽△BEA,利用平行线的性质得到=,即可解得R=3,从而求得⊙O的半径为3;(3)过点O作OH⊥BG于点H,则BG=2BH,根据∠OME=∠MEH=∠EHO=90°,得到四边形OMEH 是矩形,从而得到HE=OM=3和BH=1,证得结论BG=2BH=2.【解答】(1)证明:连接OM.∵AC=AB,AE平分∠BAC,∴AE⊥BC,CE=BE=BC=4,∵OB=OM,∴∠OBM=∠OMB,∵BM平分∠ABC,∴∠OBM=∠CBM,∴∠OMB=∠CBM,∴OM∥BC又∵AE⊥BC,∴AE⊥OM,∴AE是⊙O的切线;(2)设⊙O的半径为R,∵OM∥BE,∴△OMA∽△BEA,∴=即=,解得R=3,∴⊙O的半径为3;(3)过点O作OH⊥BG于点H,则BG=2BH,∵∠OME=∠MEH=∠EHO=90°,∴四边形OMEH是矩形,∴HE=OM=3,∴BH=1,∴BG=2BH=2.【点评】本题考查了圆的综合知识,题目中还运用到了切线的判定与性质、相似三角形的判定与性质,综合性较强,难度较大.25.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D以每秒1个单位长度的速度由点A向点B 匀速运动,到达B点即停止运动,M,N分别是AD,CD的中点,连接MN,设点D运动的时间为t.(1)判断MN与AC的位置关系;(2)求点D由点A向点B匀速运动的过程中,线段MN所扫过区域的面积;(3)若△DMN是等腰三角形,求t的值.【分析】(1)利用三角形中位线证明即可;(2)分别取△ABC三边AC,AB,BC的中点E,F,G,并连接EG,FG,根据题意可得线段MN扫过区域的面积就是▱AFGE的面积求解即可;(3)分三种情况:①当MD=MN=3时,②当MD=DN,③当DN=MN时,分别求解△DMN为等腰三角形即可.【解答】解:(1)∵在△ADC中,M是AD的中点,N是DC的中点,∴MN∥AC;(2)如图1,分别取△ABC三边AC,AB,BC的中点E,F,G,并连接EG,FG,根据题意可得线段MN扫过区域的面积就是▱AFGE的面积,∵AC=6,BC=8,∴AE=3,GC=4,∵∠ACB=90°,=AEGC=3×4=12,∴S四边形AFGE∴线段MN所扫过区域的面积为12.(3)据题意可知:MD=AD,DN=DC,MN=AC=3,①当MD=MN=3时,△DMN为等腰三角形,此时AD=AC=6,∴t=6,②当MD=DN时,AD=DC,如图2,过点D作DH⊥AC交AC于H,则AH=AC=3,∵cosA==,∴=,解得AD=5,∴AD=t=5.③如图3,当DN=MN=3时,AC=DC,连接MC,则CM⊥AD,∵cosA==,即=,∴AM=,∴AD=t=2AM=,综上所述,当t=5或6或时,△DMN为等腰三角形.【点评】本题主要考查了相似形综合题,涉及等腰三角形的性质,平行四边形的面积及中位线,解题的关键是分三种情况讨论△DMN是等腰三角形.26.已知直线y=kx+1经过点M(d,﹣2)和点N(1,2),交y轴于点H,交x轴于点F.(1)求d的值;(2)将直线MN绕点M顺时针旋转45°得到直线ME,点Q(3,e)在直线ME上,①证明ME∥x轴;②试求过M、N、Q三点的抛物线的解析式;(3)在(2)的条件下,连接NQ,作△NMQ的高NB,点A为MN上的一个动点,若BA将△NMQ的面积分为1:2两部分,且射线BA交过M、N、Q三点的抛物线于点C,试求点C的坐标.【分析】(1)把点N(1,2)代入y=kx+1,得k,再把M点坐标代入已知直线解析式得d;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年内蒙古包头市昆区中考数学二模试卷一、选择题(本大题共12小题,每题3分,共36分)1.(3分)﹣8的立方根是()A.2 B.2 C.﹣ D.﹣22.(3分)统计显示,2013年底某市各类高中在校学生人数约是11.4万人,将11.4万用科学记数法表示应为()A.11.4×104B.1.14×104C.1.14×105D.0.114×1063.(3分)函数中自变量x的取值范围是()A.x≥2 B.x≥﹣2 C.x<2 D.x<﹣24.(3分)下列计算正确的是()A.a2+a2=2a4B.3a2b2÷a2b2=3abC.(﹣a2)2=a4D.(﹣m3)2=m95.(3分)抛物线y=﹣6x2可以看作是由抛物线y=﹣6x2+5按下列何种变换得到()A.向上平移5个单位B.向下平移5个单位C.向左平移5个单位D.向右平移5个单位6.(3分)河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为()A.12米B.4米C.5米D.6米7.(3分)如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F,点P是⊙A上的一点,且∠EPF=45°,则图中阴影部分的面积为()A.4﹣πB.4﹣2πC.8+πD.8﹣2π8.(3分)按一定规律排列的一列数:,,,…其中第6个数为()A.B.C.D.9.(3分)在一次体育达标测试中,九年级(3)班的15名男同学的引体向上成绩如下表所示:成绩(个)8911121315人数123432这15名男同学引体向上成绩的中位数和众数分别是()A.12,13 B.12,12 C.11,12 D.3,410.(3分)下列四个命题:①对角线互相垂直的平行四边形是正方形;②,则m≥1;③过弦的中点的直线必经过圆心;④圆的切线垂直于经过切点的半径;⑤圆的两条平行弦所夹的弧相等;其中正确的命题有()个.A.1 B.2 C.3 D.411.(3分)如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x 轴平行,A,B两点的纵坐标分别为3,1.反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为()A.2 B.4 C.2 D.412.(3分)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②>0;③ac﹣b+1=0;④OA•OB=﹣.其中正确结论的个数是()A.4 B.3 C.2 D.1二、填空题(每题3分,共24分)13.(3分)计算:(﹣)=.14.(3分)在一个不透明的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则n=.15.(3分)=.16.(3分)折叠矩形ABCD,使点D落在BC边上的点F处,若折痕AE=5,tan ∠EFC=,则BC=.17.(3分)如图,Rt△A′BC′是由Rt△ABC绕B点顺时针旋转而得,且点A、B、C′在同一条直线上,在Rt△ABC中,若∠C=90°,BC=2,AB=4,则斜边AB旋转到A′B所扫过的扇形面积为.18.(3分)关于x的不等式组的解集为x<3,那么m的取值范围是.19.(3分)如图,AB是⊙O的直径,且经过弦CD的中点H,过CD延长线上一点E作⊙O的切线,切点为F.若∠ACF=65°,则∠E=.20.(3分)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连结BD、DP,BD与CF相交于点H.给出下列结论:①△ABE≌△DCF;②=;③DP2=PH•PB;④=.其中正确的是.(写出所有正确结论的序号)三、解答题(本大题共6小题,共60分)21.(8分)某校课题研究小组对本校九年级全体同学体育测试情况进行调查,他们随机抽查部分同学体育测试成绩(由高到低分A、B、C、D四个等级),根据调查的数据绘制成如下的条形统计图和扇形统计图.请根据以上不完整的统计图提供的信息,解答下列问题:(1)该课题研究小组共抽查了名同学的体育测试成绩;扇形统计图中B 级所占的百分比b=,D级所在小扇形的圆心角的大小为;(2)请直接补全条形统计图;(3)若该校九年级共有600名同学,请估计该校九年级同学体育测试达标(测试成绩C级以上,含C级)的人数.22.(8分)海船以5海里/小时的速度向正东方向行驶,在A处看见灯塔B在海船的北偏东60°方向,2小时后船行驶到C处,发现此时灯塔B在海船的北偏西45°方向,求此时灯塔B到C处的距离.23.(12分)杰瑞公司成立之初投资1500万元购买新生产线生产新产品,此外,生产每件该产品还需要成本60元.按规定,该产品售价不得低于100元/件且不得超过180元/件,该产品销售量y(万件)与产品售价x(元)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出x的取值范围;(2)第一年公司是盈利还是亏损?求出当盈利最大或者亏损最小时的产品售价;(3)在(2)的前提下,即在第一年盈利最大或者亏损最小时,第二年公司重新确定产品售价,能否使两年共盈利达1340万元?若能,求出第二年产品售价;若不能,请说明理由.24.(8分)如图,AB是⊙O的直径,OD⊥弦BC于点F,交⊙O于点E,连结CE、AE、CD,若∠AEC=∠ODC.(1)求证:直线CD为⊙O的切线;(2)若AB=5,BC=4,求线段CD的长.25.(12分)已知:把Rt△ABC和Rt△DEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上.∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm.如图(2),△DEF从图(1)的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿BA向点A匀速移动,当△DEF的顶点D移动到AC边上时,△DEF停止移动,点P也随之停止移动.DE与AC相交于点Q,连接PQ,设移动时间为t(s)(0<t<4.5).解答下列问题:(1)当t为何值时,点A在线段PQ的垂直平分线上?(2)连接PE,设四边形APEC的面积为y(cm2),求y与t之间的函数关系式;是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;若不存在,说明理由;(3)是否存在某一时刻t,使P、Q、F三点在同一条直线上?若存在,求出此时t的值;若不存在,说明理由.26.(12分)如图所示,抛物线y=ax2+c(a>0)经过梯形ABCD的四个顶点,梯形的底AD在x轴上,其中A(﹣2,0),B(﹣1,﹣3).(1)求抛物线的解析式;(2)点M为y轴上任意一点,当点M到A,B两点的距离之和为最小时,求此时点M的坐标;(3)在第(2)问的结论下,抛物线上的点P使S=4S△ABM成立,求点P的坐△PAD标.2016年内蒙古包头市昆区中考数学二模试卷参考答案与试题解析一、选择题(本大题共12小题,每题3分,共36分)1.(3分)﹣8的立方根是()A.2 B.2 C.﹣ D.﹣2【解答】解:﹣8的立方根是:﹣2.故选:D.2.(3分)统计显示,2013年底某市各类高中在校学生人数约是11.4万人,将11.4万用科学记数法表示应为()A.11.4×104B.1.14×104C.1.14×105D.0.114×106【解答】解:11.4万=1.14×105,故选:C.3.(3分)函数中自变量x的取值范围是()A.x≥2 B.x≥﹣2 C.x<2 D.x<﹣2【解答】解:依题意,得x+2≥0,解得x≥﹣2,故选B.4.(3分)下列计算正确的是()A.a2+a2=2a4B.3a2b2÷a2b2=3abC.(﹣a2)2=a4D.(﹣m3)2=m9【解答】解:A、a2+a2=2a2,故此选项错误;B、3a2b2÷a2b2=3,故此选项错误;C、(﹣a2)2=a4,正确;D、(﹣m3)2=m6,故此选项错误;故选:C.5.(3分)抛物线y=﹣6x2可以看作是由抛物线y=﹣6x2+5按下列何种变换得到()A.向上平移5个单位B.向下平移5个单位C.向左平移5个单位D.向右平移5个单位【解答】解:∵y=﹣6x2+5的顶点坐标为(0,5),而抛物线y=﹣6x2的顶点坐标为(0,0),∴把抛物线y=﹣6x2+5向下平移5个单位可得到抛物线y=﹣6x2.故选B.6.(3分)河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为()A.12米B.4米C.5米D.6米【解答】解:Rt△ABC中,BC=6米,=1:,∴AC=BC×=6,∴AB===12.故选A.7.(3分)如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F,点P是⊙A上的一点,且∠EPF=45°,则图中阴影部分的面积为()A.4﹣πB.4﹣2πC.8+πD.8﹣2π【解答】解:△ABC的面积是:BC•AD=×4×2=4,∠A=2∠EPF=90°.则扇形EAF的面积是:=π.故阴影部分的面积=△ABC的面积﹣扇形EAF的面积=4﹣π.故选A.8.(3分)按一定规律排列的一列数:,,,…其中第6个数为()A.B.C.D.【解答】解:根据一列数:,,,可知,第n个数分母是n,分子是(n+1)2﹣1的算术平方根,据此可知:第六个数是=,故选D.9.(3分)在一次体育达标测试中,九年级(3)班的15名男同学的引体向上成绩如下表所示:成绩(个)8911121315人数123432这15名男同学引体向上成绩的中位数和众数分别是()A.12,13 B.12,12 C.11,12 D.3,4【解答】解:第8个数是12,所以中位数为12;12出现的次数最多,出现了4次,所以众数为12,故选B.10.(3分)下列四个命题:①对角线互相垂直的平行四边形是正方形;②,则m≥1;③过弦的中点的直线必经过圆心;④圆的切线垂直于经过切点的半径;⑤圆的两条平行弦所夹的弧相等;其中正确的命题有()个.A.1 B.2 C.3 D.4【解答】解:①对角线互相垂直的平行四边形是菱形,故错误;②,则m≥1,正确;③过弦的中点的且垂直于弦的直线必经过圆心,故错误;④圆的切线垂直于经过切点的半径,正确;⑤圆的两条平行弦所夹的弧相等,正确,正确的有3个,故选C;11.(3分)如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x 轴平行,A,B两点的纵坐标分别为3,1.反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为()A.2 B.4 C.2 D.4【解答】解:过点A作x轴的垂线,与CB的延长线交于点E,∵A,B两点在反比例函数y=的图象上且纵坐标分别为3,1,∴A,B横坐标分别为1,3,∴AE=2,BE=2,∴AB=2,S菱形ABCD=底×高=2×2=4,故选D.12.(3分)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②>0;③ac﹣b+1=0;④OA•OB=﹣.其中正确结论的个数是()A.4 B.3 C.2 D.1【解答】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴的右侧,∴b>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①正确;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,而a<0,∴<0,所以②错误;∵C(0,c),OA=OC,∴A(﹣c,0),把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,∴ac﹣b+1=0,所以③正确;设A(x1,0),B(x2,0),∵二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,∴x1和x2是方程ax2+bx+c=0(a≠0)的两根,∴x1•x2=,∴OA•OB=﹣,所以④正确.故选:B.二、填空题(每题3分,共24分)13.(3分)计算:(﹣)=﹣.【解答】解:原式=•=﹣•=﹣.故答案为:﹣.14.(3分)在一个不透明的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则n=1.【解答】解:由题意知:,解得n=1.15.(3分)=5.【解答】解:原式=2﹣4×+1+4=2﹣2+5=5.故答案为:5.16.(3分)折叠矩形ABCD,使点D落在BC边上的点F处,若折痕AE=5,tan ∠EFC=,则BC=10.【解答】解:设CE=3k,则CF=4k,由勾股定理得EF=DE==5k,∴DC=AB=8k,∵∠AFB+∠BAF=90°,∠AFB+∠EFC=90°,∴∠BAF=∠EFC,∴tan∠BAF=tan∠EFC=,∴BF=6k,AF=BC=AD=10k,在Rt△AFE中,由勾股定理得AE===5k=5,解得:k=1,∴BC=10×1=10;故答案为:10.17.(3分)如图,Rt△A′BC′是由Rt△ABC绕B点顺时针旋转而得,且点A、B、C′在同一条直线上,在Rt△ABC中,若∠C=90°,BC=2,AB=4,则斜边AB旋转到A′B所扫过的扇形面积为.【解答】解:AB=4,∠ABA′=120°,所以s==π.18.(3分)关于x的不等式组的解集为x<3,那么m的取值范围是m≥3.【解答】解:,解①得x<3,∵不等式组的解集是x<3,∴m≥3.故答案是:m≥3.19.(3分)如图,AB是⊙O的直径,且经过弦CD的中点H,过CD延长线上一点E作⊙O的切线,切点为F.若∠ACF=65°,则∠E=50°.【解答】解:连接DF,连接AF交CE于G,∵AB是⊙O的直径,且经过弦CD的中点H,∴,∵EF是⊙O的切线,∴∠GFE=∠GFD+∠DFE=∠ACF=65°,∵∠FGD=∠FCD+∠CFA,∵∠DFE=∠DCF,∠GFD=∠AFC,∠EFG=∠EGF=65°,∴∠E=180°﹣∠EFG﹣∠EGF=50°,故答案为:50°.方法二:连接OF,易知OF⊥EF,OH⊥EH,又∠AOF=2∠ACF=130°,故∠E=180°﹣130°=50°20.(3分)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连结BD、DP,BD与CF相交于点H.给出下列结论:①△ABE≌△DCF;②=;③DP2=PH•PB;④=.其中正确的是①③④.(写出所有正确结论的序号)【解答】解:∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,在△ABE与△CDF中,,∴△ABE≌△DCF,故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH,∴===,故②错误;∵∠PDH=∠PCD=30°,∵∠DPH=∠DPC,∴△DPH∽△CDP,∴=,∴PD2=PH•CD,∵PB=CD,∴PD2=PH•P B,故③正确;如图,过P作PM⊥CD,PN⊥BC,设正方形ABCD的边长是4,△BPC为正三角形,∴∠PBC=∠PCB=60°,PB=PC=BC=CD=4,∴∠PCD=30°∴PN=PB•sin60°=4×=2,PM=PC•sin30°=2,S△BPD=S四边形PBCD﹣S△BCD=S△PBC+S△PDC﹣S△BCD=×4×2+×2×4﹣×4×4=4+4﹣8=4﹣4,∴=.故答案为:①③④.三、解答题(本大题共6小题,共60分)21.(8分)某校课题研究小组对本校九年级全体同学体育测试情况进行调查,他们随机抽查部分同学体育测试成绩(由高到低分A、B、C、D四个等级),根据调查的数据绘制成如下的条形统计图和扇形统计图.请根据以上不完整的统计图提供的信息,解答下列问题:(1)该课题研究小组共抽查了80名同学的体育测试成绩;扇形统计图中B 级所占的百分比b=40%,D级所在小扇形的圆心角的大小为18°;(2)请直接补全条形统计图;(3)若该校九年级共有600名同学,请估计该校九年级同学体育测试达标(测试成绩C级以上,含C级)的人数.【解答】解:(1)根据题意得:20÷25%=80(人),B占的百分比为×100%=40%,D所占的度数为360°×=18°;故答案为:80;40%;18°;(2)C级的人数为80﹣(20+32+4)=24(人),补全条形图,如图所示:(3)根据题意得:600×=570(人),则估计该校九年级同学体育测试达标的人数约为570人.22.(8分)海船以5海里/小时的速度向正东方向行驶,在A处看见灯塔B在海船的北偏东60°方向,2小时后船行驶到C处,发现此时灯塔B在海船的北偏西45°方向,求此时灯塔B到C处的距离.【解答】解:如图,过B点作BD⊥AC于D.∴∠DAB=90°﹣60°=30°,∠DCB=90°﹣45°=45°.设BD=x,在Rt△ABD中,AD==x,在Rt△BDC中,BD=DC=x,BC=,∵AC=5×2=10,∴x+x=10.得x=5(﹣1).∴BC=•5(﹣1)=5(﹣)(海里).答:灯塔B距C处海里.23.(12分)杰瑞公司成立之初投资1500万元购买新生产线生产新产品,此外,生产每件该产品还需要成本60元.按规定,该产品售价不得低于100元/件且不得超过180元/件,该产品销售量y(万件)与产品售价x(元)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出x的取值范围;(2)第一年公司是盈利还是亏损?求出当盈利最大或者亏损最小时的产品售价;(3)在(2)的前提下,即在第一年盈利最大或者亏损最小时,第二年公司重新确定产品售价,能否使两年共盈利达1340万元?若能,求出第二年产品售价;若不能,请说明理由.【解答】解:(1)设y=kx+b,则由图象知:,解得k=﹣,b=30,∴y=﹣x+30,100≤x≤180;(2)设公司第一年获利W万元,则W=(x﹣60)y﹣1500=﹣x2+36x﹣3300=﹣(x﹣180)2﹣60≤﹣60,∴第一年公司亏损了,当产品售价定为180元/件时,亏损最小,最小亏损为60万元;(3)若两年共盈利1340万元,因为第一年亏损60万元,第二年盈利的为(x﹣60)y=﹣x2+36x﹣1800,则﹣x2+36x﹣1800﹣60=1340,解得x1=200,x2=160,∵100≤x≤180,∴x=160,∴每件产品的定价定为160元时,公司两年共盈利达1340万元.24.(8分)如图,AB是⊙O的直径,OD⊥弦BC于点F,交⊙O于点E,连结CE、AE、CD,若∠AEC=∠ODC.(1)求证:直线CD为⊙O的切线;(2)若AB=5,BC=4,求线段CD的长.【解答】(1)证明:连接OC,∵∠CEA=∠CBA,∠AEC=∠ODC,∴∠CBA=∠ODC,又∵∠CFD=∠BFO,∴∠DCB=∠BOF,∵CO=BO,∴∠OCF=∠B,∵∠B+∠BOF=90°,∴∠OCF+∠DCB=90°,∴直线CD为⊙O的切线;(2)解:连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠DCO=∠ACB,又∵∠D=∠B∴△OCD∽△ACB,∵∠ACB=90°,AB=5,BC=4,∴AC=3,∴=,即=,解得;DC=.25.(12分)已知:把Rt△ABC和Rt△DEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上.∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm.如图(2),△DEF从图(1)的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿BA向点A匀速移动,当△DEF的顶点D移动到AC边上时,△DEF停止移动,点P也随之停止移动.DE与AC相交于点Q,连接PQ,设移动时间为t(s)(0<t<4.5).解答下列问题:(1)当t为何值时,点A在线段PQ的垂直平分线上?(2)连接PE,设四边形APEC的面积为y(cm2),求y与t之间的函数关系式;是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;若不存在,说明理由;(3)是否存在某一时刻t,使P、Q、F三点在同一条直线上?若存在,求出此时t的值;若不存在,说明理由.【解答】解:(1)如图(1),∵点A在线段PQ的垂直平分线上,∴AP=AQ,∵∠DEF=45°,∠ACB=90°,∠DEF+∠ACB+∠EQC=180°,∴∠EQC=45°,∴∠DEF=∠EQC,∴CE=CQ,由题意知:CE=t,BP=2t,∴CQ=t,∴AQ=8﹣t,在Rt△ABC中,由勾股定理得:AB=10cm,则AP=10﹣2t,∴10﹣2t=8﹣t,解得:t=2,答:当t=2s时,点A在线段PQ的垂直平分线上;(2)如图(2),过P作PM⊥BE,交BE于M,∴∠BMP=90°,在Rt△ABC和Rt△BPM中,∴,∴,∴PM=,∵BC=6cm,CE=t,∴BE=6﹣t,∴y=S△ABC ﹣S△BPE==,∵,∴抛物线开口向上,∴当t=3时,y最小=,答:当t=3s时,四边形APEC的面积最小,最小面积为cm2;(3)如图(3),假设存在某一时刻t,使点P、Q、F三点在同一条直线上,过P作PN⊥AC,交AC于N,∴∠ANP=∠ACB=∠PNQ=90°,∵∠PAN=∠BAC,∴△PAN∽△BAC,∴,∴,∴,,∵NQ=AQ﹣AN,∴NQ=,∵∠ACB=90°,B、C(E)、F在同一条直线上,∴∠QCF=90°,∠QCF=∠PNQ,∵∠FQC=∠PQN,∴△QCF∽△QNP,∴,∴,∵0<t<4.5,∴,解得:t=1,答:当t=1s,点P、Q、F三点在同一条直线上.26.(12分)如图所示,抛物线y=ax2+c(a>0)经过梯形ABCD的四个顶点,梯形的底AD在x轴上,其中A(﹣2,0),B(﹣1,﹣3).(1)求抛物线的解析式;(2)点M为y轴上任意一点,当点M到A,B两点的距离之和为最小时,求此时点M的坐标;=4S△ABM成立,求点P的坐(3)在第(2)问的结论下,抛物线上的点P使S△PAD标.【解答】解:(1)由题意可得:,解得;∴抛物线的解析式为:y=x2﹣4;(2)由于A、D关于抛物线的对称轴(即y轴)对称,连接BD.则BD与y轴的交点即为M点;设直线BD的解析式为:y=kx+b(k≠0),则有:,解得;∴直线BD的解析式为y=x﹣2,点M(0,﹣2);(3)设BC与y轴的交点为N,则有N(0,﹣3);∴MN=1,BN=1,ON=3;S△ABM=S梯形AONB﹣S△BMN﹣S△AOM=(1+2)×3﹣×2×2﹣×1×1=2;∴S=4S△ABM=8;△PAD=AD•|y p|=8,由于S△PAD即|y p|=4;当P点纵坐标为4时,x2﹣4=4,解得x=±2,∴P1(﹣2,4),P2(2,4);当P点纵坐标为﹣4时,x2﹣4=﹣4,解得x=0,∴P3(0,﹣4);故存在符合条件的P点,且P点坐标为:P1(﹣2,4),P2(2,4),P3(0,﹣4).。