160617_不等式与不等式组数学 第13讲

合集下载

专题07 不等式与不等式组重难点突破讲义(解析版)

专题07 不等式与不等式组重难点突破讲义(解析版)

专题07 不等式与不等式组重难点突破讲义【典例解析】题型一、不等式及其性质【例1】(2020·嵊州市期中)式子:①35;②450x +>;③3x =;④2x x +;⑤4x ≠-;⑥21x x +≥+.其中是不等式的有( ). A .2个 B .3个C .4个D .5个【答案】C.【解析】解:①3<5;②4x+5>0;⑤x≠-4;⑥x+2≥x+1是不等式, ∴共4个不等式. 故答案为:C .【例2-1】(2021·浙江杭州模拟)若x y >,则( ) A .22x y < B .1x y >+C .2222x y --<--D .11x y -<-【答案】C.【解析】解:A .∵x>y ,∴2x>2y , A 不正确;B .∵x>y ,∴x+1>y+1, B 不正确;C .∵x>y ,∴-2x-2<-2y-2, C 正确;D .∵x>y ,∴x-1>y-1, D 不正确; 故答案为:C .【例2-2】(2019·云南玉溪期末)已知a <b ,则下列不等式一定成立的是( ) A .20182018a b< B .﹣2a <﹣2b C .a ﹣2018>b ﹣2018 D .a+2018>b+2018【答案】A.【解析】解:A 、∵a<b ,2018>0, ∴20182018a b<,正确; B 、∵a<b ,-2<0,∴ -2a>-2b ,错误; C 、∵a<b ,∴a-2018<b-2018,错误; D 、∵a<b ,∴a+2018<b+2018,错误; 故答案为:A .【例3】若不等式(2)2a x a ->-的解是1x <,则a 的取值范围是( ) A .0a < B .2a >C .2a <D .2a <-【答案】C.【解析】解:不等式(a -2)x >a -2的解集为x <1, ∴a -2<0, 解得:a <2, 故答案为:C .【例4】(2020·山西期中)李明乘车驶入地下车库时,发现车库入口处有几个标志码(如图1),其中第一个标志(如图2)表示“限高2m”.若设车的高度为x m ,则以下几个不等式中对此标志解释准确的是 ( )A .2x ≥B .2x >C .2x ≤D .2x <【答案】C.【例5】(2020·成武县期中)关于x 的不等式2x-a≤-1的解集为x≤1,则a 的值是( ) A .4B .3C .2D .1【答案】B.【解析】解:2x−a≤−1,2x≤a−1,x≤12a -, ∵x≤1, ∴12a -=1, 解得:a =3, 故答案为:B .【例6】(2020·哈尔滨月考)若关于x 的不等式(-1) 1m x m <-的解集为1x >,则m 的取值范围是( ) A .1m B .1m <C .1m ≠D .1m =【答案】B.【解析】解:∵不等式(m-1)x <m-1的解集为x >1, ∴m-1<0,即m <1, 故答案为:B . 题型二、含参数类【例7-1】(2020·湖南株洲市)关于x 的不等式30x a -≤只有两个正整数解,则a 的取值范围是_______ 【答案】6≤a <9.【解析】解:原不等式解得x≤3a, 解集中只有两个正整数解,这两个正整数解是1,2, ∴2≤3a<3, 解得:6≤a <9. 故答案为:6≤a <9.【例7-2】(2020·广西南宁市期末)若关于x 的不等式2x +a ≤0只有两个正整数解,则a 的取值范围是( ) A .﹣6≤a ≤﹣4 B .﹣6<a ≤﹣4C .﹣6≤a <﹣4D .﹣6<a <﹣4【答案】B.【解析】解:解不等式2x +a ≤0,得:x ≤﹣2a,不等式只有两个正整数解,这两个正整数解为1、2, 则2≤﹣2a<3, 解得:﹣6<a ≤﹣4, 故答案为:B .【变式7-1】(2021·北京专题练习)已知关于x 的不等式21x m x -<-的正整数解是1,2,3,则m 的取值范围是( ) A .34m < B .34m <C .811m <D .811m <【答案】C.【解析】解原不等式得:13m x +<不等式的正整数解为1,2,3,∴1343m +<解得:8<m≤11 故答案为:C.【变式7-2】(2021·中山大学附属中学)若关于x 的不等式3x +1<m 的正整数解是1,2,3,则整数m 的最大值是_____. 【答案】13.【解析】解:解不等式3x +1<m ,得13m x -<. ∵关于x 的不等式3x +1<m 的正整数解是1,2,3, ∴1343m -<≤, ∴1013m <≤,∴整数m 的最大值是13. 故答案为:13.【变式7-3】(2020·海淀区期中)已知关于x 的不等式2x ﹣k >3x 只有两个正整数解,则k的取值范围为_____. 【答案】-3≤k <-2. 【解析】解:∵2x -k >3x , ∴2x -3x >k , ∴x <-k ,因为只有两个正整数解,则2<-k ≤3, ∴-3≤k <-2, 故答案为:-3≤k <-2.【变式7-4】若关于x 的不等式32x a +≤只有2个正整数解,则a 的取值范围为( ) A .74a -<<- B .74a -≤≤-C .74a -≤<-D .74a -<≤-【答案】D.【例8-1】(2021·陕西西安市月考)不等式组9511x x x m +<+⎧⎨>+⎩的解集是2x >,则m 的取值范围是( ) A .2m B .1mC .1mD .1m <【答案】C.【解析】解:解不等式①得x>2,解不等式②得:x>m+1, ∵不等式组的解集是x>2, ∴m+1≤2 解得:m≤1, 故答案为:C .【例8-2】(2020·浙江期末)若关于x 的不等式组11x x m <⎧⎨>-⎩无解,则m 的取值范围是( )A .2m <B .2m >C .2m ≥D .2m ≤【答案】C.【解析】解:∵不等式组11x x m <⎧⎨>-⎩无解,∴m -1≥1, 解得:m ≥2, 故答案为:C .【例8-3】若不等式组5300x x m -≥⎧⎨-≥⎩有实数解.则实数m 的取值范围是 ( )A .53m ≤B .5<3m C .53m >D .53m ≥【答案】A.【解析】解:5300x x m -≥⎧⎨-≥⎩①②由①,得x 53≤;由②,得x ≥m , ∵不等式组有实数解, ∴m 53≤. 故答案为:A .【例8-4】(2020·宁波市期末)若关于x 的不等式0721x m x -<⎧⎨-≤⎩的整数解共有4个,则m 的取值范围是( ) A .68m << B .67≤<mC .67m ≤≤D .67m <≤【答案】D. 【解析】解:解不等式0721x m x -<⎧⎨-≤⎩①②,由①式得,x<m ,由②式得x≥3,故m 的取值范围是:6<m≤7, 故答案为:D .【变式8-1】若关于x 的一元一次不等式组2132x x x m ->+⎧⎨<⎩的解集是3x <-,则m 的取值范围是( ) A .3m ≥- B .3m >-C .3m ≤-D .3m <-【答案】A.【解析】解:解不等式2x -1>3x +2,得:x <-3, ∵不等式组2132x x x m->+⎧⎨<⎩的解集为x <-3,∴m ≥-3. 故答案为:A .【变式8-2】若关于x 的一元一次不等式组12x x m<≤⎧⎨>⎩有解,则m 的取值范围为( )A .2m <B .2m ≤C .1m <D .12m ≤<【答案】A.【解析】解:∵不等式组12x x m <≤⎧⎨>⎩有解,∴m <2, 故答案为:A .【变式8-3】已知关于x 的不等式6m x <<的整数解共有3个,则m 的取值范围为_____________. 【答案】2≤m <3.【解析】解:由题意得:符合题意的整数解为5,4,3 ∴m 不能取值3,可以取值2 ∴2≤m <3故答案为:2≤m <3. 题型三、不等式组及其解法【例9】(2020·成都市锦江区月考)若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是3x my m =⎧⎨=+⎩(m 为常数),方程组111222(2)2(2)2(2)2(2)2a x y b x y c a x y b x y c +++=⎧⎨+++=⎩的解x 、y 满足3x y +>,则m 的取值范围为______.【答案】m >2.【解析】解:方程组111222(2)2(2)2(2)2(2)2a x y b x y c a x y b x y c +++=⎧⎨+++=⎩,可转换为1112221(2)21(2)2a x y b x y c a x y b x y c ⎧⎛⎫+++= ⎪⎪⎪⎝⎭⎨⎛⎫⎪+++= ⎪⎪⎝⎭⎩,∵方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解集为3x my m =⎧⎨=+⎩,∴方程组1112221(2)21(2)2a x yb x yc a x y b x y c ⎧⎛⎫+++= ⎪⎪⎪⎝⎭⎨⎛⎫⎪+++= ⎪⎪⎝⎭⎩的解为:1223x y m x y m ⎧+=⎪⎨⎪+=+⎩①②,由②-①得:x=2把x=2代入①得:y=m -1, ∴x+y=m+1>3, ∴m>2, 故答案为:m>2.【例10】(2021·武城县四女寺镇明智中学九年级一模)不等式组1124223122x x x x ⎧+>-⎪⎪⎨⎪-≤⎪⎩的解集在数轴上表示正确的是( ) A .B .C .D .【答案】A.【解析】解:1124223122x x x x ⎧+>-⎪⎪⎨⎪-≤⎪⎩①②,由①得:x >-3,由②得:x ≤1, ∴不等式组的解为:-3<x ≤1,在数轴上表示如下:故答案为:A .【例11】(2020·山东枣庄月考)若关于,x y 的二元一次方程组23224x y m x y +=-+⎧⎨+=⎩的解满足 3x y +>-,求出满足条件的m 的所有正整数数值.【答案】1、2、3、4.【解析】解:由23224x y m x y +=-+⎧⎨+=⎩①② ①+②得:3x+3y=-3m+6即x+y=-m+2>-3 ∴m<5满足条件的m 的所有正整数数值是1、2、3、4. 【例12】(2021·天津河西区)解不等式组321251x x x ≤+⎧⎨+≥-⎩①②请结合题意填空,完成本题的解答. (1)解不等式①,得________; (2)解不等式②,得________;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为______.【答案】(1)1x ≤;(2)3x ≥-;(3)见解析;(4)31x -≤≤【例13】(2021·江西模拟)解不等式组:3(2)41213x x x x --≥-⎧⎪+⎨>-⎪⎩,并在数轴上表示它的解集.【答案】x ≤1.【解析】解:3(2)4?121?3x x x x --≥-⎧⎪⎨+>-⎪⎩①②,∵解不等式①得:x ≤1,解不等式②得:x <4, ∴不等式组的解集为:x ≤1, 在数轴上表示不等式组的解集为:.【例14】如果一元一次方程的解是一元一次不等式组的一个解,则称该一元一次方程为该不等式组的一个关联方程.如一元一次方程213x -=的解是2x =,一元一次不等式组21354x x >⎧⎨-<⎩的解集是132x <<,我们就说一元一次方程213x -=是一元一次不等式组21354x x >⎧⎨-<⎩的一个关联方程. (1)在方程①310x -=,②240x -=,③(21)7x x +-=-中,不等式组52322x x x x -<-+⎧⎨->-+⎩的关联方程是 ;(填序号)(2)若不等式组112132x x x ⎧-<⎪⎨⎪+>-+⎩的一个关联方程的根是整数,则这个关联方程可以是 ;(写出一个即可)(3)若方程92x x -=,132()2x x +=+都是关于x 的不等式组22x x mx m <-⎧⎨-⎩的关联方程,直接写出m 的取值范围.【答案】(1)②;(2)x-1=0;(3)1≤m <2. 【解析】解:(1)解不等式组52322x x x x -<-+⎧⎨->-+⎩得:712x <<, ∵方程①的解为13x =;方程②的解为x=2;方程③的解为:x=-2,∴不等式组的关联方程是②,故答案为:②;(2)解不等式组112132x x x ⎧-<⎪⎨⎪+>-+⎩ 得:1342x <<, 所以不等式组的整数解为:x=1,故答案为:x-1=0;(3)解不等式组22x x m x m<-⎧⎨-⎩ 得:2m x m <+.方程9-x=2x 的解为:x=3, 方程132()2x x +=+的解为:x=2, 其是关于x 的不等式组22x x m x m<-⎧⎨-⎩的关联方程, ∴m 222m 323m m <⎧⎪+≥⎪⎨<⎪⎪+≥⎩, 解得:1≤m <2∴m 的取值范围是1≤m <2.题型四、实际应用【例15】(2020·安徽合肥)春节期间某商场为促销,将定价为50元/件的商品如下销售:一次性购买不超过5件按照原价销售;一次性购买超过5件则按原价的八折出售.旗旗现在有290元,则最多可购买这种商品( )件.A .6B .7C .8D .9【答案】B.【解析】解:设旗旗可以购买x 件商品,∵290>250,∴旗旗购买的商品超过5件,50×0.8x≤290,解得:x≤714. ∵x 为整数,∴x 的最大值为7.故答案为:B .【例16】(2021·合肥市期中)阿慧在店内购买两种蛋糕当伴手礼,如图为蛋糕的价目表.已知阿慧共购买10盒蛋糕,花费的金额不超过500元.若他将蛋糕分给75位同事,每人至少能拿到一个蛋糕,则阿慧花多少元购买蛋糕?( )A .430B .450C .460D .490【答案】D. 【解析】解:设阿慧购买x 盒桂圆蛋糕,则购买(10-x )盒金枣蛋糕,则()()7040105001261075x x x x ⎧+-≤⎪⎨+-≥⎪⎩, 解得:122≤x ≤133, ∵x 是整数,∴x =3,70×3+40×(10-3)=490(元).故答案为:D .【例17-1】(2020·河南驻马店期中)阅读以下结论:(1)若|x |=a (a ≥0),则x =±a . (2)若|x |>a (a >0),则x >a 或x <﹣a ;若|x |<a (a >0),则﹣a <x <a .(3)若(x ﹣a )(x ﹣b )>0(0<a <b ),则x >b 或x <a ;若(x ﹣a )(x ﹣b )<0(0<a <b ),则a <x <b .根据上述结论,解答下面问题:(1)解方程:|3x ﹣2|﹣4=0.(2)解不等式:|3x ﹣2|﹣4>0.(3)解不等式:|3x ﹣2|﹣4<0.(4)解不等式:(x ﹣2)(x ﹣5)>0.(5)解不等式:(2x ﹣3)(2x ﹣5)<0.【答案】(1)x =2或x =﹣23;(2)x >2或x <﹣23;(3)﹣23<x <2;(4)x >5或x <2;(5)32<x <52. 【解析】(1)解:|3x ﹣2|﹣4=0,3x ﹣2=4或3x ﹣2=﹣4,解得x =2或x =23-; (2)解:|3x ﹣2|﹣4>0,3x ﹣2>4或3x ﹣2<﹣4,解得x >2或x <23-; (3)解:|3x ﹣2|﹣4<0,﹣4<3x ﹣2<4, 解得23-<x <2; (4)解:(x ﹣2)(x ﹣5)>0,x ﹣5>0或x ﹣2<0,解得x >5或x <2;(5)解不等式:(2x ﹣3)(2x ﹣5)<0,3<2x <5, 解得32<x <52. 【例17-2】(2020·北京通州区期末)对于一个数x ,我们用(]x 表示小于x 的最大整数,例如: (](](]2.62,34,109=-=-=.(1)填空:(]2020___________-=,(]2.4___________-=,(]0.7___________=; (2)如果,a b 都是整数,(]a 和(]b 互为相反数,求代数式224a b b -+的值;(3)如果(]3x =,求x 的取值范围.【答案】(1)-2021,-3,0;(2)4;(3)-3<x ≤-2或3<x ≤4.【解析】解:(1)(-2020]=-2021,(-2.4]=-3,(0.7]=0;故答案为:-2021,-3,0.(2)∵a ,b 都是整数,且(a]和(b]互为相反数,∴a-1+b-1=0,∴a+b=2,∴a 2-b 2+4b=(a-b )(a+b )+4b=2(a-b )+4b=2(a+b )=2×2=4;(3)当x <0时,∵|(x]|=3,∴x >-3,∴-3<x≤-2;当x >0时,∵|(x]|=3,∴x >3,∴3<x≤4.故x 的范围取值为-3<x≤-2或3<x≤4.【例18】(2020·四川南充期末)已知方程组2331x y k x y k +=+⎧⎨-=--⎩的解中,x 是非负数,y 是正数.(1)求k 的取值范围;(2)化简:21k k --+;(3)当k 为何整数时,不等式221x k kx +<+的解集为1x >.【答案】(1)425k -<≤;(2)-2k+1;(3)1或2.【解析】解:(1)解方程组2331x y k x y k +=+⎧⎨-=--⎩①②①+②,得 22x k =-+ ∴12kx =-+①-②,得 254y k =+ ∴522ky =+ 已知102k x =-+,且5202ky =+>∴k 2≤且45k >- ∴425k -<≤(2)∵425k -<≤∴20k -≤且10k +>. ∴21k k --+(2)(1)k k =---+21k =-+ 即21k k --+21k =-+;(3)∵221x k kx +<+∴221kx x k ->-∴(21)21k x k ->-∵解集为 1x >,∴210k ->. ∴12k > 结合425k -<≤ 得122k <≤.∴整数k=1或k=2.【例19】某学校积极响应怀化市“三城同创”的号召,绿化校园,计划购进A ,B 两种树苗,共21棵,已知A 种树苗每棵90元,B 种树苗每棵70元.设购买A 种树苗x 棵,购买两种树苗所需费用为y 元.(1)求y 与x 的函数表达式,其中0≤x ≤21;(2)若购买B 种树苗的数量少于A 种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.【答案】见解析.【解析】解:(1)根据题意,得:y =90x +70(21﹣x )=20x +1470,所以函数解析式为:y =20x +1470;(2)∵购买B 种树苗的数量少于A 种树苗的数量,∴21﹣x <x ,解得:x >10.5,又∵y =20x +1470,且x 取整数,∴当x =11时,y 有最小值=1690,∴使费用最省的方案是购买B 种树苗10棵,A 种树苗11棵,所需费用为1690元.【例20】(2021·河南郑州市期中)某班对期中考试进步的同学进行表彰,若购买百乐笔15支,晨光笔20支,需花费250元;若购买百乐笔10支,晨光笔25支,需花费225元. (1)求百乐笔、展光笔的单价;(2)如果再次购买百乐笔、晨光笔共35支,并且购买两种笔的总费用不超过300元,求至多购买多少支百乐笔?【答案】见解析.【解析】解:(1)设百乐笔的单价为x 元/支、展光笔的单价为y 元/支,根据题意得,15202501025225x y x y +=⎧⎨+=⎩,整理得:34502545x y x y +=⎧⎨+=⎩①② ①×2-②×3得:y=5把y=5代入①得:x=10105x y =⎧∴⎨=⎩答:百乐笔的单价为10元、展光笔的单价为5元.(2)设购买百乐笔m 支,则晨光笔(35-m )支,由题意得:()10535300m m +-≤,解得:m ≤25,答:至多购买25支百乐笔.【例21】某学校为了增强学生体质,加强体育锻炼,决定让各班购买跳绳和毽子作为活动器材.已知购买2根跳绳和5个毽子共需32元;购买4根跳绳和3个毽子共需36元. (1)求购买一根跳绳和一个毽子分别需要多少元;(2)某班需要购买跳绳和毽子的总数量是54,且购买的总费用不能超过260元;若要求购买跳绳的数量多于20根,通过计算说明共有哪几种购买方案.【答案】见解析.【解析】解:(1)设购买一根跳绳需要x 元,购买一个毽子需要y 元,依题意,得:25324336x y x y +=⎧⎨+=⎩, 解得:64x y =⎧⎨=⎩. 答:购买一根跳绳需要6元,购买一个毽子需要4元;(2)设购买m 根跳绳,则购买(54−m )个毽子,由题意,得:()645426020m m m ⎧+-≤⎨>⎩,解得:20<m ≤22.∵m 为正整数,∴m 可以为21,22.∴共有2种购买方案,方案1:购买21根跳绳,33个毽子;方案2:购买22根跳绳,32个毽子.。

第1讲 不等式及其性质

第1讲 不等式及其性质

答案:AC
19

)
不等式及其性质
《高考特训营》 ·数学


解析:通法:因为 > ,且c2>0,不等式两边同乘以c2得a>


b,故A项正确;
+
+

− Leabharlann =,由于b>a>0,m<0,而b+m可能大于0,

+
也可能小于0,故B选项错误;
由c<d,则-c>-d,由不等式的基本性质得a-c>b-d,故C
+
18
返 回
不等式及其性质
返 回
《高考特训营》 ·数学
2.(多选题)(2023·济南市高三模拟)下列命题为真命题的是
(


A.若 > ,则a>b


+
B.若b>a>0,m<0,则

+
C.若a>b,c<d,则a-c>b-d

2
2
D.若a >b ,ab>0,则 <


可乘性
>
ቅ⇒____________
ac>bc
>
>
ac<bc
ቅ⇒____________
<
7
注意c的符号
返 回
不等式及其性质
《高考特训营》 ·数学
性质
性质内容
特别提醒
同向可加性
>
ቅ⇒____________
a+c>b+d
>

>>
ac>bd
ቅ⇒____________
2025届
不等式及其性质
《高考特训营》

高考数学一轮复习第十三篇不等式选讲第1节含绝对值的不等式及其解法课件理新人教A版

高考数学一轮复习第十三篇不等式选讲第1节含绝对值的不等式及其解法课件理新人教A版
返回导航
பைடு நூலகம்
1.|2x-1|>3 的解集为( )
(A)(-∞,-2)∪(1,+∞) (B)(-∞,-1)∪(2,+∞)
(C)(-2,1)
(D)(-1,2)
B 解析:由|2x-1|>3 得 2x-1<-3 或 2x-1>3, 解得 x<-1 或 x>2.
返回导航
2.不等式|x-1|-|x-5|<2 的解集是( )
-2x,x≤2 解得 x>4 或 x<-4, ∴函数的定义域为{x|x>4 或 x<-4}.
返回导航
(2)f(x)≥1,∴f(x)=log2(|x+2|+|x-2|-m)≥1, 即|x+2|+|x-2|≥2+m 解集是 R; 则 2+m≤4,故 m≤2.
返回导航
含绝对值不等式的解法 (2015 高考新课标全国卷Ⅰ)已知函数 f(x)=|x+1|-2|x-a|, a>0. (1)当 a=1 时,求不等式 f(x)>1 的解集; (2)若 f(x)的图象与 x 轴围成的三角形面积大于 6,求 a 的取值范围.
返回导航
考点一 |ax+b|≤c 和|ax+b|≥c(c>0)型 不等式的解法
解下列不等式: (1)|2x-3|≤5;(2)|5-4x|>9. 答案:(1){x|-1≤x≤4} (2){x|x<-1 或 x>72}
返回导航
【反思归纳】 |ax+b|≤c,|ax+b|≥c 型不等式的解法 (1)c>0,则|ax+b|≤c 可转化为-c≤ax+b≤c,|ax+b|≥c 可转化为 ax+b≥c 或 ax+b≤-c,然后根据 a,b 的取值求解即可. (2)c<0,则|ax+b|≤c,根据几何意义可得解集为 ,|ax+b|≥c 的 解集为 R. (3)c=0,则|ax+b|≤c 可转化为 ax+b=0,然后根据 a,b 的取值 求解即可;|ax+b|≥c 的解集为 R.

2017版高考数学人教A版(全国)一轮复习配套课件 第十三章系列四 选讲13.3 课时1

2017版高考数学人教A版(全国)一轮复习配套课件 第十三章系列四 选讲13.3 课时1

(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围. 解 f(x)≤|x-4|⇔|x-4|-|x-2|≥|x+a|. 当x∈[1,2]时,|x-4|-|x-2|≥|x+a| ⇔4-x-(2-x)≥|x+a|⇔-2-a≤x≤2-a. 由条件得-2-a≤1且2-a≥2,即-3≤a≤0.
故满足条件的a的取值范围为[-3,0].
(2)不等式|x+ 1|≥|a-2|+sin y对一切非零实数x,y均成立,求实数a的取值 x
范围.
解 ∵x+1x∈(-∞,-2]∪[2,+∞), ∴|x+1x|∈[2,+∞),其最小值为 2.
又∵sin y的最大值为1,
故不等式|x+1x|≥|a-2|+sin y 恒成立时,
有|a-2|≤1,解得a∈[1,3].
第三十二页,编辑于星期六:解二十析点答十案八分。
1 2 3 4 5 6 7 8 9 10
3.对于任意实数a,b,已知|a-b|≤1,|2a-1|≤1,且恒有|4a-3b+2|≤m,
求实数m的取值范围.
解 因为|a-b|≤1,|2a-1|≤1,
所以|3a-3b|≤3,|a-12|≤12, 所以|4a-3b+2|=|(3a-3b)+(a-12)+52|
不等式 |x|<a
a>0 (-a,a)
a=0
a<0


|x|>a (-∞,-a)∪(a,+∞) (-∞,0)∪(0,+∞)
R
答案 第四页,编辑于星期六:二十点 十八分。
(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法: ①|ax+b|≤c⇔ -c≤ax+b≤c ; ②|ax+b|≥c⇔ ax+b≥c或ax+b≤-c ; (3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法:

不等式与不等式组小结与解含参数问题题型归纳(定稿)

不等式与不等式组小结与解含参数问题题型归纳(定稿)

不等式与不等式组小结与解含参数问题题型归纳(定稿)第一篇:不等式与不等式组小结与解含参数问题题型归纳(定稿)第九章不等式与不等式知识点归纳一、不等式及其解集和不等式的性质用不等号表示大小关系的式子叫做不等式。

常见不等号有:“<” “>” “≤” “≥” “ ≠ ”。

含有未知数的不等式的所有解组成这个不等式的解集,解不等式就是求不等式的解集。

注:①在数轴上表示不等式解集时,有等号用实心点,无等号用空心圈。

②方向:大于向右画,小于向左画。

不等式的三个性质:①不等式两边同时加(或减)同一数或式子,不等号不变;②不等式两边同时乘(或除)同一正数,不等号不变;③不等式两边同时乘(或除)同一负数,不等号改变。

作差法比较a与b的大小:若a-b>0,则a>b;若a-b<0;则a <b;若a-b=0, 则a=b。

例1、下列式子中哪些是不等式?① a+b=b+a;②a<b-5;③-3>-5;④x≠1 ;⑤2x-3。

例2、若aaba+1b+122 -;④;⑤am___bm 2232⑥ab 0;⑦a+m b+m;⑧a² b²;⑨am bm。

例3、①由ax<a,可得x>1可得a____;②由ax<a,可得x<1可得a____;③ 由mx-2≤2x-m可得x≥-1,那么m______。

例4、不等式5(x+2)≤28-2x的非负整数解是__________________。

二、一元一次不等式及其实际问题一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式(即分母中不含未知数),这样的不等式叫做一元一次不等式。

解一元一次不等式的一般步骤:(1)去分母(两边每一项同乘分母的最小公倍数)(2)去括号(括号里每一项都要乘括号前面的系数)(3)移项(变号后移项)(4)合并同类项(5)将x项系数化为1(系数为负数要变号)。

一元一次不等式与实际问题(审设列解验答)常见表示不等关系的关键词:①不超过,不多于,至多,最多(≤);②不少于,不少于,至少,最少(≥)③之前,少于,低于(<);④超过,多于,大于(>)。

专题13 不等式选讲-2021年高考数学二轮专项复习

专题13 不等式选讲-2021年高考数学二轮专项复习

专题13 不等式选讲不等式选讲是高考的选考内容之一,考查的重点是不等式的证明、绝对值不等式的解法以及数学归纳法在不等式中的应用等,命题的热点是绝对值不等式的解法,以及绝对值不等式与函数的综合问题的求解.本部分命题形式单一、稳定,是三道选考题目中最易得分的,所以可重点突破.【知识要点】1.含有绝对值的不等式的解法(1)|f (x )|>a (a >0)⇔f (x )>a 或f (x )<-a ; (2)|f (x )|<a (a >0)⇔-a <f (x )<a ;(3)|x -a |+|x -b |≥c (c >0)和|x -a |+|x -b |≤c (c >0)型不等式的解法 法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想; 法二:利用“零点分段法”求解,体现了分类讨论的思想; 2.绝对值三角不等式|a |-|b |≤|a ±b |≤|a |+|b |.此性质可用来解不等式或证明不等式. 3.基本不等式定理1:设a ,b ∈R ,则a 2+b 2≥2ab .当且仅当a =b 时,等号成立.定理2:如果a ,b 为正数,则a +b2≥ab ,当且仅当a =b 时,等号成立.定理3:如果a ,b ,c 为正数,则a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立.定理4:(一般形式的算术—几何平均不等式)如果a 1、a 2、…、a n 为n 个正数,则a 1+a 2+…+a nn≥na 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立.4.柯西不等式(1)设a ,b ,c ,d 为实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时等号成立.(2)若a i,b i(i ∈N *)为实数,则(∑ni =1a 2i)(∑ni =1b 2i)≥(∑ni =1a i b i )2,当且仅当b i =0(i =1,2,…,n )或存在一个数k ,使得a i =kb i (i =1,2,…,n )时,等号成立.(3)柯西不等式的向量形式:设α,β为平面上的两个向量,则|a |·|β|≥|α·β|,当且仅当这两个向量同向或反向时等号成立.【复习要求】(1)理解绝对值的几何意义,并能利用绝对值不等式的几何意义证明以下不等式:① ;b a b a +≤+② ;b c c a b a -+-≤-(2)会利用绝对值的几何意义求解以下类型的不等式:c b ax ≤+ c b ax ≥+ a b x c x ≥-+-(3)会用不等式①和②证明一些简单问题。

高考数学一轮复习 第十三篇 不等式选讲 第1节 含绝对值的不等式及其解法课件 文

高考数学一轮复习 第十三篇 不等式选讲 第1节 含绝对值的不等式及其解法课件 文

-3x+2a-1(x≤a), 解析:当 a≤-1 时,f(x)=x-2a-1(a<x≤-1),
3x-2a+1(x>-1), 所以 f(x)min=-a-1, 所以-a-1=5, 所以 a=-6.
返回(fǎnhuí)导航
第1节 含绝对值的不等式及其解法 第十二页,共三十八页。
当 a>-1 时,f(x)=- -3x+x+22aa+-11((-x≤1<-x1≤)a, ), 3x-2a+1(x>a),
返回(fǎnhuí)导航
第1节 含绝对值的不等式及其解法 第十七页,共三十八页。
解析:(1)原不等式等价于-2<x2-2<2,即 0<x2<4. 所以-2<x<2 且 x≠0.故不等式的解集为(-2,0)∪(0,2). 故选 D. (2)由于||x-2|-1|≤1, 即-1≤|x-2|-1≤1, 即|x-2|≤2, 所以-2≤x-2≤2,所以 0≤x≤4. 答案:(1)D (2)[0,4]
返回(fǎnhuí)导航
第1节 含绝对值的不等式及其解法 第九页,共三十八页。
3.若 x,y,a∈R+,且 x+ y≤a x+y恒成立,则 a 的最小值 是( )
(A)
2 2
(C)1
(B) 2 (D)12
返回(fǎnhuí)导航
第1节 含绝对值的不等式及其解法 第十页,共三十八页。
B 解析:因为
返回(fǎnhuí)导航
第1节 含绝对值的不等式及其解法 第二十八页,共三十八页。
③数形结合法: 在研究曲线交点的恒成立问题时,若能数形结合,揭示问题所 蕴含的几何背景,发挥形象思维与抽象思维各自的优势,可直观解 决问题. 提醒:不等式的解集为 R 是指不等式恒成立问题,而不等式的 解集为∅的对立面也是不等式恒成立问题,如 f(x)>m 的解集为∅,则 f(x)≤m 恒成立.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、关于的方程的解为正实数,则的取值范围是.
2、关于x的不等式2x-a≤-1的解集如图所示,则a的取值是()
12x x m
<≤⎧⎨
>⎩3、若0>+b a 且0<ab ,则b b a a --,,,,的大小关系为 ( )
A .a b b a <<-<-
B .b a b a -<<<-
C .a b b a <-<<-
D .a b a b <-<-<
4、若不等式组⎩
⎪⎨⎪⎧
x +a ≥0,
1-2x >x -2有解,则a 的取值范围是____________.
5、若关于y x ,的二元一次方程组⎩
⎨⎧-=+-=+221
32y x k y x 的解满足4>-y x ,则k 的取值范围是 .
6、若不等式组⎩⎨
⎧-<+<4
2
3a x a x 的解集是23+<a x ,则a 的取值范围是 .
7、若不等式组⎩

⎧>-<-321
2b x a x 的解集是11<<-x ,那么)1)(1(-+b a 的值为 。

8、(1)已知关于x 的不等式组
⎩⎨
⎧≥-≤-5
420
x b x 的整数解共有3个,则b 的取值范围是 .
9、不等式组⎩
⎨⎧+-a x x x <<5335的解集为4<x ,则a 满足的条件是
10、 有解,则m 的取值范围
11、若 a a 2332-=-,则a 的取值范围是 .
12、不等式组⎩⎨⎧≤--0
11
2x x 的整数解是:__________________。

(3) ⎪⎩⎪⎨⎧---+≥-x x x x 8)1(31123 (4) ⎪⎩⎪
⎨⎧-≤--x x x
x 2382
62
13.为了对学生进行爱国主义教育,某校组织学生去看演出,有甲、乙两种票,已知甲、乙两种票的单价比为4∶3,单价和为42元.
(1)甲、乙两种票的单价分别是多少元?
(2)学校计划拿出不超过750元的资金,让七年级一班的36名学生首先观看,问甲种票最多买多少张?
14、把价格为每千克20元的甲种糖果8千克和价格为每千克18元的乙种糖果若干千克混合,要使总价不超过400元,且糖果不少于15千克,所混合的乙种糖果最多是多少?最少是多少?
15、某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。

17、绵阳市“全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.
(1)王灿如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?
(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?
18、某服装厂生产一种西装和领带,西装每套定价200元领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:(1)买一套西装送一条领带;(2)西装和领带均按定价的90%付款.某商店老板现要到该服装厂购买西装20套,领带x(x>20)条.请你根据x的不同情况,帮助商店老板选择最省钱的购买方案.。

相关文档
最新文档