箱线图如何看正态性
如何检验数据是否服从正态分布

如何检验数据是否服从正态分布正态分布是概率论和统计学中的一个重要分布,也称为高斯分布。
在很多实际问题中,需要确定一个数据集是否服从正态分布。
本文将介绍几种常用的方法来检验数据是否服从正态分布。
1.直方图检验法:直方图是用来表示数据频数分布的常用图形方法。
通过绘制数据集的直方图,我们可以观察数据的分布情况。
对于服从正态分布的数据,其直方图应该是呈现出一座钟形曲线的形状。
如果数据集的直方图呈现出钟形曲线的形状,那么可以初步判断数据服从正态分布。
但这种方法仅适用于大样本量和精确的直方图。
2.正态概率图法:正态概率图(Probability Plot)是另一种判断数据是否服从正态分布的方法。
正态概率图是将数据按照大小排序后,将每个数据点的累积分布函数的值(即标准正态分布分位数)在纵坐标上绘制,而横坐标则表示数据点的实际值。
如果数据集的正态概率图上的点大致沿着一条直线排列,则可以认为数据服从正态分布。
4.统计检验法:统计检验是通过计算统计量来得出结论的方法。
常用的统计检验方法有Kolmogorov-Smirnov检验、Shapiro-Wilk检验和Anderson-Darling检验。
- Kolmogorov-Smirnov检验:该检验利用累积分布函数(CDF)来判断观测样本与理论分布之间的差异,若与理论分布没有显著差异,则可认为服从正态分布。
- Shapiro-Wilk检验:该检验是一种适用于小样本量的检验方法,利用观察数据与正态分布之间的相关系数来判断数据是否服从正态分布。
- Anderson-Darling检验:该检验适用于中等样本量,通过计算观察数据与理论分布之间的差异来判断数据服从的分布类型。
总结:。
箱线图(数据分布)分析

Excel-箱线图(数据分布)分析标签:excel数据分析六西格玛箱线图数据分布2014-01-18 11:13 25396人阅读评论(0) 收藏举报分类:Excel(14)网站分析(9)版权声明:本文为博主原创文章,未经博主允许不得转载。
本文摘自作者《网站数据分析:数据驱动的网站管理、优化和运营》:/11295690.html箱线图(Boxplot)也称箱须图(Box-whisker Plot),它是用一组数据中的最小值、第一四分位数、中位数、第三四分位数和最大值来反映数据分布的中心位置和散布范围,可以粗略地看出数据是否具有对称性。
通过将多组数据的箱线图画在同一坐标上,则可以清晰地显示各组数据的分布差异,为发现问题、改进流程提供线索。
1.什么是四分位数箱线图需要用到统计学的四分位数(Quartile)的概念,所谓四分位数,就是把组中所有数据由小到大排列并分成四等份,处于三个分割点位置的数字就是四分位数。
•第一四分位数(Q1),又称“较小四分位数”或“下四分位数”,等于该样本中所有数值由小到大排列后第25%的数字。
•第二四分位数(Q2),又称“中位数”,等于该样本中所有数值由小到大排列后第50%的数字。
•第三四分位数(Q3),又称“较大四分位数”或“上四分位数”,等于该样本中所有数值由小到大排列后第75%的数字。
•第三四分位数与第一四分位数的差距又称四分位间距(InterQuartile Range,IQR)。
计算四分位数首先要确定Q1、Q2、Q3的位置(n表示数字的总个数):•Q1的位置=(n+1)/4•Q2的位置=(n+1)/2•Q3的位置=3(n+1)/4对于数字个数为奇数的,其四分位数比较容易确定。
例如,数字“5、47、48、15、42、41、7、39、45、40、35”共有11项,由小到大排列的结果为“5、7、15、35、39、40、41、42、45、47、48”,计算结果如下:•Q1的位置=(11+1)/4=3,该位置的数字是15。
箱线图课件

揭示科目间的分数关系
详细描述
在同一班级内,不同科目的分数分布可能存在差异。通过箱线图,可以直观地比较同一班级内不同科目之间的分 数关系。通过观察箱体之间的相对位置、中位数和异常值,可以了解各科目之间的分数差异,进而分析科目的难 易程度和学生的学习情况。
实例三:不同年份的数据比较
总结词
展示时间序列的分数变化趋势
比较数据集的分布
01 02
数据分布比较
箱线图可以用于比较不同数据集的分布情况。通过将不同数据集的箱线 图进行对比,可以直观地看出各个数据集的集中趋势、离散程度以及异 常值情况。
差异分析
通过比较不同数据集的箱线图,可以分析出各个数据集之间的差异,进 而对不同数据集进行比较和分析。
03
应用场景
箱线图在数据分析、统计学、质量管理等领域都有广泛应用,可以帮助
人们更好地理解数据的分布情况。
识别数据的偏态和尾重
偏态和尾重定义
偏态是指数据分布的不对称性,尾重是指数据分布的尾部偏向某一方向的情况。
箱线图的识别
通过箱线图,可以清晰地识别出数据的偏态和尾重情况。如果箱线图的形状明显不对称或尾部偏向某一方向,则说明 数据存在偏态或尾重。
处理建议
在分析数据时,对于存在偏态或尾重的数据需要进行适当的处理,以避免对数据分析结果产生不良影响 。例如,可以采用对称化处理、取对数转换等方法来消除偏态或尾重的影响。
箱线图课件
目录
• 箱线图简介 • 箱线图的制作方法 • 箱线图的应用 • 箱线图的优缺点 • 箱线图与其他统计图比较 • 箱线图实例分析
箱线图简介
01
定义与特点
定义
箱线图(Box Plot)也称为箱状 图或箱状分布图,是一种用于展 示一组数据分散情况资料的统计 图。
箱线图怎么看

箱线图怎么看
看箱线图的方法如下:
箱子的中间一条线,是数据的中位数,代表了样本数据的平均水平。
箱子的上下限,分别是数据的上四分位数和下四分位数。
这意味着箱子包含了50%的数据。
因此,箱子的宽度在一定程度上反映了数据的波动程度。
在箱子的上方和下方,又各有一条线。
有时候代表着最大最小值,有时候会有一些点“冒出去”。
请千万不要纠结,理解成“异常值”就好。
箱线图
箱线图(Boxplot)又称盒须图、盒式图或箱形图,是一种用作显示一组数据分散情况资料的统计图,在数据分析中经常被使用到,可以被用于异常值的检测。
利用数据中的五个统计量:最小值、第一四分位数、中位数、第三四分位数与最大值来描述数据的一种方法,它也可以粗略地看出数据是否具有有对称性,分布的分散程度等信息,特别可以用于对几个样本的比较。
箱形图最大的优点就是不受异常值的影响,能够准确稳定地描绘出数据的离散分布情况,同时也利于数据的清洗。
标准化的箱线图
通过将数据进行标准化,可以解决箱线图被压缩的问题。
标准化后的数据均值为0,方差为1。
标准化之后可以清楚的看到,每个特征的异常值分布情况。
正态性分析的方法总结

四、直方图
直方图,是一种二维统计图表,它的两个坐标分别是统 计样本和该样本对应的某个属性的度量。当直方图为钟 型分布时,则可判断其正态。
五、箱线图
箱形图又称为盒须图、盒式图或箱线图,是一种用作显 示一组数据分散情况资料的统计图。因型状如箱子而得 名。在各种领域也经常被使用,常见于品质管理。在箱 线图中,观察矩形位置和中位数,若矩形位于中间位置, 且中位数位于矩形的中间位置,则分布为正态或近似正 态,对称的;g2>3是分布的峰度比正态分布 的峰度低阔;g2<3时,表面分布的峰度比正态分布的峰 度高狭。当N>1000时,g2值才比较可靠
假设检验方法
一、Kolmogorov-Smirno(KS)检验(基于经验分布函数(ECDF)的检验)
Kolmogorov-Smirnov检验法是检验单一样本是否来自某一特定分布。比如检 验一组数据是否为正态分布。它的检验方法是以样本数Kolmogorov-Smirnov 检验法是检验单一样本是否来自某一特定分布。比如检验一组数据是否为正 态分布。它的检验方法是以样本数。 即对于假设检验问题: H0:样本所来自的总体分布服从某特定分布; H1:样本所来自的总体分布不服从某特定分布。
三、Q-Q图
Q-Q图是一种散点图,对应于正态分布的Q-Q图,就是由 标准正态分布的分位数为横坐标,样本值为纵坐标的散 点图。要利用QQ图鉴别样本数据是否近似于正态分布, 只需看QQ图上的点是否近似地在一条直线附近,而且该 直线的斜率为标准差,截距为均值。 用QQ图还可获得样 本偏度和峰度的粗略信息。
五、Anderson-Darling检验
是一种最小距离估计方式,也是估计偏离正态性的最有 效的统计量之一,对于样本量小于等于25很有效,大样 本可能被拒绝正态性,样本量大于等于200一般都会通过 Anderson-Darling检验.该检验对与偏态的尾部分布较敏 感。
正态性的检验方法

正态性的检验方法
正态性的检验方法通常有以下几种:
1. 直方图和正态概率图:绘制样本数据的直方图和正态概率图,通过目测判断数据是否符合正态分布。
2. 正态性假设检验:采用统计学中的正态性假设检验方法,比如Shapiro-Wilk 检验、Kolmogorov-Smirnov检验、Anderson-Darling检验等。
3. Q-Q图:绘制样本数据的Q-Q图(Quantile-Quantile Plot),将观测值的分位数与正态分布的理论分位数进行比较,若数据符合正态分布,点图应该沿着一条直线分布。
4. 箱线图:绘制样本数据的箱线图,通过观察异常值和离群点的数量和位置来判断数据是否符合正态分布。
5. 偏度和峰度检验:计算样本数据的偏度(Skewness)和峰度(Kurtosis),若偏度和峰度接近于0,则数据更接近于正态分布。
以上方法可以单独或者结合使用来检验数据的正态性,但需要注意的是,这些方法都是基于样本数据的,只能提供对正态性的近似判断,并不能确定样本数据是
否完全符合正态分布。
箱线图(数据分布)分析

Excel-箱线图(数据分布)分析标签:excel数据分析六西格玛箱线图数据分布2014-01-18 11:13 25396人阅读评论(0) 收藏举报分类:Excel(14)网站分析(9)版权声明:本文为博主原创文章,未经博主允许不得转载。
目录()[+]本文摘自作者《网站数据分析:数据驱动的网站管理、优化和运营》:箱线图(Boxplot)也称箱须图(Box-whisker Plot),它是用一组数据中的最小值、第一四分位数、中位数、第三四分位数和最大值来反映数据分布的中心位置和散布范围,可以粗略地看出数据是否具有对称性。
通过将多组数据的箱线图画在同一坐标上,则可以清晰地显示各组数据的分布差异,为发现问题、改进流程提供线索。
1.什么是四分位数箱线图需要用到统计学的四分位数(Quartile)的概念,所谓四分位数,就是把组中所有数据由小到大排列并分成四等份,处于三个分割点位置的数字就是四分位数。
第一四分位数(Q1),又称“较小四分位数”或“下四分位数”,等于该样本中所有数值由小到大排列后第25%的数字。
第二四分位数(Q2),又称“中位数”,等于该样本中所有数值由小到大排列后第50%的数字。
第三四分位数(Q3),又称“较大四分位数”或“上四分位数”,等于该样本中所有数值由小到大排列后第75%的数字。
第三四分位数与第一四分位数的差距又称四分位间距(InterQuartile Range,IQR)。
计算四分位数首先要确定Q1、Q2、Q3的位置(n表示数字的总个数):Q1的位置=(n+1)/4Q2的位置=(n+1)/2Q3的位置=3(n+1)/4对于数字个数为奇数的,其四分位数比较容易确定。
例如,数字“5、47、48、15、42、41、7、39、45、40、35”共有11项,由小到大排列的结果为“5、7、15、35、39、40、41、42、45、47、48”,计算结果如下:Q1的位置=(11+1)/4=3,该位置的数字是15。
箱线图是利用数据中的五个统计量

1.箱线图是利用数据中的五个统计量:最小值、第一四分位数、中位数、第三四分位数与
最大来描述数据的一种方法,它也可以粗略地看出数据是否具有有对称性,分布的分散程度等信息。
下四分位数 (QL)等于该样本中所有数值由小到大排列后第25%的数字。
中位数等于该样本中所有数值由小到大排列后第50%的数字。
上四分位数 (QV)等于该样本中所有数值由小到大排列后第75%的数字。
极小值等于该样本中所有数值由小到大排列后最小的数字。
极大值等于该样本中所有数值由小到大排列后最大的数字。
2.Kruskal-Wallis秩和检验,正态记分检验,Jonckheere-Terspstra检验。
完全区组设
计(Friedman秩和检验,关于二元响应的Cochran检验,Page检验,Kendall协同系数检验)。
不完全区组设计(Durbin检验)
3. 1.假设组(x,y)①H0:X与Y不相关—H1:X与Y相关②H0:X与Y不相关—H1:X与
Y正相关③H0:X与Y不相关—H1:X与Y负相关。
2.检验统计量:Ri-Xi在X中的秩,Si-Yi在Y中的秩。
(公式) Rs(1完全正相关,-1完全负相关,0不相关,越接近1相关程度越高,越接近0相关程度越低)。
3.判断:双侧:2p<α拒绝,单侧:p<α拒绝。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
箱线图如何看正态性
箱线图是可以看出基本的分布状态和是否近似正态分布的。
箱线图的箱体的上下两端分别是样本的上四分位和下四分位,中间位中值。
各组线段是各包括了25%的数据,因此,线段长度实际反映了数据的密度,如果各组相对于中值长度相等,至少是数据分布是均匀的(单绝对不是说是完完全全的正太分布)
你随机输入任意的一组超过30个的数据,做一个箱线图,就会发现,那个箱体不会是总是均匀的。
就是说看那个长方形的上下边和中间那条粗的中位数之间的距离对吧?今天正好看到有中位数跑到了箱体低端和顶端两种情况,大致了解了。