数学3.2函数关系的建立分段函数教案沪教版高中一级第一学期
2020年上海新高一新教材数学讲义-专题14 函数(学生版)

专题14 函数(函数的概念,函数的表示方法)知识梳理一、函数的概念1.函数定义:定义一:如果在某个变化过程中有两个变量x ,y ,对于x 在某个范围D 内的每一个确定的值按照某种对应法则f , 都有唯一的值与它对应,那么y 就是x 的函数,记作()y f x =,x 叫做自变量,x 的取值范围D 叫做函数的定义域,和x 的值相对应的y 的值叫做函数值,函数值的集合叫做函数的值域. 定义二:非空数集A 到非空数集B 的一个对应关系f :A B →,使A 中每一个元素在B 中都有唯一确定的元素和它对应,那么对应关系f :A B →叫做A 到B 的函数,记作()y f x =,其中x A ∈,y B ∈,x 叫做自变量,x 的取值范围A 叫做函数的定义域,和x 的值相对应的y 的值叫做函数值,函数值的集合C 叫做函数的值域.(一般有C B ⊆)注意:1、函数定义中要求对定义域中的任何一个x ,在值域中有且只有一个y 值和它对应;但并不要求对于值域中的每一个y 也只能有一个x 和它相对应,即函数的对应法则可以是1对1,也可以多对1,但不可以1对多(即定义域中一个x 对应值域中一个以上的y ). 2、定义域与值域都必须是非空数集.3、定义域的表示方法有:集合表示法、区间表示法 2.函数的三要素: 定义域 、 值域 和 对应关系 .确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。
3.相等函数:如果两个函数的 定义域 和 对应关系 完全一致,则这两个函数相等,这是判断两函数相等的依据.注:若两个函数的定义域与值域相同,是否为相等函数?(不一定。
如果函数y x =和1y x =+,其定义域与值域完全相同,但不是相等函数,看两个函数是否相等,关键是看定义域和对应关系) 4.函数的表示法:表示函数的常用方法有: 解析法 、 图象法 、 列表法 .函数解析式的求法主要包含: 配凑法 、 待定系数法 、 换元法 、 赋值法(方程组法) . 5.函数的定义域、值域:在函数()y f x x A =∈,,中,x 叫做自变量,x 的取值范围A 叫做函数的 定义域 ;与x 的值相对应的y 值叫做函数值,函数值的集合{()f x |x A ∈}叫做函数的 值域 .(1)函数的定义域包含三种形式:①自然型:指函数的解析式有意义的自变量x 的取值范围(如:分式函数的分母不为零,偶次根式函数的被开方数为非负数,对数函数的真数为正数,等等);①限制型:指命题的条件或人为对自变量x 的限制,这是函数学习中重点,往往也是难点,因为有时这种限制比较隐蔽,容易犯错误;①实际型:解决函数的综合问题与应用问题时,应认真考察自变量x 的实际意义。
沪教版高一上册数学函数的概念教案一级第一学期

3.1函数的概念(2)一、教学内容分析函数的概念(2)是学习函数的定义概念之后,进一步学习函数的解析法、列表法和图像法,课本通过出租车的车费问题,要求理解分段函数的概念和分段函数的图像,并能求分段函数对应的函数值,它是后面进一步应用建立分段函数关系,来表示个人所得税等函数关系的基础.通过统计上海市在不同时间人均住房面积的图和表,说明图和表是有效的表示函数的方法.能通过观察和分析图和表,确定函数的定义域和值域.懂得函数的对应法则,要能求出函数对应函数值.二、教学目标设计加深理解函数的概念,熟悉函数的解析法、列表法和图像法;理解分段函数的概念,并能作出分段函数的图像,在简单的情形下能通过观察和分析,确定函数的值域。
懂得函数的抽象记号,能求出函数对应函数值三、教学重点及难点函数的表示法和利用对应法则求值四、教学流程设计五、教学过程设计一、情景引入1.复习和回顾函数的的定义2.函数的解析式表示学生交流并回答上堂课给出的出租车问题:问题1:(1) 某人乘坐出租车7千米,车费为多少元?(2) 某人乘坐出租车15千米,车费为多少元?(3) 尝试写出里程x (千米)与车费y (元)的函数关系,并给出定义域.某地的出租车价格规定:起步费元,可行千米,千米以后按每千米元计价,可再行千米,以后每千米都按元计价,车费元与行车里程(千米)之间的关系可表示为⎪⎩⎪⎨⎧>-≤<+≤<=10631034230,10x x x x x y所以,(1)某人乘车千米的的车费为18472=+⨯=y (元)(2)某人乘车千米的的车费为396153=-⨯=y (元)二、学习新课变量之间的对应关系常常可以用解析式来表示函数的对应法则,例如,我们已经学过的正比例函数、反比例函数、一次函数和二次函数都是用一个解析式表示函数关系的。
而出租车车费问题中,由于不同里程的计费单价是不一样的,因此车费关于里程的关系是一个分段函数,它的图象看课本P73图3-1.例题选讲例1:已知函数312--=x y(1) 将函数表示为分段函数;(2) 作出函数的图像;(3) 观察函数的图象,指出函数的值域.[说明](1) 例1说明有些函数可以用一个解析式表示,也可以用分段函数来表示;将含有绝对值的函数表示为分段函数,容易作出函数的图像.(3)根据学生的能力可以选择不同的函数,例如:函数1-=x y 、x x y +-=22、21++-=x x y 等不同难度的问题.3.函数的图象法和列表法当函数的变量之间的对应关系不适合或难以用解析式表示时,函数还可以用图和表来表示.例2:根据国家统计局公布的上海市人均住房面积资料,可作出下面的图和表.(看课本P55图3-2,表1)观察上海市人均住房面积的图和表,回答下列问题(1)指出函数的定义域和值域; (2)哪一年的平均住房面积最小? (3)哪一年开始,上海市人均住房面积逐年增加? (4)估计1998年的上海市人均住房面积为多少? (5) 解析法、图像法和列表法表示函数时,各有什么优点?[说明](1)从图3-2可以知道,函数的图像不一定是连续的曲线,也可以是一些不连续(离散)的点.(2)要引导学生如何观察函数的图和表.有时为了观察图像的变化趋势,可以用折线依次连接图像的各点.例3.(1)已知x x x f 23)(3+=,求证:0)()(=-+a f a f .)(R a ∈(2)已知二次函数)(x f 满足569)13(2+-=+x x x f 求)(x f[说明]例3的目的是进一步理解函数的对应法则.有了函数的解析式)(x f y =后,对于任何定义域内的x 的值,都有唯一确定的y 值与之对应,我们把与x 值对应的y 值记作)(x f .三、巩固练习1. 设函数)(x f y =满足x x x f 2)1(2+-=-,求函数)(x f y =的解析式.2. 设11)(+-=x x x f ,求满足条件x x x f -=+-)11(的x 值. 四、课堂小结(1)函数的表示法:解析法、图象法和列表法 (2)已知函数的解析式,求对应的函数值的方法.四、 作业布置i.已知函数x x y -=2(Z x ∈且62≤≤-x ),作出函数的图像. ii. 将函数x x y ---=12表示为分段函数,并作出函数的图像3.课本P56 T3.T4六、教学设计说明通过函数的概念(2)的内容分析,函数的解析法、列表法和图像法和函数的对应法则,是本课时教学的主要内容.通过出租车的车费问题,说明出租车的车费关于里程的关系是一个分段函数,给出了分段函数的概念.通过例1,说明有些函数可以用一个解析式表示,也可以分段函数来表示,通过用分段函数表示,更容易作出函数的图像.根据国家统计局公布的上海市人均住房面积资料,给出的图和表, 说明图和表是有效的表示函数的方法,是一个很好的具有实际背景的函数例子.设计例3的目的是进一步理解函数的对应法则.。
最新人教版高一数学必修1第一章《分段函数》教案

示范教案整体设计教学分析本节教材通过两个实例分析了分段函数的概念及简单应用.分段函数能够考查学生的逻辑思维能力,所以有关分段函数问题是高考热点和重点,在新课标中也有明确说明.因此要重视本节的教学.三维目标掌握分段函数的含义及其简单应用,提高学生的逻辑思维能力和应用能力,树立应用意识.重点难点教学重点:分段函数的含义及应用. 教学难点:理解分段函数的含义. 课时安排 1课时教学过程 导入新课思路1.随着生活水平的提高,坐出租车的人越来越多,设行驶路程为x km ,费用为y 元,请结合当地实际,判断y 是否为x 的函数?学生回答后,教师让学生书写其解析式,此时,点出课题.思路2.在今后的学习中,会经常遇到一类函数,是高考的重点和热点,教师点出课题.推进新课 新知探究 提出问题1已知变量x ,y 满足下列等式,y 是x 的函数吗?①|y|=x ;②y =⎩⎪⎨⎪⎧ 1,x>3,2,x≤2;③y =⎩⎪⎨⎪⎧ x ,x≥0,-x ,x<0.2函数y =⎩⎪⎨⎪⎧1,x>3,2,x≤2与函数y =⎩⎪⎨⎪⎧x ,x≥0,-x ,x<0有什么特点?3请指出2中两个分段函数的定义域.讨论结果:(1)根据函数的定义,仅有②和③中,y 是x 的函数.(2)在函数的定义域内,对于自变量x 的不同取值区间,有着不同的对应法则,我们称这类函数为分段函数.分段函数不是几个函数,而是一个函数.(3)函数y =⎩⎪⎨⎪⎧1,x>3,2,x≤2的定义域是(-∞,2]∪(3,+∞).函数y =⎩⎪⎨⎪⎧x ,x≥0,-x ,x<0的定义域是(-∞,0)∪[0,+∞),即R .由以上可见,分段函数的定义域是“每段”自变量取值范围的并集.应用示例思路1例1已知一个函数y =f(x)的定义域为区间[0,2],当x ∈[0,1]时,对应法则为y =x ,当x ∈(1,2]时,对应法则为y =2-x ,试用解析法与图象法分别表示这个函数.解:已知的函数用解析法可表示为y =⎩⎪⎨⎪⎧x ,x ∈[0,1],2-x ,x ∈1,2],用图象表达这个函数,它由两条线段组成,如下图所示.点评:本题主要考查分段函数.所谓分段函数是指在定义域的不同部分,其解析式不同的函数.注意:分段函数是一个函数,不要把它误认为是几个函数;分段函数的定义域是各段定义域的并集,值域是各段值域的并集.生活中有很多可以用分段函数描述的实际问题,如出租车的计费、个人所得税纳税额等等.变式训练已知函数f(x)在[-1,2]上的图象如下图所示,求f(x)的解析式.解:观察图象,知此函数是分段函数,并且在每段上均是一次函数,利用待定系数法求出解析式为:当-1≤x≤0时,f(x)=x +1;当0<x≤2时,f(x)=-x2,则有f(x)=⎩⎪⎨⎪⎧x +1, -1≤x≤0,-12x , 0<x≤2.2在某地投寄外埠平信,每封信不超过20 g 付邮资80分,超过20 g 不超过40 g付邮资160分,超过40 g 不超过60 g 付邮资240分,依此类推,每封x g(0<x≤100)的信应付多少分邮资(单位:分)?写出函数的表达式,作出函数的图象,并求函数的值域.解:设每封信的邮资为y ,则y 是信封重量x 的函数.这个函数关系的表达式为:f(x)=⎩⎪⎨⎪⎧80,x ∈0,20]160,x ∈20,40]240,x ∈40,60]320,x ∈60,80]400,x ∈80,100]函数的值域为{80,160,240,320,400}.根据上述函数的表达式,在直角坐标系中描点,作图.这个函数的图象如上图所示. 点评:本题主要考查分段函数的解析式和图象.求分段函数的函数值时,要注意自变量在其定义域的哪一段上,依次代入分段函数的解析式.画分段函数y =⎩⎪⎨⎪⎧f 1x ,f 2x ,…,x ∈D 1,x ∈D 2,…(D 1,D 2,…,两两交集是空集)的图象步骤是:(1)画整个函数y =f 1(x)的图象,再取其在区间D 1上的图象,其他部分删去不要;(2)画整个函数y =f 2(x)的图象,再取其在区间D 2上的图象,其他部分删去不要;(3)依次画下去;例1请画出下面函数的图象:y =|x|=⎩⎪⎨⎪⎧ x ,-x ,x≥0,x<0.活动:学生思考函数图象的画法:①一次函数是基本初等函数,其图象是直线,可直接画出;②利用变换法画出图象,根据绝对值的概念来化简解析式.解法一:函数y =|x|的图象如下图所示.解法二:画函数y=x的图象,将其位于x轴下方的部分对称到x轴上方,与函数y=x 的图象位于x轴上方的部分合起来得函数y=|x|的图象(如上图所示).例2某质点在30 s 内运动速度v 是时间t 的函数,它的图象如下图.用解析法表示出这个函数,并求出9 s 时质点的速度.解:速度是时间的函数,解析式为 v(t)=⎩⎪⎨⎪⎧ 10+t ,3t ,30,-3t +90,t ∈[0,5,t ∈[5,10,t ∈[10,20,t ∈[20,30].变式训练若定义运算a ⊙b =⎩⎪⎨⎪⎧ b ,a ,a≥b ,a<b ,则函数f(x)=x ⊙(2-x)的值域是________.解析:由题意得f(x)=⎩⎪⎨⎪⎧ x ,2-x ,x≤1,x>1.画函数f(x)的图象得值域是(-∞,1].答案:(-∞,1]知能训练1.函数y =⎩⎪⎨⎪⎧1,x>0,0,x =0,-1,x<0的定义域是( )A .RB .{0}C .∅D .(-∞,0)∪(0,+∞)答案:A2.函数y =⎩⎪⎨⎪⎧2,x≥0,-2,x<0的值域是( )A .{2}B .{2,-2}C .{-2}D .R答案:B3.设f(x)=⎩⎪⎨⎪⎧|x -1|-2,|x|≤1,11+x 2,|x|>1,则f[f(12)]=________.解析:f(12)=|12-1|-2=-32,∴f[f(12)]=f(-32)=11+94=413.答案:4134.画函数y =⎩⎪⎨⎪⎧ x +12,-x ,x≤0,x>0的图象.步骤:①画整个二次函数y =(x +1)2的图象,再取其在区间(-∞,0]上的图象,其他部分删去不要;②画一次函数y =-x 的图象,再取其在区间(0,+∞)上的图象,其他部分删去不要;③这两部分合起来就是所要画的分段函数的图象.如下图所示.5.求函数y =⎩⎪⎨⎪⎧x 2,x>2,1x ,x<0的值域.答案:(-∞,0)∪(4,+∞).拓展提升已知函数f(x)=⎩⎪⎨⎪⎧1+1x ,x>1,x 2-x ,x<-2,求f(2x +1).解:当2x +1>1,即x >0时,f(2x +1)=1+12x +1,当2x +1<-2,即x <-32时,f(2x +1)=(2x +1)2-(2x +1)=4x 2+2x ,由此可得f(2x +1)=⎩⎨⎧1+12x +1,x>0,4x 2+2x ,x<-32.课堂小结本节课学习了分段函数,讨论分段函数的图象与性质.特别指出的是分段函数不是几个函数,而是一个函数.作业课本本节练习B 1、2设计感想 在本节的教学设计中,注重引导学生学会探究.所涉及到的题目比较全面且难度较小,但是能较好地考查学生的思维能力,教师在实际上课中,可根据学生实际,选择应用.(设计者:张新军)。
高等数学(上册)第一章教案

第一章:函数、极限与连续教学目的与要求1.解函数的概念,掌握函数的表示方法,并会建立简单应用问题中的函数关系式。
2.解函数的奇偶性、单调性、周期性和有界性。
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
4.掌握基本初等函数的性质及其图形。
5.理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左、右极限之间的关系。
6.掌握极限的性质及四则运算法则。
7.了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
8.理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。
9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
10.了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
所需学时:18学时(包括:6学时讲授与2学时习题)第一节:集合与函数一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。
如果a是集合A 中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a∉A。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+。
⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。
集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A⊆B(或B⊇A)。
八年级数学:一次函数的应用--分段函数 教案(沪科版)

八年级数学:一次函数的应用--分段函数 教案(沪科版)定义:一般地,如果有实数a 1,a 2,a 3……k 1,k,2k 3……b 1,b 2,b 3……且a 1≤a 2≤a 3……函数Y 与自变量X 之间存在k 1x+b 1 x ≤a 1y = k 2x+b 2 a 1≤x ≤a 2 ① 的函数解析式,则称该函数解析式为X 的分段函数。
K 3x+b 3 a 2≤x ≤a 3 … … … …应该指出:(一), 函数解析式①这个整体只是一个函数,并非是Y=K 1X+b 1 Y=K 2X+b 2……等几个不同函数的简单组合,而k 1x+b 1, k 2x+b 2 ……是函数Y 的几种不同的表达式.。
所以上例中Y={这个整体只是一个函数,不能认为它是两个不同的函数,只能说110X 和110×80%X 是同一函数中的自变量X 在两种不同取值范围内的不同表达式。
(二),由于k 1,k 2,k 3……b 1,b 2,b 3是实数,所以函数Y 在X 的某个范围内的特殊函数,如正比例 函数和常数函数。
(三),由于问题的不同,当然分段函数也可能在自变量某范围内不是一次函数而是其他形式的函数,在这里我们不予讨论。
(四), 一次函数的分段函数是简单的分段函数。
分段函数应用题分段函数是指自变量在不同的取值范围内,其关系式(或图象)也不同的函数,分段函数的应用题多设计成两种情况以上,解答时需分段讨论。
在现实生活中存在着很多需分段计费的实际问题,因此,分段计算的应用题成了近几年中考应用题的一种重要题型。
收费问题与我们的生活息息相关,如水费问题、电费问题、话费问题等,这些收费问题往往根据不同的用量,采用不同的收费方式.以收费为题材的数学问题多以分段函数的形式出现在中考试题中,下面请看几例.一、话费中的分段函数例1 (四川广元)某移动公司采用分段计费的方法来计算话费,月通话时间x(分钟)与相应话费y(元)之间的函数图象如图1所示:(1)月通话为100分钟时,应交话费元;(2)当x≥100时,求y与x之间的函数关系式;(3)月通话为280分钟时,应交话费多少元?图1分析:本题是一道和话费有关的分段函数问题,通过图象可观察到,在0到100分钟之间月话费y(元)是月通话时间x(分钟)的正比例函数,当x≥100时, 月话费y(元)是月通话时间x(分钟)的一次函数.解:(1)观察图象可知月通话为100分钟时,应交话费40元;(2)设y与x之间的函数关系式为y=kx+b由图上知:x=100时,y=40;x=200时,时,y=60则有4010060200k bk b=+⎧⎨=+⎩,解之得1520kb⎧=⎪⎨⎪=⎩所求函数关系式为1205y x=+..(3)把x=280代入关系式1205y x=+,得128020765y∴=⨯+=即月通话为280分钟时,应交话费76元.二、水费中的分段函数例2(广东)某自来水公司为了鼓励居民节约用水,采取了按月用水量分段收费办法,某户居民应交水费y (元)与用水量x (吨)的函数关系如图2. (1)分别写出当0≤x ≤15和x ≥15时,y 与x 的函数关系式; (2)若某户该月用水21吨,则应交水费多少元?分析:本题是一道与收水费有关的分段函数问题.观察图象可知, 0≤x ≤15时y 是x 的正比例函数; x ≥15时,y 是x 的一次函数.解: (1)当0≤x ≤15时,设y =kx ,把x =15,y =27代入,得27=15k ,所以k =591527=,所以y =59x ;当x ≥15时,设y =ax +b ,将x =15,y =27和x =20,y =39.5代入,得⎩⎨⎧=+=+5.3920,2715b a b a 解得a =2.5,b =-10.5所以y =2.5x -10.5 图2 (2)当该用户该月用21吨水时, 三、电费中分段函数例 3 (广东)今年以来,广东大部分地区的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,若某户居民每月应交电费y (元)与用电量x (度)的函数图象是一条折线(如图3所示),根据图象解下列问题:(1)分别写出当0≤x ≤100和x ≥100时,y 与x 的函数关系式; (2)利用函数关系式,说明电力公司采取的收费标准;(3)若该用户某月用电62度,则应缴费多少元?若该用户某月缴费105元时,则该用户该月用了多少度电?图3分析:从函数图象上看图象分为两段,当0≤x ≤100时,电费y 是电量x 的正比例函数,当x ≥100时,y 是x 的一次函数,且函数图象经过点(100,65)和(130,89),设出相应的函数关系式,将点的坐标代入即可确定函数关系式,根据函数关系式可解决问题.解: (1)设当0≤x ≤100时,函数关系式为y =kx ,将x =100,y =65代入,得k =0.65,所以y =0.65x ; 设当x ≥100时,函数关系式为y =a x +b,将x =100,y =65和x =130,y =89代入,得⎩⎨⎧=+=+.89130,65100b a b a 解得a=0.8,b=-15.所以y =0.8x -15 综上可得0.65(0100)0.815(100)xx y x x ⎧=⎨-⎩≤≤≥(2)用户月用电量在0度到100度之间时,每度电的收费的标准是0.65元;超出100度时,每度电的收费标准是0.80元.(3)用户月用电62度时,用户应缴费40.3元,若用户月缴费105元时,该户该月用了150度电.分段函数,是近几年中考数学中经常遇到的题型。
3.2函数关系的建立

———函数应用 题
求解函数应用题的基本步骤:
1.设:审题 y 实际问题——数学问题 认清自变量x,因变量
Eg.求利润最大时,商品的销售价格 2.列 (1)解析式 (2)定义域 1)几何问题 运用图形关系 如:体积,周长,面积 2)代数问题 该问题的实际意义 3.解 运用不等式,方程,函数的知识
*
如图),为了使营运的年平均利润最大,求每 辆车营运多少年?并求出年平均利润的最大为 多少?
eg4新世纪花园要建造一个直径为16米的圆形 喷水池,要求碰出的水柱在离水池中心3m到 达最高高度4m,还要在水池的中心上方设计 一个装饰物,使得各方面喷来的水柱在此处 汇合问装饰物如何设计?
几何问题中利用平面直角坐标 系也是常用的方法
eg5:已知长方形ABCD中,AB=4,BC=3,动点 P从点A出发,沿长方形的边运动,经过点B,C, D,最后回到A点 1)设点P到对角线AC的距离为y点P所经过的 路程为x,将y表示成x的函数 2)设M为CD中点,试建立APM的面积关于x的 函数关系式
4.答
eg1.汽车的油箱是长方体形状的容器,它的长是
a厘米,宽是b厘米,高是c厘米。汽车开始行 驶时油箱内装满汽油,已知汽车每行驶一千米 耗油量是n立方厘米。试用解析式将汽车行驶 的路程y(千米)表示成油箱内剩余油量的液 面高度x(厘米)的函数?
eg 2.轮船每小时使用的燃料费用和轮船的速度 的平方成正比,已知某轮船的时速为18海 里/小时,当时速为10海里/小时时,燃料费用 为30元/小时,其余费用为480元/小时,甲乙两 地相距1000海里,轮船从甲驶到乙,求费用最 低时,时速为多少?(轮船的最大时速为50海里 /小时)
合理的将实际问题分为几个部分
高一数学上册《函数的基本性质》知识点总结沪教版

高一数学上册《函数的基本性质》知识点总结沪教版高一数学上册《函数的基本性质》知识点总结沪教版一、函数的概念在对应的基础上理解函数的概念并能理解符号“y=f(x)”的含义,掌握函数定义域与值域的求法;函数的三种不同表示的相互间转化,函数的解析式的表示,理解和表示分段函数;函数的作图及如何选点作图,映射的概念的理解。
函数的概念和图象重难点:在对应的基础上理解函数的概念并能理解符号“y=f(x)”的含义,掌握函数定义域与值域的求法;函数的三种不同表示的相互间转化,函数的解析式的表示,理解和表示分段函数;函数的作图及如何选点作图,映射的概念的理解.考纲要求:①了解构成函数的要素,会求一些简单函数的定义域和值域;②在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数;③了解简单的分段函数,并能简单应用。
二、函数关系的建立“探索具体问题中的数量关系和变化规律,并能运用函数进行描述和解决问题”,这是《课标》关于函数目标的一段描述。
因此,各地中考试卷都有“函数建模及其应用”类问题,而建模的首要是建立函数表达式。
三、函数的运算函数的运算是各阶段考试和高考命题的必考内容,数学函数的运算知识点是对大家夯实基础的重点内容,请大家务必认真掌握。
四、函数的基本性质在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合c,叫做函数y=f(x),(x∈A)的图象。
(1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合c,叫做函数y=f(x),(x∈A)的图象.c上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在c上.即记为c={P(x,y)|y=f(x),x∈A}图象c一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与y轴的直线最多只有一个交点的若干条曲线或离散点组成。
分段函数的实际应用说课稿(共5则范文)

分段函数的实际应用说课稿(共5则范文)第一篇:分段函数的实际应用说课稿(共)“分段函数”说课稿映射一、说教材《分段函数》人教版《数学》必修1,第一章,第2节的内容--分段函数。
是一节应用性、实践性极强的课,既是初中“函数”知识的直接延伸,也是函数一般知识在生活中的具体运用,是解决生活中可转化为分段函数的数学问题,并将问题解决方式用来处理生产、生活实际问题的重要工具,因此具有广泛的应用价值。
知识与技能目标:通过丰富的生活实例,体会函数的变量关系,理解分段函数的概念;会建立分段函数的解析式。
会求定义域和函数值;二、说学生学情三、说教学目标根据新课标的理念和学生已有的认知结构确定本课确定本节课的教学目标为:(1)知识与技能:让学生理解分段函数的含义,掌握用分段函数描述实际问题的方法。
(2)过程与方法:在教学过程中,将实际问题抽象为数学问题,通过探索、分析、解决,让学生学习到解决问题的一般方法。
(3)情感、态度与价值观:通过学习,让学生体验任务活动的探索过程,锻炼合理分析问题的意识,激发学习数学的兴趣,形成良好的合作学习态度。
本节课的教学重点是:分段函数概念理解;教学难点是:建立实际问题的分段函数关系四、说教法学法五、说教学过程(1)创设情境,导入新知本节课我先从复习函数的概念和函数的表示法的形式激发学生的学习兴趣和求职欲望,从而引出今天的新课。
(2)发现问题,探索新知通过多媒体展示例题,引导学生观察分析,逐步引出分段函数,归纳出分段函数的定义。
在此过程中让学生理解什么是分段函数,如何求分段函数的定义域和值域,如何画分段函数的图像。
通过课本上其它例题的学习让学生了解分段函数在现实生活中的应用,认识到我们所学的数学知识是与生活紧密相联系的。
再进一步通过多媒体展示更深层次的练习题让学生思考,巩固加深了对分段函数的理解。
认识到处理分段函数问题时,首先要确定自变量的数值属于哪个区间段从而选取相应的对应法则。
五、教学反思:本节课的教学,力求体现“以学生发展为本”的教学理念。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学必修1 分段函数
【学习导航】
知识网络
分段函数⎪⎩
⎪⎨⎧分段函数图象分段函数定义域值域分段函数定义
学习要求
1、了解分数函数的定义;
2、学会求分段函数定义域、值域;
3、学会运用函数图象来研究分段函数;
自学评价:
1、分段函数的定义
在函数定义域内,对于自变量x 的不同取值范围,有着不同的对应法则,这样的函数叫做分段函数;
2、分段函数定义域,值域; 分段函数定义域各段定义域的并集,其值域是各段值域的并集(填“并”或“交”)
3、分段函数图象
画分段函数的图象,应在各自定义域之下画出定义域所对应的解析式的图象;
【精典范例】
一、含有绝对值的解析式
例1、已知函数y=|x -1|+|x+2|
(1)作出函数的图象。
(2)写出函数的定义域和值域。
【解】:
(1)首先考虑去掉解析式中的绝对值符号,第一个绝对值的分段点x=1,第二个绝对值的分段点x=-2,这样数轴被分为三部分:(-∞,-2],(-2,1],(1,+∞) 所以已知函数可写为分段函数形式:
y=|x -1|+|x+2|=⎪⎩
⎪⎨⎧>+≤<--≤--)1(12)12(3)2(12x x x x x
在相应的x 取值范围内,分别作出相应函数的图象,即为所求函数的图象。
(图
象略)
(2)根据函数的图象可知:函数的定义域为R ,值域为[3,+∞)
二、实际生活中函数解析式问题
例2、某同学从甲地以每小时6千米的速度步行2小时到达乙地,在乙地耽搁1小时后,又以每小时4千米的速度步行返回甲地。
写出该同学在上述过程中,离甲地的距离S(千米)和时间t(小时)的函数关系式,并作出函数图象。
【解】:
先考虑由甲地到乙地的过程:
0≤t ≤2时, y=6t
再考虑在乙地耽搁的情况:
2<t ≤3时, y=12
最后考虑由乙地返回甲地的过程:
3<t ≤6时, y=12-4(t -3)
所以S(t)=⎪⎩
⎪⎨⎧≤<+-≤<≤≤)63(244)32(12)20(6t t t t t
函数图象(略)
点评:某些实际问题的函数解析式常用分段函数表示,须针对自变量的分段变化情况,列出各段不同的解析式,再依据自变量的不同取值范围,分段画出函数的图象.
三、二次函数在区间上的最值问题
例3、已知函数f(x)=2x 2-2ax+3在区间[-1,1]上有最小值,记作g(a).
(1)求g(a)的函数表达式
(2)求g(a)的最大值。
【解】:
对称轴x=讨论分12
];1,1[2122>-∈-<a a ;a a 得g(a)⎪⎪⎩⎪⎪⎨⎧>+-≤≤---<+)
2(52)22(23)2(522
a a a a a a 利用分段函数图象易得:g(a)max =3
点评:二次函数在闭区间上的最值问题往往结合图象讨论。
追踪训练
1、设函数f(x)=⎩⎨⎧>≤+)
2(,2)2(,22x x x x 则f(-4)=___________,若f(x 0)=8,则x 0=________
答案:18;6-或4。
2、已知函数f(x)=⎪⎩
⎪⎨⎧<=>)0(0)0(1)0(2x x x x
求f(1),f[f(-3)],f{f[f(-3)]}的值.
答案:1;1;1。
3、出下列函数图象
y=┃x+2┃-┃x -5┃
解:原函数变为 y=⎪⎩
⎪⎨⎧+∞∈-∈---∞∈-),5[,7)5,2(,32]2(,7x x x ,x
下面根据分段函数来画出图象
图象(略)。