广度优先算法的C++实现

合集下载

信息学竞赛中的广度优先搜索算法

信息学竞赛中的广度优先搜索算法

信息学竞赛中的广度优先搜索算法广度优先搜索(Breadth-First Search,BFS)是一种常用的图搜索算法,广泛应用于信息学竞赛中。

本文将介绍广度优先搜索算法的原理、应用场景以及实现方法。

一、算法原理广度优先搜索算法是一种基于队列的搜索算法,通过逐层扩展搜索的方式,从起始节点开始,依次遍历其邻接节点,然后依次遍历邻接节点的邻接节点,直到找到目标节点或遍历完所有节点为止。

该算法的基本过程如下:1. 创建一个队列,并将起始节点加入队列;2. 从队列中取出首个节点,并标记为已访问;3. 遍历该节点的邻接节点,若未被标记为已访问,则将其加入队列;4. 重复步骤2和步骤3,直到队列为空或找到目标节点。

广度优先搜索算法可以用来解决一些与图相关的问题,比如最短路径问题、连通性问题等。

二、应用场景广度优先搜索算法在信息学竞赛中有广泛的应用,以下是一些常见的应用场景。

1. 连通性问题:判断图中两个节点是否连通。

通过广度优先搜索,可以从起始节点开始遍历图,找到目标节点即可判断其连通性。

2. 最短路径问题:找到两个节点之间的最短路径。

广度优先搜索每一层的遍历都是从起始节点到目标节点的可能最短路径,因此可以通过记录路径长度和路径信息,找到最短路径。

3. 迷宫问题:求解迷宫中的最短路径。

迷宫可以看作是一个图,起始位置为起始节点,终点位置为目标节点,通过广度优先搜索可以找到迷宫中的最短路径。

4. 可达性问题:判断一个节点是否可达其他节点。

通过广度优先搜索,可以从起始节点开始遍历图,标记所有可达节点,然后判断目标节点是否被标记。

三、实现方法广度优先搜索算法的实现可以使用队列来辅助完成。

以下是一个基于队列的广度优先搜索算法的伪代码示例:```BFS(start, target):queue = [start] // 创建一个队列,并将起始节点加入队列visited = set() // 创建一个集合,用于标记已访问的节点while queue is not emptynode = queue.pop(0) // 从队列中取出首个节点visited.add(node) // 标记节点为已访问if node == targetreturn True // 找到目标节点,搜索结束for neighbor in node.neighbors // 遍历节点的邻接节点if neighbor not in visitedqueue.append(neighbor) // 将邻接节点加入队列return False // 队列为空,未找到目标节点```四、总结广度优先搜索算法在信息学竞赛中是一种常用的算法,它通过逐层遍历的方式,能够快速的找到目标节点或解决与图相关的问题。

深度优先算法和广度优先算法的时间复杂度

深度优先算法和广度优先算法的时间复杂度

深度优先算法和广度优先算法都是图搜索中常见的算法,它们具有不同的特点和适用场景。

在进行全面评估之前,让我们先来了解一下深度优先算法和广度优先算法的基本概念和原理。

### 1. 深度优先算法(Depth-First Search, DFS)深度优先算法是一种用于遍历或搜索树或图的算法。

其核心思想是从起始顶点出发,沿着一条路径直到末端,然后回溯,继续搜索下一条路径,直到所有路径都被探索。

在实际应用中,深度优先算法常常通过递归或栈来实现。

### 2. 广度优先算法(Breadth-First Search, BFS)广度优先算法也是一种用于遍历或搜索树或图的算法。

其核心思想是从起始顶点出发,依次遍历该顶点的所有相邻顶点,然后再以这些相邻顶点作为起点,继续遍历它们的相邻顶点,以此类推,直到所有顶点都被遍历。

在实际应用中,广度优先算法通常通过队列来实现。

### 3. 深度优先算法和广度优先算法的时间复杂度在实际应用中,我们经常需要对算法的时间复杂度进行分析。

针对深度优先算法和广度优先算法,它们的时间复杂度并不相同。

- 深度优先算法的时间复杂度:O(V + E),其中V为顶点数,E为边数。

在最坏的情况下,如果采用邻接矩阵来表示图的话,深度优先算法的时间复杂度为O(V^2);如果采用邻接表来表示图的话,时间复杂度为O(V + E)。

- 广度优先算法的时间复杂度:O(V + E),其中V为顶点数,E为边数。

无论采用邻接矩阵还是邻接表表示图,广度优先算法的时间复杂度都是O(V + E)。

### 4. 个人理解和观点在实际应用中,我们在选择使用深度优先算法还是广度优先算法时,需要根据具体的问题场景来进行选择。

如果要寻找图中的一条路径,或者判断两个节点之间是否存在路径,通常会选择使用深度优先算法;如果要寻找最短路径或者进行层次遍历,通常会选择使用广度优先算法。

深度优先算法和广度优先算法都是非常重要的图搜索算法,它们各自适用于不同的场景,并且具有不同的时间复杂度。

dfs和bfs算法代码

dfs和bfs算法代码

dfs和bfs算法代码深度优先搜索(DFS)和广度优先搜索(BFS)是常用的图遍历算法,它们可以帮助我们解决很多实际问题。

本文将详细介绍这两种算法的实现原理和应用场景。

一、深度优先搜索(DFS)深度优先搜索是一种递归的搜索算法,它从图的某个顶点开始,沿着一条路径尽可能深地搜索,直到无法继续为止,然后回溯到上一级节点,继续搜索其他路径。

DFS一般使用栈来实现。

DFS的代码实现如下:```def dfs(graph, start):visited = set() # 用一个集合来记录已访问的节点stack = [start] # 使用栈来实现DFSwhile stack:node = stack.pop() # 取出栈顶元素if node not in visited:visited.add(node) # 将节点标记为已访问neighbors = graph[node] # 获取当前节点的邻居节点stack.extend(neighbors) # 将邻居节点入栈return visited```DFS的应用场景很多,比如迷宫问题、拓扑排序、连通分量的计算等。

在迷宫问题中,我们可以使用DFS来寻找从起点到终点的路径;在拓扑排序中,DFS可以用来确定任务的执行顺序;在连通分量的计算中,DFS可以用来判断图是否连通,并将图分割成不同的连通分量。

二、广度优先搜索(BFS)广度优先搜索是一种逐层遍历的搜索算法,它从图的某个顶点开始,先访问该顶点的所有邻居节点,然后再访问邻居节点的邻居节点,依次进行,直到遍历完所有节点。

BFS一般使用队列来实现。

BFS的代码实现如下:```from collections import dequedef bfs(graph, start):visited = set() # 用一个集合来记录已访问的节点queue = deque([start]) # 使用队列来实现BFSwhile queue:node = queue.popleft() # 取出队首元素if node not in visited:visited.add(node) # 将节点标记为已访问neighbors = graph[node] # 获取当前节点的邻居节点queue.extend(neighbors) # 将邻居节点入队return visited```BFS的应用场景也很广泛,比如寻找最短路径、社交网络中的人际关系分析等。

坐标零点到坐标点n的最小步数 c语言

坐标零点到坐标点n的最小步数 c语言

坐标零点到坐标点n的最小步数 c语言一、引言在计算机编程中,常常需要计算两个点之间的距离。

而在坐标系中,我们可以通过计算两个点的横纵坐标之差来得到距离。

本文将介绍如何使用C语言来计算以坐标零点到坐标点n的最小步数。

二、问题描述我们的目标是计算从坐标零点到坐标点n的最小步数。

在这个问题中,我们只能进行向上、向下、向左和向右的移动,每次移动一步。

我们需要编写一个C语言程序来解决这个问题。

三、算法设计为了解决这个问题,我们可以使用广度优先搜索算法。

首先,我们创建一个队列,将起点加入队列。

然后,我们从队列中取出一个点,并检查它的上下左右四个相邻点是否合法。

如果相邻点合法且未被访问过,我们将其加入队列,并标记为已访问。

我们重复这个过程,直到到达目标点或队列为空。

四、程序实现下面是使用C语言实现的代码:```c#include <stdio.h>#define MAX_SIZE 100typedef struct {int x;int y;} Point;int minSteps(Point start, Point end) {int visited[MAX_SIZE][MAX_SIZE] = {0}; // 记录是否访问过 int dx[] = {-1, 1, 0, 0}; // 上下左右四个方向的x偏移量int dy[] = {0, 0, -1, 1}; // 上下左右四个方向的y偏移量Point queue[MAX_SIZE*MAX_SIZE]; // 队列int front = 0, rear = 0; // 队头和队尾queue[rear++] = start; // 起点入队visited[start.x][start.y] = 1; // 标记起点已访问while (front < rear) {Point cur = queue[front++]; // 出队if (cur.x == end.x && cur.y == end.y) {return visited[cur.x][cur.y] - 1; // 返回步数}for (int i = 0; i < 4; i++) {int nx = cur.x + dx[i];int ny = cur.y + dy[i];if (nx >= 0 && nx < MAX_SIZE && ny >= 0 && ny < MAX_SIZE && !visited[nx][ny]) {Point next = {nx, ny};queue[rear++] = next; // 相邻点入队visited[nx][ny] = visited[cur.x][cur.y] + 1; // 更新步数 }}}return -1; // 无法到达终点}int main() {Point start = {0, 0}; // 起点Point end = {5, 5}; // 终点int steps = minSteps(start, end);printf("从坐标(0, 0)到坐标(5, 5)的最小步数为:%d\n", steps); return 0;}```五、测试与结果分析我们可以通过将起点设置为(0, 0),终点设置为(5, 5)进行测试。

广度优先搜索算法利用广度优先搜索解决的最短路径问题

广度优先搜索算法利用广度优先搜索解决的最短路径问题

广度优先搜索算法利用广度优先搜索解决的最短路径问题广度优先搜索算法(BFS)是一种图算法,用于解决最短路径问题。

其主要思想是从起始节点开始,不断扩展和访问其邻居节点,直到找到目标节点或者遍历完所有节点。

BFS算法可以用于解决许多问题,其中包括最短路径问题。

下面将介绍广度优先搜索算法的基本原理及其应用于最短路径问题的具体步骤。

同时,通过示例来进一步说明算法的执行过程和实际应用。

一、广度优先搜索算法原理广度优先搜索算法是一种层次遍历的算法,它从起始节点开始,按照距离递增的顺序,依次遍历节点。

在遍历的过程中,任意两个节点之间的距离不超过2,因此,BFS算法可以用于求解最短路径问题。

二、广度优先搜索算法的具体步骤1. 创建一个队列,用于存储待访问的节点。

2. 将起始节点放入队列中,并将其标记为已访问。

3. 当队列不为空时,执行以下步骤:a. 从队列中取出一个节点。

b. 访问该节点,并根据需求进行相应操作。

c. 将该节点的所有未访问过的邻居节点放入队列中,并将它们标记为已访问。

d. 重复步骤a~c,直到队列为空。

4. 完成以上步骤后,如果找到目标节点,则算法终止;否则,表示目标节点不可达。

三、广度优先搜索算法在最短路径问题中的应用最短路径问题是指从一个节点到另一个节点的最短路径,其长度可以通过广度优先搜索算法得到。

考虑以下示例:假设有一个迷宫,迷宫由多个格子组成,其中一些格子是墙壁,不可通过,而其他格子可以自由通行。

任务是找到从起始格子到达目标格子的最短路径。

利用广度优先搜索算法解决最短路径问题的具体步骤如下:1. 创建一个队列,并将起始格子放入队列中。

2. 将起始格子标记为已访问。

3. 当队列不为空时,执行以下步骤:a. 从队列中取出一个格子。

b. 如果该格子是目标格子,则算法终止。

c. 否则,获取该格子的邻居格子,并将未访问过的邻居格子放入队列中。

d. 将该格子的邻居格子标记为已访问。

e. 重复步骤a~d,直到队列为空。

C语言的六种常用算法

C语言的六种常用算法

C语言的六种常用算法C语言是一种非常流行的编程语言,广泛应用于各种领域中。

在C语言中,有许多常用的算法,可以用来解决各种问题。

下面我们将详细介绍C语言中的六种常用算法。

1.排序算法:排序算法可以将一组数据按照一定的规则进行排序。

常见的排序算法有冒泡排序、选择排序、插入排序、快速排序等。

这些排序算法的原理各有不同,但都可以实现对数据的排序。

排序算法对于处理大量数据的应用非常重要,可以提高查找、统计等操作的效率。

2.查找算法:查找算法是指在一组数据中寻找特定元素的过程。

常见的查找算法有线性查找、二分查找、哈希查找等。

这些算法的实现方式不同,但都可以高效地找到目标元素。

查找算法广泛应用于数据库查询、引擎等需要快速查找数据的场景中。

3.图算法:图算法是针对图结构进行的一系列操作。

图是由顶点和边组成的数据结构,可以用来表示各种关系。

在图算法中,常见的操作包括遍历、连通性判断、最短路径查找等。

图算法在网络分析、社交网络分析、运输规划等领域中有着广泛的应用。

4.动态规划算法:动态规划算法是一种解决多阶段决策问题的方法。

它将问题划分为若干个阶段,每个阶段都有一系列可选的决策。

通过求解每个阶段的最优决策,最终得到整个问题的最优解。

动态规划算法在最短路径问题、背包问题、序列比对等领域中有着重要的地位。

5.深度优先算法:深度优先算法是一种遍历图或树的方法。

它从一个起始节点开始,沿着一条路径尽可能远地,直到遇到死路才返回并尝试其他路径。

深度优先算法常用于解决迷宫问题、图的连通性判断等。

6.广度优先算法:广度优先算法是一种遍历图或树的方法。

它从一个起始节点开始,首先访问所有相邻节点,然后再访问它们的相邻节点,以此类推,直到遍历完所有节点。

广度优先算法常用于寻找最短路径、社交网络分析等。

以上就是C语言中的六种常用算法。

这些算法在各自的领域中有着广泛的应用,对于解决各种问题起到了重要的作用。

对于想要学习C语言的人来说,掌握这些算法是非常重要的一步。

C++算法-8.广度优先搜索

C++算法-8.广度优先搜索








int main() { int i,j; char s[100],ch; scanf("%d%d\n",&m,&n); for (i=0; i<=m-1;i++ ) for (j=0;j<=n-1;j++ ) bz[i][j]=1; //初始化 for (i=0;i<=m-1;i++) { gets(s); for (j=0;j<=n-1;j++) if (s[j]=='0') bz[i][j]=0; } for (i=0;i<=m-1;i++) for (j=0;j<=n-1;j++) if (bz[i][j]) doit(i,j); //在矩阵中寻找细胞 printf("NUMBER of cells=%d",num); return 0; }







void doit() { int head,tail,i; head=0;tail=1; //队首为0、队尾为1 a[1]=1; //记录经过的城市 b[1]=0; //记录前趋城市 s[1]=1; //表示该城市已经到过 do //步骤2 { head++; //队首加一,出队 for (i=1;i<=8;i++) //搜索可直通的城市 if ((ju[a[head]][i]==0)&&(s[i]==0)) //判断城市是否走过 { tail++; //队尾加一,入队 a[tail]=i; b[tail]=head; s[i]=1; if (i==8) { out(tail);head=tail;break; //第一次搜到H城市时路线最短 } } }while (head<tail); } int main() //主程序 { memset(s,false,sizeof(s)); doit(); //进行Bfs操作 return 0; }

深度优先和广度优先算法

深度优先和广度优先算法

深度优先和广度优先算法深度优先和广度优先算法深度优先遍历和广度优先遍历是两种常用的图遍历算法。

它们的策略不同,各有优缺点,可以在不同的场景中使用。

一、深度优先遍历深度优先遍历(Depth First Search,DFS)是一种搜索算法,它从一个顶点开始遍历,尽可能深地搜索图中的每一个可能的路径,直到找到所有的路径。

该算法使用栈来实现。

1. 算法描述深度优先遍历的过程可以描述为:- 访问起始顶点v,并标记为已访问; - 从v的未被访问的邻接顶点开始深度优先遍历,直到所有的邻接顶点都被访问过或不存在未访问的邻接顶点; - 如果图中还有未被访问的顶点,则从这些顶点中任选一个,重复步骤1。

2. 算法实现深度优先遍历算法可以使用递归或者栈来实现。

以下是使用栈实现深度优先遍历的示例代码:``` void DFS(Graph g, int v, bool[] visited) { visited[v] = true; printf("%d ", v);for (int w : g.adj(v)) { if(!visited[w]) { DFS(g, w,visited); } } } ```3. 算法分析深度优先遍历的时间复杂度为O(V+E),其中V是顶点数,E是边数。

由于该算法使用栈来实现,因此空间复杂度为O(V)。

二、广度优先遍历广度优先遍历(Breadth First Search,BFS)是一种搜索算法,它从一个顶点开始遍历,逐步扩展到它的邻接顶点,直到找到所有的路径。

该算法使用队列来实现。

1. 算法描述广度优先遍历的过程可以描述为:- 访问起始顶点v,并标记为已访问; - 将v的所有未被访问的邻接顶点加入队列中; - 从队列头取出一个顶点w,并标记为已访问; - 将w的所有未被访问的邻接顶点加入队列中; - 如果队列不为空,则重复步骤3。

2. 算法实现广度优先遍历算法可以使用队列来实现。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

//只需要三个文件,需要用到该算法的时候只需要把searchAlgorithm.h这个头文件包含进来就可以使用了。

//typeDefinition.h文件代码如下:
#pragma once
//定义链接的结构体
typedef struct IDSrcAndDst
{
int IDSrc;//源节点标号
int IDDst;//目的节点标号
}IDSrcAndDst;
//searchAlgorithm.h文件代码如下:
#pragma once
#include "typeDefinition.h"
#include <vector>
using namespace std;
class BreadthFirstAlgorithm
{
public:
void JudgeConnection(vector<IDSrcAndDst > IDSrcDst, int nodeNum, int edgeNum);//根据所给图的数据判断该图是否连通
//其中nodeNum为图的节点数,edgeNum为边数
public:
BreadthFirstAlgorithm();
~BreadthFirstAlgorithm();
};
//searchAlgorithm.cpp文件代码如下:
#include <iostream>
#include "searchAlgorithm.h"
using namespace std;
BreadthFirstAlgorithm::BreadthFirstAlgorithm()
{
}
BreadthFirstAlgorithm::~BreadthFirstAlgorithm()
{
}
void BreadthFirstAlgorithm::JudgeConnection(vector<IDSrcAndDst> IDSrcDst, int nodeNum, int edgeNum)
{
vector<int> node_id;//定义节点id号容器
node_id.clear();
node_id.push_back(0);//自定义算法从标号为0的点开始执行,故将0放进容器
int flagSRC = 0;//源节点不在容器中的标记,0表示该节点不在容器中
int flagDST = 0;//目的节点不在容器中的标记,0表示该节点不在容器中
int current_nodeid = 0;//定义当前根节点,刚开始时以标号为0的点为当前根节点
int node_size;//定义节点容器的大小
node_size = node_id.size();
//以0为根节点,将生成树按照广度优先的顺序逐层遍历
//主循环中,有100个节点,就遍历100次;次循环中,有300条边,就循环300次for (int l = 0; l < nodeNum; l++)
{
current_nodeid = node_id[l];
//每次遍历都从第一条链接开始,到最后一条结束
for (int n = 0; n < edgeNum; n++)
{
//如果链接中的源节点与当前节点相同
if (IDSrcDst[n].IDSrc == current_nodeid)
{
//判断目的节点是否在nodeid容器中,若不在即写进容器
for (int p = 0; p < node_size; p++)
{
if (IDSrcDst[n].IDDst == node_id[p])
{
flagDST = 1;
break;
}
}
if (flagDST == 0)
{
node_id.push_back(IDSrcDst[n].IDDst);
}
flagDST =0;
}
//如果链接中的目的节点与当前节点相同
else if (IDSrcDst[n].IDDst == current_nodeid)
{
//判断源节点是否在nodeid容器中,若不在即写进容器
for (int p = 0; p < node_size; p++)
{
if (IDSrcDst[n].IDSrc == node_id[p])
{
flagSRC = 1;
break;
}
}
if (flagSRC == 0)
{
node_id.push_back(IDSrcDst[n].IDSrc);
}
flagSRC =0;
}
node_size = node_id.size(); //及时更新node_size的大小
}
}
//判断原图是否连通,如果node_id容器中有100个点则表示原图连通,否则不连通
if (100 == node_id.size())
{
cout << "This Graph is connected. \n" << endl;
}
else
{
cout << "This Graph is NOT connected. \n" << endl;
}
}。

相关文档
最新文档