高电压技术学习总结

合集下载

高电压技术概念总结

高电压技术概念总结

高电压技术概念总结篇一:高电压技术重点知识整理1.电介质的极化:1.)电子位移极化电介质中的带点质点在电场作用下沿电场方向做有限位移,无能量损耗2.)离子位移极化有极微量的能量损耗3.)转向极化4.)空间电荷极化2.电介质的介电常数代表电介质极化程度(气体d=1水d=81蓖麻油d=4.2)3.电介质的电导与金属电导的区别:1.)形成电导电流的带电粒子不同(金属导体:自由电子,电介质:离子)2.)带电粒子数量上的区别4.影响液体介质电导的因素:温度,电场强度。

5.电介质中的能量损耗:P?pV?E2??tg?V?U2?ctg?6.tgδ:介质损耗角,绝缘在交变电压作用下比损耗大小的特征参数7.四种形式电离的产生:撞击电离光电离热电离表面电离8.气体中带电质点的消失:1.)带电质点收电场力的作用流入电极并中和电量2.)带电质点的扩散3.)带电质点的复合9.自持放电:当场强超过临界场强Ecr值时,这种电子崩已可仅由电场的作用而自行维持和发展,不必再有赖于电离因素,这种性质的放电称为自持放电。

10.汤森德理论只是对较均匀电场和??S较小的情况下适用。

11.物理意义:一个电子从阴极到阳极途中因为电子崩(ɑ过程)而造成的正离子数为e这批正离子在阴极上造成的二次自由电子数(r过程)应为:r(e味着那个初始电子有了一个后继电子从而使放电得以自持。

12.帕邢定律:在均匀电场中,击穿电压Ub与气体相对密度?,极间距离S并不具有单独的函数关系,而是仅与他们的积有函数关系,只要??S的乘积不变,Ub 也就不变。

13.流柱放电流程:有效电子(经碰撞游离)——电子崩(畸变电场)——发射光子(在强电场作用下)——产生新的电子崩(二次崩)——形成混质通道(流柱)——由阳极向阴极(阳极流柱)或由阴极向阳极(阴极流柱)击穿14.电晕放电:电晕放电是极不均匀电场所特有的一种自持放电形式,他与其他形式的放电有本质的区别,电晕放电的电流强度并不取决于电源电路中的阻抗,而取决于电极外气体空间的电导,即取决于外施电压的大小,电极形状,极间距离,气体的性质和密度等。

高电压期末总结心得

高电压期末总结心得

高电压期末总结心得一、引言转瞬间,大学生活中的高电压课程已经进入尾声。

这门课是我大学期间必修的一门专业课,它对我的专业知识及技能的培养起到了重要的作用。

通过这门课的学习,我深刻理解到了高电压的基本概念、原理及应用。

期末考试接近尾声,我认真反思自己的学习过程及成果,下文将对我在高电压期末考试中所取得的收获及不足进行总结和反思。

二、我的收获在高电压期末考试中,我取得了一定的成绩。

这主要得益于我在学期中的努力学习和积极备考。

以下是我在这门课中所取得的三点收获。

1. 理论知识的掌握通过课堂的学习、教材的阅读和作业的完成,我对高电压的理论知识有了较为深入的了解。

我掌握了高电压的基本概念、原理及其在电力系统中的应用。

我能够理解高电压的产生原因、传输方式及其对人体和设备的危害性。

这些理论知识对于我今后的工作和学习都将起到重要的指导作用。

2. 实验技能的提升在高电压课程的学习中,实验是不可或缺的一环。

通过实验,我掌握了高电压实验仪器的使用方法,学习了实验操作的技巧和注意事项。

我能够独立完成高电压实验的搭建和数据记录,对高电压的实际应用情况有了更深入的了解。

3. 解题能力的提高在期末考试准备过程中,我通过大量的习题练习,提高了自己的解题能力。

我学会了分析问题、分清题目中的关键信息、寻找解题思路,并能够运用所学知识解决实际问题。

这为我今后的工作和学习奠定了基础。

三、我的不足尽管我在高电压期末考试中取得了一定的成绩,但我仍然意识到自己存在一些不足之处。

1. 学习方法不够科学在课程学习过程中,我没有很好地调整自己的学习方法。

我常常过于依赖课堂讲授,没有充分发挥自己的主动性和积极性。

我觉得这对于我今后的学习习惯和方法的培养是一个值得反思和改进的问题。

2. 自学能力有待提高尽管我参加了课堂教学和实验环节,但我没有充分利用自己的时间进行自主学习。

仅仅依靠老师的教导是远远不够的,我应该更加注重自主学习,进行更深入的学习和思考。

高电压技术实训总结

高电压技术实训总结

高电压技术实训总结一、引言高电压技术是电气工程领域中重要的一部分,它涉及到高压电力系统的设计、维护和运营。

在高电压技术实训中,我们通过实际操作和实验,学习了高电压设备的安装、调试和维修等基本技能。

本文将对高电压技术实训进行总结和回顾。

二、高电压技术实训的目标和重点高电压技术实训的目标是培养学生对高电压设备的理论基础和实际应用能力。

在实训过程中,我们主要学习了以下内容:1. 高电压设备的分类和特点:了解不同类型的高电压设备,如变压器、开关设备和保护装置等。

了解其工作原理和特点,为实际操作提供基础知识。

2. 高电压设备的安装和调试:学习高电压设备的正确安装方法和调试步骤。

包括设备的接线、连接和调整等。

在实际操作中,我们学会了如何使用仪器设备进行电压测试和故障排除。

3. 高电压设备的维护和检修:了解高电压设备的常见故障和维修方法。

学习如何进行设备的保养和定期检查,以确保设备的正常运行和安全性。

三、高电压技术实训的内容和实验在高电压技术实训中,我们进行了多个实验项目,涵盖了高电压设备的不同方面。

以下是部分实验项目的介绍:1. 变压器的安装和调试:通过实际操作,我们学习了变压器的安装和调试方法。

包括变压器的接线和连接,以及电压的调整和测试。

我们还学会了如何使用绝缘测试仪进行绝缘测试,以确保变压器的安全运行。

2. 高压电缆的故障排除:在这个实验中,我们学习了高压电缆的故障排除方法。

通过检查电缆的外观和使用绝缘电阻测试仪进行测试,我们能够定位和修复电缆的故障点。

3. 开关设备的维护和检修:学习了开关设备的常见故障和维修方法。

通过拆卸和清洁开关设备,并检查和更换损坏的部件,我们能够提高开关设备的运行效率和可靠性。

四、实训过程中的收获和体会通过高电压技术实训,我们收获了很多知识和经验。

以下是我个人在实训过程中的收获和体会:1. 理论与实践的结合:通过实际操作和实验,我们能够将课堂上学到的理论知识应用到实际工作中。

高电压技术复习总结

高电压技术复习总结

二:电介质的极化、电导和损耗1 电介质的极化①概念:电介质在电场作用下产生的束缚电荷的弹性位移和偶极子的转向位移现象,称为电介质的极化。

②效果:消弱外电场,使电介质的等值电容增大。

电介质极化种类及比较极化类型产生场合所需时间能量损耗产生原因电子式极化任何电介质10-14~10-15S无束缚电子运行轨道偏移离子式极化离子式结构电介质10-12~10-13S几乎没有离子的相对偏移偶极子极化极性电介质10-10~10-2S有偶极子的定向排列夹层极化多层介质的交界面10-1S~数小时有自由电荷的移动2.电介质的介电常数:气体:①一切气体的相对介电常数都接近于1。

②任何气体的相对介电常数均随温度的升高而减小,随压力的增大而增大,但影响都很小。

3.电介质的电导(了解):①与金属电导的本质区别:金属导电的原因是自由电子移动;电介质通常不导电,是在特定情况下电离、化学分解或热离解出来的带电质点移动导致。

②气体电导:自由电子、正离子、负离子,液体电导:杂质电导、自身离解,固体电导:杂质、离子。

③与温度关系:温度升高时,液体介质的黏度降低,离子受电场力作用而移动时所受的阻力减小,离子的迁移率增大,使电导增大;另一方面,温度升高时,液体介质分子热离解度增加,这也使电导增大。

4:损耗:①概念:在电场的作用下,电介质由于电导引起的损耗和有损极化(如偶极子极化、夹层极化等)引起的损耗,总称为电介质的损耗。

②③损耗功率的表达式:rεεε=δωδCtgUtgUIUIPCR2===三:气体放电的物理过程:1. 气体中带电介质的的产生和消失:①单位行程中的碰撞次数Z 的倒数λ即为该粒子的平均自由行程长度。

②电离的几种形式:(1)光电离:发生空间光电离的条件为光子的能量应不小于气体的电离能。

(2)撞击电离:主要是电子碰撞电离。

原因:1.电子小,自由程长,可以加速到很大的速度。

2.电子的质量小,可以加速到很大。

(3)热电离 :(4)表面电离 :电子从金属表面逸出需要一定的能量,称为逸出功。

高电压技术总结

高电压技术总结
22、极化:电介质在电场的作用下对外呈现电极性的过程。
23、电导:电介质在电场作用下导电的过程。
24、损耗:由电导和有损极化引起的功率损耗。
25、老化:电力系统长期运行时电介质逐渐失去绝缘能力的过程。
26、吸收比:t=60s和t=15s时的绝缘电阻的比值。
27、过电压:电力系统承受的超过正常电压的。
34、击杆率:雷击事故中雷击塔顶的次数与雷击输电线路的总次数之比。
35、绕击率:雷击绕过避雷线击中导线的概率。
36、建弧率:线路中绝缘由冲击闪络变为工频闪络的概率。
37、进线段:输电线路中距离变电站1—2公里的线段。
二、简答
①提高系统的输电能力②增加输电距离③降低线路功率损耗④降低电网传输单位容量的造价。
汤森德理论:①电子碰撞游离产生电子崩的过程是气体放电的主要过程②二次放射是气体自持放电的必要条件。
游离条件:运动质点所具有的总能量一定要大于被撞质点在正常状态下的游离能。
气体的放电电压是气体间隙距离和气体相对密度乘积的函数Uf=f(δ·s)。
4、在多介质绝缘结构中极化和电场分布的关系。
电场分布的静向分量与绝缘的相对介质常数成反比。
第九章
1.内部过电压类型:暂时过电压(工频电压升高、谐振过电压)、操作过电压(切断空载线路~、空载线路合闸~、切断空载变压器~、断续电弧接地~)。
篇二:高电压技术总结复习资料
一、填空和概念解释
1、电介质:电气设备中作为绝缘使用的绝缘材料。
2、击穿:在电压的作用下,介质由绝缘状态变为导电状态的过程。
3、击穿电压:击穿时对应的电压。
2.耐压试验:工频、感应、直流、冲击~。试验结果:①能有效地发现绝缘中危险的集中性缺陷②能对绕组的纵绝缘和相间绝缘进行试验③更易检查出其中的缺陷④能良好地检验高压电气设备对雷电冲击电压和操作冲击电压的耐受能力。

高电压技术学习心得

高电压技术学习心得

高电压技术学习心得引言高电压技术是电气工程领域中的一个重要分支,涉及到高电压的产生、传输、测量和保护等方面。

随着现代电力系统的发展和需求的增加,高电压技术的研究和应用也变得越来越重要。

在学习高电压技术的过程中,我有了一些深刻的体会和心得,现在将其总结如下。

理论学习与实践结合高电压技术是一门理论和实践相结合的学科。

在学习的过程中,理论知识的学习是非常重要的,它能够帮助我们深入理解高电压的基本原理和特性。

而通过实践操作能够加深对理论知识的理解,并掌握实际应用中的技能和技巧。

因此,在学习高电压技术时,理论学习和实践结合是必不可少的。

实验室操作的重要性在高电压技术的学习过程中,实验室操作是不可或缺的一环。

通过实验可以帮助我们更直观地了解高电压的产生和传输过程,并掌握实验中常用的仪器和设备。

在实验室中,我学会了使用高电压发生器、高电压测量仪器和绝缘材料等设备,对各种高电压实验进行了探索和研究。

通过实验操作,我不仅提高了实际操作的能力,还对高电压技术有了更深入的了解。

安全意识与风险评估高电压技术具有较高的危险性,一旦操作不当可能带来严重的安全隐患。

因此,安全意识和风险评估在高电压技术学习中至关重要。

在学习过程中,我们要始终保持安全意识,遵守实验室的安全规定和操作规程。

在进行实验操作之前,要对实验过程中可能存在的风险进行评估,并采取相应的安全措施,如戴好绝缘手套、穿戴合适的防护服等。

只有确保安全,才能更好地进行高电压技术的学习和研究。

学会合作与沟通在高电压技术的学习中,合作和沟通是非常重要的。

高电压技术通常涉及到多个领域的知识和技术,因此需要与其他学科的专家和同学进行合作和交流。

通过合作可以更好地完成实验和研究工作,相互学习和借鉴经验。

同时,通过沟通可以更好地交流思想和观点,解决问题和提出建议。

因此,在学习高电压技术时,我们要学会合作与沟通,从而共同促进高电压技术的发展和应用。

结论通过学习高电压技术,我深刻体会到了高电压技术在电气工程领域中的重要性和应用价值。

高电压技术知识点总结

高电压技术知识点总结

高电压技术知识点总结高电压技术,那可真是个超级有趣又超级重要的领域啊!高电压是什么?就好比是电力世界里的大力士,拥有超强的能量和威力!先来说说绝缘吧。

这就像是给电力系统穿上一层坚固的铠甲,保护它不受外界的干扰和破坏。

没有良好的绝缘,那可不得了,就像没有城墙的城堡,随时可能被敌人攻破。

你想想看,要是电线没有好的绝缘,那岂不是到处漏电,多危险啊!然后就是高电压的产生。

就好像是一场神奇的魔术,通过各种设备和技术,把普通的电压变得超级强大。

这可不是随便就能做到的,需要精湛的技术和严谨的操作。

就像一个优秀的魔术师,每一个动作都要恰到好处。

还有高电压的测量。

这可真是个精细活,要像侦探一样,准确地捕捉到每一个细微的信号。

测量工具就像是侦探的放大镜,帮助我们看清高电压的真面目。

要是测量不准确,那后果可不堪设想,就像侦探抓错了犯人一样。

高电压的应用那可真是广泛得让人惊叹!在电力输送中,它就像一列高速列车,把电能快速、高效地送到远方。

在工业生产中,它能驱动各种大型设备,就像大力士推动巨石一样轻松。

在科研领域,高电压更是发挥着重要的作用,帮助科学家们探索未知的世界。

高电压技术的发展也是日新月异啊!新的材料、新的设备不断涌现,就像雨后春笋一样。

这让高电压技术变得越来越强大,越来越先进。

难道我们不应该为人类的智慧感到骄傲吗?高电压技术就像是一把双刃剑,用好了能造福人类,用不好可就会带来灾难。

所以我们要不断学习,不断进步,让高电压技术更好地为我们服务。

我们要像驾驭烈马一样,牢牢地掌握住它,让它带着我们奔向美好的未来。

总之,高电压技术是一个充满挑战和机遇的领域,它值得我们去深入研究和探索。

让我们一起加油,为高电压技术的发展贡献自己的力量吧!。

高电压技术总结(考试资料)

高电压技术总结(考试资料)

高电压技术总结专题一:高电压下气体、液体、固体放电原理1、绝缘的概念:将不同电位的导体分开,使之在电气上不相连接。

具有绝缘作用的材料称为电介质或绝缘材料。

2、电介质的分类:按状态分为气体、液体和固体三类。

3、极化的概念:在外电场作用下,电介质的表面出现束缚电荷的现象叫做电介质极化。

4、极化的形式:电子式极化、离子式极化、偶极子式极化;夹层式极化。

(前三种极化均是在单一电介质中发生的。

但在高压设备中,常应用多种介质绝缘,如电缆、变压器、电机等)5、电子式极化:由于电子发生相对位移而发生的极化。

特点:时间短,弹性极化,无能量损耗。

[注]:存在于一切材料中。

6、离子式极化:离子式极化发生于离子结构的电介质中。

固体无机化合物(如云母、陶瓷、玻璃等)多属于离子结构。

特点:时间短,弹性极化,无能量损耗。

[注]:存在于离子结构物质中。

7、偶极子极化:有些电介质具有固有的电矩,这种分子称为极性分子,这种电介质称为极性电介质(如胶木、橡胶、纤维素、蓖麻油、氯化联苯等)。

特点:时间较长,非弹性极化,有能量损耗。

[注]:存在于极性材料中。

8、夹层式极化特点:时间很长,非弹性极化,有能量损耗。

[注]:存在于多种材料的交界面;当绝缘受潮时,由于电导增大,极化完成时间将大大下降;对使用过的大电容设备,应将两电极短接并彻底放电,以免有吸收电荷释放出来危及人身安全。

9、为便于比较,将上述各种极化列为下表:10、介电常数:[注]:用作电容器的绝缘介质时,希望大些好。

用作其它设备的绝缘介质时,希望小些好。

11、电介质电导:电介质内部带点质点在电场作用下形成电流。

金属导体:温度升高,电阻增大,电导减小。

绝缘介质:温度升高,电阻减小,电导增大。

12、绝缘电阻:在直流电压作用下,经过一定时间,当极化过程结束后,流过介质的电流为稳定电流称为泄漏电流,与其对应的电阻称为绝缘电阻。

(1)介质绝缘电阻的大小决定了介质中泄漏电流的大小。

(2)泄漏电流大,将引起介质发热,加快介质的老化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高电压技术学期学习总结通过一学期对高电压技术的学习,有一下重点难点总结:第一章气体的绝缘强度1、气体放电的基本物理过程⑴带电粒子的产生气体分子或原子产生的三种状态原态(中性)激发态(激励态)从外界获得能量,电子发生轨道跃迁。

电离态(游离态)当获得足够能量时,电子变带电电子,原来变正离子。

电离种类:A:碰撞电离B:光电离C:热电离D:表面电离⑵带电离子的消失A:扩散,会引起浓度差。

B:复和(中和)正负电荷相遇中和,释放能量。

C:附着效应,部分电负性气体分子对负电荷有较强吸附能力,使之变为负离子。

⑶汤逊理论的使用条件和自持放电条件使用条件:均匀电子,低电压自持放电条件:(1)1seαγ-≥⑷巴申定律的物理意义及应用A:巴申定律的物理意义①p s(s一定)p增大,U f增大。

②p s(s一定)p减小,U f减小。

③p s不变:p增大,密度增大,无效碰撞增加,提高了电量的强度,U f增大。

P减小,密度减小,能碰撞的数量减小,能量提高,U f增大。

P s不变,U f不变。

B:巴申定律的应用通过增加或者减少气体的压力来提高气体的绝缘强度。

如:高压直流二极管(增加气体的压力)减小气体的压力用真空断路器。

⑸流柱理论的使用范围及与汤逊理论的关系流柱理论的使用范围:a、放电时间极短b、放电的细分数通道c、与阴极的材料无关d、当ps增大的时候,U f值与实测值差别大。

流柱理论与汤逊理论的关系:a、流柱理论是对汤逊理论的一个补充b、发生碰撞电离c、有光电离,电场⑹极不均匀电场的2个放电特点(电晕放电,极性效应)电晕放电的特点:a、电晕放电是极不均匀电场所持有的一种自持放电形式,是极不均匀电场的特征之一。

b、电晕放电会引起能量消耗。

c、电晕放电的脉冲现象会产生高频电磁波,对无线电通讯造成干扰。

d、电晕放电还使空气发生化学反应,生成臭氧、氮氧化物是强氧化剂和腐蚀剂,会对气体中的固体介质及金属电极造成损伤或腐蚀。

极性效应的特点:a、棒为正,极为负特点:电晕放电起始电压高。

间隙击穿电压低。

b、棒为负,极为正特点:电晕放电起始电压低,间隙击穿电压高。

⑺冲击电压、伏秒特性、U50%的概念及应用冲击电压:持续时间极短,非周期性,幅值极高的电压。

冲击击穿电压气隙击穿的冲要条件:a、必须具有足够高的电压幅值b、必须有有效电子存在c、必须有电子放电通道的时间伏秒特性:对于同一间隙,多次施加同一形状但幅值不同的冲击电压作用,其击穿电压幅值与击穿时间关系(曲线)称为伏秒特性。

U50%的概念:对于同一间隙,多次施加同一电压,其击穿的概率为U50%,对应的电压幅值是U50%。

U50%表征绝缘冲击击穿特性。

2、了解影响气体放电的因素a、电场形式对放电电压的影响b、电压波形对击穿电压的影响c、气体的性质和状态对放电电压的影响3、提高气隙间隙击穿电压(绝缘强度)的措施⑴改善电场分布a 、 改善电极的形状及电场分布b 、 采用极间障⑵消弱电离a 、 采用压缩气体b 、 采用真空c 、 采用电负性气体(SF 6)4、 沿面放电的概念、污秽沿面放电的过程概念:悬挂在击穿导线(导体),支柱、套管、悬式绝缘子暴露在空气中与空气形成交接面。

污秽绝缘子沿面放电的过程:是脏污表面气体电离,电弧产生,发展,熄灭,重燃的过程。

i i r →→↑→→↑→∆↑→→→↑→↑→→增大增大发热烘干R U 烘干区击穿电弧产生发热烘干区延伸整个表面第二章 液体和固体介质的绝缘强度第一节 介质的极化、电导和损耗1、 极化的形式1) 电子式位移极化2) 离子式位移极化3) 偶极子极化4) 夹层极化2、 了解电导电介质在电场作用下,少量带电粒子作定向运动,产生电流的现象。

电导表征导电能力。

电导决定电流(泄漏电流)电子的导数叫绝缘电阻。

3、 介质损耗 tan δ介质损耗分为电导损耗饿极化损耗。

直流:电导损耗交流:电导损耗和极化损耗tan δ:介质损耗角正切。

2p=tan cu ωδ① 损耗与ω、с、U 2 成正比。

高频、高压、大容量,损耗p 增大。

② 外加条件一定时,介质损耗与tan δ成正比。

同一材料,同一时期tan δ不一样,tan δ反映不同时期的性能及缺陷。

4、 影响tan δ的因素a 、 f (频率)的影响f <f 0 tan f δ↑→↑→↑极化损耗0,tan f f f δ〉↑→↓→↓极化损耗b 、 温度影响0~t 1 tan t δ↑→↑→↓→吸引力极化容易0~t 2 tan t δ↑→↑→↓热运动极化难,极化损耗降低, 0~t 3 t tan δ↑→→↑电导损耗为主c 、 电压的影响0,tan U U U δ<↑→几乎不变0,tan U U U δ>↑→↑第二节 液体介质的击穿1、 小桥理论液体分子由电子碰撞而发生气泡,或者在电场作用下因其他原因发生气泡,由气泡内气体放电而引起液体介质的热击穿。

2、 油的击穿过程a 、 当油中含有气泡→→→→→→→气液电离带电粒子碰撞油分子油分解汽化新的气泡发展至整个油表面形成类似浮桥击穿 b 、 油中有杂质r ξ→→↑→↑→→→→→杂质大极化强损耗热量使油汽化气泡发展至整个油表面形成类似“浮桥”击穿3、 影响液体(油)介质击穿的因素① 杂质:a 、气体,水份,若充分溶解于油中,影响不大。

b 、若形成气泡,水清,影响较大。

②温度影响a 、 干燥油,影响不大。

b 、 受潮的油:0~60℃ 温度增大,有利于充分溶解t>80℃以上,温度增大,水分汽化,气泡出现,影响大。

③电场形式a、均匀电场b、不均匀电场④电压作用时间静态电压,时间长,容易形成桥,有影响。

冲击电压,时间短,不易形成桥,无影响。

第三节固体介质的击穿固体击穿的形式,特点。

1、电击穿(依据电子崩理论)特点:a、击穿时间极短b、击穿电压值高2、热击穿(依据固有击穿理论)特点:a、击穿时间较长b、击穿电压不高3、电化学击穿特点:a、击穿时间长b、击穿电压相对较低第三章电气设备绝缘试验1、性能试验(非破坏性试验)在较低电压作用下,测量设备一些电气性能参数,对设备无损伤,判定缺陷。

2、 耐压试验(破坏性试验)对设备电压耐受能力考验,所加的电压为设备可能承受的各种电压。

交流耐压试验:是考核电气设备绝缘裕度的主要方法,能有效地发现较危险的集中性缺陷,这是非破坏性试验不能相比。

直流耐压试验:直流试验耐压电压值的选择是参考交流耐压试验电压和交直流下击穿场强之间,并主要根据运行经验来确定。

直流耐压试验的接线图与直流泄露电流相同,只是所加电压更高,可确定电气设备的绝缘水平。

冲击高压试验:冲击高压是由冲击电压发生器产生的。

第五章 雷电及防雷设备1、雷电的参数(了解)a 、雷击时计算雷电流的等值电路和雷电流幅值b 、雷电流波形c 、雷电日与雷电小时d 、地面落雷密度和输电线路落雷次数2、避雷针、线的作用及保护范围的计算,特别说明避雷线的作用 避雷针、线的作用:为使设备建筑物线路免遭直击雷,安全将雷电流引入大地而设置。

避雷线的作用:主要用于保护线路,也可用于保护发、变电所。

避雷针保护范围的计算:(单支避雷针)①2h hx②()x x r h h p =-• p —高度影响系数 ③2xh h ≤ ④(1.52)x x r h h p =-• p---高度修正系数H ≤30 p=130≤h ≤120mp = (双支等高避雷针):等高双支避雷针和不等高双支避雷针。

外侧:按单针计算。

内侧:最低保护高度07D h h p =- 最小保护宽度01.5()xx b h h =- (不等高针):外侧:按单针计算内侧:作低针等高水平线,与高针保护线相交于一点,作该点的虚拟避雷针。

按等高双支避雷针计算。

(3针及以上保护范围):△外侧:分别按两针两两计算△内侧:当上述计算在hx 处,所有0x b ≥ ,则在hx 处,△区域内均能保护。

(四针保护范围):顶点形成方形区域。

外侧:分别按两两针计算。

内侧:分别做成两个△区域,按△计算。

注:要确保对角线bx >0,若bx <0,则保护存在漏洞。

避雷线保护范围计算:(单线):2h hx ≥,0.47()x x r h h p =-• 2x h h ≤,( 1.53)x x r h h =-(双线等高)外侧:按单线计算 内侧:最低保护高度04Dh h p =-3、避雷器的作用,分类,特点(氧化锌避雷器的特点重要)作用:防入侵雷电波(过电压波),它与被保护设备并联,入侵波来时,避雷器优先动作。

分类:间隙类避雷器又分为:保护间隙(火花间隙)和管型避雷器。

阀型类避雷器又分为:阀型避雷器和金属氧化物避雷器(氧化锌避雷器)。

①保护间隙特点:优点:结构简单,价格便宜。

缺点:不能灭弧,断路器跳闸,容易造成停电事故。

存在截波,对绕组类设备极不利(有可能造成绕组绝缘击穿,致命缺点)。

只适用于线路保护。

② 管型避雷器特点优点:能灭弧缺点:存在截波只能用于线路保护。

③阀型避雷器特点a、非线性绕组b、电流小,电阻大c、电流大,电路小④金属氧化物避雷器(氧化锌避雷器)的特点a、无间隙b、无续流(≤1mA)工频续流(≥100A)c、使设备过电压降低,通流能力大d、多雷区e、直流防雷保护及SF6设备保护第六章输电线路的防雷保护1、防雷的指标,耐雷水平,雷击跳闸率的概念,感应过电压及计算。

防雷的指标:耐雷水平和雷击跳闸率。

耐雷水平:雷击线路时线路绝缘不发生冲击闪络的最大雷电流幅值称为耐雷水平。

雷击跳闸率:每100km线路每年由雷击引起的跳闸次数称为雷击跳闸率。

感应过电压:雷击线路附近地面,由于电磁感应所引起的称为感应雷过电压。

感应过电压及其计算:①避雷线不接地25c gdI hd U S ⨯=⨯ 25c gb I hb U S ⨯=⨯②避雷线接地'(1)gd gd U U k =-'gd gd U U <③雷击杆塔(无避雷线)时线路的感应过电压2.6l gd d d I U h h α=•=• ④有避雷线'(1)gd gd U U k =- k---塔与导线间耦合系数2、掌握雷电线路的三种形式,雷电跳闸率的计算步骤。

三种形式:a 、雷击塔顶b 、雷击避雷线挡距中央c 、绕击与线路计算步骤:11n N g p η=•••0.6b N h =1lg 88l I p =20n =33n N p p αη=•••12313()n n n n N g p p p αη=++=••+•3、现代防雷的措施①架设避雷线②降低杆塔接地电阻③ 架设加强耦合地线④ 中性点非有效接地⑤ 加强线路绝缘⑥ 加强自动重合闸装置⑦ 加装线路用管型避雷器第七章 发电厂和变电所的防雷保护1、反击雷击避雷针(线),使避雷针(线)与设备之间形成放电或者避雷针(线)接地点与设备接地点之间放电。

相关文档
最新文档