一元二次方程的应用题归类
一元二次方程应用题总结归类及典型例题

一元二次方程应用题总结分类及经典例题1、列一元二次方程解应用题的特点列一元二次方程解应用题是列一元一次方程解应用题的继续和发展,从xx 解应用题的方法来讲,列出一元二次方程解应用题与列出一元一次方程解应用题是非常相似的,由于一元一次方程未知数是一次,因此这类问题大部分都可通过算术方法来解决.如果未知数出现二次,用算术方法就很困难了,正由于未知数是二次的,所以可以用一元二次方程解决有关面积问题,经过两次增长的平均增长率问题,数学问题中涉及积的一些问题,经营决策问题等等.2、列一元二次方程解应用题的一般步骤和列一元一次方程解应用题一样,列一元二次方程解应用题的一般步骤是:“审、设、列、解、答”.(1)“审”指读懂题目、审清题意,明确已知和未知,以及它们之间的数量关系.这一步是解决问题的基础;(2)“设”是指设元,设元分直接设元和间接设元,所谓直接设元就是问什么设什么,间接设元虽然所设未知数不是我们所要求的,但由于对xx有利,因此间接设元也十分重要.恰当灵活设元直接影响着xx与xx的难易;(3)“列”是xx,这是非常重要的步骤,xx就是找出题目中的等量关系,再根据这个相等关系列出含有未知数的等式,即方程.找出相等关系xx是解决问题的关键;(4)“解”就是求出所xx的解;(5)“答”就是书写答案,应注意的是一元二次方程的解,有可能不符合题意,如线段的xx不能为负数,降低率不能大于100%等等.因此,解出方程的根后,一定要进行检验.3、数与数字的关系两位数=(十位数字)×10+个位数字三位数=(百位数字)×100+(十位数字)×10+个位数字4、翻一番翻一番即表示为原量的2倍,翻两番即表示为原量的4倍.5、增长率问题(1)增长率问题的有关公式:增长数=基数×增长率实际数=基数+增长数(2)两次增长,且增长率相等的问题的基本等量关系式为:原来的×(1+增长率)增长期数=后来的说明:(1)上述相等关系仅适用增长率相同的情形;(2)如果是下降率,则上述关系式为:原来的×(1-增长率)下降期数=后来的6、利用一元二次方程解几何图形中的有关计算问题的一般步骤(1)整体地、系统地审读题意;(2)寻求问题中的等量关系(依据几何图形的性质);(3)设未知数,并依据等量关系列出方程;(4)正确地求解方程并检验解的合理性;(5)写出答案.7、xx解应用题的关键(1)审题是设未知数、xx的基础,所谓审题,就是要善于理解题意,弄清题中的已知量和未知数,分清它们之间的数量关系,寻求隐含的相等关系;(2)设未知数分直接设未知数和间接设未知数,这就需根据题目中的数量关系正确选择设未知数的方法和正确地设出未知数.8、xx解应用题应注意:(1)要充分利用题设中的已知条件,善于分析题中隐含的条件,挖掘其隐含关系;(2)由于一元二次方程通常有两个根,为此要根据题意对两根加以检验.即判断或确定方程的根与实际背景和题意是否相符,并将不符合题意和实际意义的(一)传播问题1.市政府为了解决市民看病难的问题,决定下调药品的价格。
《一元二次方程》应用题的几种类型

《一元二次方程》运用题的几种类型一.传播问题:公式:(a+x)n =M 个中a为传染源(一般a=1),n为传染轮数,M为最后得病总人数1.有一人患了流感,经由两轮传染后共有121人患了流感,每轮传染中平均一小我传染了几小我?2.某栽种物的骨干长出若干数量标支干,每个支干又长出同样数量标小分支,骨干.支干和小分支的总数是91,每个支干长出若干小分支?二.轮回问题又可分为单轮回问题1/2n(n-1),双轮回问题n(n-1)和庞杂轮回问题1/2n(n-3)3.介入一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有若干个队介入比赛?4.介入一次聚首的每两人都握了一次手,所有人共握手66次,有若干人介入聚首?5.介入一次足球联赛的每两队之间都进行两次比赛,共比赛90场比赛,共有若干个队介入比赛?6.初三毕业晚会时每人互相送照片一张,一共要90张照片,有若干人?7.一个正多边形,它共有20条对角线,问是几边形?三.平均率问题 M=a(1±x)n , n为增长或降低次数 , M为最后产量,a为基数,x为平均增长率或降低率8.某电脑公司2000年的各项经营收入中,经营电脑配件的收入为600万元,占全年经营总收入的40%,该公司估计2002年经营总收入要达到2160万元,且筹划从2000年到2002年,每年经营总收入的年增长率雷同,问2001年估计经营总收入为若干万元?存n年的本息和=本金×(1+年利率)n,即本金×(1+a%)n四.商品发卖问题经常运用关系式:售价—进价=利润一件商品的利润×发卖量=总利润单价×发卖量=发卖额利润率= 利润÷进价9. 某市肆购进一种商品,进价30元.试销中发明这种商品天天的发卖量P(件)与每件的发卖价X(元)知足关系:P=100-2X发卖量P,若市肆天天发卖这种商品要获得200元的利润,那么每件商品的售价应定为若干元?天天要售出这种商品若干件?10. 某生果批发商场经销一种高级生果,假如每千克盈利10元,天天可售出500千克,经市场查询拜访发明, 在进货价不变的情形下,若每千克涨价1元,日发卖量将削减20千克.现该商品要包管天天盈利6000 元,同时又要使顾客得到实惠,那么每千克应涨价若干元?11. 某商场发卖一批名牌衬衫,平均天天可售出20件,每件盈利40元,为了扩展发卖量增长盈利,尽快削减库存,商场决议采纳恰当的降价措施,经查询拜访发明,假如每件衬衫每降价1元,商场平均天天可多售2件,假如商场平均天天要盈利1200元,每件衬衫应降价若干元?五 .面积问题:12.在宽20米,长32米的矩形耕地上,构筑同样宽的三条路(两条纵向,一条横向,并且横向与纵向互相垂直),把这块耕地分成大小相等的六块实验田,要使实验田的面积是570平方米,问道路应当多宽?13.直角三角形的两条直角边相差3cm,面积是9cm,求较长的直角边的长.14.将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm2,那么这段铁丝剪成两段后的长度分离是若干? (2)两个正方形的面积之和可能等于12cm2吗? 若能,求出两段铁丝的长度;若不克不及,请解释来由.15.在一幅长为80cm,宽为50cm的矩形景致画的周围镶一条雷同宽度的金色纸边,制成一幅矩形挂图,如图所示,假如要使全部挂图的面积是5400cm2,求金色纸边的宽为若干?16.有一个两位数,它的个位上的数字与十位上的数字之和是6,假如把它的个位数字与十位数字更换地位,所得的两位数乘以本来的两位数所得的积等于1008,求更换地位后得到的两位数.17.有一个两位数,它的十位上的数字比个位上的数字小2,十位上的数字与个位上的数字之和的 3倍刚好等于这个两位数.求这个两位数.18.一个两位数,十位数字与个位数字之和为5,把这个数的十位数字与个位数字对换后,所得的新两位数与原两位数乘积为736,求原两位数.19.甲.乙两建筑队完成一项工程,若两队同时开工,12天可以完成全体工程,乙队单独完成该工程比甲队单独完成该工程多用10天,问单独完成该工程,甲.乙各需若干天?八.动态几何问题△ABC中,∠C=90,AC=6cm,BC=8cm,点P从点A动身沿边AC向点C以1cm/s的速度移动,点Q从C点动身沿CB边向点B以2cm/s的速度移动.(1)假如P.Q同时动身,几秒钟后,可使△PCQ的面积为8平方厘米?(2)点P.Q在移动进程中,是否消失某一时刻,使得△PCQ的面积等于△ABC的面积的一半.若消失,求出活动的时光;若不消失,解释来由.《一元二次方程》温习测试题一.选择题(共10题,每题有四个选项,个中只有一项相符题意.每题3分,共30分):1.下列方程中不一定是一元二次方程的是( )A.(a-3)x2=8 (a≠3) 2+bx+c=02下列方程中,常数项为零的是( )22-x-12=12; C.2(x2-1)=3(x-1) D.2(x2+1)=x+2方程2x2-3x+1=0化为(x+a)2=b的情势,准确的是( )0,)5.已知三角形双方长分离为2和9,第三边的长为二次方程x2-14x+48=0的一根,则这个三角形的周长为( )A.11B.17C.17或19D.19,则这个直角三角形的斜边长是()的值等于零的x是( )A.6B.-1或62-4y-3=3y+4有实根,则k 的取值规模是( )且k ≠≥且k ≠0则下列说中,准确的是( )(A )方程两根和是1 (B )方程两根积是2(C (D )方程两根积比两根和大210.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 假如平均每月增长率为x,则由题意列方程应为( )A.200(1+x)2=1000B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=1000二.填空题:(每小题3分,共30分)11.用______法解方程3(x-2)2=2x-4比较轻便.12.假如2x 2+1与4x 2-2x-5互为相反数,则x 的值为________.2+bx+c=0(a ≠0)有一个根为-1,则a.b.c 的关系是______.2-bx-1=0和ax 2+2bx-5=0,有配合的根-1, 则a= ______, b=______.2-3x-1=0与x 2-x+3=0的所有实数根的和等于____.x 2+mx+7=0的一个根,则m=________,另一根为_______.18.已知两数的积是12,这两数的平方和是25, 以这两数为根的一元二次方程是___________.,__________.20.,三.用恰当办法解方程:(每小题5分,共10分)四.列方程解运用题:(每小题7分,共21分)23.某电视机厂筹划用两年的时光把某种型号的电视机的成本降低36%, 若每年降低的百分数雷同,求这个百分数.24.如图所示,在宽为20m,长为32m 的矩形耕地上,构筑同样宽的三条道路,(互相垂直),把耕地分成大小不等的六块实验田,要使实验田的面积为570m 2,道路应为多宽?25.某商场发卖一批名牌衬衫,平均天天可售出20件,每件赚钱40元,为了扩展发卖,增长赚钱,尽快削减库存,商场决议采纳恰当的降价措施,经查询拜访发明,假如每件衬衫每降价1元,商场平均天天可多售出2件.求:(1)若商场平均天天要赚钱1200元,每件衬衫应降价若干元?(2)每件衬衫降价若干元时,商场平均天天赚钱最多?26.解答题(本题9分)21,。
一元二次方程应用题总结归类及典型例题库

一元二次方程应用题总结分类及经典例题1、列一元二次方程解应用题的特点列一元二次方程解应用题是列一元一次方程解应用题的继续和发展,从列方程解应用题的方法来讲,列出一元二次方程解应用题与列出一元一次方程解应用题是非常相似的,由于一元一次方程未知数是一次,因此这类问题大部分都可通过算术方法来解决.如果未知数出现二次,用算术方法就很困难了,正由于未知数是二次的,所以可以用一元二次方程解决有关面积问题,经过两次增长的平均增长率问题,数学问题中涉及积的一些问题,经营决策问题等等.2、列一元二次方程解应用题的一般步骤和列一元一次方程解应用题一样,列一元二次方程解应用题的一般步骤是:“审、设、列、解、答”.(1)“审”指读懂题目、审清题意,明确已知和未知,以及它们之间的数量关系.这一步是解决问题的基础;(2)“设”是指设元,设元分直接设元和间接设元,所谓直接设元就是问什么设什么,间接设元虽然所设未知数不是我们所要求的,但由于对列方程有利,因此间接设元也十分重要.恰当灵活设元直接影响着列方程与解方程的难易;(3)“列”是列方程,这是非常重要的步骤,列方程就是找出题目中的等量关系,再根据这个相等关系列出含有未知数的等式,即方程.找出相等关系列方程是解决问题的关键;(4)“解”就是求出所列方程的解;(5)“答”就是书写答案,应注意的是一元二次方程的解,有可能不符合题意,如线段的长度不能为负数,降低率不能大于100%等等.因此,解出方程的根后,一定要进行检验.3、数与数字的关系两位数=(十位数字)×10+个位数字三位数=(百位数字)×100+(十位数字)×10+个位数字4、翻一番翻一番即表示为原量的2倍,翻两番即表示为原量的4倍.5、增长率问题(1)增长率问题的有关公式:增长数=基数×增长率实际数=基数+增长数(2)两次增长,且增长率相等的问题的基本等量关系式为:原来的×(1+增长率)增长期数=后来的说明:(1)上述相等关系仅适用增长率相同的情形;(2)如果是下降率,则上述关系式为:原来的×(1-增长率)下降期数=后来的6、利用一元二次方程解几何图形中的有关计算问题的一般步骤(1)整体地、系统地审读题意;(2)寻求问题中的等量关系(依据几何图形的性质);(3)设未知数,并依据等量关系列出方程;(4)正确地求解方程并检验解的合理性;(5)写出答案.7、列方程解应用题的关键(1)审题是设未知数、列方程的基础,所谓审题,就是要善于理解题意,弄清题中的已知量和未知数,分清它们之间的数量关系,寻求隐含的相等关系;(2)设未知数分直接设未知数和间接设未知数,这就需根据题目中的数量关系正确选择设未知数的方法和正确地设出未知数.8、列方程解应用题应注意:(1)要充分利用题设中的已知条件,善于分析题中隐含的条件,挖掘其隐含关系;(2)由于一元二次方程通常有两个根,为此要根据题意对两根加以检验.即判断或确定方程的根与实际背景和题意是否相符,并将不符合题意和实际意义的(一)传播问题1.市政府为了解决市民看病难的问题,决定下调药品的价格。
一元二次方程应用题分类

一元二次方程应用题一、数字问题1、有两个连续整数,它们的平方和为25,求这两个数.2、一个两位数,十位数字与个位数字之和是6,把这个数的个位数字与十位数字对调后,所得的新两位数与原来的两位数的积是1008,求这个两位数.二、形积问题3、有一块长方形的铝皮,长24cm 、宽18cm ,在四角都截去相同的小正方形,折起来做成一个没盖的盒子,使底面积是原来面积的一半,求盒子的高.4、如图,在一块长为32m ,宽为20m 长方形的土地上修筑两条同样宽度的道路,余下部分作为耕地要使耕地的面积是2540m ,求小路宽的宽度.三、围篱笆问题5、如图,利用一面墙(墙的长度不超过45m ),用80m 长的篱笆围一个矩形场地. ⑴怎样围才能使矩形场地的面积为2750m ? ⑵能否使所围矩形场地的面积为2810m ,为什么?四、平均变化率问题:增长率 实际产量=原产量×(1+增长率).6、某钢铁厂去年一月份某种钢的产量为5000吨,三月份上升到7200吨,这两个月平均每月增长的百分率是多少?五、销售利润问题7、某市场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元.为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.求:(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元? (2)要使商场平均每天赢利最多,请你帮助设计方案.8、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施,调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台,商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?9、西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价O.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利2O0元,应将每千克小型西瓜的售价降低多少元?六、相互问题(传播、循环)10、(1)参加一次聚会的每两人都握了一次手,所有人共握手15次,有多少人参加聚会?(2)要组织一场篮球联赛,赛制为单循环形式,即每两队之间都赛一场,计划安排28场比赛,应邀请多少个球队参加比赛? 11、有一人患了流感,经过两轮传染后共有169人患了流感.(1)求每一轮传染中平均一个人传染了几个人?(2)如果按照这样的传染速度,经过三轮传染后共有多少人患上流感?七、动点几何问题12、如图,△ABC中,∠B=90°,AB=6,BC=8,点P从点A开始沿边AB向点B以1cm/s的速度移动,与此同时,点Q从点B开始沿边BC向点C以2cm/s的速度移动.如果P、Q分别从A、B同时出发,当点Q运动到点C时,两点停止运动:(1)经过几秒,△PBQ的面积等于28cm;(2)△PBQ的面积会等于210cm吗?会请求出此时的运动时间,若不会请说明理由13、如图,在△ABC中,AB=6cm,BC=7cm,∠ABC=30°,点P从A点出发,以1cm/s 的速度向B点移动,点Q从B点出发,以2cm/s的速度向C点移动.如果P、Q两点同时出发,经过几秒后△PBQ的面积等于4cm2?。
一元二次方程应用题归类

一元二次方程应用题的四大板块十个类型一元二次方程是初中数学的重要内容,在初中数学中占有重要的地位。
其中一元二次方程的应用也是初中数学应用问题的重点内容,同时也是难点。
它是一元一次方程应用的继续,二次函数学习的基础,具有承前启后的作用。
本节是一元二次方程的应用,它是研究现实世界数量关系和变化规律的重要数学模型。
经典例题知识点1一元二次方程应用题的八种类型类型一增长率问题例题1随州市尚市“桃花节”观赏人数逐年增加,据有关部门统计,2014年约为20万人次,2016年约为万人次,设观赏人数年均增长率为x,则下列方程中正确的是()A.20(1+2x)= B.(1+x)2=20C.20(1+x)2= D.20+20(1+x)+20(1+x)2=类型二传播问题(病毒传播、细胞分裂)例题2某生物实验室需培育一群有益菌.现有60个活体样本,经过两轮培植后,总和达24000个,其中每个有益菌每一次可分裂出若干个相同数目的有益菌.(1)、(2)每轮分裂中平均每个有益菌可分裂出多少个有益菌(2)按照这样的分裂速度,经过三轮培植后有多少个有益菌例题2某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台类型三计数问题例题1某航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了15条航线,则这个航空公司共有飞机场()A.5个 B.6个 C.7个 D.8个例题2 某市体育局要组织一次蓝球赛,赛制为单循环形式(每两队之间都赛一场)计划安排28场比赛,问应邀请多少支球队参加比赛类型四数字问题例题1一个两位数,十位上数字与个位上数字之和为5,把十位上的数字与个位上数字互换后再乘以原数得736,求原来两位数。
|类型五一元二次方程与一元一次方程的综合应用问题例题某蛋糕产销公司A品牌产销线,2015年的销售量为万份,平均每份获利元,预计以后四年每年销售量按5000份递减,平均每份获利按一定百分数逐年递减;受供给侧改革的启发,公司早在2104年底就投入资金万元,新增一条B品牌产销线,以满足市场对蛋糕的多元需求,B品牌产销线2015年的销售量为万份,平均每份获利3元,预计以后四年销售量按相同的份数递增,且平均每份获利按上述递减百分数的2倍逐年递增;这样,2016年,A、B两品牌产销线销售量总和将达到万份,B品牌产销线2017年销售获利恰好等于当初的投入资金数.(1)求A品牌产销线2018年的销售量;(2)求B品牌产销线2016年平均每份获利增长的百分数类型六一元二次方程与一元一次方程组的综合问题例题1 青海新闻网讯:2016年2月21日,西宁市首条绿道免费公共自行车租赁系统正式启用.市政府今年投资了112万元,建成40个公共自行车站点、配置720辆公共自行车.今后将逐年增加投资,于建设新站点、配置公共自行车.预计2018年将投资万元,新建120个公共自行车站点、配置2205辆公共自行车.(1)请问每个站点的造价和公共自行车的单价分别是多少万元(2)请你求出2016年到2018年市政府配置公共自行车数量的年平均增长率.类型七一元二次方程与一次函数的综合问题?例题1 某桶装水经营部每天的房租、人员工资等固定成本为250元,每桶水的进价是5元,规定销售单价不得高于12元/桶,也不得低于7元/桶,调查发现日均销售量p(桶)与销售单价x(元)的函数图象如图所示。
一元二次方程应用题分类

一元二次方程应用题分类变式1】某超市购进了大量饮料,一种饮料平均每天可售出100瓶,每瓶盈利0.5元,为了尽快减少库存,超市决定采取适当的降价措施,调查发现,如果这种饮料的售价每降低0.2元,那么超市平均每天可多售出50瓶,超市要想平均每天盈利150元,每瓶饮料应降价多少元?变式2】某电商平台购进了大量手机,一种手机平均每天可售出50台,每台盈利200元,为了尽快减少库存,电商平台决定采取适当的促销措施,调查发现,如果这种手机的售价每降低100元,那么平均每天可多售出20台,电商平台要想平均每天盈利8000元,每台手机应降价多少元?2.某商场在618购物节期间推出了一款电饭煲,原售价为299元,活动期间降价20元,销售量比平时增加了50%,求活动期间该电饭煲的销售额和销售量的增长率。
变式1】某商场在双11购物节期间推出了一款智能手表,原售价为999元,活动期间降价200元,销售量比平时增加了80%,求活动期间该智能手表的销售额和销售量的增长率。
变式2】某家餐厅在圣诞节期间推出了一款特色套餐,原售价为88元,活动期间降价10元,销售量比平时增加了30%,求活动期间该特色套餐的销售额和销售量的增长率。
变式1:某超市以进货单价40元的商品售价50元,每天可卖出500件。
每涨价1元,销售量减少10件。
如果超市想要每天赚取8000元利润,那么商品的售价应该是多少?改写:某超市以40元进货的商品定价为50元,每天销售量为500件。
每涨价1元,销售量减少10件。
为了每天赚取8000元利润,该商品应该定价为多少?变式2:某种服装每天平均销售20件,每件盈利44元。
每降价1元,每天可多销售5件。
如果要每天盈利1600元,那么每件服装应该降价多少元?改写:某种服装每天平均销售20件,每件盈利44元。
每降价1元,每天可多销售5件。
为了每天盈利1600元,该服装应该降价多少元?变式3:某种新产品进价为120元,试销发现每件售价与产品的日销量存在下表中的数量关系:请根据上表所给数据表述每件售价提高的数量与日销量减少的数量之间的关系。
一元二次方程的应用题分类题型汇总

一元二次方程的应用(设未知数——找等量关系——求解——检验)一、商品销售问题售价—进价=利润单价×销售量=销售额一件商品的利润×销售量=总利润1、某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?2、某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg;单价每千克降低一元,日均多售2kg。
在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).如果日均获利1950元,求销售单价3、某商店购进一种商品,进价30元.试销中发现这种商品每天的销售量P(件)与每件的销售价X(元)满足关系:P=100-2X销售量P,若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元?每天要售出这种商品多少件?4、某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出,已知生产ⅹ只熊猫的成本为R(元),售价每只为P(元),且RP与x的关系式分别为R=500+30X,P=170—2X。
(1)当日产量为多少时每日获得的利润为1750元?(2)若可获得的最大利润为1950元,问日产量应为多少?二、行程问题路程=速度*时间相遇路程=速度和*相遇时间追及问题=速度差*追及时间顺水速度=船速(静水中的速度)+ 水流速度逆流速度=船速(静水中的速度)—水流速度1、甲乙二人分别从相聚20千米的A、B两地以相同的速度同时相向而行,相遇后,二人继续前进,乙的速度不变,甲每小时比原来多走1千米,结果甲到达B地后乙还需30分钟才能到达A地,求乙每小时走多少千米?2、甲、乙两个城市间的铁路路程为1600公里,经过技术改造,列车实施了提速,提速后比提速前速度增加20公里/小时,列车从甲城到乙城行驶时间减少4小时,这条铁路在现有的安全条件下安全行驶速度不得超过140公里/小时.请你用学过的数学知识说明在这条铁路现有的条件下列车还可以再次提速.3、一个自行车队进行训练,训练时所有队员都以35千米/时的速度前进,突然,1号队员以45千米/时的速度独自前进,行进10千米后调转车头,仍以45千米/时的速度往回骑,直到与其他队员会合,1号队员从离队开始到与队员重新会合,经过了多少时间。
九年级上一元二次方程应用题常见类型总结

九年级上 专题复习之实际问题与一元二次方程【一、面积问题】【方法技巧】注意题目中隐含条件,用平移表示矩形的长度.【题型一 围栏靠墙】【例1】如图,要建一个矩形的鸡场ABCD ,鸡场的一边靠墙,另外三边用竹篱笆围成,墙的长度为14m ,墙的对面开一个1m 宽的门,现有竹篱笆总长31m .(1)若要围成的鸡场面积为120m 2,求鸡场的长和宽各是多少m ?(2)当边AB 的长为______m 时,鸡场面积最大,最大面积为______ m 2【题型二 矩形中通道】 【例2】如图,要设计一副宽20cm 、长30cm的图案,其中有一横一竖的彩条,横、竖彩条的宽度之比为2:3.如果要彩条所占面积是图案面积的19%,问横、竖彩条的宽度各为多少?【题型三边框设计】【例3】如图,要设计一本书的封面,封面长27cm ,宽21cm ,正中央是一个与整个封面长宽比例相同的矩形.如果要使四周的边衬所占面积是封面面积的1781,上、下边村等宽,左、右边衬等宽,则上、下边衬的宽为( )cmA .1B .1.5C .2D .2.5【针对练习1】1.要为一幅长30cm 、宽20cm 的照片配一个镜框,要求镜框的四条边宽度相等,且镜框所占面积为照片面积的1124,则镜框边的宽度为( ) A .1cm B .2cm C .2cm D .2.5cm2.如图所示,在宽为20m ,长为32m 的矩形地面上修筑相同宽度的甬道(图中阴影部分),余下部分种上草坪,要使草坪面积为540m 2,求甬道宽.3.如图,一幅长20cm 、宽12cm 的图案,其中有一横两竖的彩条,横、竖彩条的宽度比为3:2.若图案中三条彩条所占面积是图案面积的25,求横、竖彩条的宽度.4.如图,利用一面墙(墙的长度为20m ),用34m 长的篱笆围成两个鸡场,中间用一道篱笆隔开,每个鸡场均留一道1m 宽的门,设AB 的长为xm .(1)若两个鸡场总面积为96m 2,求x ;(2)若两个鸡场总面积和为Sm 2,求S 关于x 的关系式;(3)两个鸡场面积和S 有最大值吗?若有,最大值是多少?【二、循环向题、增长率问题、传染等问题】1.n 支球队参加单循环比赛、一共赛12n (n -1)场;n 支球队参加双循环比赛,一共赛n (n -1)场; 2.基数A 经过两轮增长(下降),平均增长(下降)率为x ,两轮后结果为A (1±x )2; 3.一人感冒,经过两轮传染,平均每人传染x 人,两轮后感冒人数为(1+x )2【题型一 循环问题】【例1】要组织一次篮球比赛,赛制为单循环形式(毎两队之间都赛一场),计划安排15场比赛,应邀请多少个球队参加比赛?【例2】九年级某班在调研考试前,每个同学都向全班其他同学各送一张写有祝福的卡片,全班共送了1980张卡片.设全班有x 名学生,根据题意列出方程为________.【题型二增长率问题】【例3】今年我区高效课堂建设以“信息技术与课堂教学深度融合”为抓手,加强对教师队伍建设的投入,计划从今年起三年共投人3640万元,已知今年已投入1000万元,设投入经费的年平均增长率为x,根据题意,下面所列方程正确的是( )A.1000(1+x)2=3640 B.1000(x2+1)=3640C.1000+1000x+1000x2=3640 D.1000(1+x)+1000(x+1)2=2640【例4】某工厂七月份出口创汇200万美元,因受国际大环境的严重影响,出口创汇出现连续下滑,至九月份时出口创汇下降到98万美元,设该厂平均每月下降的百分率是x,则所列方程_________【题型三传染问题】【例5】某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.(1)每轮感染中平均一台电脑会感染几台电脑?(2)若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?【题型四树枝分叉问题】【例6】某种植物主干长出若干数目的支干.每个支干又长出同样数目的小分支.主干、支干、小分支的总数是73,求每个支干长出多少个小分支?【例7】有一个人收到短信后,再用手机转发短消息,每人只转发一次,经过两轮转发后共有133人收到短消息,问每轮转发中平均一个人转发给( )个人A.9 B.10 C.11 D.12【针对练习2】1.新年里,一个小组有若干人,若每人给小组的其它成员赠送一张贺卡,全组共送贺卡72张,则此小组人数为( )A.7 B.8 C.9 D.102.篮球联赛实行单循环赛制,即每两个球队之间进行一场比赛,计划一共打36场比赛.设一共有x个球队参赛,根据题意,所列方程为____________3.某种植物的主干长出若干数目的支干,每个支干又长出相同数目的小分支.若主干、支干和小分支的总数是57,则每个支干长出( )根小分支A.5 B.6 C.7 D.84.某种品牌的手机经过四、五月份连续两次降价,每部售价由1000元降到了810元,则平均每月降价的百分率为( )A.9.5% B.20% C.10% D.11%5.某村的人均收入前年为12000元,今年的人均收入为14520元.设这两年该村人均收入的年平均增长率为x,根据题意,所列方程为__________6.有两个人患了流感,经过两轮传染后共有242个人患了流感,每轮传染中,平均一个人传染了____人.【三、利润问题】【方法技巧】利润=单件利润×数量.【例1】某商店从生产厂家以每件21元的价格进一批商品,该商品以25元一件的价格出售,每天可卖出100件.后调査发现:每涨价2元每天将少卖20件,每件商品加价超过进价的20%但不能超过进价的50%.商店计划每天要赚400元,需要卖出多少件商品?每件商品的售价为多少元?【例2】某公司投资新建了一商场,共有商铺30间,据预测,当每间的年租金定为10万元时,可全部租出,每间的年租金每增加5000元,少租出商铺1间,该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5000元.(1)当每间商铺的年租金定为13万元时,能租出多少间?(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金—各种费用)为275万元?【针对练习3】1.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?2.某宾馆有30个房间供游客居住,当每个房间每天的定价为100元时,房间恰好全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用,设每间房间定价x元(x≥100).(1)每天有游客居住的房间数为(用x表示结果化简)(2)当毎间房价定为多少元,宾馆的利润w(元)最大?(3)宾馆某天统计结果显示,该天利润为1870元,请求出这天每间房的定价x(元)的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• • •
(二)平均增长率问题 •1.青山村种的水稻2001年平均每公顷产7200公斤,2003年平均每公顷 产8450公斤,求水稻每公顷产量的年平均增长率。 •2.某种商品经过两次连续降价,每件售价由原来的90元降到了40元,求 平均每次降价率是多少? •3.某种商品,原价50元,受金融危机影响,1月份降价10%,从2月份 开始涨价,3月份的售价为64.8元,求2、3月份价格的平均增长率。 •4.某药经两次降价,零售价降为原来的一半,已知两次降价的百分率相 同,求每次降价的百分率? •5.为了绿化校园,某中学在2007年植树400棵,计划到2009年底使这三 年的植树总数达到1324棵,求该校植树平均每年增长的百分数。
• 6.西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克 的价格出售,每天可售出200千克。为了促销,该经营户决定降价 销售。经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出 40千克。另外,每天的房租等固定成本共24元。该经营户要想每天 盈利200元,应将每千克小型西瓜的售价降低多少元?
一元二次方程的应用
• • • • (一)传播问题 1.有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均 一个人传染了几个人? 2.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支, 主干、支干和小分支的总数是91,每个支干长出多少小分支? 3.参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有 多少个队参加比赛? 4.参加一次足球联赛的每两队之间都进行两次赛,比共比赛90场比赛,共有 多少个队参加比赛? 5.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全 组共互赠了182件,这个小组共有多少名同学? 6.一个小组有若干人,新年互送贺卡,若全组共送贺卡72张,这个小组共有 多少人?
• (四)面积问题 • 1.一个直角三角形的两条直角边的和是14cm,面积是24cm2,求两条直 角边的长。 • 2.一个直角三角形的两条直角边相差5㎝,面积是7㎝2,求斜边的长。 • 3.一个菱形两条对角线长的和是10㎝,面积是12㎝2,求菱形的周长 (结果保留小数点后一位) • 4.为了绿化学校,需移植草皮到操场,若矩形操场的长比宽多14米,面 积是3200平方米则操场的长为 米,宽为 米。 • 5.若把一个正方形的一边增加2cm,另一边增加1cm,得到的矩形面积 的2 倍比正方形的面积多11cm2,则原正方形的边长为 cm. • 6.一张桌子的桌面长为6米,宽为4米,台布面积是桌面面积的2倍,如 果将台布铺在桌子上,各边垂下的长度相同,求这块台布的长和宽。 • 7.有一面积为54cm2的长方形,将它的一组对边剪短5cm,另一组对边 剪短2cm,刚好变成一个正方形,这个正方形的边长是多少? • 8.如图,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的正方 形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所 截去的小正方形的边长。
(三)商品销售问题
• • • • 售价—进价=利润 一件商品的润利×销售量=总利润 单价×销售量=销售额 1.某商店购进一种商品,进价30元.试销中发现这种商品每天的销售量 P(件)与每件的销售价X(元)满足关系:P=100-2X销售量P,若商店每天销 售这种商品要获得200元的利润,那么每件商品的售价应定为多少元?每 天要售出这种商品多少件 2.某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出 的产品全部售出,已知生产ⅹ只熊猫的成本为R(元),售价每只为P (元),且R P与x的关系式分别为R=500+30X,P=170—2X。 (1)当日产量为多少时每日获得的利润为1750元? (2)若可获得的最大利润为1950元,问日产量应为多少? 3.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出 500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元, 日销售量将减少20千克。现该商品要保证每天盈利6000元,同时又要使 顾客得到实惠,那么每千克应涨价少元? 4、益群精品店以每件21元的价格购进一批商品,该商品可以自行定价, 若每件商品售价a元,则可卖出(350-10a)件,但物价局限定每件商品 的利润不得超过20%,商店计划要盈利400元,需要进货多少件?每件商 品应定价多少?
• • • •
•ห้องสมุดไป่ตู้
• 5服装柜在销售中发现某品牌童装平均每天可售出20件,每件盈利4 0元。为了迎接“六一”儿童节,商场决定采取适当的降价措施,扩 大销售量,增加盈利,减少库存。经市场调查发现,如果每件童装每 降价4元,那么平均每天就可多售出8件。要想平均每天在销售这种 童装上盈利1200元,那么每件童装应降价多少元?
• 9.张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪 去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15 立方米的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现 已购买这种铁皮每平方米需20元钱,问张大叔购买这张铁皮共花了多 少元钱?
• 10.如图,在宽为20m ,长为30m ,的矩形地面上修建两条同样宽且 互相垂直的道路,余分作为耕地为551㎡。则道路的宽为?