2018秋人教版八年级数学上册课件:第十一章 《三角形》单元检测题 (共33张PPT)
【3套试卷】人教版数学八年级上册第十一章《三角形》单元检测试题

人教版数学八年级上册第十一章《三角形》单元检测试题一、选择题(每题3分,共30分) 1.三角形的角平分线是( )A.直线B.射线C.线段D.射线或线段 2.如图1能说明∠1>∠2的是( )3.若一个多边形的内角和等于720°,则这个多边形的边数是( )A.5B.6C.7D.84.一个多边形每个顶点取一个外角,这些外角中钝角最多有( )A.1个B.2个C.3个D.4个5.用三角板作△ABC 的边BC 上的高,下列三角板的摆放位置正确的是( )A .B .C .D .6.一根长为l 的绳子围成一个三边不相等的三角形,则三角形的最长边x 的取值范围为( ) A .31<x <21 B .31<x ≤21C .31≤x <21D .31≤x ≤217. 用一条长20cm 的细绳围成一个三角形,已知第一条边长为xcm ,第二条边长比第一条边长的2倍少4cm .若第一条边最短,则x 的取值范围是( ) A .2<x <8B .6314<<x C .0<x <10 D .7<x <88.如图2,在六边形ABCDEF 中,若∠A +∠B +∠C +∠D =500°,∠DEF 与∠AFE 的平分线交于点G ,则∠G 等于( ) A .55° B .65° C .70° D .80°9. 如图3所示,图中x 的值是( ) A .80° B .70° C .60° D .50°10.如图4,在四边形ABCD 中,∠ABC 与∠BCD 的平分线的交点E 恰好在AD 边上,则∠BEC =( )121221 D C B A 图1 图2 图3 图4A .∠A +∠D ﹣45°B .21(∠A +∠D )+45° C .180°﹣(∠A +∠D )D .21∠A +21∠D二、填空题(每题3分,共24分)11.如图5,在△ABC 中,BD =CD ,∠ABE =∠CBE ,则线段_______是△ABC 的中线,ED 是△_______的中线;△ABC 的角平分线是_______,BF 是△_______的角平分线.12.在Rt △ABC 中,若∠C 是直角,∠A =30°,那么∠B =_______.13.图6①、②、③中,具有稳定性的是图 14.如图7,∠A +∠B +∠C +∠D +∠E = 180° .15.△ABC 的三个内角满足5∠A >7∠B ,5∠C <2∠B ,则△ABC 是 三角形(填“锐角”、“直角”或“钝角”)16定义:当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的一个内角为48°,那么这个“特征角”α的度数为 .17.如图8,已知AO =10,P 是射线ON 上一动点(即P 点可在射线ON 上运动),∠AON =60°.(1)OP = 时,△AOP 为直角三角形.(2)设OP =x ,则x 满足 时,△AOP 为钝角三角形.18.如图(1)),在△ABC 中,∠ABC ,∠ACB 的角平分线交于点O ,则∠BOC =90°+21∠A =21×180°+21∠A .如图9(2),在△ABC 中,∠ABC ,∠ACB 的两条三等分角线分别对应交于O 1,O 2,则∠BO 1C =32×180°+31∠A ,∠BO 2C =31×180°+32∠A .根据以上阅读理解,你能猜想∠BO 2018C = .D C B AEF 图5 图6图7 图8三、解答题19. 如图10,在五边形ABCDE 中满足AB ∥CD ,求图形中的x 的值.20. (1)已知三角形三个内角的度数比为1:2:3,求这个三角形三个外角的度数. (2)一个正多边形的内角和为1800°,求这个多边形的边数.21. 如图11,四边形ABCD 中,BE 、CF 分别是∠B 、∠D 的平分线.且∠A =∠C =90°,试猜想BE 与DF 有何位置关系?请说明理由.22. 已知:如图12,在△ABC 中,AB =3,AC =5. (1)直接写出BC 的取值范围是 .(2)若点D 是BC 边上的一点,∠BAC =85°,∠ADC =140°,∠BAD =∠B ,求∠C .23.如图13,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,若∠A =42°. (1)求∠BOC 的度数;(2)把(1)中∠A =42°这个条件去掉,试探索∠BOC 和∠A 之间有怎样的数量关系.图9(1)(2)(3)图10图11 图12 图1324. 如图14,AC 平分∠DCE ,且与BE 的延长线交于点A . (1)如果∠A =35°,∠B =30°,则∠BEC = .(直接在横线上填写度数)(2)小明经过改变∠A ,∠B 的度数进行多次探究,得出∠A 、∠B 、∠BEC 三个角之间存在固定的数量关系,请你用一个等式表示出这个关系,并进行证明. 解:(2)关系式为: 证明:25. 【探究发现】 如图15(1),在△ABC 中,点P 是内角∠ABC 和外角∠ACD 的角平分线的交点,试猜想∠P 与∠A 之间的数量关系,并证明你的猜想.【迁移拓展】 如图15(2),在△ABC 中,点P 是内角∠ABC 和外角∠ACD 的n 等分线的交点,即∠PBC =n 1∠ABC ,∠PCD =n1∠ACD , 试猜想∠P 与∠A 之间的数量关系,并证明你的猜想. 【应用创新】已知,如图15(3),AD 、BE 相交于点C ,∠ABC 、∠CDE 、∠ACE 的角平分线交于点P ,∠A =35°,∠E =25°,则∠BPD = .参考答案:一、1.C ;2.C ;3.B ;4.C ; 5. A 提示:B ,C ,D 都不是△ABC 的边BC 上的高,故选:A . 6. A 提示:设三角形的其他两边为:y ,z ,∵x +y +z =l ,y +z >x ∴可得x <21, 又因为x 为最长边大于31,∴31<x <21;故选:A . 7. B 提示:根据题意可得:第二条边长为(2x ﹣4)米,图14 图15 (1)) (2) (3)∴第三条边长为20﹣x ﹣(2x ﹣4)=(24﹣3x )米;由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧->-+->-+>->->4232432442324420x x x x x x x x x x x ,解得6314<<x .故选:B . 8. C 提示:六边形ABCDEF 的内角和是:(6﹣2)×180°=4×180°=720° ∵∠A +∠B +∠C +∠D =500°,∴∠DEF +∠AFE =720°﹣500°=220°, ∵GE 平分∠DEF ,GF 平分∠AFE , ∴∠GEF +∠GFE =21(∠DEF +∠AFE )=21×220°=110°, ∴∠G =180°﹣110°=70°.故选:C .9. C 提示:∵图形是五边形,∴120°+150°+2x °+x °+90°=(5﹣2)×180°, 解得:x =60°,故选:C .10. D 提示:∵四边形的内角和=360°,∴∠ABC +∠BCD =360°﹣(∠A +∠D ), ∵∠ABC 与∠BCD 的平分线的交点E 恰好在AD 边上, ∴2∠EBC =∠ABC ,2∠ECB =∠BCD ,∴∠EBC +∠ECB =)(21BCD ABC ∠+∠=[])(36021D A ∠+∠-︒⨯, ∴∠BEC =180°﹣(∠EBC +∠ECB )=180°﹣[])(36021D A ∠+∠-︒⨯=)(21D A ∠+∠,故选:D .二、11.AD 、BEC 、BE 、ABD ;12.60°;13. ①②提示:∵三角形具有稳定性,∴①②具有稳定性.14. 180°提示:利用三角形的外角的性质得:∠1=∠D +∠E ,∠2=∠A +∠B , 所以∠A +∠B +∠C +∠D +∠E =∠2+∠C +∠1=180°,15. 钝角提示:∵5∠A >7∠B ,2∠B >5∠C ,∴5∠A +2∠B >7∠B +5∠C , 即5∠A +>5∠B +5∠C ,∴∠A >∠B +∠C ,不等式两边加∠A ,可得2∠A >∠A +∠B +∠C ,而∠A +∠B +∠C =180°,∴2∠A >180°,即∠A >90°, ∴这个三角形是钝角三角形.16. 48°或96°或88°提示:当“特征角”为48°时,即α=48°;当β=48°,则“特征角”α=2×48°=96°; 当第三个角为48°时,α+21α+48°=180°,即得α=88°, 综上所述,这个“特征角”α的度数为48°或96°或88°. 17. (1)5或20(2)0<x <5或x >20 提示:(1)当∠APO =90°时,∠OAP =90°﹣∠AOP =30°, ∴OP =OA =5,当∠OAP =90°时,∠OPA =90°﹣∠AOP =30°, ∴OP =2OA =20,(2)当0<x <5或x >20时,△AOP 为钝角三角形,18. +∠A 提示:如图3,根据题中所给的信息,总结可得: ∠BO 1C =×180°+∠A ,∠BO n ﹣1C =×180°+∠A .∴当n ﹣1=2018时,n =2019,即∠BO 2018C =+∠A .三、解答题19. 解:∵AB ∥CD ,∠C =60°,∴∠B =180°﹣60°=120°, ∴(5﹣2)×180°=x +150°+125°+60°+120°,∴x =85°. 20. 解:(1)设此三角形三个内角的比为x ,2x ,3x , 则x +2x +3x =180,6x =180,x =30, 则三个内角分别为30°、60°、90°,相应的三个外角分别为150°、120°、90°. (2)设这个多边形的边数是n ,则(n ﹣2)•180°=1800°,解得n =12.故这个多边形的边数为12. 21. 解:BE ∥DF ,理由是:∵四边形内角和等于360°,∠A =∠C =90°,∴∠ABC +∠ADC =180°, ∵BE 、CF 分别是∠B 、∠D 的平分线,∴∠1=21∠ABC ,∠2=21∠ADC , ∴∠1+∠2=90°,∵在Rt △DCF 中,∠3+∠2=90°,∴∠1=∠3,∴BE ∥DF . 22. 解:(1)2<BC <8,故答案为:2<BC <8(2)∵∠ADC 是△ABD 的外角∴∠ADC =∠B +∠BAD =140° ∵∠B =∠BAD ∴∠B =︒=︒⨯7014021∵∠B +∠BAC +∠C =180° ∴∠C =180°﹣∠B ﹣∠BAC 即∠C =180°﹣70°﹣85°=25° 23. 解:(1)∵∠A =42°,∴∠ABC +∠ACB =180°﹣∠A =138°,∵BO 、CO 分别是△ABC 的角∠ABC 、∠ACB 的平分线,∴∠1=21∠ABC ,∠2=21∠ACB , ∴∠1+∠2=21(∠ABC +∠ACB )==69°,∴∠BOC =180°﹣(∠1+∠2)=180°﹣69°=111°;(2)∠BOC =90°+21∠A , ∵BO 、CO 分别是△ABC 的角∠ABC 、∠ACB 的平分线,∴∠1=21∠ABC ,∠2=∠ACB , ∴∠1+∠2=21(∠ABC +∠ACB )=21(180°﹣∠A ),∴∠BOC =180°﹣(∠1+∠2)=180-)180(21A ∠-︒=A ∠-︒2190.24. 解:(1)∵∠A =35°,∠B =30°,∴∠ACD =∠A +∠B =65°, 又∵AC 平分∠DCE ,∴∠ACE =∠ACD =65°,∴∠BEC =∠A +∠ACE =35°+65°=100°, (2)关系式为∠BEC =2∠A +∠B . 理由:∵AC 平分∠DCE , ∴∠ACD =∠ACE ,∵∠BEC =∠A +∠ACE =∠A +∠ACD , ∵∠ACD =∠A +∠B ,∴∠BEC =∠A +∠A +∠B =2∠A +∠B . 25. 解:(1)∠A =2∠P ,理由如下:∵BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线, ∴∠PBC =21∠ABC ,∠PCD =21∠ACD , ∵∠ACD 是△ABC 的外角,∠PCD 是△BPC 的外角,∴∠ACD =∠ABC +∠A ,∠PCD =∠PBC +∠P ,∴21∠ACD =21∠ABC +21∠A , ∴21∠ABC +21∠A =∠PBC +∠P , ∴∠A =2∠P ;(2)∠A =n ∠P ,理由如下:∵点P 是内角∠ABC 和外角∠ACD 的n 等分线的交点, ∴∠PBC =∠ABC ,∠PCD =∠ACE .∵∠ACD 是△ABC 的外角,∠PCD 是△BPC 的外角, ∴∠ACD =∠ABC +∠A ,∠PCD =∠PBC +∠P , ∴n 1∠ACD =n 1∠ABC +n1∠A ,∴n 1∠ABC +n1∠A =∠PBC +∠P , ∴∠A =n ∠P ;(3)∵∠ABC 、∠CDE 、∠ACE 的角平分线交于点P , ∴由(1)的结论知,∠BPC =21∠A =,∠CPD =21∠E =,∴∠BPD =∠BPC +∠DPC =30°,故答案为:30°.人教新版八年级数学上册第11章三角形单元练习试题一.选择题(共15小题)1.下列各组数可能是一个三角形的边长的是()A.4,4,9 B.2,6,8 C.3,4,5 D.1,2,32.下列图中不具有稳定性的是()A.B.C.D.3.在△ABC中,∠A是钝角,下列图中画AC边上的高线正确的是()A.B.C.D.4.若一个三角形的两边长分别是4、9,则这个三角形的第三边的长可能是()A.3 B.5 C.8 D.135.下列说法错误的是()A.三角形三条高交于三角形内一点B.三角形三条中线交于三角形内一点C.三角形三条角平分线交于三角形内一点D.三角形的中线、角平分线、高都是线段6.如图所示,在△ABC中,AD为BC边上的中线,若AB=5cm,AC=3cm,则△ABD的周长比△ACD周长多()A.5cm B.3cm C.8cm D.2cm7.如图,△ABC中,∠BAC是钝角,AD⊥BC、EB⊥BC、FC⊥BC,()A.AD是△ABC的高B.EB是△ABC的高C.FC是△ABC的高D.AE、AF是△ABC的高8.如图,AD是△ABC的外角∠EAC的平分线,AD∥BC,∠B=32°,则∠C的度数是()A.64°B.32°C.30°D.40°9.一副三角板如图摆放,边DE∥AB,则∠1=()A.135°B.120°C.115°D.105°10.如图,三角形一外角为140°,则∠1的度数为()A.100°B.110°C.120°D.130°11.一个正多边形,它的每一个外角都等于40°,则该正多边形是()A.正六边形B.正七边形C.正八边形D.正九边形12.已知在△ABC中,∠ACB=90°,∠A=60°,则∠B的度数是()A.30°B.35°C.40°D.5013.如图,x的值是()A.80 B.90 C.100 D.11014.如图,△ABC中,∠ABC=∠ACB,∠BPC=113°,P是△ABC内一点,且∠1=∠2,则∠A等于()A.113°B.67°C.23°D.46°15.如图所示,小明从A点出发,沿直线前进8米后左转40°,再沿直线前进8米,又左转40°,照这样走下去,他第一次回到出发点A时,一共走了()米.A.70 B.72 C.74 D.76二.填空题(共7小题)16.若三角形三边长为3,2x+1,10,则x的取值范围是.17.若△ABC的三个内角之比为1:5:3,那么△ABC中最大角的度数为.18.如图,在△ABC中,∠A=40°,外角∠ACD=100°,则∠B=.19.如图,已知,∠ACB=90°,CD⊥AB于点D,那么图中与∠A相等的角是.20.一个正多边形的周长是100,边长为10,则正多边形的边数n═.21.已知一个正多边形的每个内角都是150°,则这个正多边形是正边形.22.若一个九边形8个外角的和为200°,则它的第9个外角为度.三.解答题(共7小题)23.已知△ABC,如图,过点A画△ABC的角平分线AD、中线AE和高线AF.24.已知在△ABC中,AB=5,BC=2,且AC为奇数.(1)求△ABC的周长;(2)判断△ABC的形状.25.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠EFC的度数26.如图,△ABC中,∠ABC=∠C=70°,BD平分∠ABC,求∠ADB的度数.27.如图,AB、ED分别垂直于BD,点B、D是垂足,且∠ACB=∠CED.求证△ACE是直角三角形.28.如图,五边形ABCDE中,AE∥CD,∠A=107°,∠B=121°,求∠C的度数.29.如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠CDA.(1)求证:BE∥DF;(2)若∠ABC=56°,求∠ADF的大小.参考答案一.选择题(共15小题)1.解:A、因为4+4<9,所以本组数不能构成三角形.故本选项错误;B、因为2+6=8,所以本组数不能构成三角形.故本选项错误;C、因为3+4>5,所以本组数可以构成三角形.故本选项正确;D、因为1+2=3,所以本组数不能构成三角形.故本选项错误;故选:C.2.解:因为三角形具有稳定性,四边形不具有稳定性,故选:B.3.解:由题意可得,在△ABC中,∠A是钝角,画AC边上的高线是故选:A.4.解:设第三边长为xcm,则9﹣4<x<9+4,5<x<13,故选:C.5.解:A、三角形的三条高所在的直线交于一点,三条高不一定相交,故本选项正确;B、三角形的三条中线交于三角形内一点,故本选项错误;C、三角形的三条角平分线交于一点,是三角形的内心,故本选项错误;D、三角形的中线,角平分线,高都是线段,因为它们都有两个端点,故本选项错误;故选:A.6.解:∵AD是△ABC中BC边上的中线,∴BD=DC=BC,∴△ABD和△ADC的周长的差=(AB+BC+AD)﹣(AC+BC+AD)=AB﹣AC=5﹣3故选:D.7.解:△ABC中,画BC边上的高,是线段AD.故选:A.8.解:∵AD∥BC,∴∠EAD=∠B=32°,∵AD是△ABC的外角∠EAC的平分线,∴∠EAC=2∠EAD=64°,∵∠EAC是△ABC的外角,∴∠C=∠EAC﹣∠B=64°﹣32°=32°,故选:B.9.解:∵DE∥AB,∴∠D+∠DAB=180°,又∵∠D=45°,∠BAC=30°,∴∠1=180°﹣∠D﹣∠BAC=105°,故选:D.10.解:由三角形的外角性质可知,∠2=140°﹣80°=60°,∴∠1=180°﹣∠2=180°﹣60°=120°,故选:C.11.解:∵360÷40=9,∴这个正多边形的边数是9.故选:D.12.解:∵在△ABC中,∠ACB=90°,∠A=60°,∴∠B=30°,13.解:根据四边形的内角和得,x+x+10+60+90=360,解得:x=100,故选:C.14.解:∵∠BPC=113°∴∠PCB=180°﹣∠BPC﹣∠2=67°﹣∠2∵∠1=∠2∴∠ACB=∠1+∠PCB=∠1+67°﹣∠2=67°∴∠ABC=∠ACB=67°∴∠A=180°﹣∠ABC﹣∠ACB=180°﹣2×67°=46°故选:D.15.解:由题意可知,小明第一次回到出发点A时,他一共转了360°,且每次都是向左转40°,所以共转了360÷40=9次,一次沿直线前进8米,9次就前进8×9=72米.故选:B.二.填空题(共7小题)16.解:由三角形三边关系定理得:10﹣3<2x+1<10+3,且2x+1>0解得:3<x<6,即x的取值范围是3<x<6.故答案为:3<x<6.17.解:设△ABC最小的内角为x°,则另外两角的大小分别为5x°,3x°,依题意,得:x+5x+3x=180,解得:x=20,∴5x=100.故答案为:100°.18.解:∵∠A=40°,外角∠ACD=100°,∴∠B=∠ACD﹣∠A=100°﹣40°=60°,故答案为:60°.19.解:∵在Rt△ABC中,∠A=90°﹣∠B,又∵在Rt△BCD中,∠BCD=90°﹣∠B,故答案为:∠BCD.20.解:∵正多边形的周长是100,边长为10,∴正多边形的边数n==10,故答案为:10.21.解:外角是:180°﹣150°=30°,360°÷30°=12.则这个正多边形是正十二边形.故答案为:十二.22.解:360°﹣200°=160°.故它的第9个外角为160度.故答案为:160.三.解答题(共7小题)23.解:由题意画图可得:24.解:(1)由题意得:5﹣2<AC<5+2,即:3<AC<7,∵AC为奇数,∴AC=5,∴△ABC的周长为5+5+2=12;(2)∵AB=AC,∴△ABC是等腰三角形.25.解:∵EF∥AD,AD∥BC,∴EF∥BC,∠ACB+∠DAC=180°,∵∠DAC=120°,又∵∠ACF=20°,∴∠FCB=∠ACB﹣∠ACF=40°,∵EF∥BC,∴∠EFC+∠FCB=180°,∴∠EFC=180°﹣40°=140°.26.解:∵∠ABC=∠C=70°,BD平分∠ABC,∴∠DBC=35°,∴∠ADB=∠C+∠DBC=70°+35°=105°.27.证明:∵AB⊥BD,ED⊥BD,∴∠ABC=∠CDE=90°,∴∠ACB+∠BAC=90°,∠CED+∠DCE=90°.∵∠ACB=∠CED,∴∠BAC=∠DCE,∴∠ACB+∠DCE=90°,∴∠ACE=180°﹣(∠ACB+∠DCE)=90°.∴△ACE是直角三角形.28.解:过点B在B的右侧作BF∥AE.∵BF∥AE,∠A=107°,∴∠ABF=180°﹣107°=73°,∵∠B=121°,∴∠FBC=121°﹣∠ABF=48°,又AE∥CD,BF∥AE,∴BF∥CD,∴∠C=180°﹣∠FBC=132°.29.(1)证明:∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,∵BE平分∠ABC,DF平分∠ADC,∴∠1=∠2=∠ABC,∠3=∠4=∠ADC,∴∠1+∠3=(∠ABC+∠ADC)=×180°=90°,又∠1+∠AEB=90°,∴∠3=∠AEB,∴BE∥DF;(2)解:∵∠ABC=56°,∴∠ADC=360°﹣∠A﹣∠C﹣∠ABC=124°,∵DF平分∠CDA,∴∠ADF=∠ADC=62°.人教版八年级数学上册《第11章三角形》单元综合测试(解析版)一、选择题1.下列每组数分别是三根木棒的长度,能用它们摆成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cmC.5cm,5cm,11cm D.13cm,12cm,20cm2.若一个三角形的两边长分别为3和7,则第三边长可能是()A.6 B.3 C.2 D.113.在△ABC中,若∠A=95°,∠B=40°,则∠C的度数为()A.35° B.40° C.45° D.50°4.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35° B.95° C.85° D.75°5.若一个正n边形的每个内角为144°,则这个正n边形的所有对角线的条数是()A.7 B.10 C.35 D.706.如图的七边形ABCDEFG中,AB、ED的延长线相交于O点.若图中∠1、∠2、∠3、∠4的外角的角度和为220°,则∠BOD的度数为何?()A.40° B.45° C.50° D.60°7.六边形的内角和是()A.540°B.720°C.900°D.1080°8.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90° C.72° D.60°9.如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米B.150米C.160米D.240米10.下列说法不正确的是()A.三角形的中线在三角形的内部B.三角形的角平分线在三角形的内部C.三角形的高在三角形的内部D.三角形必有一高线在三角形的内部11.若一个三角形的三条边长分别为3,2a﹣1,6,则整数a的值可能是()A.2,3 B.3,4 C.2,3,4 D.3,4,512.已知△ABC中,∠A=20°,∠B=∠C,那么三角形△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.正三角形13.如图,△ABC中,AE是∠BAC的角平分线,AD是BC边上的高线,且∠B=50°,∠C=60°,则∠EAD的度数()A.35° B.5°C.15° D.25°三、填空题14.十边形的外角和是______°.15.如图,自行车的三角形支架,这是利用三角形具有______性.16.如图,已知在△ABC中,∠B与∠C的平分线交于点P.当∠A=70°时,则∠BPC的度数为______.17.如图,∠1+∠2+∠3+∠4+∠5=______°.三、解答18.在△ABC中,CD⊥AB于D,CE是∠ACB的平分线,∠A=20°,∠B=60°.求∠BCD和∠ECD的度数.19.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.20.已知△ABC中,∠ACB=90°,CD为AB边上的高,BE平分∠ABC,分别交CD、AC于点F、E,求证:∠CFE=∠CEF.21.如图,在四边形ABCD中,∠1=∠2,∠3=∠4,且∠D+∠C=220°,求∠AOB的度数.22.如图,已知AB∥CD,EF与AB、CD分别相交于点E、F,∠BEF与∠EFD的平分线相交于点P,求证:EP⊥FP.23.如图,△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠EAD=5°,∠B=50°,求∠C的度数.24.如图,在△BCD中,BC=4,BD=5,(1)求CD的取值范围;(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.25.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC 的度数.《第11章三角形》参考答案与试题解析一、选择题1.下列每组数分别是三根木棒的长度,能用它们摆成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cmC.5cm,5cm,11cm D.13cm,12cm,20cm【考点】三角形三边关系.【分析】根据三角形的三边关系,两边之和大于第三边,即两短边的和大于最长的边,即可作出判断.【解答】解:A、3+4<8,故以这三根木棒不可以构成三角形,不符合题意;B、8+7=15,故以这三根木棒不能构成三角形,不符合题意;C、5+5<11,故以这三根木棒不能构成三角形,不符合题意;D、12+13>20,故以这三根木棒能构成三角形,符合题意.故选D.【点评】本题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边.2.若一个三角形的两边长分别为3和7,则第三边长可能是()A.6 B.3 C.2 D.11【考点】三角形三边关系.【分析】根据三角形三边关系,两边之和第三边,两边之差小于第三边即可判断.【解答】解:设第三边为x,则4<x<10,所以符合条件的整数为6,故选A.【点评】本题考查三角形三边关系定理,记住两边之和第三边,两边之差小于第三边,属于基础题,中考常考题型.3.在△ABC中,若∠A=95°,∠B=40°,则∠C的度数为()A.35° B.40° C.45° D.50°【考点】三角形内角和定理.【分析】在△ABC中,根据三角形内角和是180度来求∠C的度数.【解答】解:∵三角形的内角和是180°,又∠A=95°,∠B=40°∴∠C=180°﹣∠A﹣∠B=180°﹣95°﹣40°=45°,故选C.【点评】本题考查了三角形内角和定理,利用三角形内角和定理:三角形内角和是180°是解答此题的关键.4.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35° B.95° C.85° D.75°【考点】三角形的外角性质;角平分线的定义.【分析】根据三角形角平分线的性质求出∠ACD,根据三角形外角性质求出∠A即可.【解答】解:∵CE是△ABC的外角∠ACD的平分线,∠ACE=60°,∴∠ACD=2∠ACE=120°,∵∠ACD=∠B+∠A,∴∠A=∠ACD﹣∠B=120°﹣35°=85°,故选:C.【点评】本题考查了三角形外角性质,角平分线定义的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.5.若一个正n边形的每个内角为144°,则这个正n边形的所有对角线的条数是()A.7 B.10 C.35 D.70【考点】多边形内角与外角;多边形的对角线.【分析】由正n边形的每个内角为144°结合多边形内角和公式,即可得出关于n的一元一次方程,解方程即可求出n的值,将其代入中即可得出结论.【解答】解:∵一个正n边形的每个内角为144°,∴144n=180×(n﹣2),解得:n=10.这个正n边形的所有对角线的条数是: ==35.故选C.【点评】本题考查了多边形的内角以及多边形的对角线,解题的关键是求出正n边形的边数.本题属于基础题,难度不大,解决该题型题目时,根据多边形的内角和公式求出多边形边的条数是关键.6.如图的七边形ABCDEFG中,AB、ED的延长线相交于O点.若图中∠1、∠2、∠3、∠4的外角的角度和为220°,则∠BOD的度数为何?()A.40° B.45° C.50° D.60°【考点】多边形内角与外角.【分析】延长BC交OD与点M,根据多边形的外角和为360°可得出∠OBC+∠MCD+∠CDM=140°,再根据四边形的内角和为360°即可得出结论.【解答】解:延长BC交OD与点M,如图所示.∵多边形的外角和为360°,∴∠OBC+∠MCD+∠CDM=360°﹣220°=140°.∵四边形的内角和为360°,∴∠BOD+∠OBC+180°+∠MCD+∠CDM=360°,∴∠BOD=40°.故选A.【点评】本题考查了多边形的内角与外角以及角的计算,解题的关键是能够熟练的运用多边形的外角和为360°来解决问题.本题属于基础题,难度不大,解决该题型题目时,利用多边形的外角和与内角和定理,通过角的计算求出角的角度即可.7.六边形的内角和是()A.540°B.720°C.900°D.1080°【考点】多边形内角与外角.【分析】多边形内角和定理:n变形的内角和等于(n﹣2)×180°(n≥3,且n为整数),据此计算可得.【解答】解:由内角和公式可得:(6﹣2)×180°=720°,故选:B.【点评】此题主要考查了多边形内角和公式,关键是熟练掌握计算公式:(n﹣2)•180°(n ≥3,且n为整数)..8.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90° C.72° D.60°【考点】多边形内角与外角.【分析】首先设此多边形为n边形,根据题意得:180(n﹣2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【解答】解:设此多边形为n边形,根据题意得:180(n﹣2)=540,解得:n=5,故这个正多边形的每一个外角等于:=72°.故选C.【点评】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n﹣2)•180°,外角和等于360°.9.如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米B.150米C.160米D.240米【考点】多边形内角与外角.【分析】多边形的外角和为360°每一个外角都为24°,依此可求边数,再求多边形的周长.【解答】解:∵多边形的外角和为360°,而每一个外角为24°,∴多边形的边数为360°÷24°=15,∴小明一共走了:15×10=150米.故选B.【点评】本题考查多边形的内角和计算公式,多边形的外角和.关键是根据多边形的外角和及每一个外角都为24°求边数.10.下列说法不正确的是()A.三角形的中线在三角形的内部B.三角形的角平分线在三角形的内部C.三角形的高在三角形的内部D.三角形必有一高线在三角形的内部【考点】三角形的角平分线、中线和高.【分析】根据三角形的中线,角平分线和高线的定义以及在三角形的位置对各选项分析判断后利用排除法求解.【解答】解:A、三角形的中线在三角形的内部正确,故本选项错误;B、三角形的角平分线在三角形的内部正确,故本选项错误;C、只有锐角三角形的三条高在三角形的内部,故本选项正确;D、三角形必有一高线在三角形的内部正确,故本选项错误.故选C.【点评】本题考查了三角形的角平分线、中线、高线,是基础题,熟记概念以及在三角形中的位置是解题的关键.11.若一个三角形的三条边长分别为3,2a﹣1,6,则整数a的值可能是()A.2,3 B.3,4 C.2,3,4 D.3,4,5【考点】三角形三边关系.【分析】直接利用三角形三边关系得出a的取值范围,进而得出答案.【解答】解:∵一个三角形的三条边长分别为3,2a﹣1,6,∴,解得:2<a<5,故整数a的值可能是:3,4.故选:B.【点评】此题主要考查了三角形三边关系,正确得出a的取值范围是解题关键.12.已知△ABC中,∠A=20°,∠B=∠C,那么三角形△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.正三角形【考点】三角形内角和定理.【分析】根据已知条件和三角形的内角和是180度求得各角的度数,再判断三角形的形状.【解答】解:∵∠A=20°,∴∠B=∠C=(180°﹣20°)=80°,∴三角形△ABC是锐角三角形.故选A.【点评】主要考查了三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件.13.如图,△ABC中,AE是∠BAC的角平分线,AD是BC边上的高线,且∠B=50°,∠C=60°,则∠EAD的度数()A.35° B.5°C.15° D.25°【考点】三角形内角和定理;角平分线的定义.【分析】利用三角形的内角和是180°可得∠BAC的度数;AE是∠BAC的角平分线,可得∠EAC的度数;利用AD是高可得∠ADC=90°,那么可求得∠DAC度数,那么∠EAD=∠EAC﹣∠DAC.【解答】解:∵∠B=50°,∠C=60°,∴∠BAC=180°﹣∠B﹣∠C=70°,∵AE是∠BAC的角平分线,∴∠EAC=∠BAC=35°,∵AD是高,∴∠ADC=90°,∴∠DAC=90°﹣∠C=30°,∴∠EAD=∠EAC﹣∠DAC=5°.故选B.【点评】关键是得到和所求角有关的角的度数;用到的知识点为:三角形的内角和是180°;角平分线把一个角分成相等的两个角.三、填空题(共4小题,每小题3分,满分12分)14.十边形的外角和是360 °.【考点】多边形内角与外角.【专题】常规题型.【分析】根据多边形的外角和等于360°解答.【解答】解:十边形的外角和是360°.故答案为:360.【点评】本题主要考查了多边形的外角和等于360°,多边形的外角和与边数无关,任何多边形的外角和都是360°.15.如图,自行车的三角形支架,这是利用三角形具有稳定性.【考点】三角形的稳定性.【分析】根据三角形具有稳定性解答.【解答】解:自行车的三角形车架,这是利用了三角形的稳定性.故答案为:稳定性.【点评】本题考查了三角形的稳定性,是基础题.16.如图,已知在△ABC中,∠B与∠C的平分线交于点P.当∠A=70°时,则∠BPC的度数为125°.【考点】三角形内角和定理;三角形的角平分线、中线和高.【专题】探究型.【分析】先根据三角形内角和定理求出∠ABC+∠ACB的度数,再由角平分线的定义得出∠2+∠4的度数,由三角形内角和定理即可求出∠BPC的度数.【解答】解:∵△ABC中,∠A=70°,∴∠ABC+∠ACB=180°﹣∠A=180°﹣70°=110°,∴BP,CP分别为∠ABC与∠ACP的平分线,∴∠2+∠4=(∠ABC+∠ACB)=×110°=55°,∴∠P=180°﹣(∠2+∠4)=180°﹣55°=125°.故答案为:125°.【点评】本题考查的是三角形内角和定理及角平分线的定义,熟知三角形的内角和定理是解答此题的关键.17.如图,∠1+∠2+∠3+∠4+∠5= 540 °.【考点】多边形内角与外角.【分析】连接∠2和∠5,∠3和∠5的顶点,可得三个三角形,根据三角形的内角和定理即可求出答案.【解答】解:连接∠2和∠5,∠3和∠5的顶点,可得三个三角形,根据三角形的内角和定理,∠1+∠2+∠3+∠4+∠5=540°.故答案为540.【点评】本题主要考查三角形的内角和为180°定理,需作辅助线,比较简单.三、解答18.在△ABC中,CD⊥AB于D,CE是∠ACB的平分线,∠A=20°,∠B=60°.求∠BCD和∠ECD的度数.【考点】三角形的角平分线、中线和高.【分析】由CD⊥AB与∠B=60°,根据两锐角互余,即可求得∠BCD的度数,又由∠A=20°,∠B=60°,求得∠ACB的度数,由CE是∠ACB的平分线,可求得∠ACE的度数,然后根据三角形外角的性质,求得∠CEB的度数.【解答】解:∵CD⊥AB,∴∠CDB=90°,∵∠B=60°,∴∠BCD=90°﹣∠B=90°﹣60°=30°;∵∠A=20°,∠B=60°,∠A+∠B+∠ACB=180°,∴∠ACB=100°,∵CE是∠ACB的平分线,∴∠ACE=∠ACB=50°,∴∠CEB=∠A+∠ACE=20°+50°=70°,∠ECD=90°﹣70°=20°【点评】此题考查了三角形的内角和定理,三角形外角的性质以及三角形高线,角平分线的定义等知识.此题难度不大,解题的关键是数形结合思想的应用.19.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.【考点】三角形的角平分线、中线和高.【分析】先利用三角形内角和定理可求∠ABC,在直角三角形ACD中,易求∠DAC;再根据角平分线定义可求∠CBF、∠EAF,可得∠DAE的度数;然后利用三角形外角性质,可先求∠AFB,再次利用三角形外角性质,容易求出∠BOA.【解答】解:∵∠A=50°,∠C=60°∴∠ABC=180°﹣50°﹣60°=70°,又∵AD是高,∴∠ADC=90°,∴∠DAC=180°﹣90°﹣∠C=30°,∵AE、BF是角平分线,∴∠CBF=∠ABF=35°,∠EAF=25°,∴∠DAE=∠DAC﹣∠EA F=5°,∠AFB=∠C+∠CBF=60°+35°=95°,∴∠BOA=∠EAF+∠AFB=25°+95°=120°,∴∠DAC=30°,∠BOA=120°.故∠DAE=5°,∠BOA=120°.【点评】本题考查了三角形内角和定理、角平分线定义、三角形外角性质.关键是利用角平分线的性质解出∠EAF、∠CBF,再运用三角形外角性质求出∠AFB.20.已知△ABC中,∠ACB=90°,CD为AB边上的高,BE平分∠ABC,分别交CD、AC于点F、E,求证:∠CFE=∠CEF.【考点】三角形的角平分线、中线和高.【专题】证明题.【分析】题目中有两对直角,可得两对角互余,由角平分线及对顶角可得两对角相等,然后利用等量代换可得答案.【解答】证明:∵∠ACB=90°,∴∠1+∠3=90°,∵CD⊥AB,∴∠2+∠4=90°,又∵BE平分∠ABC,∴∠1=∠2,∴∠3=∠4,∵∠4=∠5,∴∠3=∠5,即∠CFE=∠CEF.【点评】本题考查了三角形角平分线、中线和高的有关知识;正确利用角的等量代换是解答本题的关键.21.如图,在四边形ABCD中,∠1=∠2,∠3=∠4,且∠D+∠C=220°,求∠AOB的度数.【考点】多边形内角与外角;三角形内角和定理.【分析】首先根据四边形内角和为360度计算出∠DAB+∠ABC=360°﹣220°=140°,再根据∠1=∠2,∠3=∠4计算出∠2+∠3=70°,然后利用三角形内角和为180度计算出∠AOB的度数.【解答】解:∵∠D+∠C+∠DAB+∠ABC=360°,∠D+∠C=220°,∴∠DAB+∠ABC=360°﹣220°=140°,∵∠1=∠2,∠3=∠4,∴∠2+∠3=70°,∴∠AOB=180°﹣70°=110°.【点评】此题主要考查了多边形的内角,关键是掌握四边形内角和为360°,三角形内角和为180°.22.如图,已知AB∥CD,EF与AB、CD分别相交于点E、F,∠BEF与∠EFD的平分线相交于点P,求证:EP⊥FP.【考点】三角形内角和定理;角平分线的定义;平行线的性质.【专题】证明题.【分析】要证EP⊥FP,即证∠PEF+∠EFP=90°,由角平分线的性质和平行线的性质可知,∠PEF+∠EFP=(∠BEF+∠EFD)=90°.【解答】证明:∵AB∥CD,∴∠BEF+∠EFD=180°,又EP、FP分别是∠BEF、∠EFD的平分线,∴∠PEF=∠BEF,∠EFP=∠EFD,∴∠PEF+∠EFP=(∠BEF+∠EFD)=90°,∴∠P=180°﹣(∠PEF+∠EFP)=180°﹣90°=90°,即EP⊥FP.【点评】本题的关键就是找到∠PEF+∠EFP与∠BEF+∠EFD之间的关系,考查了整体代换思想.23.如图,△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠EAD=5°,∠B=50°,求∠C的度数.【考点】三角形的角平分线、中线和高.【分析】根据直角三角形两锐角互余求出∠AED,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BAE,然后根据角平分线的定义求出∠BAC,再利用三角形的内角和定理列式计算即可得解.【解答】解:∵AD是BC边上的高,∠EAD=5°,∴∠AED=85°,∵∠B=50°,∴∠BAE=∠AED﹣∠B=85°﹣50°=35°,∵AE是∠BAC的角平分线,∴∠BAC=2∠BAE=70°,∴∠C=180°﹣∠B﹣∠BAC=180°﹣50°﹣70°=60°.【点评】本题考查了三角形的角平分线、中线和高,主要利用了直角三角形两锐角互余,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记各性质并准确识图是解题的关键.24.如图,在△BCD中,BC=4,BD=5,(1)求CD的取值范围;(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.【考点】三角形三边关系;平行线的性质.【分析】(1)利用三角形三边关系得出DC的取值范围即可;(2)利用平行线的性质得出∠AEC的度数,再利用三角形内角和定理得出答案.【解答】解:(1)∵在△BCD中,BC=4,BD=5,∴1<DC<9;(2)∵AE∥BD,∠BDE=125°,∴∠AEC=55°,。
八年级数学上册试题 第十一章 三角形章节测试卷--人教版(含详解)

第十一章《三角形》章节测试卷一.选择题(共12小题,满分48分,每小题4分)1.已知△ABC中,∠A=20°,∠B=70°,那么△ABC是( )A.直角三角形B.锐角三角形C.钝角三角形D.正三角形2.下面四个图形中,线段BD是△ABC的高的是( )A.B.C.D.3.要使如图所示的五边形木架不变形,至少要再钉上几根木条( )A.1根B.2根C.3根D.4根4.能把一个任意三角形分成面积相等的两部分是( )A.以上都可以B.高C.中线D.角平分线5.长度分别为3,8,x的三条线段能组成一个三角形,x的值可以是( )A.4B.5C.6D.116.如图,在△ABC中,∠BAC=90°,AD是△ABC的高,若∠B=20°,则∠DAC=( )A.90°B.20°C.45°D.70°7.如图所示,∠1=∠2=150°,则∠3=( )A.30°B.150°C.120°D.60°8.如图,在△ABC中,AB=2021,AC=2018,AD为中线,则△ABD与△ACD的周长之差为( )A.1B.2C.3D.49.若一个多边形的每个内角都等于150°,则这个多边形的边数是( )A.10B.11C.12D.1310.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于( )A.90°B.135°C.270°D.315°11.△ABC的两边是方程组{x+2y=104x+3y=20的解,第三边长为奇数.符合条件的三角形有( )A.1个B.2个C.3个D.4个12.如图,在四边形ABCD中,∠ABC与∠BCD的平分线的交点E恰好在AD边上,则∠BEC=( )A.∠A+∠D﹣45°B.12(∠A+∠D)+45°C.180°-(∠A+∠D)D.12∠A+12∠D二.填空题(共4小题,满分16分,每小题4分)13.如图,点D,B,C在同一直线上,∠A=60°,∠C=50°,∠D=20°,则∠1= °.14.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A= .15.如图,△ABC中,∠B=40°,∠C=30°,点D为边BC上一点,将△ADC沿直线AD折叠后,点C落到点E处,若DE∥AB,则∠AFD的度数为 .16.如图,D,E,F分别是△ABC的边AB,BC,AC上的中点,连接AE,BF,CD交于点G,AG:GE=2:1,△ABC的面积为6,设△BDG的面积为S1,△CGF的面积为S2,则S1+S2= .三.解答题(共8小题,满分86分)17.已知一个多边形的内角和是外角和的三倍,则这个多边形是几边形?18.如图,∠ABC=∠FEC=∠ADC=90°.(1)在△ABC中,BC边上的高是 ;(2)在△AEC中,AE边上的高是 ;(3)若AB=2.4cm,CD=2cm,AE=3cm,求△AEC的面积及CE的长.19.如图,已知D是△ABC边BC延长线上一点,DF⊥AB于点F,交AC于点E,∠A=35°,∠D=42°,求(1)∠ACD的度数;(2)∠AEF的度数.20.已知一等腰三角形的两边长x,y满足方程组{3x−y=55x+2y=23求此等腰三角形的周长.21.一个零件的形状如图,按规定∠A=90°,∠B和∠C应分别是32°和21°,检验工人量得∠BDC=149°,就判断这个零件不合格,运用三角形的有关知识说出零件不合格的理由.22.如图1所示,将一副三角板的直角顶点重合在点O处.(1)∠AOD ∠BOC;(填“>”“<”“=”)(2)若将三角尺按图2的位置摆放,∠AOC和∠BOD在数量上有何关系?说明理由;(3)在图2中,已知∠BOC与∠AOC的度数比为m:n,当a6m b11与a n+1b2n﹣11是同类项时,求∠BOD的度数.23.问题1现有一张△ABC纸片,点D、E分别是△ABC边上两点,若沿直线DE折叠.研究(1):如果折成图①的形状,使A点落在CE上,则∠1与∠A的数量关系是 研究(2):如果折成图②的形状,猜想∠1+∠2和∠A的数量关系是 研究(3):如果折成图③的形状,猜想∠1、∠2和∠A的数量关系,并说明理由.问题2研究(4):将问题1推广,如图④,将四边形ABCD纸片沿EF折叠,使点A、B落在四边形EFCD的内部时,∠1+∠2与∠A、∠B之间的数量关系是 .24.△ABC中,AD是∠BAC的角平分线,AE是△ABC的高.(1)如图1,若∠B=40°,∠C=60°,求∠DAE的度数;(2)如图2(∠B<∠C),试说明∠DAE与∠B、∠C的数量关系;(3)拓展:如图3,四边形ABDC中,AE是∠BAC的角平分线,DA是∠BDC的角平分线,猜想:∠DAE与∠B、∠C的数量关系是否改变.说明理由.答案一.选择题1.【解答】解:∵△ABC中,∠A=20°,∠B=70°,∴∠C=180°﹣20°﹣70°=90°,∴△ABC是直角三角形.故选:A.2.【解答】解:由图可得,线段BD是△ABC的高的图是D选项.故选:D.3.【解答】解:过五边形的一个顶点作对角线,有5﹣3=2条对角线,所以至少要钉上2根木条.故选:B.4.【解答】解:三角形的中线把三角形分成等底同高的两个三角形,面积相等,所以,能把一个任意三角形分成面积相等的两部分是中线.故选:C.5.【解答】解:8﹣3<x<8+3,5<x<11,只有选项C符合题意.故选:C.6.【解答】解:∵∠BAC=90°,∴∠DAC+∠BAD=90°,∵AD是△ABC的高,∴∠ADB=∠BAD+∠B=90°,∴∠DAC=∠B=20°,故选:B.7.【解答】解:∵∠1=∠2=150°,∴∠ABC=∠BAC=180°﹣150°=30°,∴∠3=∠ABC+∠BAC=60°.故选:D.8.【解答】解:∵AD为中线,∴DB=DC,∴△ABD与△ACD的周长之差为:(AB+AD+BD)﹣(AD+DC+AC)=AB+AD+BD﹣AD﹣DC﹣AC=AB﹣AC=2021﹣2018=3,故选:C.9.【解答】解:由题意可得:180°•(n﹣2)=150°•n,解得n=12.故多边形是12边形.故选:C.10.【解答】解:∵四边形的内角和为360°,直角三角形中两个锐角和为90°∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.故选:C.11.【解答】解:方程组{x+2y=104x+3y=20的解为:{x=2 y=4,∵△ABC的两边是方程组{x+2y=104x+3y=20的解,第三边长为奇数,∴2<第三边长<6,1∴第三边长可以为:3,5.∴这样的三角形有2个.故选:B.12.【解答】解:∵四边形的内角和=360°,∴∠ABC+∠BCD=360°﹣(∠A+∠D),∵∠ABC与∠BCD的平分线的交点E恰好在AD边上,∴2∠EBC=∠ABC,2∠ECB=∠BCD,∴∠EBC+∠ECB=12(∠ABC+∠BCD)=12×[360°−(∠A+∠D)],∴∠BEC=180°﹣(∠EBC+∠ECB)=180°−12×[360°−(∠A+∠D)]=12(∠A+∠D),故选:D.二.填空题13.【解答】解:∵∠A=60°,∠C=50°,∴∠ABC=180°﹣∠A﹣∠C=180°﹣60°﹣50°=70°,∴∠1=∠ABC﹣∠D=50°﹣20°=50°.故答案为:50.14.【解答】解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠ABC=2∠ABP,∠ACM=2∠ACP,又∵∠ABP=20°,∠ACP=50°,∴∠ABC=2×20°=40°,∠ACM=2×50°=100°,∴∠A=∠ACM﹣∠ABC=60°,故答案为60°.15.【解答】解:∵∠B=40°,∠C=30°,∴∠BAC=110°,由折叠的性质得,∠E=∠C=30°,∠EAD=∠CAD,∵DE∥AB,∴∠BAE=∠E=30°,∴∠CAD=40°,∴∠ADC=180°﹣∠CAD﹣∠C=110°,∴∠AFD=110°﹣40°=70°,故答案为:70°.16.【解答】解:∵D,E,F分别是△ABC的边AB,BC,AC上的中点,∴AD=DB,AF=CF,∴△BDG的面积=△ADG的面积,△CFG的面积=△AGF的面积,∴设△BDG的面积为S1,△CGF的面积为S2,则S1+S2=四边形ADGF的面积,∵△ABC的面积为6,AG:GE=2:1,∴四边形ADGF的面积=23×12×6=2,∴S1+S2=2,故答案为:2三.解答题17.解:设这个多边形为n边形,n边形的内角和为:(n﹣2)×180°,n边形的外角和为:360°,根据题意得:(n﹣2)×180°=3×360°,解得:n=8,答:这个多边形是八边形.18.解:(1)在△ABC中,BC边上的高是线段AB;故答案为线段AB;(2)在△AEC中,AE边上的高是线段CD;故答案为线段CD;(3)∵S△AEC=12×AE×CD=12×CE×AB,∴CE=AE⋅CDAB= 2.5(cm).19.解:(1)∵DF⊥AB,∴∠B=90°﹣∠D=48°,∵∠ACD是△ABC的一个外角,∴∠ACD=∠A+∠B=83°;(2)∵DF⊥AB,∴∠AFD=90°,∴∠AEF=90°﹣∠A=55°.20.解:解方程组组{3x−y=55x+2y=23得{x=3 y=4,所以,等腰三角形的两边长为3,4.若腰长为3,底边长为4,由3+3=6>4知,三角形的周长为10.若腰长为4,底边长为3,则三角形的周长为11.所以,这个等腰三角形的周长为10或11.21.解:延长CD交AB于点E,∵∠BEC是△ACE的一个外角,∴∠BEC=∠A+∠C=90°+21°=111°,同理,∠BDC=∠BEC+∠B=111°+32°=143°,而检验工人量得∠BDC=149°,所以零件不合格.22.解:(1)∵∠AOB=∠COD=90°,∴∠AOB+∠BOD=∠COD+∠BOD,即∠AOD=∠BOC.故答案为:=;(2)∵∠AOB=∠COD=90°,∴∠AOC+∠BOD=180°.故∠AOC和∠BOD在数量上的关系为:∠AOC+∠BOD=180°;(3)∵a6m b11与a n+1b2n﹣11是同类项,∴{6m=n+111=2n−11,解得{m=2n=11,∵∠BOC与∠AOC的度数比为m:n,11﹣2=9,∴∠BOC=90°×2=20°,11−2∴∠BOD=90°﹣20°=70°.故∠BOD的度数是70°.23.解:(1)如图1,∠1=2∠A,理由是:由折叠得:∠A=∠DA′A,∵∠1=∠A+∠DA′A,∴∠1=2∠A;故答案为:∠1=2∠A;(2)如图2,猜想:∠1+∠2=2∠A,理由是:由折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,∵∠ADB+∠AEC=360°,∴∠1+∠2=360°﹣∠ADE﹣∠A′DE﹣∠AED﹣∠A′ED=360°﹣2∠ADE﹣2∠AED,∴∠1+∠2=2(180°﹣∠ADE﹣∠AED)=2∠A;故答案为:∠1+∠2=2∠A;(3)如图3,∠2﹣∠1=2∠A,理由是:∵∠2=∠AFE+∠A,∠AFE=∠A′+∠1,∴∠2=∠A′+∠A+∠1,∵∠A=∠A′,∴∠2=2∠A+∠1,∴∠2﹣∠1=2∠A;(4)如图4,由折叠得:∠BMN=∠B′MN,∠ANM=∠A′NM,∵∠DNA+∠BMC=360°,∴∠1+∠2=360°﹣2∠BMN﹣2∠ANM,∵∠BMN+∠ANM=360°﹣∠A﹣∠B,∴∠1+∠2=360°﹣2(360°﹣∠A﹣∠B)=2(∠A+∠B)﹣360°,故答案为:∠1+∠2=2(∠A+∠B)﹣360°.24.解:(1)∵∠B=40°,∠C=60°,∠BAC+∠B+∠C=180°,∴∠BAC=80°,∵AD是∠BAC的角平分线,∠BAC=40°,∴∠CAD=∠BAD=12∵AE是△ABC的高,∴∠AEC=90°,∵∠C=60°,∴∠CAE=90°﹣60°=30°,∴∠DAE=∠CAD﹣∠CAE=10°;(2)∵∠BAC+∠B+∠C=180°,∴∠BAC =180°﹣∠B ﹣∠C ,∵AD 是∠BAC 的角平分线,∴∠CAD =∠BAD =12∠BAC ,∵AE 是△ABC 的高,∴∠AEC =90°,∴∠CAE =90°﹣∠C ,∴∠DAE =∠CAD ﹣∠CAE =12∠BAC ﹣(90°﹣∠C )=12(180°﹣∠B ﹣∠C )﹣90°+∠C =12∠C −12∠B ,即∠DAE =12∠C −12∠B ; (3)不变,理由:连接BC 交AD 于F ,过点A 作AM ⊥BC 于M ,过点D 作DN ⊥BC 于N ,∵AE 是∠BAC 的角平分线,AM 是高,∴∠EAM =12(∠ACB ﹣∠ABC ),同理,∠ADN =12(∠BCD ﹣∠CBD ),∵∠AFM =∠DFN ,∠AMF =∠DNF =90°,∴∠MAD =∠ADN ,∴∠DAE =∠EAM+∠MAD =∠EAM+∠ADN =12(∠ACB ﹣∠ABC )+12(∠BCD ﹣∠CBD )=12(∠ACD ﹣∠ABD ).。
(人教版)八年级上册数学第11章《三角形》单元检测(含答案)

(人教版)八年级上册数学第11章《三角形》练习一.选择题(共19小题)1.(2020春•开福区校级期末)如图,在三角形ABC中,∠A=45°,三角形ABC的高线BD,CE交于点O,则∠BOC的度数()A.120°B.125°C.135°D.145°2.(2020春•永州期末)富有灿烂文化的永州,现今保留着许多具有历史和文化价值的建筑,古朴的建筑物上雕刻的优美图案是我们数学研究的重要内容.图1中的“冰裂纹窗格”图案就是永州古建筑雕刻图案其中的代表,无规则多边形的形状,蕴含了丰富而和谐的数学美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的多边形,根据绘制的图形,则∠1+∠2+∠3+∠4+∠5的度数为()A.72°B.108°C.360°D.540°3.(2020春•雨花区校级期末)以下列各组线段的长为边,能组成三角形的是()A.3cm,6cm,8cm B.3cm,2cm,6cmC.5cm,6cm,11cm D.2cm,7cm,4cm4.(2020春•雨花区期末)在一个直角三角形中,有一个锐角等于25°,则另一个锐角的度数是()A.25°B.55°C.65°D.75°5.(2020春•雨花区期末)如图,已知CD和BE是△ABC的角平分线,∠A=60°,则∠BOC=()A.60°B.100°C.120°D.150°6.(2020春•天心区期末)如图,一副直角三角板图示放置,点C在DF的延长线上,点A在边EF上,AB ∥CD,∠ACB=∠EDF=90°,则∠CAF=()A.10°B.15°C.20°D.25°7.(2019秋•赫山区期末)已知三角形三边长3,4,x,则x的取值范围是()A.x>1B.x<7C.1<x<7D.﹣1<x<78.(2019秋•永定区期末)长度分别为3,7,x的三条线段能组成一个三角形,x的值可以是()A.2B.3C.4D.59.(2020春•天心区期末)△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC的形状是()A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形10.(2020春•天心区期末)已知三角形三边长为2,3,x,则x的取值范围是()A.x>1B.x<5C.1<x<5D.﹣1<x<511.(2020春•岳麓区校级期末)如图,点C在线段AB的延长线上,∠DAC=15°,∠DBC=110°,则∠D的度数是()A.95°B.85°C.100°D.125°12.(2019秋•浏阳市期末)以下列长度的线段为边,可以作一个三角形的是()A.6cm,16cm,21cm B.8cm,16cm,30cmC.6cm,16cm,24cm D.8cm,16cm,24cm13.(2020春•衡阳期末)如果一个多边形的内角和与外角和相等,那么这个多边形是()A.七边形B.六边形C.五边形D.四边形14.(2019秋•永定区期末)如果n边形的内角和是它外角和的3倍,则n等于()A.6B.7C.8D.915.(2020春•赫山区期末)若一个多边形的每个内角都等于150°,则这个多边形的边数是()A.10B.11C.12D.1316.(2020春•长沙期末)△ABC中BC边上的高作法正确的是()A.B.C.D.17.(2019春•永州期末)在Rt△ABC中,若∠A=40°,∠C=90°,则∠B的度数是()A.20°B.30°C.40°D.50°18.(2019春•靖州县期末)下列度数不可能是多边形内角和的是()A.360°B.560°C.720°D.1440°19.(2018秋•江华县期末)以下列各组长度的线段为边,其中a>3,能构成三角形的是()A.2a+7,a+3,a+4B.5a2,6a2,10a2C.3a,4a,a D.a﹣1,a﹣2,3a﹣3二.填空题(共9小题)20.(2020春•涟源市期末)如图,在Rt△ABC中,∠B=90°,∠ACD=130°,则∠A=°.21.(2020春•长沙期末)如图,四边形ABCD中,且∠1,∠2分别是∠BCD和∠BAD的邻补角,若∠1+∠2=150°.则∠B+∠ADC=.22.(2020春•开福区校级期末)已知三条线段长度分别为1、2、4,能否组成三角形?.(填“能”或“不能”).23.(2020春•雨花区期末)如图,若∠A=30°,∠ACD=105°,则∠EBC=°.24.(2020春•衡阳期末)如图,小明从P点出发,沿直线前进5米后向右转α,接着沿直线前进5米,再向右转α,…,照这样走下去,第一次回到出发地点P时,一共走了120米,则α的度数是.25.(2019秋•涟源市期末)如图,∠BDC=130°,∠A=40°,∠B+∠C的大小是.26.(2020春•岳麓区校级期末)如图,AD是△ABC的高,BE是△ABC的角平分线,BE,AD相交于点F,已知∠BAD=42°,则∠BFD=度.27.(2020春•常德期末)如图,两直线AB与CD平行,则∠1+∠2+∠3+∠4+∠5+∠6=°.28.(2019春•开福区校级期末)三角形的两边长分别为5cm和12cm,第三边与前两边中的一边相等,则三角形的周长为.三.解答题(共7小题)29.(2020春•永州期末)如图所示,在四边形ABCD中,∠A=110°,∠ABC=70°,BD⊥CD于点D,EF⊥CD于点F,试说明∠1=∠2.30.(2019秋•双清区期末)如图,点A在MN上,点B在PQ上,连接AB,过点A作AC⊥AB交PQ于点C,过点B作BD平分∠ABC交AC于点D,且∠NAC+∠ABC=90°.(1)求证:MN∥PQ;(2)若∠ABC=∠NAC+10°,求∠ADB的度数.31.(2020春•益阳期末)阅读:如图1,CE∥AB,所以∠1=∠A,∠2=∠B.所以∠ACD=∠1+∠2=∠A+∠B.这是一个有用的结论,请用这个结论,在图2的四边形ABCD内引一条和一边平行的直线,求∠A+∠B+∠C+∠D的度数.32.(2018秋•靖州县期末)已知:如图,△ABC中,AD⊥BC于D,BE是三角形的角平分线,交AD于F.(1)若∠ABC=40°,求∠AFE的度数.(2)若∠BAC是直角,请猜想:△AFE的形状,并写出证明.33.(2019春•雨花区校级期末)如图,AD是△ABC的角平分线,∠B=45°,点E在BC延长线上且EH ⊥AD于H.(1)若∠BAD=30°,求∠ACE的度数.(2)若∠ACB=85°,求∠E的度数.34.(2018秋•安仁县期末)如图,D是△ABC的BC边上的一点,AD=BD,∠ADC=80°.(1)求∠B的度数;(2)若∠BAC=70°,判断△ABC的形状,并说明理由.35.(2019春•天心区校级期末)一个多边形的内角和与外角和的和是1440°,通过计算说明它是几边形.参考答案与试题解析一.选择题(共19小题)1.【解答】解:∵∠A+∠ABC+∠ACB=180°,∠A=45°,∴∠ABC+∠ACB=135°,∵BD⊥AC,CE⊥AB,∴∠ABC+∠BCE=∠ACB+∠CBD=90°,∴∠ABC+∠BCE+∠ACB+∠CBD=180°,∴∠BCE+∠CBD=45°,∵∠BOC+∠BCE+∠DBC=180°,∴∠BOC=135°.故选:C.2.【解答】解:由多边形的外角和等于360度,可得∠1+∠2+∠3+∠4+∠5=360度.故选:C.3.【解答】解:根据三角形的三边关系,A、3+6=9>8,能组成三角形;B、2+3=5<6,不能够组成三角形;C、5+6=11,不能组成三角形;D、4+2=6<7,不能组成三角形.故选:A.4.【解答】解:∵在一个直角三角形中,有一个锐角等于25°,∴另一个锐角的度数是90°﹣25°=65°.故选:C.5.【解答】解:∵∠A=60°,∴∠ABC+∠ACB=180°﹣60°=120°,∵CD和BE是△ABC的角平分线,∴∠OBC+∠OCB=12∠ABC+12∠ACB=12(∠ABC+∠ACB)=60°,∴∠BOC=180°﹣(∠OBC+∠OCB)=120°,故选:C.6.【解答】解:∵AB∥CD,∴∠BAC=∠ACD=30°,∵∠AFD=∠CAF+∠ACF=45°,∴∠CAF=45°﹣30°=15°,故选:B.7.【解答】解:由题意得:4﹣3<x<4+3,即:1<x<7,故选:C.8.【解答】解:7﹣3<x<7+3,4<x<10,只有选项D符合题意.故选:D.9.【解答】解:∵在△ABC中,∠A:∠B:∠C=1:2:3,∴设∠A=x,则∠B=2x,∠C=3x.∵∠A+∠B+∠C=180°,即x+2x+3x=180°,解得x=30°,∴∠C=3x=90°,∴△ABC是直角三角形.故选:A.10.【解答】解:由三角形三边关系可知,3﹣2<x<3+2,∴1<x<5,故选:C.11.【解答】解:∵∠DBC是△ABD的外角,∴∠DBC=∠D+∠A,则∠D=∠DBC﹣∠A=110°﹣15°=95°,故选:A.12.【解答】解:A、∵6+16=22>21,∴6、16、21能组成三角形;B、∵8+16=24<30,∴8、16、30不能组成三角形;C、∵6+16=22<24,∴6、16、24不能组成三角形;D、∵8+16=24,∴8、16、24不能组成三角形.故选:A.13.【解答】解:设多边形的边数为n,根据题意得(n﹣2)•180°=360°,解得n=4.故选:D.14.【解答】解:由题意得:180(n﹣2)=360×3,解得:n=8,故选:C.15.【解答】解:由题意可得:180°•(n﹣2)=150°•n,解得n=12.故多边形是12边形.故选:C.16.【解答】解:为△ABC中BC边上的高的是D选项.故选:D.17.【解答】解:∵∠A=40°,∠C=90°,∴∠B=90°﹣40°=50°,故选:D.18.【解答】解:360°、720°、1440°都是180°的倍数,它们是多边形内角和;560°不是180°的倍数,所以它不可能是多边形内角和;故选:B.19.【解答】解:当a>3时,根据三角形的三边关系,得A、a+3+a+4=2a+7,不能组成三角形;B、5a2+6a2>10a2,能组成三角形;C、a+3a=4a,不能够组成三角形;D、a﹣1+a﹣2=2a﹣3,3a﹣3﹣2a+3=a>3,2a﹣3<3a﹣3,不能组成三角形.故选:B.二.填空题(共9小题)20.【解答】解:∵∠ACD的△ABC的一个外角,∴∠A=∠ACD﹣∠B=130°﹣90°=40°,故答案为:40.21.【解答】解:∵∠1+∠2=150°,∴∠DAB+∠DCB=360°﹣150°=210°,∵∠B+∠D+∠DAB+∠DCB=360°,∴∠B+∠ADC=360°﹣(∠DAB+∠DCB)=150°,故答案为150°.22.【解答】解:根据三角形的三边关系,1+2=3<4,不能组成三角形;故答案为:不能.23.【解答】解:∵∠ACD=∠A+∠ABC,∴105°=30°+∠ABC,∴∠ABC=75°,∴∠EBC=180°﹣∠ABC=105°,故答案为105.24.【解答】解:向左转的次数120÷5=24(次),则左转的角度是360°÷24=15°.故答案是:15°.25.【解答】解:延长BD交AC于H,∵∠BDC=∠DHC+∠C,∠DHC=∠A+∠B,∴∠BDC=∠A+∠B+∠C,∵∠BDC=130°,∠A=40°,∴∠B+∠C=130°﹣40°=90°故答案为90°.26.【解答】解:∵AD是高线,∴∠ADB=90°∵∠BAD=42°,∴∠ABC=48°,∵BE是角平分线,∴∠FBD=24°,在△FBD中,∠BFD=180°﹣90°﹣24°=66°.故答案为:66.27.【解答】解:分别过E点,F点,G点,H点作L1,L2,L3,L4平行于AB 利用内错角和同旁内角,把这六个角转化一下,可得,有5个180°的角,∴180×5=900°.故答案为:900.28.【解答】解:当第三边为5cm时,此时三角形的三边分别为:5cm,5cm和12cm,∵5+5<12,∴不能组成三角形;当第三边为12cm时,此时三角形的三边分别为:5cm,12cm和12cm,∵5+12>12,∴能组成三角形;此时周长为5+12+12=29cm,故答案为:29cm.三.解答题(共7小题)29.【解答】解:∵∠A=110°,∠ABC=70°,∴∠A+∠ABC=180°,∴AD∥BC(同旁内角互补,两直线平行),∴∠1=∠3(两直线平行,内错角相等),∵BD⊥CD,EF⊥CD,∴∠BDC=∠EFC=90°,∴BD∥EF,∴∠2=∠3(两直线平行,同位角相等),∴∠1=∠2(等量代换).30.【解答】(1)证明:∵AC⊥AB,∴∠BAC=90°,∴∠ABC+∠ACB=90°,∵∠NAC+∠ABC=90°,∴∠NAC=∠ACB,∴MN∥PQ;(2)解:∵∠ABC=∠NAC+10°=∠ACB+10°,∵∠ACB+∠ABC=90°,∴∠ACB+∠ACB+10°=90°,∴∠ACB=40°,∴∠ABC=50°,∵BD平分∠ABC,∴∠ABD=12∠ABC=25°,∵∠BAC=90°,∴∠ADB=90°﹣25°=65°.31.【解答】解:作DE∥AB,交BC于E,由题意,∠DEB=∠C+∠EDC,∴∠A+∠ADE=180°,∠B+∠DEB=180°,则∠A+∠B+∠C+∠ADC=∠A+∠B+∠C+∠EDC+∠ADE=∠A+∠B+∠DEB+∠ADE=360°.32.【解答】解:(1)∵AD⊥BC,∴∠ADB=90°,∵∠ABC=40°,BE平分∠ABC,∴∠DBF=12∠ABC=20°,∴∠BFD=90°﹣20°=70°∴∠AFE=∠BFD=70°(2)结论:△AEF是等腰三角形.理由:∵∠BAE=∠ADF=90°,∴∠AEF+∠ABE=90°,∠BFD+∠FBD=90°,∵∠ABE=∠DBF,∴∠AEF=∠BFD,∵∠BFD=∠AFE,∴∠AFE=∠AEF,∴AE=AF,∴△AEF是等腰三角形.33.【解答】解:∵AD是△ABC的角平分线∴∠BAD=∠CAD=12∠BAC(1)∵∠BAD=30°∴∠BAC=2∠BAD=60°∵∠B=45°∴∠ACE=∠B+∠BAC=45°+60°=105°(2)∵∠ACB=85°,∠B=45°,且∠ACB+∠B+∠BAC=180°∴∠BAC=50°∴∠CAD=25°∵∠ACB+∠CAD+∠ADC=180°∴∠ADC=70°∵EH⊥AD∴∠E+∠ADC=90°∴∠E=90°﹣70°=20°.34.【解答】解:(1)∵在△ABD中,AD=BD,∴∠B=∠BAD,∵∠ADC=∠B+∠BAD,∠ADC=80°,∴∠B=12∠ADC=40°;(2)△ABC是等腰三角形.理由:∵∠B=40°,∠BAC=70°,∴∠C=180°﹣∠B﹣∠BAC=70°,∴∠C=∠BAC,∴BA=BC,∴△ABC是等腰三角形.35.【解答】解:设它是n边形,依题意得:(n﹣2)180°+360°=1440°.解得:n=8.答:它是八边形.。
人教版八年级数学上册第11章《三角形》2018年秋(江西省)检测卷(含答案)

第十一章检测卷时间:120分钟满分:120分一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.以下列每组长度的三条线段为边能组成三角形的是( )A.2、3、6 B.2、4、6 C.2、2、4 D.6、6、6 2.如图,图中∠1的大小等于( )A.40° B.50° C.60° D.70°第2题图第4题图第6题图3.一个多边形的每一个内角都等于140°,则它的边数是( )A.7 B.8 C.9 D.104.如图,△ABC中,∠A=46°,∠C=74°,BD平分∠ABC交AC于点D,那么∠BDC 的度数是( )A.76° B.81° C.92° D.104°5.用五根木棒钉成如下四个图形,具有稳定性的有( )A.1个B.2个C.3个D.4个6.如图,点A,B,C,D,E,F是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F的度数是( )A .180°B .360°C .540°D .720° 二、填空题(本大题共6小题,每小题3分,共18分)7.已知三角形两条边长分别为3和6,第三边的长为奇数,则第三边的长为________. 8.若n 边形内角和为900°,则边数n 为________.9.将一副三角板按如图所示的方式叠放,则∠α的度数为________.第9题图 第10题图 第11题图10.如图,在△ABC 中,∠ACB =90°,∠A =20°.若将△ABC 沿CD 所在直线折叠,使点B 落在AC 边上的点E 处,则∠CDE 的度数是________.11.如图,在△ABC 中,E 、D 、F 分别是AD 、BF 、CE 的中点.若△DEF 的面积是1cm 2,则S △ABC =________cm 2.12.当三角形中一个内角β是另一个内角α的12时,我们称此三角形为“希望三角形”,其中角α称为“希望角”.如果一个“希望三角形”中有一个内角为54°,那么这个“希望三角形”的“希望角”的度数为______________.三、(本大题共5小题,每小题6分,共30分) 13.在△ABC 中,∠A =30°,∠C =2∠B ,求∠B 的度数.14.如图:(1)在△ABC中,BC边上的高是________;(2)在△AEC中,AE边上的高是________;(3)若AB=CD=2cm,AE=3cm,求△AEC的面积及CE的长.15.如图,在△BCD中,BC=4,BD=5.(1)求CD的取值范围;(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.16.如果一个多边形的内角和是外角和的3倍还多180°,那么这个多边形的边数是多少?17.如图,在△ABC中,BD是AC边上的高,∠A=70°.(1)求∠ABD的度数;(2)若CE平分∠ACB交BD于点E,∠BEC=118°,求∠ABC的度数.四、(本大题共3小题,每小题8分,共24分)18.已知a,b,c为三角形三边的长,化简:|a-b-c|-|b-c-a|+|c-a-b|.19.如图,六边形ABCDEF的内角都相等,CF∥AB.(1)求∠FCD的度数;(2)求证:AF∥CD.20.在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分为24和18两部分,求三角形三边的长.五、(本大题共2小题,每小题9分,共18分)21.如图,△ABC中,AD⊥BC于点D,BE平分∠ABC,若∠ABC=64°,∠AEB=70°.(1)求∠CAD的度数;(2)若点F为线段BC上的任意一点,当△EFC为直角三角形时,求∠BEF的度数.22.如图,在△ABC中,AD⊥BC于D,AE平分∠BAC.(1)若∠C=70°,∠B=40°,求∠DAE的度数;(2)若∠C-∠B=30°,求∠DAE的度数;(3)若∠C-∠B=α(∠C>∠B),求∠DAE的度数(用含α的代数式表示).六、(本大题共12分)23.如图①,在平面直角坐标系中,A (0,1),B (4,1),C 为x 轴正半轴上一点,且AC 平分∠OAB .(1)求证:∠OAC =∠OCA ;(2)如图②,若分别作∠AOC 的三等分线及∠OCA 的外角的三等分线交于点P ,即满足∠POC =13∠AOC ,∠PCE =13∠ACE ,求∠P 的大小;(3)如图③,在(2)中,若射线OP 、CP 满足∠POC =1n ∠AOC ,∠PCE =1n∠ACE ,猜想∠P 的大小,并证明你的结论(用含n 的式子表示).参考答案与解析1.D 2.D 3.C 4.A 5.D6.B 解析:如图,∵∠BMQ =∠A +∠B ,∠DQF =∠C +∠D ,∠FNM =∠E +∠F ,∴∠BMQ +∠DQF +∠FNM =∠A +∠B +∠C +∠D +∠E +∠F .∵∠BMQ +∠DQF +∠FNM =360°,∴∠A +∠B +∠C +∠D +∠E +∠F =360°,故选B .7.5或7 8.7 9.75° 10.65° 11.712.54°或84°或108° 解析:①54°角是α,则希望角度数为54°;②54°角是β,则12α=β=54°,所以希望角α=108°;③54°角既不是α也不是β,则α+β+54°=180°,所以α+12α+54°=180°,解得α=84°.综上所述,希望角的度数为54°或84°或108°.13.解:∵∠A =30°,∴∠B +∠C =180°-∠A =150°.(3分)∵∠C =2∠B ,∴3∠B =150°,∴∠B =50°.(6分)14.解:(1)AB (1分) (2)CD (2分)(3)∵AE =3cm ,CD =2cm ,∴S △AEC =12AE ·CD =12×3×2=3(cm 2).(4分)∵S △AEC =12CE ·AB =3cm 2,AB =2cm ,∴CE =3cm .(6分)15.解:(1)∵在△BCD 中,BC =4,BD =5,∴1<DC <9.(3分)(2)∵AE ∥BD ,∠BDE =125°,∴∠AEC =180°-125°=55°.(4分)又∵∠A =55°,∴∠C =180°-∠A -∠AEC =180°-55°-55°=70°.(6分)16.解:设这个多边形的边数为n .根据题意,得(n -2)·180°=360°×3+180°,(3分)解得n =9.(5分)答:这个多边形的边数是9.(6分)17.解:(1)在△ABC中,∵BD是AC边上的高,∴∠ADB=∠BDC=90°.∵∠A=70°,∴∠ABD =180°-∠BDA-∠A=20°.(3分)(2)在△EDC中,∵∠BEC=∠BDC+∠DCE,且∠BEC=118°,∠BDC=90°,∴∠DCE=28°.∵CE平分∠ACB,∴∠DCB=2∠DCE=56°,∴∠DBC=180°-∠BDC-∠DCB=34°,∴∠ABC=∠ABD+∠DBC=54°.(6分)18.解:∵a,b,c为三角形三边的长,∴a+b>c,a+c>b,b+c>a,(4分)∴原式=|a-(b+c)|-|b-(c+a)|+|c-(a+b)|=b+c-a-a-c+b+a+b-c=-a+3b-c.(8分)19.(1)解:∵六边形ABCDEF的内角都相等,∴∠B=∠A=∠BCD=120°.(1分)∵CF∥AB,∴∠B+∠BCF=180°,∴∠BCF=180°-120°=60°,∴∠FCD=120°-60°=60°.(4分)(2)证明:∵CF∥AB,∴∠AFC=180°-∠A=60°,∴∠AFC=∠FCD,∴AF∥CD.(8分)20.解:如图,设AB=AC=a,BC=b,则AD=CD=12a.根据题意,有a+12a=24且12a+b=18,或a+12a=18且12a+b=24,(4分)解得a=16,b=10或a=12,b=18,两种情况下都能构成三角形.(6分)综上所述,三角形的三边长分别为16,16,10或12,12,18.(8分)21.解:(1)∵BE平分∠ABC,∴∠ABC=2∠EBC=64°,∴∠EBC=32°.∵AD⊥BC,∴∠ADC =90°.(2分)∵∠C=∠AEB-∠EBC=70°-32°=38°,∴∠CAD=90°-38°=52°.(4分)(2)分两种情况:①当∠EFC=90°时,如图①所示,则∠BFE=90°,∴∠BEF=90°-∠EBC=90°-32°=58°;(6分)②当∠FEC =90°时,如图②所示,则∠EFC =90°-38°=52°,∴∠BEF =∠EFC -∠EBC =52°-32°=20°.(8分)综上所述,∠BEF 的度数为58°或20°.(9分)22.解:(1)由题意可得∠BAC =180°-∠B -∠C =180°-40°-70°=70°.∵AD ⊥BC ,∴∠ADC =90°,∴∠CAD =90°-∠C =90°-70°=20°.∵AE 平分∠BAC ,∴∠CAE =12∠BAC =35°,∴∠DAE =∠CAE -∠CAD =35°-20°=15°.(3分)(2)由(1)中可得∠CAE =12∠BAC =12(180°-∠B -∠C )=90°-12(∠B +∠C ).∵AD ⊥BC ,∴∠ADC =90°,∴∠CAD =90°-∠C .(5分)∴∠DAE =∠CAE -∠CAD =90°-12(∠B +∠C )-(90°-∠C )=12(∠C -∠B )=12×30°=15°.(7分)(3)由(2)中可知∠DAE =12(∠C -∠B ),∴∠C -∠B =α,∴∠DAE =12α.(9分)23.(1)证明:∵A (0,1),B (4,1),∴AB ∥CO ,∴∠OAB =90°.(1分)∵AC 平分∠OAB ,∴∠OAC =45°,∴∠OCA =90°-45°=45°,∴∠OAC =∠OCA .(3分)(2)解:∵∠POC =13∠AOC ,∴∠POC =13×90°=30°.∵∠PCE =13∠ACE ,∴∠PCE =13(180°-45°)=45°.∵∠P +∠POC =∠PCE ,∴∠P =∠PCE -∠POC =15°.(7分)(3)解:∠P =45°n .(8分)证明如下:∵∠POC =1n ∠AOC ,∴∠POC =1n ×90°=90°n.∵∠PCE=1n ∠ACE ,∴∠PCE =1n (180°-45°)=135°n.(10分)∵∠P +∠POC =∠PCE ,∴∠P =∠PCE -∠POC =45°n.(12分)。
2018年人教版八年级数学上第11章三角形单元测试题(附答案和解释)

2018年人教版八年级数学上第11章三角形单元测试题(附答案和解释)2018年秋人教版八年级上册数学《第11章三角形》单元测试题一.选择题(共10小题) 1.课堂上,老师把教学用的两块三角板叠放在一起,得到如图所示的图形,其中三角形的个数为()A.2 B.3 C.5 D.6 2.如图,BD是△ABC的高,EF∥AC,EF交BD 于G,下列说法正确的有()①BG是△EBF的高;②CD是△BGC 的高;③DG是△AGC的高;④AD是△ABG的高.A.1个 B.2个 C.3个 D.4个 3.下列说法正确的是() A.三角形的三条中线交于一点 B.三角形的三条高都在三角形内部 C.三角形不一定具有稳定性 D.三角形的角平分线可能在三角形的内部或外部 4.下列线段长能构成三角形的是() A.3、4、8 B.2、3、6 C.5、6、11 D.5、6、10 5.一个缺角的三角形ABC残片如图所示,量得∠A=60°,∠B=75°,则这个三角形残缺前的∠C的度数为()A.75° B.60° C.45° D.40° 6.如图,在△ABC中,∠A=80°,点D在BC的延长线上,∠ACD=145°,则∠B是()A.45° B.55° C.65° D.75° 7.已知直角三角形ABC,有一个锐角等于50°,则另一个锐角的度数是() A.30° B.40° C.45° D.50° 8.将一个四边形截去一个角后,它不可能是()A.六边形 B.五边形 C.四边形 D.三角形 9.如果n边形的内角和是它外角和的4倍,则n等于() A.7 B.8 C.10 D.9 10.如图,小明从A点出发,沿直线前进10米后向左转36°,再沿直线前进10米,再向左转36°……照这样走下去,他第一次回到出发点A 点时,一共走的路程是()A.100米 B.110米 C.120米 D.200米二.填空题(共8小题)11.三角形有两条边的长度分别是5和7,则最长边a的取值范围是. 12.如图,H若是△ABC三条高AD,BE,CF的交点,则△BHA 中边BH上的高是.13.如图:在△ABC中,∠ABC,∠ACB的平分线交于点O,若∠BOC=132°,则∠A等于度,若∠A=60°时,∠BOC又等于14.如图,∠1,∠2,∠3的大小关系是.15.如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=.16.若多边形的每个内角都相等,每个内角与相邻外角的差为100°,则这个多边形的边数为. 17.如图,D是△ABC的边AC上一点,E是BD上一点,连接EC,若∠A=60°,∠ABD=25°,∠DCE=35°,则∠BEC的度数为.18.如图:∠B=∠C,DE⊥BC于E,EF⊥AB于F,∠ADE等于140°,∠FED=.三.解答题(共8小题) 19.一根长1m的木尺,共有9个等分点,每个分点处有折痕,可将木尺折断,现欲将木尺折成3节,并使3节能组成三角形,若要组成形状不同的三角形,共有多少种不同的折法?20.已知△ABC,如图,过点A画△ABC的角平分线AD、中线AE和高线AF.21.如图所示,在△ABC中,AE是角平分线,AD是高,∠BAC=80°,∠EAD=10°,求∠B的度数22.如图,△ABC中,分别延长△ABC的边AB、AC到D、E,∠CBD与∠BCE的平分线相交于点P,爱动脑筋的小明在写作业的时发现如下规律:(1)若∠A=60°,则∠P=°;(2)若∠A=40°,则∠P=°;(3)若∠A=100°,则∠P=°;(4)请你用数学表达式归纳∠A与∠P的关系.23.如图,五边形ABCDE的内角都相等,且AB=BC,AC=AD,求∠CAD 的度数.24.在各个内角都相等的多边形中若外角度数等于每个内角度数的,求这个多边形的每个内角度数以及多边形的边数. 25.(1)已知一个多边形的�冉呛褪撬�的外角和的3倍,求这个多边形的边数.(2)如图,点F是△ABC的边BC廷长线上一点,DF⊥AB,∠A=30°,∠F =40°,求∠ACF的度数.26.如图1,已知线段AB、CD相交于点O,连接AC、BD,则我们把形如这样的图形称为“8字型”.(1)求证:∠A+∠C=∠B+D;(2)如图2,若∠CAB和∠BDC的平分线AP和DP相交于点P,且与CD、AB分别相交于点M、N.①以线段AC为边的“8字型”有个,以点O为交点的“8字型”有个;②若∠B=100°,∠C=120°,求∠P的度数;③若角平分线中角的关系改为“∠CAP=∠CAB,∠CDP =∠CDB”,试探究∠P与∠B、∠C之间存在的数量关系,并证明理由.2018年秋人教版八年级上册数学《第11章三角形》单元测试题参考答案与试题解析一.选择题(共10小题) 1.课堂上,老师把教学用的两块三角板叠放在一起,得到如图所示的图形,其中三角形的个数为()A.2 B.3 C.5 D.6 【分析】根据三角形的个数解答即可.【解答】解:图中三角形的个数是5个,故选:C.【点评】此题考查三角形,关键是根据图中图形得出三角形个数. 2.如图,BD是△ABC 的高,EF∥AC,EF交BD于G,下列说法正确的有()①BG是△EBF的高;②CD是△BGC的高;③DG是△AGC的高;④AD是△ABG 的高.A.1个 B.2个 C.3个 D.4个【分析】根据三角形的高的定义以及平行线的性质,即可解答.【解答】解:∵BD是△ABC的高,∴∠ADB =∠CDB=90°,∵EF∥AC,∴∠EGB=∠ADB=90°,∴BG是△EBF 的高,①正确;∵∠CDB=90°,∴CD是△BGC的高,②正确;∵∠ADG=∠CDG=90°,∴DG是△AGC的高,③正确;∵∠ADB=90°,∴AD是△ABG的高,④正确.故选:D.【点评】本题考查了三角形的高的定义:从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高,理解定义是关键.也考查了平行线的性质. 3.下列说法正确的是() A.三角形的三条中线交于一点 B.三角形的三条高都在三角形内部 C.三角形不一定具有稳定性 D.三角形的角平分线可能在三角形的内部或外部【分析】依据三角形角平分线、中线以及高线的概念,即可得到正确结论.【解答】解:A.三角形的三条中线交于一点,正确; B.锐角三角形的三条高都在三角形内部,错误; C.三角形一定具有稳定性,错误;D.三角形的角平分线一定在三角形的内部,错误;故选:A.【点评】本题主要考查了三角形角平分线、中线以及高线的概念,锐角三角形的三条高在三角形内部,相交于三角形内一点,直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点. 4.下列线段长能构成三角形的是()A.3、4、8 B.2、3、6 C.5、6、11 D.5、6、10 【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边即可求解.【解答】解:A、3+4<8,不能构成三角形,故此选项不合题意;B、3+2<6,不能构成三角形,故此选项不合题意;C、5+6=11,不能构成三角形,故此选项不合题意;D、5+6>10,能构成三角形,故此选项符合题意.故选:D.【点评】本题考查了能够组成三角形三边的条件,其实用两条较短的线段相加,如果大于最长的那条就能够组成三角形. 5.一个缺角的三角形ABC残片如图所示,量得∠A =60°,∠B=75°,则这个三角形残缺前的∠C的度数为()A.75° B.60° C.45° D.40° 【分析】根据三角形内角和定理即可解决问题;【解答】解:∵∠A+∠B+∠C=180°,∠A=60°,∠B=75°,∴∠C=45°,故选:C.【点评】本题考查三角形内角和定理,记住三角形内角和等于180°是解题的关键. 6.如图,在△ABC中,∠A=80°,点D在BC的延长线上,∠ACD=145°,则∠B是()A.45° B.55° C.65° D.75° 【分析】利用三角形的外角的性质即可解决问题;【解答】解:在△ABC中,∵∠ACD=∠A+∠B,∠A=80°,∠ACD=145°,∴∠B=145°�80°=65°,故选:C.【点评】本题考查三角形的外角,解题的关键是熟练掌握基本知识,属于中考常考题型. 7.已知直角三角形ABC,有一个锐角等于50°,则另一个锐角的度数是() A.30° B.40° C.45° D.50° 【分析】根据直角三角形两锐角互余解答.【解答】解:∵一个锐角为50°,∴另一个锐角的度数=90°�50°=40°.故选:B.【点评】本题属于基础题,利用直角三角形两锐角互余的性质解决问题. 8.将一个四边形截去一个角后,它不可能是() A.六边形 B.五边形 C.四边形 D.三角形【分析】根据一个四边形截一刀后得到的多边形的边数即可得出结果.【解答】解:一个四边形截一刀后得到的多边形可能是三角形,可能是四边形,也可能是五边形,故选:A.【点评】本题考查了多边形,能够得出一个四边形截一刀后得到的图形有三种情形,是解决本题的关键. 9.如果n边形的内角和是它外角和的4倍,则n等于() A.7 B.8 C.10 D.9 【分析】利用多边形的内角和公式和外角和公式,根据一个n 边形的内角和是其外角和的4倍列出方程求解即可.【解答】解:多边形的外角和是360°,根据题意得:180°•(n�2)=360°×4,解得n=10.故选:C.【点评】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决. 10.如图,小明从A点出发,沿直线前进10米后向左转36°,再沿直线前进10米,再向左转36°……照这样走下去,他第一次回到出发点A点时,一共走的路程是()A.100米 B.110米 C.120米 D.200米【分析】根据题意,小明走过的路程是正多边形,先用360°除以36°求出边数,然后再乘以10m即可.【解答】解:∵每次小明都是沿直线前进10米后向左转36°,∴他走过的图形是正多边形,边数n=360°÷36°=10,∴他第一次回到出发点A时,一共走了10×10=100米.故选:A.【点评】本题考查了正多边形的边数的求法,根据题意判断出小亮走过的图形是正多边形是解题的关键.二.填空题(共8小题) 11.三角形有两条边的长度分别是5和7,则最长边a的取值范围是7<a<12 .【分析】已知三角形两边的长,根据三角形三边关系定理知:第三边的取值范围应该是大于已知两边的差而小于已知两边的和.【解答】解:根据三角形三边关系定理知:最长边a的取值范围是:7<a<(7+5),即7<a<12.故答案为:7<a<12.【点评】此题主要考查的是三角形的三边关系,即:两边之和大于第三边,两边之差小于第三边. 12.如图,H若是△ABC三条高AD,BE,CF 的交点,则△BHA中边BH上的高是AE .【分析】直接利用三角形高线的定义得出答案.【解答】解:如图所示:∵H是△ABC三条高AD,BE,CF的交点,∴△BHA中边BH上的高是:AE.故答案为:AE.【点评】此题主要考查了三角形的高,正确钝角三角形高线的作法是解题关键. 13.如图:在△ABC中,∠ABC,∠ACB的平分线交于点O,若∠BOC=132°,则∠A等于84 度,若∠A=60°时,∠BOC又等于120°【分析】根据三角形内角和定理易得∠OBC+∠OCB=48°,利用角平分线定义可得∠ABC+∠ACB=2(∠OBC+∠OCB)=96°,进而利用三角形内角和定理可得∠A度数;【解答】解:∵∠BOC=132°,∴∠OBC+∠OCB=48°,∵∠ABC与∠ACB的平分线相交于O点,∴∠ABC=2∠OBC,∠ACB=2∠OCB,∴∠ABC+∠ACB=2(∠OBC+∠OCB)=96°,∴∠A=180°�96°=84°;解:∵∠A=60°∴∠ABC+∠ACB=120° ∴∠BOC=180°�(∠ABC+∠ACB)=120°.故答案为:84,120°.【点评】本题考查的是三角形内角和定理,角平分线的定义,熟知三角形内角和是180°是解答此题的关键. 14.如图,∠1,∠2,∠3的大小关系是∠1<∠2<∠3.【分析】如图可知∠2是三角形的外角,∠3是三角形的外角,根据外角的性质可得到∠1,∠2,∠3的大小关系.【解答】解:∵∠2是外角,∠1是内角,∴∠1<∠2,∵∠3是外角,∠2是内角,∴∠2<∠3,∴∠1<∠2<∠3,故答案为:∠1<∠2<∠3.【点评】本题主要考查外角的性质,掌握外角大于不相邻的每一个内角是解题的关键. 15.如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=540°.【分析】根据题意,画出图象,由图可知∠6+∠7=∠8+∠9,因为五边形内角和为540°,从而得出答案.【解答】解:如图∵∠6+∠7=∠8+∠9,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7,=∠1+∠2+∠3+∠4+∠5+∠8+∠9,=五边形的内角和=540°,故答案为:540°.【点评】本题考查了五边形内角和,同时需要考生认真通过图形获取信息,通过连线构造五边形从而得出结论. 16.若多边形的每个内角都相等,每个内角与相邻外角的差为100°,则这个多边形的边数为9 .【分析】一个多边形的每个内角都相等,每个内角与相邻外角的差为100°,又由于内角与外角的和是180度.设内角是x°,外角是y°,列方程组求解即可.【解答】解:设内角是x°,外角是y°,则得到一个方程组,解得.而任何多边形的外角和是360°,则多边形外角的个数是360÷40=9,则这个多边形的边数是九边形.故答案为:9 【点评】本题考查多边形的内角与外角,根据多边形的内角与外角的关系转化为方程组的问题,并利用了多边形的外角和定理;已知外角求边数的这种方法是需要熟记的内容. 17.如图,D是△ABC的边AC上一点,E是BD上一点,连接EC,若∠A=60°,∠ABD=25°,∠DCE=35°,则∠BEC的度数为120°.【分析】由∠BDC是△ABD的外角,而∠BEC是△CDE的外角即可求解.【解答】解:∵∠BDC是△ABD的外角,∴∠BDC=∠A+∠ABD=85°,同理:∠BEC=∠BDC+∠DCE=120°,故:答案是120°.【点评】本题主要考查的是三角形内角和定理和外角定理,是一道基本题. 18.如图:∠B=∠C,DE⊥BC于E,EF⊥AB于F,∠ADE等于140°,∠FED=50°.【分析】根据三角形的外角的性质得到∠C=∠ADE�∠DEC=50°,根据平角的定义计算.【解答】解:∵DE⊥BC,∴∠DEC=90°,由三角形的外角的性质可知,∠C=∠ADE�∠DE C=50°,∴∠B=∠C =50°,∵EF⊥AB,∴∠EFC=90°,∴∠FEB=90°�50°=40°,则∠FED=180°�40°�90°=50°,故答案为:50°.【点评】本题考查的是直角三角形的性质,三角形的外角的性质,掌握三角形内角和定理是解题的关键.三.解答题(共8小题) 19.一根长1m的木尺,共有9个等分点,每个分点处有折痕,可将木尺折断,现欲将木尺折成3节,并使3节能组成三角形,若要组成形状不同的三角形,共有多少种不同的折法?【分析】根据三角形的三边关系即可得到结论.【解答】解:共有2、4、4;3,3,4;2种不同的折法,【点评】本题考查了三角形的三边关系,正确的理解题意是解题的关键. 20.已知△ABC,如图,过点A画△ABC的角平分线AD、中线AE和高线AF.【分析】分别根据角平分线、三角形高线作法以及垂直平分线的作法得出答案即可.【解答】解:由题意画图可得:【点评】此题主要考查了复杂作图中线段垂直平分线的作法以及角平分线作法等知识,熟练掌握作图方法是关键. 21.如图所示,在△ABC中,AE是角平分线,AD是高,∠BAC=80°,∠EAD=10°,求∠B的度数【分析】根据垂直的定义得到∠ADC=90°,根据角平分线的定义得到∠CAE=BAC=40°,根据三角形的内角和即可得到结论.【解答】解:∵AD是高,∴∠ADC=90°,∵AE是角平分线,∠BAC=80°,∴∠CAE=BAC=40°,∵∠EAD=10°,∴∠CAD=30°,∴∠C=60°,∴∠B=180°�∠BAC�∠C=40°.【点评】本题考查了三角形内角和定理和垂直定义、角平分线定义等知识点,能根据三角形内角和定理求出各个角的度数是解此题的关键. 22.如图,△ABC 中,分别延长△AB C的边AB、AC到D、E,∠CBD与∠BCE的平分线相交于点P,爱动脑筋的小明在写作业的时发现如下规律:(1)若∠A =60°,则∠P=,60 °;(2)若∠A=40°,则∠P=90 °;(3)若∠A=100°,则∠P=70 °;(4)请你用数学表达式归纳∠A与∠P的关系90°�∠A.【分析】(1)若∠A=60°,则有∠ABC+∠ACB=120°,∠DBC+∠BCE =360°�120°=240°,根据角平分线的定义可以求得∠PBC+∠PCB 的度数,再利用三角形的内角和定理即可求得∠P的度数.(2)(3)和(1)的解题步骤相似.(4)利用角平分线的性质和三角形的外角性质可求出∠BCP=(∠A+∠ABC),∠CBP=(∠A+∠ACB);再利用三角形内角和定理便可求出∠A与∠P的关系.【解答】解:(1)∵∠A =60°,∴∠ABC+∠ACB=180°�60°=120°,∠DBC+∠BCE=360°�120°=240°,又∵∠CBD与∠BCE的平分线相交于点P,∴∠PBC=∠DBC,∠PCB=∠BCE,∴∠PBC+∠PCB=(∠DBC+∠ECB)=120°,∴∠P=60°.同理得:(2)90°;(3)70° (4)∠P =90°�∠A.理由如下:∵BP平分∠DBC,CP平分∠BCE,∴∠DBC =2∠CBP,∠BCE=2∠BCP 又∵∠DBC=∠A+∠ACB∠BCE=∠A+∠ABC,∴2∠CBP=∠A+∠ACB,2∠BCP=∠A+∠ABC,∴2∠CBP+2∠BCP=∠A+∠ACB+∠A+∠ABC=180°+∠A,∴∠CBP+∠BCP=90°+∠A 又∵∠CBP+∠BCP+∠P=180°,∴∠P=90°�∠A.故答案为:60,90,70,90°�∠A.【点评】本题主要考查三角形的一个外角等于和它不相邻的两个内角的和的性质以及角平分线的定义,熟练掌握性质和定义是解题的关键. 23.如图,五边形ABCDE的内角都相等,且AB=BC,AC=AD,求∠CAD的度数.【分析】由五边形ABCDE的内角都相等,先求出五边形的每个内角度数,再求出∠1=∠2=∠3=∠4=36°,从而求出∠CAD=108°�72°=36度.【解答】证明:∵五边形ABCDE的内角都相等,∴∠BAE =∠B=∠BCD=∠CDE=∠E=(5�2)×180°÷5=108°,∵AB=AC,∴∠1=∠2=(180°�108°)÷2=36°,∴∠ACD=∠BCD�∠2=72°,∵AC=AD,∴∠ADC=∠ACD=72°,∴∠CAD =180°�∠ACD�∠ADC=36°.【点评】本题主要考查了正五边形的内角和以及正五边形的有关性质.解此题的关键是能够求出∠1=∠2=∠3=∠4=36°,和正五边形的每个内角是108度. 24.在各个内角都相等的多边形中若外角度数等于每个内角度数的,求这个多边形的每个内角度数以及多边形的边数.【分析】已知关系为:一个外角=一个内角×,隐含关系为:一个外角+一个内角=180°,由此即可解决问题.【解答】解:设这个多边形的每一个内角为x°,那么180�x=x,解得x=140,那么边数为360÷(180�140)=9.答:这个多边形的每一个内角的度数为140°,它的边数为9.【点评】本题考查了多边形内角与外角的关系,用到的知识点为:各个内角相等的多边形的边数可利用外角来求,边数=360÷一个外角的度数. 25.(1)已知一个多边形的�冉呛褪撬�的外角和的3倍,求这个多边形的边数.(2)如图,点F是△ABC的边BC廷长线上一点,DF⊥AB,∠A=30°,∠F=40°,求∠ACF的度数.【分析】(1)多边形的外角和是360°,内角和是它的外角和的3倍,则内角和是3×360=1080度.n边形的内角和可以表示成(n�2)•180°,设这个多边形的边数是n,就得到方程,从而求出边数.(2)在直角三角形DFB中,根据三角形内角和定理,求得∠B的度数;再在△ABC中,根据内角与外角的性质求∠ACF的度数即可.【解答】解:(1)设这个多边形的边数为n,∵n边形的内角和为(n�2)•180°,多边形的外角和为360°,∴(n�2)•180°=360°×3,解得n=8.∴这个多边形的边数为8.(2)在△DFB中,∵DF⊥AB,∴∠FDB=90°,∵∠F=40°,∠FDB+∠F+∠B=180°,∴∠B=50°.在△ABC中,∵∠A=30°,∠B=50°,∴∠ACF=30°+50°=80°.【点评】考查了多边形内角与外角,根据正多边形的外角和求多边形的边数是常用的一种方法,需要熟记.同时考查了三角形的内角和定理,以及三角形的外角等于不相邻的两个内角的和. 26.如图1,已知线段AB、CD相交于点O,连接AC、BD,则我们把形如这样的图形称为“8字型”.(1)求证:∠A+∠C=∠B+D;(2)如图2,若∠CAB和∠BDC的平分线AP和DP相交于点P,且与CD、AB分别相交于点M、N.①以线段AC为边的“8字型”有 3 个,以点O为交点的“8字型”有 4 个;②若∠B=100°,∠C=120°,求∠P的度数;③若角平分线中角的关系改为“∠CAP=∠CAB,∠CDP =∠CDB”,试探究∠P与∠B、∠C之间存在的数量关系,并证明理由.【分析】(1)根据三角形的内角和即可得到结论;(2)①以线段AC为边的“8字型”有3个,以点O为交点的“8字型”有4个;②根据角平分线的定义得到∠CAP=∠BAP,∠BDP=∠CDP,再根据三角形内角和定理得到∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,两等式相减得到∠C�∠P=∠P�∠B,即∠P=(∠C+∠B),然后把∠C=120°,∠B=100°代入计算即可;③与②的证明方法一样得到3∠P=∠B+2∠C.【解答】(1)证明:在图1中,有∠A+∠C=180°�∠AOC,∠B+∠D=180°�∠BOD,∵∠AOC=∠BOD,∴∠A+∠C=∠B+∠D;(2)解:①3;4;故答案为:3,4;②以M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP ∴2∠P+∠BAP+∠CDP=∠B+∠C+∠CAP+∠BDP,∵AP、DP分别平分∠CAB和∠BDC,∴∠BAP =∠CAP,∠CDP=∠BDP,∴2∠P=∠B+∠C,∵∠B=100°,∠C=120°,∴∠P=(∠B+∠C)=(100°+120°)=110°;③3∠P =∠B+2∠C,其理由是:∵∠CAP=∠CAB,∠CDP=∠CDB,∴∠BAP =∠CAB,∠BDP=∠CDB,以M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP ∴∠C�∠P=∠CDP�∠CAP=(∠CDB�∠CAB),∠P�∠B=∠BDP�∠BAP=(∠CDB�∠CAB).∴2(∠C�∠P)=∠P�∠B,∴3∠P=∠B+2∠C.【点评】本题考查了三角形内角和定理:三角实用精品文献资料分享形内角和是180°.也考查了角平分线的定义.。
人教版八年级数学上册课件:第十一章《三角形》测试卷(共34张PPT)

解:如图,设原多边形的边数为 n, 如图①,当裁剪线经过两个顶点时,(n-1-2)×180° =2880°,解得 n=19. 如图②,当裁剪经过一个顶点时,(n-2)×180°= 2880°,解得 n=18. 如图③,当裁剪不经过顶点时,(n+1-2)×180°= 2880°,解得 n=17. 故原多边形的边数为 17 或 18 或 19.
A.2 m B.3 m C.4 m D.8 m
9. 在△ABC 中,AB=8 cm,AC=5 cm,AD 是 BC 边上的中线,则△ABD 与△ACD 的周长之差是( A )
A.3 cm B.4 cm C.5 cm D.无法计算
10. 科研人员为某机器人编制了一段程序,如果机 器人在平地上按照图中的步骤行走,那么该机器人所走 的总路程为( B )
21. (8 分)已知:如图,P 是△ABC 内任一点,求证: ∠BPC>∠A.
证明:如图,延长 BP 交 AC 于点 D, ∵∠BPC>∠PDC,∠PDC>∠A, ∴∠BPC>∠A.
22. (10 分)一个多边形物体剪去一个角后,形成的 另一个多边形的内角和为 2880°,则原多边形的边数是 多少?
点 E 在 AC 上,DE∥BC,若∠A=62°,∠AED=54°,
则∠B 的大小为( C )
A.54°
B.62° C.64°
D.74°
3. 如图,已知∠B=∠C,则( A ) A.∠1=∠2 B.∠1>∠2 C.∠1<∠2 D.无法确定∠1 与∠2 的大小关系
【解析】由对顶三角形的性质,可得:∠CDB= ∠BEC,从而可得:∠1=∠2.
A.6 米 C.12 米
B.8 米 D.不能确定
【解析】根据题意,机器人走过的图形是正多边形, 每一个外角都等于 45°,所以多边形的边数=360°÷45° =8,该机器人所走的总路程为 8×1=8 米.
人教版八年级数学上册第十一章《三角形》单元练习题

第十一章《三角形》单元练习题一.选择题1.下来三条线段中,能构成三角形的是()A.3,4,8 B.5,6,11 C.5,5,10 D.5,6,72.一个三角形的两边长分别是3和7,则第三边长可能是()A.2 B.3 C.9 D.103.一个正多边形的内角和为900°,那么从一点引对角线的条数是()A.3 B.4 C.5 D.64.如图,在△ABC中,∠ABC=40°,∠ACD=76°,BE平分∠ABC,CE平分△ABC的外角∠ACD,则∠E=()A.40°B.36°C.20°D.18°5.△ABC的三个内角∠A,∠B,∠C满足∠A:∠B:∠C=1:2:3,则这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形6.一个多边形的边数由原来的3增加到n时(n>3,且n为正整数),它的外角和()A.增加(n﹣2)×180°B.减小(n﹣2)×180°C.增加(n﹣1)×180°D.没有改变7.如图,将一块直角三角板DEF放置在锐角△ABC上,使得该三角板的两条直角边DE、DF恰好分别经过点B、C,若∠A=50°,则∠ABD+∠ACD的值为()A.60°B.50°C.40°D.30°8.如图,在△ABC中,画出AC边上的高,正确的图形是()A.B.C.D.9.如图,在△ABC中,点D在AB边上,点E在AC边上DE∥BC,点B、C、F在一条直线上,若∠ACF=140°,∠ADE=105°,则∠A的大小为()A.75°B.50°C.35°D.30°10.如图1,M是铁丝AD的中点,将该铁丝首尾相接折成△ABC,且∠B=30°,∠C=100°,如图2.则下列说法正确的是()A.点M在AB上B.点M在BC的中点处C.点M在BC上,且距点B较近,距点C较远D.点M在BC上,且距点C较近,距点B较远11.如图,为估计池塘岸边两点A、B的距离,小方在池塘的一侧选取一点O,测得OA=6cm,OB=4cm,则点A、B间的距离不可能是()A.10 cm B.8cm C.6cm D.4cm12.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是()A.45°B.60°C.75°D.85°二.填空题13.如图,在△ABC中,AB=2018,AC=2015,AD为中线,则△ABD与△ACD的周长之差=.14.如图,在△ABC中,D为AB延长线上一点,DE⊥AC于E,∠C=40°,∠D=20°,则∠ABC的度数为.15.一个三角形的两边长分别是2和6,第三边长为偶数,则第三边长为.16.如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④BD平分∠ADC;⑤∠BDC=∠BAC.其中正确的结论有个.三.解答题17.如图,在△ABC中,AD是BC上的高,AE平分∠BAC,∠B=75°,∠C=45°,求∠DAE与∠AEC的度数.18.如图,△ABC中,点D、E在边AB上,点F在边BC上,点G在边AC上,EF、CD 与BG交于M、N两点,∠ADG=50°,∠ACB=60°.(1)若∠BMF+∠GNC=180°,CD与EF平行吗?为什么?(2)在(1)的基础上,若∠GDC=∠EFB,试求∠A的度数.19.在一个各内角都相等的多边形中,每一个内角都比相邻外角的3倍还大20°,(1)求这个多边形的边数;(2)若将这个多边形剪去一个角,剩下多边形的内角和是多少?20.如图1,直线AB∥CD,直线l与直线AB,CD相交于点E,F,点P是射线EA上的一个动点(不包括端点E),将△EPF沿PF折叠,使顶点E落在点Q处.(1)若∠PEF=48°,点Q恰好落在其中的一条平行线上,请直接写出∠EFP的度数.(2)若∠PEF=75°,∠CFQ=∠PFC,求∠EFP的度数.21.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F,∠1=∠2.(1)试说明DG∥BC的理由;(2)如果∠B=34°,且∠ACD=47°,求∠3的度数.22.如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB 于点E,PN交CD于点F.(1)当△PMN所放位置如图①所示时,求出∠PFD与∠AEM的数量关系;(2)当△PMN所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=15°,∠PEB=30°,求∠N的度数.23.如图,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1.(1)当∠A为70°时,∵∠ACD﹣∠ABD=∠∴∠ACD﹣∠ABD=°∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线∴∠A1CD﹣∠A1BD=(∠ACD﹣∠ABD)∴∠A1=°;(2)∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与A2CD的平分线交于A,如此继续下去可得A4、…、A n,请写出∠A与∠A n的数量关系;3(3)如图2,四边形ABCD中,∠F为∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的角,若∠A+∠D=230度,则∠F=.(4)如图3,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q﹣∠A1的值为定值.其中有且只有一个是正确的,请写出正确的结论,并求出其值.参考答案一.选择题1.解:根据三角形任意两边的和大于第三边,得A,3+4=7<8,不能组成三角形;B,5+6=11=11,不能组成三角形;C,5=5=10,不能够组成三角形;D,5+6=11>7,能组成三角形.故选:D.2.解:设第三边长为x,由题意得:7﹣3<x<7+3,则4<x<10,故选:C.3.解:设多边形的边数为n,由题意得,(n﹣2)•180°=900°,解得n=7,所以,从一点引对角线的条数=7﹣3=4.故选:B.4.解:∵∠ACD是△ABC的一个外角,∴∠ACD=∠A+∠ABC,∴∠A=∠ACD﹣∠ABC,∵∠ABC=40°,∠ACD=76°,∴∠ACD﹣∠ABC=36°,∵BE平分∠ABC,CE平分∠ACD,∴∠ECD=∠ACD,∠EBC=∠ABC,∵∠ECD是△BCE的一个外角,∴∠ECD=∠EBC+∠E,∴∠E=∠ECD﹣∠EBC=∠ACD﹣∠ABC=18°.故选:D.5.解:∵∠A:∠B:∠C=1:2:3,∴设∠A、∠B、∠C分别为k、2k、3k,由题意得,k+2k+3k=180°,解得k=30°,∠C=3×30°=90°,∴这个三角形是直角三角形.故选:C.6.解:∵多边形的外角和等于360°,与边数无关,∴凸多边形的边数由3增加到n时,其外角度数的和还是360°,保持不变.故选:D.7.解:在△ABC中,∵∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,在△DBC中,∵∠BDC=90°,∴∠DBC+∠DCB=180°﹣90°=90°,∴∠ABD+∠ACD=130°﹣90°=40°;故选:C.8.解:根据三角形高线的定义,AC边上的高是过点B向AC作垂线垂足为D,纵观各图形,A、B、C都不符合高线的定义,D符合高线的定义.故选:D.9.解:∵DE∥BC,∴∠DEC=∠ACF=140°,∴∠AED=180°﹣140°=40°,∵∠ADE=105°,∴∠A=180°﹣105°﹣40°=35°,故选:C.10.解:∵∠C=100°,∴AB>AC,如图,取BC的中点E,则BE=CE,∴AB+BE>AC+CE,由三角形三边关系,AC+BC>AB,∴AB<AD,∴AD的中点M在BE上,即点M在BC上,且距点B较近,距点C较远.故选:C.11.解:∵6﹣4<AB<6+4,∴2<AB<10.∴所以不可能是10cm.故选:A.12.解:如图,∵∠ACD=90°、∠F=45°,∴∠CGF=∠DGB=45°,则∠α=∠D+∠DGB=30°+45°=75°,故选:C.二.填空题(共4小题)13.解:∵AD是△ABC的中线,∴BD=CD,∵△ABD周长=AB+AD+BD,△ACD周长=AC+CD+AD,∴△ABD周长﹣△ACD周长=(AB+BD+AD)﹣(AC+CD+AD)=AB﹣AC=2018﹣2015=3,即△ACD和△BCD的周长之差是3,故答案为:3.14.解:∵DE⊥AC,∠D=20°,∴∠A=70°,∵∠A+∠C+∠ABC=180°,∴∠ABC=180°﹣40°﹣70°=70°,故答案为70°.15.解:根据三角形的三边关系,得6﹣2<x<6+2,即4<x<8.又∵第三边长是偶数,则x=6,故答案为:616.解:∵AD平分∠EAC,∴∠EAC=2∠EAD,∵∠EAC=∠ABC+∠ACB,∠ABC=∠ACB,∴∠EAD=∠ABC,∴AD∥BC,∴①正确;∵AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∠ABC=∠ACB,∴∠ABC=∠ACB=2∠DBC,∴∠ACB=2∠ADB,∴②正确;在△ADC中,∠ADC+∠CAD+∠ACD=180°,∵CD平分△ABC的外角∠ACF,∴∠ACD=∠DCF,∵AD∥BC,∴∠ADC=∠DCF,∠ADB=∠DBC,∠CAD=∠ACB∴∠ACD=∠ADC,∠CAD=∠ACB=∠ABC=2∠ABD,∴∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,∴∠ADC+∠ABD=90°∴∠ADC=90°﹣∠ABD,∴③正确;∵BD平分∠ABC,∴∠ABD=∠DBC,∵∠ADB=∠DBC,∠ADC=90°﹣∠ABC,∴∠ADB不等于∠CDB,∴④错误;∵∠ACF=2∠DCF,∠ACF=∠BAC+∠ABC,∠ABC=2∠DBC,∠DCF=∠DBC+∠BDC,∴∠BAC=2∠BDC,∴⑤正确;即正确的有4个,故答案为:4.三.解答题(共7小题)17.解:∵∠B+∠C+∠BAC=180°,∠B=75°,∠C=45°,∴∠BAC=60°,∵AE平分∠BAC,∴∠BAE=∠CAE=∠BAC=×60°=30°,∵AD是BC上的高,∴∠B+∠BAD=90°,∴∠BAD=90°﹣∠B=90°﹣75°=15°,∴∠DAE=∠BAE﹣∠BAD=30°﹣15°=15°,在△AEC中,∠AEC=180°﹣∠C﹣∠CAE=180°﹣45°﹣30°=105°;18.解:(1)∵∠BMF+∠GNC=180°∠BMF+∠NMF=180°,∴∠GNC=∠NMF,∴CD∥EF;(2)∵CD∥EF,∴∠DCB=∠EFB,∵∠GDC=∠EFB,∴∠DCB=∠GDC,∴DG∥BC,∴∠ADG=∠ABC=50°,∠AGD=∠ACB=60°..∴∠A=180°﹣50°﹣60°=70°.19.解:(1)设多边形的一个外角为α,则与其相邻的内角等于3α+20°,由题意,得(3α+20)+α=180°,解得α=40°.即多边形的每个外角为40°.又∵多边形的外角和为360°,∴多边形的外角个数==9.∴多边形的边数=9,答:这个多边形的边数是9;(2)因为剪掉一个角以后,多边形的边数可能增加了1条,也可能减少了1条,或者不变,当截线为经过对角2个顶点的直线时,多边形的边数减少了1条边,内角和=(9﹣2﹣1)×180°=1080°;当截线为经过多边形一组对边的直线时,多边形的边数不变,内角和=(9﹣2)×180°=1260°;当截线为只经过正方形一组邻边的一条直线时,多边形的边数增加一条边,内角和=(9﹣2+1)×180°=1440°.答:将这个多边形剪去一个角,剩下多边形的内角和是1080°或1260°或1440°.20.解:(1)①如图1,当点Q落在AB上,∴FP⊥AB,∴∠EFP=90°﹣∠PEF=42°,①如图2,当点Q落在CD上,∵将△EPF沿PF折叠,使顶点E落在点Q处,∴PF垂直平分EQ,∴∠1=∠2,∵AB∥CD,∴∠QFE=180°﹣∠PEF=132°,∴∠PFE=QFE=66°;(2)①如图3,当点Q在平行线AB,CD之间时,设∠PFQ=x,由折叠可得∠EFP=x,∵∠CFQ=PFC,∴∠PFQ=∠CFQ=x,∵AB∥CD,∴∠AEF+∠CFE=180°,∴75°+x+x+x=180°,∴x=35°,∴∠EFP=35°;②如图4,当点Q在CD的下方时,设∠CFQ=x,由∠CFQ=PFC得,∠PFC=2x,∴∠PFQ=3x,由折叠得,∠PFE=∠PFQ=3x,∵AB∥CD,∴∠AEF+∠CFE=180°,∴2x+3x+75°=180°,∴x=21°,∠EFP=3x=63°,综上所述,∠EFP的度数是35°或63°.21.解:(1)DG∥BC.理由是:∵CD⊥AB,EF⊥AB,∴∠CDF=∠EFB=90°,∴CD∥EF.∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC;(2)∵CD⊥AB,∴∠BDC=90°.∵∠B=34°,∴∠BCD=90°﹣34°=56°.∵∠ACD=47°,∴∠ACB=∠ACD+∠BCD=47°+56°=103°.∵由(1)知DG∥BC,∴∠3=∠ACB=103°.22.解:(1)作PH∥AB,又AB∥CD,则PH∥CD,∴∠PFD=∠MPH,∠AEM=∠HPM,∵∠MPN=90°,∴∠PFD+∠AEM=90°;(2)∵AB∥CD,∴∠PFD=∠PHB,∵∠PHB﹣∠PEB=90°,∠PEB=∠AEM,∴∠PFD﹣∠AEM=90°;(3)由(2)得,∠PFD=90°+∠PEH=120°,∴∠N=180°﹣∠DON﹣∠PFD=45°.23.解:(1)当∠A为70°时,∵∠ACD﹣∠ABD=∠A,∴∠ACD﹣∠ABD=70°,∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线,∴∠A1CD﹣∠A1BD=(∠ACD﹣∠ABD)∴∠A1=35°;故答案为:A,70,35;(2)∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠BAC,∴∠BAC=2∠A1=80°,∴∠A1=40°,同理可得∠A1=2∠A2,即∠BAC=22∠A2=80°,∴∠A2=20°,∴∠A=2n∠A n,即∠A n=∠A,故答案为:∠A n=∠A.(3)∵∠ABC+∠DCB=360°﹣(∠A+∠D),∴∠ABC+(180°﹣∠DCE)=360°﹣(∠A+∠D)=2∠FBC+(180°﹣2∠DCF)=180°﹣2(∠DCF﹣∠FBC)=180°﹣2∠F,∴360°﹣(α+β)=180°﹣2∠F,2∠F=∠A+∠D﹣180°,∴∠F=(∠A+∠D)﹣90°,∵∠A+∠D=230°,∴∠F=25°;故答案为:25°.(4)①∠Q+∠A1的值为定值正确.∵∠ACD﹣∠ABD=∠BAC,BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线∴∠A1=∠A1CD﹣∠A1BD=∠BAC,(1分)∵∠AEC+∠ACE=∠BAC,EQ、CQ是∠AEC、∠ACE的角平分线,∴∠QEC+∠QCE=(∠AEC+∠ACE)=∠BAC,∴∠Q=180°﹣(∠QEC+∠QCE)=180°﹣∠BAC,∴∠Q+∠A1=180°.。
(完整版)初二上第十一章三角形单元测试及答案(人教版)

初二上第十一章三角形单元测试及答案(人教版)(时限:100分钟总分:100分)BC,则/ AED的度数是()A.40 °B.60 °C.80 °D.120 °A9•已知△ ABC中,/ A = 80°,/ B、/C的平分线的夹角是() 80°EA. 130 °B. 60 °C. 130° 或50°D. 60 °或120°D10•若从一多边形的一个顶点出发,最多可引10条对角线,40°C 则它是() B -第8题图A.十三边形B.十二边形C・十一边形D・十边形2•若三条线段中那么由a, b,A. 1个C.无数多个a= 3, b= 5, c为奇数,c为边组成的三角形共有(B. 3个D.无法确定3•有四条线段,它们的长分别为1cm,2cm,3cm, 4cm, 从中选三条构成三角形,其中正确的选法有(A. 1种B. 2种C. 3种4•能把一个三角形分成两个面积相等的三角形是三角形的(A.中线B.高线C.角平分线D. 4种)D.以上都不对5•如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( A.锐角三角形6•在下列各图形中,B.钝角三角形分别画出了△ABCC・直角三角形BC边上的高AD ,BD.不能确定其中正确的是(7•下列图形中具有稳定性的是( A.直角三角形8•如图,在△ ABCB.正方形中,/ A = 80。
,/ B = 40C.长方形• D、E分别是D.平行四边形AB、AC上的点,且DE // 、选择题:将下列各题正确答案的代号的选项填在下表(每小题2分,共24分。
)AB11.将一副直角三角板如图放置,使含30°角的三角板的一条直角边和45°角的三角板的一条直角边重合,则/ 1的度数为()C.75°第11题图12.用三个不同的正多边形能够铺满地面的是(A.正三角形、正方形、正五边形C.正三角形、正方形、正七边形)B.正三角形、正方形、正六边形D.正三角形、正方形、正八边形、填空题:(本大题共8小题,每小题3分,共24分。