空间几何体的表面积与体积训练题

合集下载

高一数学空间几何体的表面积与体积试题答案及解析

高一数学空间几何体的表面积与体积试题答案及解析

高一数学空间几何体的表面积与体积试题答案及解析1. 已知正方体的棱长为1,且其顶点都在一个球面上,则该球的表面积为( ) A .π B .2π C .3π D .4π【答案】C.【解析】正方体的对角线长为外接球的直径,因此,,因此.【考点】球的表面积公式.2. 如图,在四边形ABCD 中,∠DAB =90°,∠ADC =135°,AB =5,CD =2,AD =2,求四边形ABCD 绕AD 旋转一周所成几何体的表面积及体积.【答案】S 表面=(60+4)π.V =π.【解析】该图形旋转后是一个圆台除去一个倒放的圆锥, 则S 表面=S 下底面+S 台侧面+S 锥侧面 , 设圆台上,下地面半径是r 1,r 2,则 S 表面=π×r 22+π×(r 2+r 1)×5+π×r 1×CDV =V 台-V 锥=π(+r 1r 2+)AE -πr 2DE ,将数据代入计算即可。

试题解析:如图,设圆台上,下地面半径是r 1,r 2,过C 点作CF ⊥AB ,由∠ADC =135°,CE ⊥AD, CD=2得∠EDC =45°,r 1=" CE=" 2,则CF=4,BF=3,CF ⊥AB ,得BC=5,r 2=" AB=" 5, ∴S 表面=S 下底面+S 台侧面+S 锥侧面 =π×r 22+π×(r 2+r 1)×5+π×r 1×CD =π×52+π×(2+5)×5+π×2×2 =(60+4)π. V =V 台-V 锥=π(+r 1r 2+)AE -πDE =π(+2×5+)4-π×2=π.【考点】圆台,圆锥的表面积和体积.3.如图,在长方体ABCD—A1B1C1D1中,AB=2,BB1=BC=1,E为D1C1的中点,连结ED,EC,EB和DB.(1)求证:ED⊥平面EBC;(2)求三棱锥E-DBC的体积.【答案】(1)见解析;(2)【解析】(1)易得△DD1E为等腰直角三角形DE⊥EC,BC⊥平面 BC⊥DE,所以DE⊥平面EBC平面DEB⊥平面EBC.(2)需要做辅助线,取CD中点M,连接EM∥,DCB(这个证明很关键),然后根据公式.试题解析:(1)在长方体ABCD-A1B1C1D1中,AB=2,BB1=BC=1,E为D1C1的中点.∴△DD1E为等腰直角三角形,∠D1ED=45°.同理∠C1EC=45°.∴,即DE⊥EC.在长方体ABCD-中,BC⊥平面,又DE平面,∴BC⊥DE.又,∴DE⊥平面EBC.又∴平面DEB⊥平面EBC.(2)取CD中点M,连接EM,E为D1C1的中点,∥,且,又DCB.【考点】线面垂直,三棱锥的体积.4.设甲、乙两个圆柱的底面积分别为,体积分别为,若它们的侧面积相等,且,则的值是.【答案】【解析】设甲、乙两个圆柱的底面半径为,母线长,由于侧面积相等,,,,.【考点】圆柱的体积公式应用.5.如果两个球的体积之比为8:27,那么两个球的表面积之比为()A.8:27B.2:3C.4:9D.2:9【答案】C【解析】由题意,故选C【考点】球的体积和表面积6.棱长为4的正方体的八个顶点都在同一个球面上,则此球的表面积为_____________.【答案】48【解析】正方体的外接球的球心为正方体的中心,球的直径为正方体的对角线,所以球的表面积为【考点】正方体的外接球7.如图是从上下底面处在水平状态下的棱长为的正方体中分离出来的.有如下结论:①在图中的度数和它表示的角的真实度数都是;②;③与所成的角是;④若,则用图示中这样一个装置盛水,最多能盛的水.其中正确的结论是(请填上你所有认为正确结论的序号).【答案】①④【解析】①∵在正视图的等腰直角中,在图中的度数和它表示的角的真实度数都是,故①正确;②补全正方体如图所示:连接.∵,∴是正三角形,故.而==,故②错;③连接、,∵,∴是正三角形,所以与所成的角是,故③错;④用图示中这样一个装置来盛水,那么盛最多体积的水时应是三棱锥的体积.又===,故④正确,故填①④.【考点】1、正方体的性质;2、异面直线所成角;3、三棱锥的体积.8.已知一个正三棱锥的三条侧棱两两垂直且相等,底面边长为,则该三棱锥的外接球的表面积是()A.B.C.D.【答案】A【解析】设该正三棱锥为,依题意两两垂直且,所以,且该正三棱锥的外接球与以为邻边的正方体的外接球是相同的,正方体的边长为,体对角线长为,故球的半径为,所以球的表面积为,故选A.【考点】1.三棱锥的外接球;2.球的表面积公式.9.如图,已知直三棱柱中,,,,D为BC的中点.(1)求证:∥面;(2)求三棱锥的体积.【答案】(1)略(2)【解析】(1)连接交于点O,连接OD,在中可根据中位线证得∥,再根据线面平行的性质定理可证得∥面。

高二数学空间几何体的表面积与体积试题答案及解析

高二数学空间几何体的表面积与体积试题答案及解析

高二数学空间几何体的表面积与体积试题答案及解析1.正四棱锥的五个顶点在同一个球面上,若其底面边长为4,侧棱长为,则此球的表面积为()A.B.C.D.【答案】B【解析】设球的半径为,正方形的ABCD的对角线的交点 M,则球心在直线PM上.,由勾股定理得,再由射影定理得即∴此球的表面积为.【考点】球的表面积.2.一个圆柱形的罐子半径是4米,高是9米,将其平放,并在其中注入深2米的水,截面如图所示,水的体积是()平方米.A.B.C.D.【答案】D.【解析】所求几何体的体积为阴影部分的面积与高的乘积,在中,,则,,体积.【考点】组合体的体积.3.一个四棱锥的侧棱长都相等,底面是正方形,其正视图如图所示,则该四棱锥的侧面积是_________.【答案】【解析】由正视图可知四棱锥的底面边长为2,高为2,可求出斜高为,因此四棱锥的侧面积,答案为.【考点】1.几何体的三视图;2.锥体的侧面积计算4.已知球的直径SC=4,A.,B是该球球面上的两点,AB=2,∠ASC=∠BSC=45°,则棱锥S-ABC的体积为_________【答案】【解析】设AB的中点为D,球心为O,连结SD,CD,OD,由SC=4为球的直径知,∠SBC=∠SAC=90o,因为∠ASC=∠BSC=45°,所以SA=BC=SB=AC=,所以SD⊥AB,DC⊥AB,所以AB⊥面SDC,因为AB=2,所以SD=DC==,所以DO= =,所以= ===.考点:球的性质,线面垂直判定,三棱锥的体积公式,转化思想5.如图,一个盛满水的三棱锥容器,不久发现三条侧棱上各有一个小洞,且知,若仍用这个容器盛水,则最多可盛水的体积是原来的 .【答案】【解析】过作截面平行于平面,可得截面下体积为原体积的,若过点F,作截面平行于平面,可得截面上的体积为原体积的,若C为最低点,以平面为水平上面,则体积为原体积的,此时体积最大.【考点】体积相似计算.6.一个半径为1的小球在一个内壁棱长为的正四面体封闭容器内可向各个方向自由运动,则该小球表面永远不可能接触到的容器内壁的面积是.【答案】【解析】如图甲,考虑小球挤在一个角时的情况,记小球半径为,作平面//平面,与小球相切于点,则小球球心为正四面体的中心,,垂足为的中心.因,故,从而.记此时小球与面的切点为,连接,则.考虑小球与正四面体的一个面(不妨取为)相切时的情况,易知小球在面上最靠近边的切点的轨迹仍为正三角形,记为,如图乙.记正四面体的棱长为,过作于.因,有,故小三角形的边长.小球与面不能接触到的部分的面积为(如答图2中阴影部分).又,,所以.由对称性,且正四面体共4个面,所以小球不能接触到的容器内壁的面积共为.【考点】(1)三棱锥的体积公式;(2)分情况讨论及割补思想的应用。

空间几何体的表面积与体积检测题

空间几何体的表面积与体积检测题

空间几何体的表面积与体积检测题(试卷满分100分,考试时间60分钟)一、选择题(每小题5分,共40分)1.已知圆锥的高为3,底面半径长为4.若一球的表面积与此圆锥的侧面积相等,则该球的半径长为( )A .5 B.5 C .9 D .3解析:选B ∵圆锥的底面半径R =4,高h =3,∴圆锥的母线l =5,∴圆锥的侧面积S =πRl =20π.设球的半径为r ,则4πr 2=20π,∴r = 5.故选B.2.已知一个三棱锥的所有棱长都为2,四个顶点在同一个球面上,则此球的表面积为( )A .3πB.4π C .33π D .6π解析:选A 构造棱长为1的正方体,如图,则C 1-A 1BD 是各棱长为2的三棱锥,正方体的外接球也为三棱锥C 1-A 1BD 的外接球,此时球的直径为正方体的体对角线长3,因此球的表面积为4π·⎝⎛⎭⎫322=3π. 3.某几何体三视图如图所示, 则此几何体的表面积为( )A .4π+16B.2(2+2)π+16 C .4π+8 D .2(2+2)π+8解析:选B 由三视图知,该几何体是一个棱长为2的正方体和一个底面半径为2、高为1的圆柱的组合体,其表面积S 表=5×22+2π×2×1+2π×(2)2-22=2(2+2)π+16.故选B.4.如图,在三棱柱ABC -A 1B 1C 1中,AA 1⊥底面ABC ,AB ⊥BC ,AA 1=AC =2,直线A 1C 与侧面AA 1B 1B 所成的角为30°,则该三棱柱的侧面积为( )A .4+42B.4+4 3 C .12 D .8+4 2解析:选A 连接A 1B .因为AA 1⊥底面ABC ,则AA 1⊥BC ,又AB ⊥BC ,AA 1∩AB =A ,所以BC ⊥平面AA 1B 1B ,所以直线A 1C 与侧面AA 1B 1B 所成的角为∠CA 1B =30°.又AA 1=AC =2,所以A 1C =22,BC = 2.又AB ⊥BC ,则AB =2,则该三棱柱的侧面积为22×2+2×2=4+42,故选A.5.祖暅是我国南北朝时代的伟大科学家,他提出的”幂势既同,则积不容异“称为祖暅原理,利用该原理可以得到柱体的体积公式V 柱体=Sh ,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm 3)是( )A .158B.162 C .182 D .324解析:选B 如图,该柱体是一个五棱柱,棱柱的高为6,底面可以看作由两个直角梯形组合而成,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3.则底面面积S =2+62×3+4+62×3=27, 因此,该柱体的体积V =27×6=162.6.已知三棱锥S -ABC 的所有顶点都在球O 的表面上,△ABC 是边长为2的正三角形,若三棱锥S -ABC 的体积的最大值为233,则球O 的体积为( ) A .43πB.64π9C.256π81D.32π3解析:选C 因为△ABC 是边长为2的正三角形,所以S △ABC =3,因为三棱锥S -ABC的体积的最大值为233,所以点S 到平面ABC 的最大距离为2,设△ABC 的外接圆的半径为r ,由正弦定理得2r =2sin π3=433,解得r =233.设球O 的半径为R ,则R 2=(2-R )2+43,解得R =43,所以球O 的体积为43πR 3=256π81,故选C.7.已知表面积为12π的圆柱的上下底面的中心分别为O 1,O 2.若过直线O 1O 2的平面截该圆柱所得的截面是正方形,则O 1O 2=( )A .23B.22C.3D. 2解析:选B 因为圆柱的轴截面是正方形,设底面半径为r ,则母线长为2r ,所以圆柱的表面积为2πr 2+2πr ·2r =12π,解得r =2,所以O 1O 2=2r =22,故选B.8.一个几何体的三视图如图所示,则该几何体外接球的表面积为( )A .36πB.112π3 C .32π D .28π解析:选B 根据三视图,可知该几何体是一个四棱锥,其底面是一个边长为4的正方形,高是2 3.将该四棱锥补形成一个三棱柱,如图所示,则其底面是边长为4的正三角形,高是4,该三棱柱的外接球即为原四棱锥的外接球.∵三棱柱的底面是边长为4的正三角形,∴底面三角形的中心到该三角形三个顶点的距离为23×23=433,∴外接球的半径R =⎝⎛⎭⎫4332+22=283,外接球的表面积S =4πR 2=4π×283=112π3,故选B. 二、填空题(每小题5分,共20分)9.已知一个高为1的三棱锥,各侧棱长都相等,底面是边长为2的等边三角形,则三棱锥的表面积为________,若三棱锥内有一个体积为V 的球,则V 的最大值为________.解析:该三棱锥侧面的斜高为 ⎝⎛⎭⎫13×32+12=233,则S 侧=3×12×2×233=23,S 底=12×3×2=3,所以三棱锥的表面积S 表=23+3=3 3.由题意知,当球与三棱锥的四个面都相切时,其体积最大.设三棱锥的内切球的半径为r ,则三棱锥的体积V 锥=13S 表·r =13S 底·1,所以33r =3,所以r =13,所以三棱锥内的球的体积最大为V max =43πr 3=4π81. 答案:33 4π8110.在如图所示的斜截圆柱中,已知圆柱底面的直径为40cm ,母线长最短50 cm ,最长80 cm ,则斜截圆柱的侧面面积S =________ cm 2. 解析:将题图所示的相同的两个几何体对接为圆柱,则圆柱的侧面展开图为矩形.由题意得所求侧面展开图的面积S =12×(50+80)×(π×40)=2 600π(cm 2). 答案:2 600π11.已知圆锥SO ,过SO 的中点P 作平行于圆锥底面的截面,以截面为上底面作圆柱PO ,圆柱的下底面落在圆锥的底面上(如图),则圆柱PO的体积与圆锥SO 的体积的比值为________.解析:设圆锥SO 的底面半径为r ,高为h ,则圆柱PO 的底面半径是r 2,高为h 2,∴V 圆锥SO =13πr 2h ,V 圆柱PO =π⎝⎛⎭⎫r 22·h 2=πr 2h 8,∴V 圆柱PO V 圆锥SO =38. 答案:3812.母线长为5的圆锥的侧面展开图的圆心角等于8π5,则该圆锥的底面圆的半径为________,体积为________.解析:设该圆锥的底面圆的半径为r ,高为h ,∵母线长为5的圆锥的侧面展开图的圆心角等于8π5,∴侧面展开图的弧长为5×8π5=8π.又弧长=底面周长,即8π=2πr ,∴r =4,∴圆锥的高h =52-42=3,∴圆锥的体积V =13×π×42×3=16π. 答案:4 16π三、综合题(3个小题,共40分)13.(12分)已知底面半径为 3 cm ,母线长为 6 cm 的圆柱,挖去一个以圆柱上底面圆心为顶点,下底面为底面的圆锥后,求所得几何体的表面积及体积.解:如图所示,所得几何体的表面积S =S 底+S 柱侧+S 锥侧=(3+62+33)π(cm 2).所得几何体的体积V =V 柱-V 锥=S 底·6-13S 底·6 =23S 底·6=26π(cm 3). 14. (14分)如图所示,用一个平行于圆锥SO 底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3 cm ,求圆台O ′O 的母线长.解:设圆台O ′O 的母线长为l ,由截得圆台上、下底面的面积之比为1∶16,可设截得圆台的上、下底面的半径分别为r,4r .过轴SO 作截面,如图所示.则△SO ′A ′∽△SOA ,SA ′=3 cm.故SA ′SA =O ′A ′OA, 则33+l =r 4r. 解得l =9,故圆台O ′O 的母线长为9 cm.15.(14分)如图,正方体ABCD -A ′B ′C ′D ′的棱长为a ,连接A ′C ′,A ′D ,A ′B ,BD ,BC ′,C ′D ,得到一个三棱锥.求:(1)三棱锥A ′-BC ′D 的表面积与正方体表面积的比值;(2)三棱锥A ′-BC ′D 的体积.解:(1)∵ABCD -A ′B ′C ′D ′是正方体,∴A ′B =A ′C ′=A ′D =BC ′=BD =C ′D =2a ,∴三棱锥A ′-BC ′D 的表面积为4×12×2a ×32×2a =23a 2.而正方体的表面积为6a 2,故三棱锥A ′-BC ′D 的表面积与正方体表面积的比值为23a 26a 2=33. (2)三棱锥A ′-ABD ,C ′-BCD ,D -A ′D ′C ′,B -A ′B ′C ′是完全一样的.故V三棱锥A ′-BC ′D =V 正方体-4V 三棱锥A ′-ABD =a 3-4×13×12a 2×a =a 33.。

高三数学空间几何体的表面积与体积试题

高三数学空间几何体的表面积与体积试题

高三数学空间几何体的表面积与体积试题1.已知某个几何体的三视图如下(主视图的弧线是半圆),根据图中标出的尺寸(单位:cm),可得这个几何体的体积是 .【答案】640+80π cm3【解析】由三视图可知,该几何体是一长方体与一半圆柱的组合体.长方体棱长分别为8,10,8,圆柱的底半径为4,高为10,故几何体体积为【考点】三视图,几何体的体积.2.若将一个圆锥的侧面沿一条母线剪开,其展开图是半径为2 cm的半圆,则该圆锥的体积为 .【答案】【解析】由题意得:,所以圆锥的体积为【考点】圆锥的体积及展开图3.三棱锥中,,分别为,的中点,记三棱锥的体积为,的体积为,则________.【答案】【解析】由已知设点到平面距离为,则点到平面距离为,所以,【考点】几何体的体积.4.已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8,高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6,高为4的等腰三角形.(1)求该几何体的体积V;(2)求该几何体的侧面积S.【答案】(1)64 (2)40+24【解析】解:本题考查由三视图求几何体的侧面积和体积,由正视图和侧视图的三角形结合俯视图可知该几何体是一个底面为矩形,高为4,顶点在底面的射影是矩形中心的四棱锥,如图.(1)V=×(8×6)×4=64.(2)四棱锥的两个侧面VAD、VBC是全等的等腰三角形,取BC的中点E,连接OE,VE,则△VOE为直角三角形,VE为△VBC边上的高,VE==4.同理侧面VAB、VCD也是全等的等腰三角形,AB边上的高h==5.∴S=2×(×6×4+×8×5)=40+24.侧5.(12分)(2011•陕西)如图,在△ABC中,∠ABC=45°,∠BAC=90°,AD是BC上的高,沿AD把是BC上的△ABD折起,使∠BDC=90°.(Ⅰ)证明:平面ADB⊥平面BDC;(Ⅱ)设BD=1,求三棱锥D﹣ABC的表面积.【答案】(Ⅰ)见解析(Ⅱ)【解析】(Ⅰ)翻折后,直线AD与直线DC、DB都垂直,可得直线与平面BDC垂直,再结合AD是平面ADB内的直线,可得平面ADB与平面垂直;(Ⅱ)根据图形特征可得△ADB、△DBC、△ADC是全等的等腰直角三角形,△ABC是等边三角形,利用三角形面积公式可得三棱锥D﹣ABC的表面积.解:(Ⅰ)∵折起前AD是BC边上的高,∴当△ABD折起后,AD⊥DC,AD⊥DB,又DB∩DC=D,∴AD⊥平面BDC,∵AD⊂平面ABD.∴平面ADB⊥平面BDC(Ⅱ)由(Ⅰ)知,DA⊥DB,DB⊥DC,DC⊥DA,∵DB=DA=DC=1,∴AB=BC=CA=,从而所以三棱锥D﹣ABC的表面积为:点评:解决平面图形翻折问题的关键是看准翻折后没有发生变化的位置关系,抓住翻折后仍然垂直的直线作为条件,从而解决问题.6.已知正方体外接球的体积是,那么正方体的棱长等于()A.B.C.D.【答案】D【解析】球的半径为,则,,设正方体的棱长为,于是,.【考点】正方体的外接球.7.正三棱锥内接于球,且底面边长为,侧棱长为2,则球的表面积为( )A.B.C.D.【答案】C【解析】如图,设三棱锥的外接球球心为O,半径为r,BC=CD=BD=,AB=AC=AD=2,,M为正的中心,则DM=1,AM=,OA=OD=r,所以,解得,所以,选C.8.已知圆锥母线长为6,底面圆半径长为4,点是母线的中点,是底面圆的直径,半径与母线所成的角的大小等于.(1)求圆锥的侧面积和体积.(2)求异面直线与所成的角;【答案】(1)(2)或.【解析】(1)根据圆锥的侧面积即体积公式,可直接求出结果. ,.(2)求异面直线所成角,关键在平移,即将空间角转化为平面角.利用中位线实现线线之间平移. 连,过作,则等于异面直线与所成的角或其补角.又,所以为异面直线OC与PB所成的角或其补角.明确角之后,只需在相应三角形中求解即可.试题解析:(1)圆锥的侧面积.,4分(2)连,过作交于点,连.又,.又.,等于异面直线与所成的角或其补角.,或. 9分当时,.,当时,.,综上异面直线与所成的角等于或. 12分【考点】圆锥的侧面积和体积, 异面直线所成角9.如图,三棱柱中,,,.(1)证明:;(2)若,,求三棱柱的体积.【答案】(1)证明见详解;(2)3.【解析】(1)由题目给出的边的关系,可想到去中点,连结,,可通过证明平面得要证的结论;(2)在三角形中,由勾股定理得到,再根据平面,得到为三棱柱的高,利用已知给出的边的长度,直接利用棱柱体积公式求体积.试题解析:(1)取AB的中点,连接、、,因为CA=CB,所以,由于,,故为等边三角形,所以,因为,所以平面.又,故.(2)由题设知都是边长为2的等边三角形,所以【考点】1、直线与平面垂直的判定与性质应用;2、棱柱的体积.10.正三棱锥的高和底面边长都等于6,则其外接球的表面积为()A.B.C.D.【答案】A【解析】作面于点,则球心在上,,连结,则,在中,,,又,且为等边三角形,故,则,则,所以球的表面积.【考点】1.正三棱锥;2.球的表面积.11.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是________寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)【答案】3【解析】本题考查圆台的体积公式.做出圆台的轴截面如图,由题意知,BF=14(单位寸,下同),OC=6,OF=18,OG=9,即G是OF中点,所以GE为梯形的中位线,所以GE==10,即积水的上底面半径为10.所以盆中积水的体积为(100π+36π+)=588π.盆口的面积为142π=196π,所以=3,即平地降雨量是3寸.12. 如图,在四边形ABCD 中,∠DAB =90°,∠ADC =135°,AB =5,CD =2,AD =2,求四边形ABCD 绕AD 旋转一周所成几何体的表面积及体积.【答案】(60+4)π,π【解析】由已知得CE =2,DE =2,CB =5,S 表面=S 圆台侧+S 圆台下底+S 圆锥侧=π(2+5)×5+π×25+π×2×2=(60+4)π,V =V 圆台-V 圆锥=(π·22+π·52+)×4-π×22×2=π.13. 已知一个正方体的所有顶点在一个球面上,若球的体积为,则正方体的棱长为 .【答案】【解析】由对称性知正方体对角线即其外接球直径, 设球半径为R,正方体棱长为a, 则πR 3=,R=,则=3,得a=.14. 如图,四棱柱ABCD A 1B 1C 1D 1的底面ABCD 是正方形,O 是底面中心,A 1O ⊥底面ABCD,AB=AA 1=.(1)证明:平面A 1BD ∥平面CD 1B 1; (2)求三棱柱ABD A 1B 1D 1的体积. 【答案】(1)见解析 (2)1【解析】(1)证明:由题设知,BB 1DD 1, ∴BB 1D 1D 是平行四边形, ∴BD ∥B 1D 1.又BD 平面CD 1B 1, ∴BD ∥平面CD 1B 1. ∵A 1D 1B 1C 1BC,∴A 1BCD 1是平行四边形, ∴A 1B ∥D 1C.又A 1B 平面CD 1B 1, ∴A 1B ∥平面CD 1B 1. 又∵BD∩A 1B=B,∴平面A 1BD ∥平面CD 1B 1. (2)解:∵A 1O ⊥平面ABCD,∴A 1O 是三棱柱ABD A 1B 1D 1的高. 又∵AO=AC=1,AA 1=,∴A 1O==1. 又∵S △ABD =××=1,∴=S △ABD ×A 1O=1.15.已知三棱锥P-ABC的各顶点均在一个半径为R的球面上,球心O在AB上,PO⊥平面ABC,,则三棱锥与球的体积之比为________.【答案】【解析】依题意,AB=2R,又,∠ACB=90°,因此AC=R,BC=R,三棱锥P-ABC的体积VP-ABC =PO·S△ABC=×R×=R3.而球的体积V球=R3,因此VP-ABC∶V球=R3∶R3=.16.已知一个正方体的所有顶点在一个球面上.若球的体积为,则正方体的棱长为________.【答案】【解析】设正方体的棱长为a,外接球的半径为R,由题意知πR3=,∴R3=,则R=. 由于3a2=4R2,∴a2=R2=×2=3,∴a=.17.在几何体ABCDE中,∠BAC=,DC⊥平面ABC,EB⊥平面ABC, AB=AC=BE=2,CD=1。

最新空间几何体的表面积与体积练习题.及答案

最新空间几何体的表面积与体积练习题.及答案

空间几何体的表面积与体积专题一、选择题1 •棱长为2的正四面体的表面积是(C ).A. 3 B . 4 C . 4 3 D . 16解析 每个面的面积为:2X 2X 2X — •••正四面体的表面积为:4,3. 2. 把球的表面积扩大到原来的2倍,那么体积扩大到原来的(B ). A. 2 倍B . 2 2倍C. 2倍D.32咅解析 由题意知球的半径扩大到原来的 2倍,则体积V =彳冗戌,知体积扩大到原来的2 2倍.3.如图是一个长方体截去一个角后所得多面体的三视图,则该多面体的体积为 142284 BP解析 根据三视图的知识及特点,可画出多面体 的形状,如图所示.这个多面体是由长方体截去 一个正三棱锥而得到的,所以所求多面体的体积 V = V 长方体一V 正三"4X 4X 6—卜!X 2X2 X 2842=亍4 .某几何体的三视图如下,则它的体积是A)A. 8 — 2n B . 8—n n C . 8 — 2n解析由三视图可知该几何体是一个边长为3 1径为1,咼为2的圆锥,所以v = 2 — 3X 2nX 2= 8 —三. 5.已知某几何体的三视图如图,其中正视图中半圆的半径为1,则该几何^3 /Tn体的体积为(A)A . 24 — 2冗 B . 24—§ C . 24— n D . 24—据三视图可得几何体为一长方体内挖去一个半圆柱,其中长方体的棱长分1别为:2,3,4,半圆柱的底面半径为1,母线长为3,故其体积V = 2X 3X 4—2XnX1 X 3= 24—6 .某品牌香水瓶的三视图如图(单位:cm ),则该几何体的表面积为( C ) B ).3C.280140 D.-T2n D 2的正方体内部挖去一个底面半正三角形,所以 V = ^S A ABD X 4=〔 3.二、填空题8. 三棱锥PABC 中, PAL 底面ABC PA = 3,底面ABC 是边长为2的正三角形,则三棱锥PABC 的体 积等于_^3 _______ •解析 依题意有,三棱锥PABC 的体积V = J S A ABC -| PA| = 3X^43X 22X 3=/3.9. 一个圆柱的轴截面是正方形,其侧面积与一个球的表面积相等,那么这个圆柱的体积与这个球 的体积之比为_ 3 : 2 _______ .解析 设圆柱的底面半径是r ,则该圆柱的母线长是2r ,圆柱的侧面积是2n r -2r = 4n r 2,设球的 半径是R,则球的表面积是4n 氏,根据已知4n 4n r 2,所以R = r.所以圆柱的体积是n r 2・2r =2n r 3,球的体积是3n r 3,所以圆柱的体积和球的体积的比是= 3 : 2. 3433n r10. 如图所示,已知一个多面体的平面展开图( 2J n \严-才Cm B. 7二 n \ 2J n 、 94 + — I cmD.7解析这个空间几何体上面是一个四棱柱、中间部分是一个圆柱、,.,. n下面是一个四棱柱.上面四棱柱的表面积为2X 3X 3+ 12X 1 ——n 1=30 ——;中间部分的表面积为 2 n X 2 X 1= n ,下面部分的表面积为2X 4X 4+ 16X 2— n = 64—手.故其表面积是94 +弓.4 4 27. 已知球的直径SC = 4, A , B 是该球球面上的两点,A 吐 3, / AS(=Z BS(= 30°,则棱锥S-ABC 的体积为( C).A. 3 3 B . 2 3 C.3 D . 1解析 由题可知AB —定在与直径SC 垂直的小圆面上,作过 AB 的小圆交直径SC 于D,设SD = x , 则DC = 4 — x ,此时所求棱锥即分割成两个棱锥 S-ABD 和 C-ABD 在厶SAD ffiA SBD 中,由已知条件 可得AD = BC=¥X ,又因为SC 为直径,所以/ SB(=Z SA(= 90°,所以/ DC =Z DCA= 60°,在3 △ BDC 中 , BD= \.?3(4 — x),所以 3 x = _ 3(4 — x),所以 x = 3, AD = BD = 3,所以三角形ABD 为A. C. 2 cm 2 cm圧视閉 値视图由一个边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是解析 由题知该多面体为正四棱锥,底面边长为 1,侧棱长为1,斜高为~^,连 接顶点和底面中心即为高,可求得高为才所以体积1x 仆子# 11.如图,半径为R 的球O 中有一内接圆柱.当圆柱的侧面积最大时, 球的表面积与该圆柱的侧面积之差是 ___ 2 n R ____ .解析 由球的半径为R,可知球的表面积为4n 氏.设内接圆柱底面半径为r ,高为 2h ,则h + r 2= R.而圆柱的侧面积为2 n r ・2h = 4n rh <4 n 2 — = 2n R(当且仅当r = h 时等号成立),即内接圆柱的侧面积最大值为2n R 2,此时球的表面积与内 接圆柱的侧面积之差为2n 巨12.如图,已知正三棱柱 ABCBC 的底面边长为2 cm,高为5 cm,则一质点自点 A 出发,沿着三棱柱的侧面绕行两周到达点 A 1的最短路线的长为 13 cm.解析 根据题意,利用分割法将原三棱柱分割为两个相同的三棱柱,然后将其展 开为如图所示的实线部分,贝冋知所求最短路线的长为 52 + 122二13(cm).三、解答题13.某高速公路收费站入口处的安全标识墩如图 1所示,墩的上 半部分是正四棱锥PEFGH 下半部分是长方体 ABCDEFG 图2、图 3分别是该标识墩的正视图和俯视图.(2)求该安全标识墩的体积. 解析⑴侧视图同正视图,如图所示:1 2 2 3V = V P EFG 卄 V KBCDEFG ^ 3 x 40 x 60+ 40 x 20= 64 000(cm ).314 . 一个几何体的三视图如图所示.已知正视图是底边长为 侧视(1)请画出该安全标识墩的侧视图; (2)该安全标识墩的体积为1的正方形拼成 S.俯觇图cnii1的平行四边形,图是一个长为.3,宽为1的矩形,俯视图为两个边长为的矩形.(1)求该几何体的体积V;⑵求该几何体的表面积解析(1)由三视图可知,该几何体是一个平行六面体(如图),其底面是边长为1的正方形,高为,3,所以V= 1 x 1 x 3= 3.⑵由三视图可知,该平行六面体中,A1DL平面ABCD CDL平面BCC1B,1所以AA1= 2,侧面ABB1A1 CDD1C均为矩形,S= 2X (1 x 1+ 1X 3+ 1X 2)= 6+ 2 3.15. 已知某几何体的俯视图是如右图所示的矩形,正视图(或称主视图)是一个底边长为&高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形.(1)求该几何体的体积V;(2)求该几何体的侧面积S.解析由题设可知,几何体是一个高为4的四棱锥,其底面是长、宽分别为8和6的矩形,正侧面及其相对侧面均为底边长为8,高为h1的等腰三角形,左、右侧面均为底边长为6,高为h2的等腰三角形,如右图所示.1 1(1)几何体的体积为:V= 3 • S矩形• h=-X 6X 8X 4= 64.3 3(2)正侧面及相对侧面底边上的高为:h1= ,42+ 32= 5.左、右侧面的底边上的高为:h2= . 42+ 42=1 、4 2.故几何体的侧面面积为:S= 2X ^X 8X5 + 2X 6X 4 2 = 40 + 24,2.1. 一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是()..2解:设展开图的正方形边长为a,圆柱的底面半径为r,则2n=a, ,底面圆的面积是—,2兀4兀2a +g2于是全面积与侧面积的比是三,a222. 在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去与8个顶点相关的8个三棱锥后,剩下的几何体的体积是()•2 .解:正方体的体积为1,过共顶点的三条棱中点的平面截该正方体截得的三棱锥的体积是1 (丄--)」1,于是8个三棱锥的体积是1,剩余部分的体积是-,3 2 2 2 2 48 6 63 .—个直棱柱(侧棱垂直于底面的棱柱)的底面是菱形,对角线长分别是6cm和8cm,高是5cm,则这个直棱柱的全面积是 _____________ 。

高三数学空间几何体的表面积与体积试题

高三数学空间几何体的表面积与体积试题

高三数学空间几何体的表面积与体积试题1.如图,多面体的直观图及三视图如图所示,分别为的中点.(1)求证:平面;(2)求多面体的体积.【答案】(1)证明:见解析;(2)多面体的体积.【解析】(1)由多面体的三视图知,三棱柱中,底面是等腰直角三角形,,平面,侧面都是边长为的正方形.连结,则是的中点,由三角形中位线定理得,得证.(2)利用平面,得到,再据⊥,得到⊥平面,从而可得:四边形是矩形,且侧面⊥平面. 取的中点得到,且平面.利用体积公式计算.所以多面体的体积. 12分试题解析:(1)证明:由多面体的三视图知,三棱柱中,底面是等腰直角三角形,,平面,侧面都是边长为的正方形.连结,则是的中点,在△中,,且平面,平面,∴∥平面. 6分(2)因为平面,平面,,又⊥,所以,⊥平面,∴四边形是矩形,且侧面⊥平面 8分取的中点,,且平面. 10分所以多面体的体积. 12分【考点】三视图,平行关系,垂直关系,几何体的体积.2.某圆锥体的侧面展开图是半圆,当侧面积是时,则该圆锥体的体积是 .【答案】【解析】设圆锥的母线长为,底面半径为,则,,,,所以圆锥的高为,体积为.【考点】圆锥的侧面展开图与体积.3.棱长为1的正方体及其内部一动点,集合,则集合构成的几何体表面积为 .【答案】【解析】 .【考点】几何体的表面积.4.在如图所示的多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,且AC=AD=CD=DE=2,AB=1.(1)请在线段CE上找到点F的位置,使得恰有直线BF∥平面ACD,并证明这一结论;(2)求多面体ABCDE的体积.【答案】(1)见解析(2)【解析】(1)如图所示,由已知AB⊥平面ACD,DE⊥平面ACD,∴AB∥ED,设F为线段CE的中点,H是线段CD的中点,连接BF、FH、AH,则FH=ED,又AB=ED,∴FH=AB,∴四边形ABFH是平行四边形,∴BF∥AH,又因为BF⊄平面ACD,AH⊂平面ACD,∴BF∥平面ACD.(2)取AD中点G,连接CG.因为AB⊥平面ACD,∴CG⊥AB,又CG⊥AD,∴CG⊥平面ABED,即CG为四棱锥C—ABED的高,求得CG=,∴V=··2·=.C—ABED5.某四棱台的三视图如图所示,则该四棱台的体积是( )A.4B.C.D.6【答案】B【解析】由三视图可知,该四棱台的上下底面边长分别为1和2的正方形,高为2,故=6.如图,在三棱锥中,是等边三角形,.(1)证明::;(2)证明:;(3)若,且平面平面,求三棱锥体积.【答案】(1)详见解析;(2)详见解析;(3).【解析】(1)先证明,从而得到;(2)取的中点,连接、,证明平面,利用直线与平面垂直的性质得到;(3)作,垂足为,连结,结合(2)中的结论证明平面,再求出的面积,最后利用分割法得到三棱锥的体积来进行计算.试题解析:(1)因为是等边三角形,,所以,可得;(2)如图,取中点,连结、,则,,所以平面,所以;(3)作,垂足为,连结,因为,所以,,由已知,平面平面,故,因为,所以、、都是等腰直角三角形.由已知,得,的面积,因为平面,所以三棱锥的体积.【考点】1.全等三角形;2.直线与平面垂直的判定;3.分割法求锥体体积7.如图甲,是边长为6的等边三角形,分别为靠近的三等分点,点为边边的中点,线段交线段于点.将沿翻折,使平面平面,连接,形成如图乙所示的几何体.(1)求证:平面(2)求四棱锥的体积.【答案】(1)证明过程详见试题解析;(2)四棱锥的体积为10.【解析】(1)先证明平面,又,所以平面;(2)先求出,再用体积公式求解即可.试题解析:(1)在图甲中,由为等边三角形,分别为三等分点,点为边边的中点,知, 则在图乙中仍有,且,所以平面,又,所以平面. 6分(2)∵平面平面,,∴平面,∴ 12分【考点】直线与平面垂直的判定定理、空间几何体的体积.8.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是________寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)【答案】3【解析】本题考查圆台的体积公式.做出圆台的轴截面如图,由题意知,BF=14(单位寸,下同),OC=6,OF=18,OG=9,即G是OF中点,所以GE为梯形的中位线,所以GE==10,即积水的上底面半径为10.所以盆中积水的体积为(100π+36π+)=588π.盆口的面积为142π=196π,所以=3,即平地降雨量是3寸.9.如图,在三棱柱A1B1C1-ABC中,D,E,F分别是AB,AC,AA1的中点,设三棱锥F-ADE的体积为V1,三棱柱A1B1C1-ABC的体积为V2,则V1∶V2=________.【答案】1∶24【解析】设三棱柱A1B1C1-ABC的高为h,底面三角形ABC的面积为S,则V1=×S·h=Sh=V2,即V1∶V2=1∶24.10.如图,在三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若AB=CB=2,A1C=,求三棱柱ABC-A1B1C1的体积;(3)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.【答案】(1)见解析(2)3(3)【解析】(1)如图,取AB的中点O,连接CO,A1O.∵CA=CB,∴CO⊥AB,又∵AA1=AB,得AA1=2AO,又∠A1AO=60°,∴∠AOA1=90°,即AB⊥A1O,∴AB⊥平面A1OC,又A1C⊂平面A1OC,∴AB⊥A1C.(2)∵AB=CB=2=AC,∴CO=,又A1A=AB=2,∠BAA1=60°,∴在等边三角形AA1B中,A1O=,∵A1C2=A1O2+CO2=6,∴∠COA1=90°,即A1O⊥CO,∴A1O⊥平面ABC,∴VABC-A1B1C1=×22×=3.(3)作辅助线同(1)以O为原点,OA所在直线为x轴,OA1所在直线为y轴,OC所在直线为z轴,建立如图直角坐标系,则A(1,0,0),A1(0,,0),B(-1,0,0),C(0,0,),B1(-2,,0),则=(1,0,),=(-1,,0),=(0,-,),设n=(x,y,z)为平面BB1C1C的法向量,则即所以n=(,1,-1),则cos<n,==-,所以A1C与平面BB1C1C所成角的正弦值为.11.已知四棱锥P-ABCD的底面ABCD是边长为2的正方形,PD⊥底面ABCD,E,F分别为棱BC,AD的中点.(1)求证:DE∥平面PFB;(2)已知二面角P-BF-C的余弦值为,求四棱锥P-ABCD的体积.【答案】(1)见解析(2)【解析】(1)因为E,F分别为正方形ABCD的两边BC,AD的中点,所以BE綉FD,即BEDF 为平行四边形,∴ED∥FB,∵FB⊂平面PFB,且ED⊄平面PFB,∴DE∥平面PFB.(2)以D为原点,直线DA,DC,DP分别为x,y,z轴建立空间直角坐标系.如图,设PD=a,可得如下点的坐标P(0,0,a),F(1,0,0),B(2,2,0).则有=(1,0,-a),=(1,2,0).因为PD⊥底面ABCD,所以平面ABCD的一个法向量为m=(0,0,1).设平面PFB的法向量为n=(x,y,z),则可得即.,令x=1, 得z=,y=-,所以n=.由已知二面角P-BF-C的余弦值为,所以得cos〈m,n〉==,∴a=2,∴V=×2×2×2=P-ABCD12.在三棱锥中,,则三棱锥的体积为_____________.【答案】160【解析】将三棱锥补为长方体,如图所示.由题设可得:.【考点】几何体的体积.13.如图,四棱锥中,底面是菱形,,,是的中点,点在侧棱上.(1)求证:⊥平面;(2)若是的中点,求证://平面;(3)若,试求的值.【答案】(1)详见解析(2)详见解析(3)【解析】(1)由线面垂直判定定理,要证线面垂直,需证垂直平面内两条相交直线,由,是的中点,易得垂直于,再由底面是菱形,得三角形为正三角形,所以垂直于,(2)由线面平行判定定理,要证线面平行,需证平行于平面内一条直线,根据是的中点,联想到取AC中点O所以OQ为△PAC中位线.所以OQ // PA注意在写定理条件时,不能省,要全面.例如,线面垂直判定定理中有五个条件,线线垂直两个,相交一个,线在面内两个;线面平行判定定理中有三个条件,平行一个,线在面内一个,线在面外一个,(3)研究体积问题关键在于确定高,由于两个底面共面,所以求的值就转化为求对应高的长度比.试题解析:证明:(1)因为E是AD的中点,PA=PD,所以AD⊥PE.因为底面ABCD是菱形,∠BAD=,所以AB=BD,又因为E是AD的中点,所以 AD⊥BE.因为PE∩BE=E,所以AD⊥平面PBE. 4分(2)连接AC交BD于点O,连结OQ.因为O是AC中点,Q是PC的中点,所以OQ为△PAC中位线.所以OQ//PA. 7分因为PA平面BDQ,OQ平面BDQ.所以PA//平面BDQ. 9分(3)设四棱锥P-BCDE,Q-ABCD的高分别为,,所以VP-BCDE =SBCDE,VQ-ABCD=SABCD. 10分因为VP-BCDE =2VQ-ABCD,且底面积SBCDE=SABCD. 12分所以,因为,所以. 14分【考点】线面垂直判定定理, 线面平行判定定理,锥的体积.14.在四棱锥中,底面是边长为的菱形,,侧棱底面,,为的中点,则四面体的体积为 .【答案】【解析】显然面,底面的面积为所以【考点】三棱锥体积.15.某一容器的三视图如图所示,则该几何体的体积为__________.【答案】【解析】由三视图可知该几何体是一具正方体挖去一个和正方体等高的圆锥后的组合体,并且圆锥的底面是正方体的上底面的内切圆,如图..所以填:【考点】1、几何体的体积;2、三视图.16.已知四棱锥中,侧棱底面,且底面是边长为2的正方形,,与相交于点.(I)证明:;(II)求三棱锥的体积.【答案】(I)详见试题解析;(II).【解析】(I)要证与垂直,只要证明平面.平面,又,且与交于点,平面或者证明三角形为等腰三角形,可以通过证明直角三角形和直角三角形全等证得;(II)可以直接利用棱锥体积计算公式:直接求三棱锥的体积,也可利用等体积法转化为求,这样底面积易求,而三棱锥高即为,可以利用线面垂直的证法证得.试题解析:(I)证明:平面,又,且与交于点,平面平面 6分(II)解:底面平面13分【考点】1.立体几何线面垂直的证明;2.锥体的体积公式.17.已知正四棱锥的底边和侧棱长均为,则该正四棱锥的外接球的表面积为 .【答案】【解析】由于正四棱锥的底边和侧棱长均为,则此四棱锥底面正方形的外接圆即是外接球的一轴截面,故外接球半径长是3,则该正四棱锥的外接球的表面积为.【考点】1.球的表面积;2.正四棱锥的性质.18.三棱锥的四个顶点都在半径为4的球面上,且三条侧棱两两互相垂直,则该三棱锥侧面积的最大值为 .【答案】32【解析】设三条侧棱长为a,b,c,则,三棱锥的侧面积为,又因为,所以,当且仅当时侧面积达到最大值.【考点】三棱锥,球,不等式.19.一个几何体的三视图如图,该几何体的表面积是( )A.372B.360C.292D.280【答案】B【解析】该几何体由两个长方体组合而成,其表面积等于下面长方体的全面积加上面长方体的4个侧面积之和S=2(10×8+10×2+8×2)+2(6×8+8×2)=360.故选B.【考点】由三视图求面积体积点评:把三视图转化为直观图是解决问题的关键,考查计算能力,逻辑思维能力,是基础题.20.如图,在等腰梯形ABCD中,AB=2DC=2,∠DAB=60°,E为AB的中点.将△ADE与△BEC分别沿ED、EC向上折起,使A、B重合于点P,则三棱锥P-DCE的外接球的体积为( )A. B. C. D.【答案】C【解析】易证所得三棱锥为正四面体,它的棱长为1,故外接球半径为,外接球的体积为,故选C.故选C.【考点】球内接多面体;球的体积和表面积.点评:本题考查球的内接多面体,球的体积等知识,考查逻辑思维能力,是中档题.21.一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的高为,底面周长为3,那么这个球的体积为。

高考数学空间几何体体积与表面积选择题

高考数学空间几何体体积与表面积选择题

高考数学空间几何体体积与表面积选择题1. 设长方体的长、宽、高分别为a、b、c,那么长方体的体积V 和表面积S分别是:A. V = a * b * c, S = 2(ab + ac + bc)B. V = a * b * c, S = 2ab + 2ac + 2bcC. V = a * b * c, S = ab + ac + bcD. V = ab * c, S = 2(ab + ac + bc)2. 计算球体的体积V和表面积S,已知球的半径为r,那么:A. V = 4/3πr^3, S = 4πr^2B. V = πr^3, S = 4πr^2C. V = πr^3, S = 2πr^2D. V = 4/3πr^3, S = 2πr^23. 计算圆柱体的体积V和表面积S,已知圆柱的高为h,底面半径为r,那么:A. V = πr^2h, S = 2πrh + 2πr^2B. V = πr^2h, S = 2πr^2 + 2πrhC. V = πr^2h, S = 2πrh + 2πr^2D. V = πr^2h, S = 2πr^2 + 2πrh4. 计算圆锥体的体积V和表面积S,已知圆锥的高为h,底面半径为r,那么:A. V = 1/3πr^2h, S = πr^2 + πrhB. V = 1/3πr^2h, S = πr^2 + πrhC. V = 1/3πr^2h, S = πr^2 + πrhD. V = 1/3πr^2h, S = πr^2 + πrh5. 计算棱柱的体积V和表面积S,已知棱柱的高为h,底面积为A,那么:A. V = Ah, S = 2A + 2PhB. V = Ah, S = 2A + 2PhC. V = Ah, S = 2A + 2PhD. V = Ah, S = 2A + 2Ph6. 计算圆台的体积V和表面积S,已知圆台的高为h,上底半径为r1,下底半径为r2,那么:A. V = π(r1^2 - r2^2)h, S = πr1^2 + πr2^2 + π(r1^2 - r2^2)hB. V = π(r1^2 - r2^2)h, S = πr1^2 +πr2^2 + π(r1^2 - r2^2)hC. V = π(r1^2 - r2^2)h, S = πr1^2 + πr2^2 + π(r1^2 - r2^2)hD. V = π(r1^2 - r2^2)h, S = πr1^2 + πr2^2 + π(r1^2 - r2^2)h7. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^28. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^29. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^210. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^211. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^212. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^213. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^214. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^215. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^216. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^217. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^218. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^219. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^220. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^221. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^222. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^223. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^224. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^225. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^226. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^227. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^228. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2D. V = a^3, S = 6a^229. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^230. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^231. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^232. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^233. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^234. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^235. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^236. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^237. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^238. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^239. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^240. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^241. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^242. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^243. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^244. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^245. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^246. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^247. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^248. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^249. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^250. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2D. V = a^3, S = 6a^2。

高一数学空间几何体的表面积与体积试题

高一数学空间几何体的表面积与体积试题

高一数学空间几何体的表面积与体积试题1.设甲、乙两个圆柱的底面积分别为,体积分别为,若它们的侧面积相等,且,则的值是.【答案】【解析】设甲、乙两个圆柱的底面半径为,母线长,由于侧面积相等,,,,.【考点】圆柱的体积公式应用.2.如图所示,在四棱锥中,平面,,,是的中点,是上的点且,为△中边上的高.(1)证明:平面;(2)若,,,求三棱锥的体积;(3)证明:平面.【答案】(1)见解析;(2)体积(3)见解析【解析】试题分析:(1)利用线面垂直的判断定理证明线面垂直,条件齐全.(2)利用棱锥的体积公式求体积.(3)证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中的一条垂直于这个平面,则另一条也垂直于这个平面.解题时,注意线线、线面与面面关系的相互转化.(4)在求三棱柱体积时,选择适当的底作为底面,这样体积容易计算.试题解析:(1)证明:因为平面,所以。

因为为△中边上的高,所以。

因为,所以平面。

4分(2)连结,取中点,连结。

因为是的中点,所以。

因为平面,所以平面。

则,。

8分(3)证明:取中点,连结,。

因为是的中点,所以。

因为,所以,所以四边形是平行四边形,所以。

因为,所以。

因为平面,所以。

因为,所以平面,所以平面。

13分【考点】(1)空间中线面垂直和平行的判定(2)几何体的体积.3.如果两个球的体积之比为8:27,那么两个球的表面积之比为()A.8:27B.2:3C.4:9D.2:9【答案】C【解析】由题意,故选C【考点】球的体积和表面积4.已知正方体的棱长为1,则该正方体外接球的体积为()A.B.C.D.【答案】A【解析】因为正方体的对角线长就是外接球的直径,而正方体的对角线长为,所以球的半径为,所以正方体的外接球的体积为,故选A.【考点】1、球与正方体的组合体;2、球的体积.5.棱长为1的正方体的8个顶点都在球的表面上,分别是棱的中点,点,分别是线段,(不包括端点)上的动点,且线段平行于平面,则(1)直线被球截得的线段长为(2)四面体的体积的最大值是【答案】(1);(2).【解析】(1)因为点在圆上,为中点,所以直线被球截得的线段长为正方形的外接圆直径,等于,(2)过做与点,连接∵,,平面∥平面,为平面与两平行平面的交线,,又,,平面,设正方体的棱长为1,,则,当时,最大值为.【考点】组合体6.已知直三棱柱中,,是中点,是中点.(1)求三棱柱的体积;(2)求证:;(3)求证:∥面.【答案】(1);(2)证明详见解析;(3)证明详见解析.【解析】(1)这是一个直三棱柱,直接由体积计算公式即可求解;(2)要证,只须证明面,注意到面与底面垂直且交线为,而依题意又有,由面面垂直的性质可得面,问题得证;(3)要证∥面,有两种思路:一是在平面内找一条直线与平行,这时只须取的中点,连接,证明四边形为平行四边形即可;二是先证经过直线的一个平面与面平行,这时可取中点,连结,,先证明面∥面,再由面面平行的性质即可证明∥面.试题解析:(1) 3分(2)∵,∴为等腰三角形∵为中点,∴ -4分∵为直棱柱,∴面面 5分∵面面,面∴面 6分∴ 7分(3)取中点,连结, 8分∵分别为的中点∴∥,∥, 9分∴面∥面 11分面∴∥面 12分.【考点】1.空间几何体的体积计算;2.空间中的平行关系;3.空间中的垂直关系.7.已知一个正三棱锥的三条侧棱两两垂直且相等,底面边长为,则该三棱锥的外接球的表面积是()A.B.C.D.【答案】A【解析】设该正三棱锥为,依题意两两垂直且,所以,且该正三棱锥的外接球与以为邻边的正方体的外接球是相同的,正方体的边长为,体对角线长为,故球的半径为,所以球的表面积为,故选A.【考点】1.三棱锥的外接球;2.球的表面积公式.8.已知正方体的外接球的体积是,则这个正方体的棱长是()A.B.C.D.【答案】D【解析】先求球的半径,直径就是正方体的对角线,然后求出正方体的棱长.正方体外接球的体积是,则外接球的半径正方体的对角线的长为2,棱长等于,故选D.【考点】球内接多面体;球的体积和表面积.9.正方体的体积是64,则其表面积是()A.64B.16C.96D.无法确定【答案】C【解析】由正方体的体积是64,能求出正方体的边长为4,由此能求出正方体的表面积.解:∵正方体的体积是64,∴正方体的边长为4,∴它的表面积S=6×42=96.故选C【考点】正方体的体积和表面积点评:本题考查正方体的体积和表面积的求法,是基础题,解题时要认真审题,注意等价转化思想的合理运用.10.一个空间几何体的三视图如图所示,则该几何体的表面积为()A.48B.32+8C.48+8D.80【答案】C【解析】观察三视图可知,这是一个四棱柱,底面梯形两底分别为2,4,高为4,几何体的高为4,底面梯形的腰长为,所以,几何体表面积为,48+8,故选C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间几何体的表面积与体积训练题一、题点全面练1.(2019·沈阳质检)某四棱锥的三视图如图所示,则该四棱锥的侧面积是( )A .4+4 2B .42+2C .8+4 2D.83解析:选A 由三视图可知该几何体是一个四棱锥,记为四棱锥P ­ABCD ,如图所示,其中PA ⊥底面ABCD ,四边形ABCD 是正方形,且PA =2,AB =2,PB =22,所以该四棱锥的侧面积S 是四个直角三角形的面积和,即S =2×⎝ ⎛⎭⎪⎫12×2×2+12×2×22=4+4 2.2.(2019·开封模拟)某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为( )A .4π B.2π C.4π3D .π解析:选B 由题意知该几何体的直观图如图所示,该几何体为圆柱的一部分,设底面扇形的圆心角为α,由tan α=31=3,得α=π3,故底面面积为12×π3×22=2π3,则该几何体的体积为2π3×3=2π. 3.一个几何体的三视图如图所示(其中正视图的弧线为四分之一圆周),则该几何体的表面积为( )A .72+6πB .72+4πC .48+6πD .48+4π解析:选A 由三视图知,该几何体由一个正方体的34部分与一个圆柱的14部分组合而成(如图所示),其表面积为16×2+(16-4+π)×2+4×(2+2+π)=72+6π.4.一个几何体的三视图如图所示,则这个几何体的体积为( )A .64-16π3B.64-32π3C .64-16πD .64-64π3解析:选A 由三视图可知,该几何体是一个正方体中间挖去两个顶点相接的圆锥,其中,两个圆锥的体积和是V 锥=13Sh =13×π×22×4=16π3,∴V =V 正方体-V 锥=43-16π3=64-16π3.5.(2018·广州调研)如图,网格纸上正方形小格的边长为1,图中粗线画出的是某三棱锥的三视图,则该三棱锥的外接球的表面积为( )A.112π B.6π C .11πD .12π解析:选C 根据三视图知,可将该三棱锥放在长方体中,如图中三棱锥S ­ABC 所示,取线段AC 的中点O 1,过O 1作直线垂直于平面ABC交长方体的上底面于点P ,因为△ABC 是直角三角形,所以外接球的球心O 必在直线PO 1上,连接SO ,SP ,OC ,设OO 1=x ,球的半径为R ,易得SP =102,所以⎩⎪⎨⎪⎧R 2=x 2+12,R 2=-x2+52,解得R 2=114,所以该三棱锥外接球的表面积S =4πR 2=11π,故选C.6.如图,已知正方体ABCD ­A 1B 1C 1D 1的棱长为1,P 为BC 的中点,过点A ,P ,C 1的平面截正方体所得的截面为M ,则截面M 的面积为________.解析:如图,取A 1D 1,AD 的中点分别为F ,G .连接AF ,AP ,PC 1,C 1F ,PG ,D 1G ,AC 1,PF .∵F 为A 1D 1的中点,P 为BC 的中点,G 为AD 的中点,∴AF =FC 1=AP =PC 1=52,PG 綊CD ,AF 綊D 1G .由题意易知CD 綊C 1D 1,∴PG 綊C 1D 1,∴四边形C 1D 1GP 为平行四边形,∴PC 1綊D 1G ,∴PC 1綊AF ,∴A ,P ,C 1,F 四点共面,∴四边形APC 1F 为菱形.∵AC 1=3,PF =2,过点A ,P ,C 1的平面截正方体所得的截面M 为菱形APC 1F ,∴截面M 的面积S =12AC 1·PF=12×3×2=62. 答案:627.(2019·合肥质量检测)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为________.解析:由三视图可知,该几何体由一个半圆柱与两个半球构成,故其表面积为4π×12+12×2×π×1×3+2×12×π×12+3×2=8π+6. 答案:8π+68.已知三棱锥S ­ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S ­ABC 的体积为9,则球O 的表面积为________.解析:如图,取SC 的中点O ,连接OA ,OB .∵SA =AC ,SB =BC ,∴OA⊥SC ,OB ⊥SC ,∵平面SAC ⊥平面SBC ,∴OA ⊥平面SBC .设OA =r ,则V S ­ABC =V A ­SBC =13S △SBC ×OA =13×12×2r ×r ×r =13r 3=9.∴r =3.∴球O 的表面积为4πr 2=36π.答案:36π9.已知球的半径为R ,在球内作一个内接圆柱,这个圆柱的底面半径与高为何值时,它的侧面积最大?侧面积的最大值是多少?解:如图为其轴截面,令圆柱的高为h ,底面半径为r ,侧面积为S , 则⎝ ⎛⎭⎪⎫h 2 2+r 2=R 2,即h =2R 2-r 2. 因为S =2πrh =4πr ·R 2-r 2= 4πr2R 2-r2≤4πr 2+R 2-r 224=2πR 2,当且仅当r 2=R 2-r 2,即r =22R 时,取等号, 所以当内接圆柱底面半径为22R ,高为2R 时,其侧面积的值最大,最大值为2πR 2. 10.如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD . (1)求证:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC ,三棱锥E ­ACD 的体积为63,求该三棱锥的侧面积.解:(1)证明:因为四边形ABCD 为菱形,所以AC ⊥BD . 因为BE ⊥平面ABCD ,AC ⊂平面ABCD , 所以BE ⊥AC .因为BD ∩BE =B ,BD ⊂平面BED ,BE ⊂平面BED , 所以AC ⊥平面BED .又AC ⊂平面AEC ,所以平面AEC ⊥平面BED . (2)设AB =x ,在菱形ABCD 中,由∠ABC =120°, 可得AG =GC =32x ,GB =GD =x 2. 因为AE ⊥EC ,所以在Rt △AEC 中,可得EG =32x . 由BE ⊥平面ABCD ,知△EBG 为直角三角形,可得BE =22x . 由已知得,三棱锥E ­ACD 的体积V 三棱锥E ­ACD =13·12AC ·GD ·BE =624x 3=63, 故x =2.从而可得AE =EC =ED = 6.所以△EAC 的面积为3,△EAD 的面积与△ECD 的面积均为 5. 故三棱锥E ­ACD 的侧面积为3+2 5.二、专项培优练(一)易错专练——不丢怨枉分1.(2018·衡水二模)如图是某个几何体的三视图,则这个几何体的表面积是( )A .π+42+4 B.2π+42+4 C .2π+42+2D .2π+22+4解析:选B 由三视图可知,该几何体是由一个半圆柱与一个三棱柱组成的几何体,其直观图如图所示,其表面积S =2×12π×12+2×12×2×1+12π×2×1+(2+2+2)×2-2×1=2π+42+4.2.(2019·石家庄质检)如图是某四棱锥的三视图,其中正视图是边长为2的正方形,侧视图是底边分别为2和1的直角梯形,则该几何体的体积为( )A.83B.43C.823D.423解析:选A 记由三视图还原后的几何体为四棱锥A ­BCDE ,如图,将其放入棱长为2的正方体中,其中点D ,E 分别为所在棱的中点,分析知平面ABE ⊥平面BCDE ,点A 到直线BE 的距离即棱锥的高,设为h ,在△ABE 中,易知AE =BE =5,cos ∠ABE =55,则sin ∠ABE =255,所以h =455,故四棱锥的体积V =13×2×5×455=83.3.三棱柱ABC ­A 1B 1C 1的底面是边长为3的正三角形,侧棱AA 1⊥底面ABC ,若球O 与三棱柱ABC ­A 1B 1C 1各侧面、底面均相切,则侧棱AA 1的长为( )A.12B.32C .1D. 3解析:选C 因为球O 与直三棱柱的侧面、底面均相切,所以侧棱AA 1的长等于球的直径.设球的半径为R ,则球心在底面上的射影是底面正三角形ABC 的中心,如图所示.因为AC =3,所以AD =12AC=32.因为tan π6=MD AD ,所以球的半径R =MD =AD tan π6=32×33=12,所以AA 1=2R =2×12=1. 4.(2018·洛阳联考)已知球O 与棱长为4的正四面体的各棱相切,则球O 的体积为( )A.823π B.833π C.863π D.1623π 解析:选A 将正四面体补成正方体,则正四面体的棱为正方体面上的对角线,因为正四面体的棱长为4,所以正方体的棱长为2 2.因为球O 与正四面体的各棱都相切,所以球O 为正方体的内切球,即球O 的直径为正方体的棱长22,则球O 的体积V =43πR 3=823π.(二)技法专练——活用快得分5.[构造法]某几何体的三视图如图所示(粗实线部分),正方形网格的边长为1,该几何体的顶点都在球O 的球面上,则球O 的表面积为( )A .15π B.16π C .17πD .18π解析:选C 由题中的三视图可知,该几何体为如图所示的三棱锥D 1­BCD ,将其放在长方体ABCD ­A 1B 1C 1D 1中,则该几何体的外接球即长方体的外接球,长方体的长、宽、高分别为2,2,3,长方体的体对角线长为4+4+9=17,球O 的直径为17,所以球O 的表面积S =17π.6.[补形法]一个几何体的三视图如图所示,则该几何体的体积为( )A.32B.136 C .2D.116解析:选D 由三视图可知,该几何体是一个底面为等腰直角三角形,高为2的直三棱柱,截去一个小三棱锥的组合体,直观图如图所示.直三棱柱的体积为12×2×1×2=2,而截去的三棱锥的体积为13×12×1×1×1=16,故所求几何体的体积为2-16=116.7.[等体积法]在长方体ABCD ­A 1B 1C 1D 1中,AD =1,AB =2,AA 1=2,点M 在平面ACB 1内运动,则线段BM 的最小值为( )A.62B. 6C.63D .3解析:选C 线段BM 的最小值即点B 到平面ACB 1的距离h .在△ACB 1中,AC =B 1C =5,AB 1=22,所以AB 1边上的高为5-2=3,所以S △ACB 1=12×22×3= 6.又三棱锥B ­ACB 1的体积VB ­ACB 1=VA ­BB 1C =13×12×2×1×2=23,所以VB ­ACB 1=13×6h =23,所以h =63. 8.[分割法]某几何体的三视图如图所示,则该几何体的体积为________.解析:如图,由三视图可知,该几何体是由棱长为3的正方体削去左上角一个底面是直角边长为3和1的直角三角形,侧棱长为3且垂直于底面的三棱锥,削去右上角的一底面为直角边长为2和3的直角三角形,侧棱长为3的直棱柱之后得到的,剩余几何体的体积为V =27-⎝ ⎛⎭⎪⎫13×12×3×1×3+3×12×2×3=332. 答案:332(三)交汇专练——融会巧迁移9.[与数学文化交汇]刍甍(ch ú m én ɡ),中国古代算术中的一种几何形体,《九章算术》中记载:“刍甍者,下有袤有广,而上有袤无广.刍,草也.甍,屋盖也.”翻译为“底面有长有宽为矩形,顶部只有长没有宽为一条棱,刍甍的字面意思为茅草屋顶.”如图为一刍甍的三视图,其中正视图为等腰梯形,侧视图为等腰三角形,则搭建它(无底面且不考虑厚度)需要的茅草面积为( )A .24 B.32 5 C .64D .32 6解析:选B 由三视图易知,此几何体的表面由两个等腰三角形和两个等腰梯形组成(不考虑底面),则搭建此几何体需要的茅草面积为S =2×12×4×22+42+2×12×(4+8)×22+42=32 5.10.[与数学文化交汇]古代数学名著《张丘建算经》中有如下问题:“今有仓,东西袤一丈二尺,南北广七尺,南壁高九尺,北壁高八尺,问受粟几何?”题目的意思是:有一粮仓的三视图如图所示(单位:尺),问能储存多少粟米.已知1斛米的体积约为1.62立方尺,估算粮仓可以储存的粟米约有(取整数)( )A .410斛 B.420斛 C .430斛D .441斛解析:选 D 粮仓的形状为一个如图所示的直四棱柱,其体积为V =9+82×7×12=714(立方尺),又7141.62≈441,所以可以储存粟米约441斛.11.[与线面角交汇](2018·全国卷Ⅱ)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若△SAB 的面积为515,则该圆锥的侧面积为________.解析:如图,∵SA 与底面成45°角, ∴△SAO 为等腰直角三角形.设OA =r ,则SO =r ,SA =SB =2r .在△SAB 中,cos ∠ASB =78,∴sin ∠ASB =158, ∴S △SAB =12SA ·SB ·sin ∠ASB=12×(2r )2×158=515, 解得r =210,∴SA =2r =45,即母线长l =45, ∴S 圆锥侧=πrl =π×210×45=402π. 答案:402π。

相关文档
最新文档