一元二次方程单元要点总结
初中数学九年级上册《一元二次方程》知识点

九上数学第21章《一元二次方程》知识点1.一元二次方程的定义及一般形式:(1)等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数式2(二次)的方程,叫做一元二次方程。
(2)一元二次方程的一般形式:20(0)ax bx c a ++=≠。
其中a 为二次项系数,b 为一次项系数,c 为常数项。
注意:三个要点,①只含有一个未知数;②所含未知数的最高次数是2;③是整式方程。
2.一元二次方程的解法(1)直接开平方法:形如2()(0)x a b b +=≥的方程可以用直接开平方法解,两边直接开平方得x a +=或者x a +=,∴x a =-。
注意:若b<0,方程无解(2)因式分解法:一般步骤如下:①将方程右边得各项移到方程左边,使方程右边为0;②将方程左边分解为两个一次因式相乘的形式;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,他们的解就是原方程的解。
(3)配方法:用配方法解一元二次方程20(0)ax bx c a ++=≠的一般步骤:①二次项系数化为1:方程两边都除以二次项系数;②移项:使方程左边为二次项与一次项,右边为常数项;③配方:方程两边都加上一次项系数一般的平方,把方程化为2()(0)x m n n +=≥的形式;④用直接开平方法解变形后的方程。
注意:当0n <时,方程无解(4)公式法:一元二次方程20(0)ax bx c a ++=≠根的判别式:24b ac∆=-0∆>⇔方程有两个不相等的实根:2b x a-±=(240b ac -≥)0∆=⇔方程有两个相等的实根0∆<⇔方程无实根3.韦达定理(根与系数关系)我们将一元二次方程化成一般式ax 2+bx+c =0之后,设它的两个根是1x 和2x ,则1x 和2x 与方程的系数a ,b ,c 之间有如下关系:1x +2x =b a -;1x ∙2x =c a4.一元二次方程的应用列一元二次方程解应用题,其步骤和二元一次方程组解应用题类似①“审”,弄清楚已知量,未知量以及他们之间的等量关系;②“设”指设元,即设未知数,可分为直接设元和间接设元;③“列”指列方程,找出题目中的等量关系,再根据这个关系列出含有未知数的等式,即方程。
初中数学一元二次方程知识点总结(含习题)

初中数学一元二次方程知识点总结(含习题)一元二次方程知识点的总结知识结构梳理:1、概念1) 一元二次方程含有一个未知数。
2) 未知数的最高次数是2.3) 是方程。
4) 一元二次方程的一般形式是ax²+bx+c=0.2、解法1) 因式分解法,适用于能化为(x+m)(x+n)=0的一元二次方程。
2) 公式法,即把方程变形为ax²+bx+c=0的形式,一元二次方程的解为x=[-b±√(b²-4ac)]/(2a)。
3) 完全平方式,其中求根公式是(x±a)²=b,当时,方程有两个不相等的实数根。
4) 配方法,其中求根公式是(x±a)(x±b)=0,当时,方程有两个实数根。
5) 二次函数图像法,当时,方程有没有实数根。
3、应用1) 一元二次方程可用于解某些求值题。
2) 一元二次方程可用于解决实际问题的步骤包括:列方程、化简方程、解方程、检验答案。
知识点归类:考点一:一元二次方程的定义如果一个方程通过移项可以使右边为0,而左边只含有一个未知数的二次多项式,那么这样的方程叫做一元二次方程。
一元二次方程必须同时满足以下三点:①方程是整式方程。
②它只含有一个未知数。
③未知数的最高次数是2.考点二:一元二次方程的一般形式一元二次方程的一般形式为ax²+bx+c=0,其中a、b、c分别叫做二次项系数、一次项系数、常数项。
要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式。
考点三:解一元二次方程的方法一元二次方程的解也叫一元二次方程的根。
解一元二次方程的方法包括因式分解法、公式法、完全平方式、配方法和二次函数图像法。
解一元二次方程有四种常用方法:直接开平方法、配方法、因式分解法和公式法。
选择哪种方法要根据具体情况而定。
直接开平方法是解形如x²=a的方程的方法,解为x=±√a。
配方法是将方程的左边加上一次项系数一半的平方,再减去这个数,使得含未知数的项在一个完全平方式里,然后用因式分解法或直接开平方法解方程。
完整版)一元二次方程(知识点考点题型总结)

完整版)一元二次方程(知识点考点题型总结)一元二次方程专题复考点一、概念一元二次方程是只含有一个未知数,且未知数的最高次数是2的整式方程。
一般表达式为ax^2+bx+c=0,其中a不等于0.关于“未知数的最高次数是2”,需要注意以下三点:一是该项系数不为0;二是未知数指数为2;三是若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。
典型例题:例1、下列方程中是关于x的一元二次方程的是():A。
2x^2+11x-2=0B。
ax^2+bx+c=DC。
2x=x+1变式:当k时,关于x的方程kx+2x=x+3是一元二次方程。
例2、方程m+2xm+1=0是关于x的一元一次方程,求m 的值,并写出关于x的一元一次方程。
针对练:1.方程8x^2+3mx+1=0是关于x的一元二次方程,则m的值为多少?2.若方程m-2x=0是关于x的一元一次方程,求m的值,并写出关于x的一元一次方程。
3.若方程(m-1)x+m·x=1是关于x的一元二次方程,则m 的取值范围是多少?4.若方程nx+x-2x=0是一元二次方程,则下列不可能的是():A。
m=n=2B。
m=2.n=1C。
n=2.m=1D。
m=n=1考点二、方程的解方程的解是指使方程两边相等的未知数的值。
根的概念可用于求代数式的值。
典型例题:例1、已知2y+y^2-3的值为2,则4y+2y^2+1的值为多少?例2、关于x的一元二次方程(a-2)x^2+x+a-4=0的一个根为2,求a的值。
例3、已知关于x的一元二次方程ax^2+bx+c=0的系数满足a+c=b,则此方程必有一根为多少?例4、已知a,b是方程x^2-4x+m=0的两个根,b,c是方程y^2-8y+5m=0的两个根,则m的值为多少?针对练:1.已知方程x+kx-10=0的一根是2,则k为多少?另一根是多少?2.已知关于x的方程x^2+kx-2=0的一个解与方程(x+1)/(x-1)=3的解相同,求k的值,并求方程的另一个解。
一元二次方程单元知识点总结

一元二次方程单元知识点总结一元二次方程是指形式为ax^2 + bx + c = 0的方程,其中a、b、c是已知的实数常数,且a不等于零。
一元二次方程的解可以通过以下方法确定:1. 使用求根公式:一元二次方程的解可以通过求根公式x = (-b ± √(b^2 - 4ac)) / (2a)得到。
根的个数取决于判别式的值,即Δ= b^2 - 4ac。
- 如果Δ > 0,方程有两个不同的实根;- 如果Δ = 0,方程有一个重根;- 如果Δ < 0,方程没有实根,但可以有两个虚根。
2. 使用配方法:将一元二次方程进行配方法,即将该方程转化为完全平方的形式。
通过完成平方的过程,可以得到方程的解。
3. 使用因式分解法:将一元二次方程进行因式分解,即将该方程写成两个一次因式的乘积的形式。
通过因式分解的过程,可以得到方程的解。
4. 使用求和与求积法:通过求出一元二次方程的根的和与积的公式可以得出方程的解。
除了求解一元二次方程外,我们还可以通过以下方式分析一元二次方程的性质:1. 判别式:通过计算判别式Δ = b^2 - 4ac的值,可以判断方程的解的性质。
- 当Δ > 0时,方程有两个不同的实根;- 当Δ = 0时,方程有一个重根;- 当Δ < 0时,方程没有实根。
2. 根的范围:一元二次方程的根的范围取决于方程的系数。
- 当a > 0时,方程的根在x轴上方;- 当a < 0时,方程的根在x轴下方。
3. 对称轴和顶点:一元二次方程的图像是一个抛物线,可以通过求解x = -b / (2a)得到对称轴的x坐标,即方程的解的平均值。
同时,将对称轴的x坐标带入方程可得到对称轴上的y坐标,即方程的解的平均值。
4. 开口方向:一元二次方程的开口方向取决于方程的系数。
- 当a > 0时,方程的图像开口向上;- 当a < 0时,方程的图像开口向下。
这些是一元二次方程的一些重要知识点和解题方法总结。
九年级一元二次方程知识点总结

九年级一元二次方程知识点总结一元二次方程是九年级数学中的重要内容,它是由一个未知数的二次方程式所表示的方程。
在学习一元二次方程时,我们需要了解一些基本概念和解题方法。
下面将对一元二次方程的知识点进行总结。
一、基本概念1. 一元二次方程:一元二次方程式是形如ax^2+bx+c=0的方程,其中a、b、c是已知数,且a≠0。
2. 二次项、一次项和常数项:在一元二次方程中,ax^2、bx和c 分别被称为二次项、一次项和常数项。
3. 标准形式:对于一元二次方程,我们通常将其化为标准形式,即将方程中的一次项系数化为正数,例如x^2-3x+2=0。
4. 解:解是使方程成立的未知数的值。
一元二次方程一般有两个解,可以是实数解或复数解。
二、解题方法1. 因式分解法:当一元二次方程可以被因式分解时,我们可以通过因式分解法求解。
首先将方程化为(ax+b)(cx+d)=0的形式,然后令括号内的两个因式分别为零,解得方程的解。
2. 公式法:当一元二次方程无法进行因式分解时,我们可以使用求根公式来求解。
求根公式是x=-b±√(b^2-4ac)/2a,其中a、b、c 是方程的系数。
3. 完全平方式:当一元二次方程可以表示为完全平方式时,我们可以通过完全平方式求解。
首先将方程写成(a±√b)^2=c的形式,然后开方并解得方程的解。
三、注意事项1. 判别式:判别式是求解一元二次方程时的重要指标,它是b^2-4ac。
当判别式大于0时,方程有两个不相等的实数解;当判别式等于0时,方程有两个相等的实数解;当判别式小于0时,方程有两个共轭复数解。
2. 因式分解时要注意提取公因式和使用二次三项分解公式。
3. 在使用求根公式时,要注意判别式的符号和平方根的正负号。
4. 在使用完全平方式时,要注意将方程化为完全平方式的形式,并注意正负号。
通过对一元二次方程的学习,我们可以解决一些实际问题,例如求解抛物线的顶点、焦点、方程的图像等。
(完整)一元二次方程章节重点知识点复习,推荐文档

一元二次方程章节复习一元二次方程⎪⎩⎪⎨⎧*⇒韦达定理根的判别解与解法,并且②未知数的最高次数是.........2.,这样的③整式方程....就是一元二次方程。
)0(02≠=++a c bx“未知数的最高次数是2”:①该项系数不为“0”;②未知数指数为“2”;③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。
例1、下列方程中是关于x 的一元二次方程的是( )A ()()12132+=+x xB 02112=-+x xC 02=++c bx axD 1222+=+x x x 变式:当k 时,关于x 的方程3222+=+x xkx 是一元二次方程。
例2、方程()0132=+++mx xm m 是关于x 的一元二次方程,则m 的值为 。
★1、方程782=x 的一次项系数是 ,常数项是 。
★2、若方程()021=--m x m 是关于x 的一元一次方程,⑴求m 的值;⑵写出关于x 的一元一次方程。
★★3、若方程()112=•+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。
例1、已知322-+y y 的值为2,则1242++y y 的值为 。
例2、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。
例3、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程★1、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 。
★2、已知关于x 的方程022=-+kx x 的一个解与方程311=-+x x 的解相同。
⑴求k 的值; ⑵方程的另一个解。
★3、已知m 是方程012=--x x 的一个根,则代数式=-m m 2 。
★★4、已知a 是0132=+-x x 的根,则=-a a 622。
★★5、方程()()02=-+-+-a c x c b x b a 的一个根为( ) A 1- B 1 C c b - D a -★★★6、若=•=-+y x 则y x 324,0352 。
一元二次方程知识点总结全难易两个部分

第二章 一元二次方程1、花边有多宽(1)整式方程及一元二次方程的概念整式方程:方程两边都是关于未知数的整式;一元二次方程:只含有一个未知数x 的整式方程,并且都可以化作ax 2+bx+c=0(a,b,c 为常数,a ≠0)的形式。
1.一元二次方程的意义未知数个数为1,未知数的最高次数为2,整式方程,可化为一般形式; 2.只有当二次项系数0≠a 时,整式方程02=++c bx ax 才是一元二次方程。
(2)一元二次方程的一般式及各系数含义一般式:ax 2+bx+c=0(a,b,c 为常数,a ≠0),其中,a 是二次项系数,b 是一次项系数,c 是常数项。
2、配方法(1)直接开平方法的定义利用平方根的定义直接开平方求一元二次方程的解的方法叫直接开平方法。
(2)配方法的步骤和方法一、移项,把方程的常数项移到等号右边;二、配,方程两边都加上一次项系数的一半的平方,把原方程化为(x+m )2=n(n ≥0)的形式;三、直接用开平方法求出它的解。
3、公式法(1)求根公式b 2-4ac ≥0时,x=aacb b 242-±-(2)求一元二次方程的一般式及各系数的含义一、将方程化为一元二次方程的一般ax 2+bx+c=0(a,b,c 为常数,a ≠0);二、计算b 2-4ac 的值,当b 2-4ac ≥0时,方程有实数根,否则方程无实数根;三、代入求根公式,求出方程的根;四、写出方程的两个根。
4、分解因式法(1)分解因式的概念当一元二次方程的一边为0,而另一边易于分解成两个一次因式的乘积时,根据a ·b=0,那么a=0或b=0,这种解一元二次方程的方法称为分解因式。
(2)分解因式法解一元二次方程的一般步骤一、将方程右边化为零;二、将方程左边分解为两个一次因式的乘积;三、设每一个因式分别为0,得到两个一元二次方程;四、解这两个一元二次方程,它们的解就是原方程的解。
5、为什么是0.618 (1)什么叫黄金比 线段AB 上一点C 分线段AB 成两条线段AC ,BC ,若AB AC =ACBC,则C 点叫线段AB 的黄金分割点,其中ABAC叫黄金比,其值为0.618。
一元二次方程总复习全章知识点梳理.

一元二次方程总复习考点 1:一元二次方程的概念一元二次方程:只含有一个未知数,未知数的最高次数是 2,且系数不为 0,这样的方程叫一元二次方程.一般形式:ax 2+bx+c=0(a≠ 0 。
注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式。
考点 2:一元二次方程的解法1. 直接开平方法2. 配方法:3.公式法:4. 因式分解法:因式分解的方法:提公因式、公式法、十字相乘法、分组分解法。
5.一元二次方程的注意事项:⑴在一元二次方程的一般形式中要注意,强调a ≠ 0.因当 a=0时,不含有二次项,即不是一元二次方程.⑵应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定 a , b ,c 的值;②若 b 2 -4ac <0,则方程无解.★⑶利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式.如-2(x+4 2 =3 (x +4中,不能随便约去 x +4。
⑷注意:解一元二次方程时一般不使用配方法 (除特别要求外但又必须熟练掌握,解一元二次方程的一般顺序是:开平方法→因式分解法→公式法.6.一元二次方程解的情况⑴ b 2-4ac ≥ 0⇔方程有两个不相等的实数根;⑵ b 2-4ac=0⇔方程有两个相等的实数根;⑶ b 2-4ac ≤ 0⇔方程没有实数根。
解题小诀窍:当题目中含有“两不等实数根” “两相等实数根” “没有实数根”时,往往首先考虑用b 2-4ac 解题。
主要用于求方程中未知系数的值或取值范围。
考点 3:根与系数的关系 :韦达定理对于方程 ax 2+bx+c=0(a≠ 0 利用韦达定理可以求一些代数式的值(式子变形。
解题小诀窍:当一元二次方程的题目中给出一个根让你求另外一个根或未知系数时,可以用韦达定理。
二、经典考题剖析:【易错】下列方程是关于 x 的一元二次方程的是(A. 02=++c bx axB. 0652=++k x kC. 01232=++xx x D. 012 3(22=+++x x k 1、 (2009成都若关于 x 的方程 kx 2 -2x -1=0有两个不相等的实数根,则 k 的取值范围是(A.k>-1B. k>-1且k ≠ 0C. k<1D. k<1且k ≠ 02、解方程:(1 1(2 1(3-=-y y y y (20862=+-x x3、 (2009鄂州关于 x 的方程 kx 2+(k+2x+4k=0有两个不相等的实数根,(1求 k 的取值范围;(2是否存在实数 k 使方程的两个实数根的倒数和等于 0?若存在求出 k 的值;不存在说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两根的和 两根的积 若x2+mx+n=0的两根为x1和 x2,则x1+x2=-m, x1x2=n 当方程的两根为x1=p,x2=q时,方程为:x2(p+q)x+pq=0
公式法解一元二次方程
公式法的推导:将一元二次方程的一般形式进行配 方求解
公式法配方的开方需要对b2-4ac进行讨论 b2-4ac>0,方程有两个不相等的实数根x= b2-4ac=0,方程有两个相等的实数根此时 x1=x2=-b/2a b2-4ac=0时,一元二次方程无解。Leabharlann 一元二次方程的根与系数的关系
一元二次方程总结
高朋教育
一元二次方程一般形式
ax2+bx+c=0(a、b、c为常数,且a ≠ 0) 二次项为ax2 一次项为bx 常数项是c 一元二次方程一般形式有助于我们利用公式法解一 元二次方程。若一元二次方程不是一般形式,必须 转化为一般形式,再进行求解。 例如 3x2=5x-2这个方程需要先移项成为一般形式3x25x+2=0再进行求解
配方法解一元二次方程
将二次项系数转化为1 移项,将①中的常数项移到等号右边,注意变号 配方,方程等号两边同时加上①中一次项系数的一 半的平方,构成完全平方式 整理成(x+m)2=q的形式,其中m为一次项系数的 一半 若q ≥0,对q开平方,即x+m=-q或x+m=-q 求解x1和 x2