专题三动态杠杆

合集下载

2020年中考物理二轮复习小专题-杠杆动态平衡

2020年中考物理二轮复习小专题-杠杆动态平衡

杠杆动态平衡1、杠杆的平衡条件动力×动力臂=阻力×阻力臂写成公式F1l1=F2l22、杠杆的再平衡杠杆是否平衡取决于力和力臂的乘积是否相等。

判断方法一:比较末状态时力和力臂的乘积是否相等:若相等则继续平衡;若不相等,哪端乘积大,哪端下沉,另一端上升。

判断方法二:直接比较两端力和力臂的乘积的减小量或增加量是否相等而判断。

注意:若力臂的关系未知,则可通过杠杆的初始状态的平衡关系来确定。

3、杠杆的动态平衡(1)力不变改变力臂当力臂减小相同的长度时,力小的那一端下沉;∵F1l1=F2l2(l1>l2)∴F1<F2F1(l1-l0)=F1l1-F1l0;F2(l2-l0)=F2l2-F2l0∵F1l0<F2l0∴F1l1-F1l0>F2l2-F2l0即:F1(l1+l0)>F2(l2+l0)当力臂增大相同的长度时,力大的那一端下沉;∵F1l1=F2l2(l1>l2)∴F1<F2F1(l1+l0)=F1l1+F1l0;F2(l2+l0)=F2l2+F2l0∵F1l0<F2l0∴F1l1+F1l0<F2l2+F2l0即:F1(l1+l0)<F2(l2+l0)力臂成比例增减的时候杠杆仍然平衡。

∵F1l1=F2l2F1nl1=n F1l1F2nl2=nF2l2∴F1nl1=F2nl2(顺口溜:近小大,远大大,比例增减无变化)(2)力臂不变改变力当增大相同的力时,力臂大的那一端下沉;∵F1l1=F2l2(l1>l2)∴F1<F2(F1+F0)l1=F1l1+F0l1;(F2+F0)l2=F2l2+F0l2∵F0l1>F0l2∴F1l1+F0l1>F2l2+F0l2即:(F1+F0)l1>(F2+F0)l2当减小相同的力时,力臂小的那一端下沉;∵F1l1=F2l2(l1>l2)∴F1<F2(F1-F0)l1=F1l1-F0l1;(F2-F0)l2=F2l2-F0l2∵F0l1>F0l2∴F1l1-F0l1<F2l2-F0l2即:(F1-F0)l1<(F2-F0)l2力的大小成比例增减时杠杆仍然平衡。

初中物理专题讲义-动态杠杆分析

初中物理专题讲义-动态杠杆分析

专题六 动态杠杆分析杠杆问题是我们生活实践中常见问题,广泛应用于各种机器、机械,在生活中应用也很广泛.初中物理关于杠杆的动态变化问题是学生学习的难点,也是中考试题中的难点和重点并在中考中占有一定比例. 动态杠杆分析主要涉及以下三个方面:最小力问题、力与力臂变化问题、再平衡问题.动态杠杆分析离不开杠杆的平衡条件:2211l F l F =,即动力×动力臂=阻力×阻力臂.提升重物时,公式为:211Gl l F =,动力为:121l Gl F =. 一、最小力问题此类问题中“阻力×阻力臂”为一定值,要使动力最小,根据杠杆平衡条件,必须使动力臂最大.要使动力臂最大需要做到:在杠杆上找一点(动力作用点),使这点到支点的距离最远;动力方向应该是过该点且与该连线垂直的方向,如图(1)所示,最小力应该是F 3.图(1)二、力与力臂的变化问题此问题是在力与力臂变化时,如何利用杠杆平衡条件2211l F l F =和控制变量法,分析变量之间的关系.如图(2)所示,在探究杠杆平衡条件实验时,当拉紧的弹簧测力计向左转动时,拉力的变化情况是会逐渐减小.三、再平衡问题杠杆再平衡的问题,实际上就是判断杠杆在发生变化前后,力和力臂的乘积是否相等,乘积大的一端下降,乘积小的一端上升.图(2)图(3)如图(3)所示,杠杆处于平衡状态,如果将物体A和B同时向靠近支点的方向移动相同的距离,杠杆将失去平衡,右端下沉.一、杠杆1.什么是杠杆:在力的作用下能绕着固定点转动的硬棒,这根硬棒就叫杠杆.(1)“硬棒”泛指有一定长度的,在外力作用下不变形的物体.(2)杠杆可以是直的,也可以是任何形状的.如图(4)所示.2.杠杆的七要素(如图(5)所示)图(4)杠杆图(5)杠杆的七要素(1)支点:杠杆绕着转动的固定点,用字母“O”表示.它可能在棒的某一端,也可能在棒的中间,在杠杆转动时,支点是相对固定;(2)动力:使杠杆转动的力叫动力,用“F1”表示;(3)阻力:阻碍杠杆转动的力叫阻力,用“F2”表示;(4)动力作用点:动力在杠杆上的作用点;(5)阻力作用点:阻力在杠杆上的作用点;l”表示;(6)动力臂:从支点到动力作用线的垂直距离,用“1l”表示.(7)阻力臂:从支点到阻力作用线的垂直距离,用“2注意:无论动力还是阻力,都是作用在杠杆上的力,但这两个力的作用效果正好相反.一般情况下,把人施加给杠杆的力或使杠杆按照人的意愿转动的力叫做动力,而把阻碍杠杆按照需要方向转动的力叫阻力.力臂是点到线的距离,而不是支点到力的作用点的距离.力的作用线通过支点的,其力臂为零,对杠杆的转动不起作用.3.杠杆示意图的画法(如图(6)所示):(1)根据题意先确定支点O;(2)确定动力和阻力并用虚线将其作用线延长;甲乙丙图(6)杠杆的示意图(3)从支点向力的作用线画垂线,并用l1和l2分别表示动力臂和阻力臂;第一步:先确定支点,即杠杆绕着某点转动,用字母“O”表示.第二步:确定动力和阻力.人的愿望是将石头翘起,则人应向下用力,画出此力即为动力用“F1”表示.这个力F1作用效果是使杠杆逆时针转动.而阻力的作用效果恰好与动力作用效果相反,在阻力的作用下杠杆应朝着顺时针方向转动,则阻力是石头施加给杠杆的,方向向下,用“F2”表示如图乙所示.第三步:画出动力臂和阻力臂,将力的作用线正向或反向延长,由支点向力的作用线作垂线,并标明相应的“l1”“l2”, “l1”“l2”分别表示动力臂和阻力臂,如图丙所示.4.杠杆的平衡条件(1)杠杆的平衡:当杠杆在动力和阻力的作用下静止时,我们就说杠杆平衡了.(2)杠杆的平衡条件实验图(7)图(8)1)首先调节杠杆两端的螺母,使杠杆在水平位置平衡.如图(8)所示,当杠杆在水平位置平衡时,这样就可以由杠杆上的刻度直接读出力臂实物大小了,而图(7)杠杆在倾斜位置平衡,读力臂的数值就没有图(8)方便.由此,只有杠杆在水平位置平衡时,我们才能够直接从杠杆上读出动力臂和阻力臂的大小,因此本实验要求杠杆在水平位置平衡.2)在实验过程中绝不能再调节螺母.因为实验过程中再调节平衡螺母,就会破坏原有的平衡.(3)杠杆的平衡条件:动力×动力臂=阻力×阻力臂,或F1l1=F2l2.5.杠杆的应用(1)省力杠杆:动力臂l1>阻力臂l2,则平衡时F1<F2,这种杠杆使用时可省力(即用较小的动力就可以克服较大的阻力),但却费了距离(即动力作用点移动的距离大于阻力作用点移动的距离,并且比不使用杠杆,力直接作用在物体上移动的距离大).(2)费力杠杆:动力臂l1<阻力臂l2,则平衡时F1>F2,这种杠杆叫做费力杠杆.使用费力杠杆时虽然费了力(动力大于阻力),但却省距离(可使动力作用点比阻力作用点少移动距离).(3)等臂杠杆:动力臂l1=阻力臂l2,则平衡时F1=F2,这种杠杆叫做等臂杠杆.使用这种杠杆既不省力,也不费力,即不省距离也不费距离.既省力又省距离的杠杆时不存在的.一、最小力问题【典例1】(东营)如图所示,杠杆AOB能绕O点转动.在A点挂一重物G,为使杠杆保持平衡且用力最小,在B点施加一个力,这个力应该是图中的_________.【解析】在B点施力F,阻力的方向向下,为使杠杆平衡,动力的方向应向下,F4方向向上,不符合要求;当F的方向与杠杆垂直时动力臂最大,此时最省力,即F2的方向与OB垂直,故F2最小.故答案为:F2.二、力与力臂变化问题【典例2】(玉林)如图所示,长为40cm、重为10N的匀质杠杆可绕着O点转动,作用在杠杆一端且始终与杠杆垂直的力F,将杠杆缓慢地由与水平方向夹角为30°的位置拉至水平位置(忽略摩擦阻力),在这个过程中,力F的大小将(选填“增大”、“不变”或“减小”),力F所做的功为J.【解析】(1)根据杠杆平衡条件来做出分析;(2)根据h=Lsin30°求出物体重心上升的高度,再根据W=Gh求出克服重力做的功,即为拉力做的功.【解答】(1)在杠杆缓慢地由与水平方向夹角为30°的位置拉至水平位置的过程中,动力臂L的长度没有变化,阻力G的大小没有变化,而阻力臂L却逐渐增大;由杠杆的平衡条件知:F•L=G•L′,当L、G不变时,L′越大,那么F越大,因此拉力F在这个过程中逐渐增大;(2)物体重心上升的高度h=Lsin30°=×40cm×=10cm=0.1m,拉力做的功W=Gh=10N×0.1m=1J.故答案为:增大;1.三、再平衡问题【典例3】(潍坊)如图所示,杠杆处于平衡状态.如果杠杆两侧的钩码各减少一个,杠杆将().A.左端下降 B.右端下降 C.仍然平衡 D.无法判断【解析】图中杠杆处于平衡状态,设一个钩码的重为G,杠杆上一格的长度为L,根据杠杆平衡条件可得:2G×3L=3G×2L;如果杠杆两侧的钩码各减少一个,则:左边力与力臂的乘积:1G×3L,右边力与力臂的乘积:2G×2L,由于此时右边力与力臂的乘积较大,所以右端下降.故选B.一、最小力问题1.(龙东)如图所示的简单机械中一定费力的是().A.起瓶器 B.撬棒C.羊角锤 D.钓鱼竿【解析】A、起瓶器在使用过程中,动力臂大于阻力臂,是省力杠杆,故A错误;B.撬棒在使用过程中,动力臂大于阻力臂,是省力杠杆,故B错误;C、羊角锤在使用过程中,动力臂大于阻力臂,是省力杠杆,故C错误;D、钓鱼竿在使用过程中,动力臂小于阻力臂,是费力杠杆,故D正确.故选D.2. (海南)如图所示,下列工具在使用中属于省力杠杆的是().【解析】A、筷子使用时,动力臂小于阻力臂是费力杠杆,故A不符合题意;B、钓鱼竿使用时,动力臂小于阻力臂是费力杠杆,故B不符合题意;C、钢丝钳翦断钢丝时,动力臂大于阻力臂是省力杠杆,故C符合题意;D、食品夹使用时,动力臂小于阻力臂是费力杠杆,故D不符合题意;故选C.3.(齐齐哈尔)如图所示的用具,在正常使用的过程中,属于费力杠杆的是().A.B. C.D.【解析】杠杆的分类主要包括以下几种:①省力杠杆,动力臂大于阻力臂;②费力杠杆,动力臂小于阻力臂;③等臂杠杆,动力臂等于阻力臂.A、图示剪刀,在使用过程中,动力臂大于阻力臂,是省力杠杆;B、钢丝钳在使用过程中,动力臂大于阻力臂,是省力杠杆;C、图示剪刀,动力臂小于阻力臂,是费力杠杆;D、独轮车在使用过程中,动力臂大于阻力臂,是省力杠杆.故选:C.4.(贵阳)人们应用不同的简单机械来辅助工作,正常使用下列简单机械时说法正确的是().A.筷子可以省距离B.所有剪刀都一定省力C.定滑轮可以省力D.撬棒越短一定越省力【解析】A、用筷子夹菜时,动力臂小于阻力臂,所以是一个费力杠杆,费力但省距离,故A正确;B、剪铁皮用的剪刀,在使用过程中,动力臂大于阻力臂,是省力杠杆;理发用的剪刀,在使用过程中,动力臂小于阻力臂,是费力杠杆;所以,剪刀有省力的,也有费力的,故B错误;C、定滑轮在使用过程中,动力臂等于阻力臂,是等臂杠杆,不省力,故C错误;D、撬棒在使用过程中,动力臂大于阻力臂,是省力杠杆;在其它条件不变时,省力的多少取决于动力臂的长短,撬棒越短动力臂越小,越费力,故D错误.故选A.5.(湖州)一根均匀的长方体细长直棒重1.5牛,下底面积为20厘米2,将它放在水平桌面上,并有的长度露出桌面外,如图所示.在棒的右端至少应施加牛的竖直向下的力,才能让它的左端离开桌面.【解析】确定支点,压力为动力,棒的重力为阻力,根据杠杆的平衡条件进行分析,且要使力最小,需使动力臂最长.【解答】在棒的右端施加力,使左端抬起,此时直棒相当于杠杆,支点在桌边,根据杠杆的平衡条件,要使动力最小,应该使动力臂最长,所以应在最右端施加一个竖直向下的力,如图所示:设直棒的长为L,由题知L1=L,重力的力臂L2=﹣=L,根据杠杆的平衡条件可得:F•L1=G•L2,即:F×L=1.5N×L,解得:F=1.5N.故答案为:1.5.6.(泸州)泸州市为了巩固创文成果下发了宜传手册“绿色低碳生活,从垃圾分类开始”.如图是一种轮式垃圾桶,拖动时它相当于一个杠杆(选填“省力”或“费力”);垃圾桶底部的小轮子是为了摩擦力(选填“增大”或“减小”);若拖动时垃圾桶总重为150N,且动力臂为阻力臂的2倍,则保持垃圾桶平衡的拉力F为N.【解析】(1)由示意图分析动力和阻力,然后看动力臂和阻力臂的大小,确定杠杆种类;(2)用滚动代替滑动可以减小摩擦;(3)根据杠杆的平衡条件进行计算求出竖直向上的力.【解答】(1)图示的垃圾桶,因为是动力臂大于阻力臂的杠杆,所以是一个省力杠杆;(2)垃圾桶底部安装小轮子,采用变滑动为滚动的方式减小了摩擦力;(3)已知垃圾桶总重G=150N,动力臂L1=2L2,根据杠杆平衡条件:FL1=GL2可得,保持垃圾桶平衡的拉力为:F===75N.故答案为:省力;减小;75.7.(德阳)如图OAB轻质杠杆,O为支点,请在图中B点处画出能使杠杆保持平衡的最小力F的示意图.【解析】(1)根据杠杆平衡的条件可知,在杠杆中的阻力、阻力臂一定的情况下,要使所用的动力最小,必须使动力臂最长;(2)在通常情况下,连接杠杆支点和动力作用点这两点所得到的线段最长,依此为动力臂,最省力.【解答】(1)由O点到杆顶端的距离是最长的力臂,所以动力应作用在杠杆的顶端B处;(2)根据杠杆平衡的条件,要使杠杆平衡,动力方向垂直于杆向上,据此可画出最小的动力,如图所示:8.(安徽)图a所示为前臂平伸用手掌拖住铅球时的情形.我们可将图a简化成如图b所示的杠杆.不计自重.若铅球质量m=3kg,OA=0.03m,OB=0.30m,求此时肱二头肌对前臂产生的拉力F1大小(g取10N/kg).【解析】肱二头肌对前臂产生的拉力F1为动力,3kg铅球的重力即为阻力F2,利用杠杆的平衡条件求肱二头肌的收缩力.解答:由图可知,支点是O点,肱二头肌对前臂产生的拉力F1为动力,3kg铅球的重力即为阻力F2,则阻力:,由图知,L1=OA=0.03m,L2=OB=0.30m,根据杠杆的平衡条件:,即:,解得F 1=300N.答:肱二头肌对前臂产生的拉力F1为300N.9.(福建A)《墨经》最早记述了秤的杠杆原理,如图中“标”“本”表示力臂,“权”“重”表示力,以下说法符合杠杆平衡原理的是().A.“权”小于“重”时,A端一定上扬;B.“权”小于“重”时,“标”一定小于“本”;C.增大“重”时,应把“权”向A端移;D.增大“重”时,应更换更小的“权”【解析】A.根据杠杆平衡条件,“权”小于“重”时,因为不知道“标”和“本”的大小关系,无法确定“权”和“标”的乘积与“重”和“本”乘积的大小的关系,故A错误.B.根据杠杆平衡条件,“权”小于“重”时,“标”一定大于“本”,故B错误.C.根据杠杆平衡条件,“本”不变,增大“重”时,因为“权”不变,“标”会变大,即应把“权”向A 端移,故C正确.D.使用杆秤时,同一杆秤“权”不变,“重”可变,不同的“重”对应不同的“标”.若更换更小的“权”,“标”也会变得更大,不符合秤的原理,故D错误.答案为C.10.(眉山)如图所示,轻质杠杆OA能绕O点转动,请在杠杆中的A端画出使轻质杠杆保持平衡的最小的力F的示意图(要求保留作图痕迹).【解析】此题是求杠杆最小力的问题,已知点O是动力作用点,那么只需找出最长动力臂即可,可根据这个思路进行求解.【解答】O为支点,所以力作用在杠杆的最右端A点,并且力臂是OA时,力臂最长,此时的力最小.确定出力臂然后做力臂的垂线即为力F.如图所示:11.(绵阳)如图所示,两个等高的托盘秤甲、乙放在同一水平地面上,质量分布不均匀的木条AB重24N,A、B是木条两端,O、C是木条上的两个点,AO=B0,AC=OC.A端放在托盘秤甲上,B端放在托盘秤乙上,托盘秤甲的示数是6N.现移动托盘秤甲,让C点放在托盘秤甲上.此时托盘秤乙的示数是().A.8N B.12N C.16N D.18N【解析】A端放在托盘秤甲上,以B点支点,根据杠杆平衡条件先表示出木条重心D到B的距离,当C点放在托盘秤甲上C为支点,再根据杠杆平衡条件计算托盘秤乙的示数.【解答】设木条重心在D点,当A端放在托盘秤甲上,B端放在托盘秤乙上时,以B端为支点,托盘秤甲的示数是6N,根据力的作用是相互的,所以托盘秤对木条A端的支持力为6N,如图所示:由杠杆平衡条件有:F A×AB=G×BD,即:6N×AB=24N×BD,所以:AB=4BD,BD=AB,当C点放在托盘秤甲上时,仍以C为支点,此时托盘秤乙对木条B处的支持力为F B,因为AO=BO,AC=OC,所以CO=OD=BD,BC=3BD,CD=2BD由杠杆平衡条件有:F B×BC=G×CD,即:F B×3BD=24N×2BD,所以:F B=16N,则托盘秤乙的示数为16N.故选C.12. (天津)利用图甲中的撬棒撬石块时,撬棒相当于______(选填“省力”或“费力”)杠杆;利用图乙中的滑轮组匀速提升900N的重物时,若忽略滑轮自重、绳重及摩擦,人对绳的最小拉力为______N.【解析】(1)结合图片和生活经验,判断杠杆在使用过程中,动力臂和阻力臂的大小关系,再判断它是属于哪种类型的杠杆.(2)由乙图可知绳子的有效股数,根据F=G物求出拉力的大小.【解答】(1)用撬棒撬石头时,动力臂大于阻力臂,是省力杠杆;(2)由乙图可知绳子的有效股数n=3,拉力F=G物=×900N=300N.故答案为:省力;300.13.(齐齐哈尔)如图所示的杠杆(自重和摩擦不计),O是支点,A处挂一重为50N的物体,为保证杠杆在水平位置平衡,在中点B处沿(选填“F1”、“F2”或“F3”)方向施加的力最小,为N.【解析】本题考查了学生对杠杆平衡条件的掌握和运用,根据动力臂最长时最省力找出动力臂是本题的关键.以支点到力的作用点的距离当成力臂时是最大的力臂.解:为使拉力最小,动力臂要最长,拉力F的方向应该垂直杠杆向上,即竖直向上(F2),动力臂为OB最长,杠杆在水平位置平衡,根据杠杆的平衡条件:F2×OB=G×OA,由于OA是OB的二倍,所以:F=2G=100N.故答案为:F2;100.14.(昆明)如图所示,轻质杠杆 OA 可绕 O 点无摩擦转动,A 点处挂一个重为 20N 的物体,B 点处加一个竖直向上的力 F,杠杆在水平位置平衡,且 OB:AB=2:1.则 F= N,它是杠杆.【考点】杠杆的平衡条件;杠杆的分类.【解析】已知物体G的重力,再根据杠杆平衡的条件F•OB=G•OA可直接求F的大小,根据拉力F和G的大小判断杠杆的种类.【解答】因为OB:AB=2:1,所以OB:OA=OB:(OB+AB)=2:(2+1)=2:3,由杠杆平衡的条件F得:F•OB=G•OA可得:F===30N;因为F>G,所以此杠杆为费力杠杆.故答案为:30;费力.15.(连云港)如图所示,O为杠杆的支点,杠杆右端挂有重为G的物体,杠杆在力F1的作用下在水平位置平衡.如果用力F2代替力F1使杠杆仍在水平位置保持平衡,下列关系中正确的是().A.F1<F2B.F1>F2C.F2<G D.F1=G【解析】由题知,O为支点,当阻力、阻力臂不变时,由杠杆的平衡条件知:动力和动力臂的乘积一定,当动力臂较大时,动力将较小;动力臂较小时,动力将较大.因此先判断出F1、F2的力臂大小,即可判断出两力的大小关系从而比较出F1、F2与G的关系.AB、设动力臂为L2,杠杆长为L(即阻力臂为L);由图可知,F2与杠杆垂直,因此其力臂为最长的动力臂,由杠杆平衡条件可知F2为最小的动力,则F1>F2,故A错误,B正确;CD、用力F2使杠杆在水平位置保持平衡时,由杠杆平衡条件可得:F2•L2=G•L,由图知L2<L,所以F2>G;故C错误;因为F1>F2,F2>G,所以F1>F2>G,故D错误.故选:B.【答案】B.二、力与力臂变化问题1.(聊城)人体中的许多部位都具有杠杆的功能.如图是人用手托住物体时手臂的示意图,当人手托5kg 的物体保持平衡时,肱二头肌收缩对桡骨所施加力的大小一定().A.大于5kg B大于49N C小于49N D.等于49N【解析】首先确定杠杆的支点、动力、阻力及对应的动力臂和阻力臂,根据杠杆的平衡条件F1L1=F2L2,并结合力臂的概念进行分析.【解答】A、力的单位是N,质量的单位是kg,题目是求力的大小,不能用kg左单位,故A错误;BCD、由图知,物体的重力为G=mg=5kg×9.8N/kg=49N;肱二头肌的拉力为动力,物体对手的压力为阻力,支点在肘,如图所示:所以动力臂小于阻力臂,根据杠杆平衡条件:F1L1=F2L2因为L1<L2,所以F1>F2即肱二头肌收缩所承受的力一定大于49N.故B正确,CD错误.故选B.2.(广安)如图,AB是能绕B点转动的轻质杠杆,在中点C处用绳子悬挂重为100N的物体(不计绳重)在A端施加竖直向上的拉力使杠杆在水平位置平衡,则拉力F= N.若保持拉力方向始终垂直于杠杆,将A 端缓慢向上提升一小段距离,在提升的过程中,拉力F将(选填“增大”、“减小”或“不变”).【解析】(1)物体的重力为阻力,杠杆在水平位置保持平衡时,BC为阻力臂,BA为动力臂,根据杠杆的平衡条件F1l1=F2l2求出拉力的大小;(2)利用杠杆平衡条件分析拉力F的大小变化情况.【解答】杠杆在水平位置保持平衡,由F1l1=F2l2可得,拉力的大小:F1=G=G=×100N=50N.若将A端缓慢向上提升一小段距离,则阻力臂l2将变小,阻力G不变,即F2l2变小,因为拉力方向始终垂直于杠杆,所以动力臂不变,l1始终等于BA,根据F1l1=F2l2可知F1变小,即拉力F减小;故答案为:50;减小.3.(邵阳)某物理实验小组的同学,利用如下图所示的装置,在杠杆支点的两边分别挂上钩码来探究杠杆的平衡条件.(1)如图甲所示,为使杠杆在水平位置平衡,应将右端的平衡螺母向移动.(选填“左”或“右”)(2)实验中测得的数据如下表所示:测量序号动力F1/N 动力臂l 1 /cm 阻力F2/N 阻力臂l 2/cm① 1 20 2 10② 2 15 1.5 20③ 3 5 1 15由实验数据可以得出杠杆的平衡条件是 .(3)如图乙所示,将杠杆两端同时减去一个钩码,杠杆左端会 .(选填“下沉”或“上升”)【解析】杠杆在水平位置平衡后,支点到力的作用点的距离就是力臂,因此在此实验中我们应首先调节杠杆在水平位置平衡.(1)杠杆左端下沉,说明杠杆的重心在支点左侧,调节平衡螺母应使杠杆重心右移,这一调节过程的目的是为了使杠杆的自重对杠杆平衡不产生影响;杠杆在水平位置平衡时,力的方向与杠杆垂直,力臂的长度可以直接从杠杆上读出来.(2)分析表中数据得出杠杆的平衡条件为:;(3)用杠杆平衡条件可对两侧的力的力臂的乘积进行分析,最后做出判断.解答:(1)如图甲所示,杠杆左端下沉,说明杠杆的重心在支点左侧,应将右端的平衡螺母向右移动;(2)分析表中数据,计算动力乘以动力臂和阻力乘以阻力臂,就可以得出杠杆的平衡条件是动力×动力臂=阻力×阻力臂(或).(3)设一个钩码的重力G,一格的长度为L,则当杠杆两侧的钩码各取下一个后,左边右边;故杠杆不再水平平衡,左侧会下沉;故答案为:(1)右;(2)(或“动力×动力臂=阻力×阻力臂”);(3)下沉.4.(吉林)在“探究杠杆平衡条件”的实验中:(1)把质量分布均匀的杠杆中点作为支点,其目的是消除对实验得影响;(2)如图所示,是已经平衡的杠杆,若在两侧的钩码下再各增加一个相同的钩码,杠杆会失去平衡,那么只需要将(选填:下列序号),杠杆就会重新平衡;①左侧钩码向左移动4个格②右侧钩码向左移动2个格③平衡螺母向左适当调节(3)小明改用弹簧测力计做实验,如图所示,使杠杆在水平位置平衡,则弹簧测力计的示数 1N (选填:“大于”、“小于”、“等于”).(每个钩码0.5 N )【解析】重点研究是杠杆平衡条件的实验,第二问中将钩码重,及移动后的力臂代入杠杆平衡条件,两边相等就可以平衡,两边不等,不会平衡,第三问中测力计斜着拉杠杆时,力臂减小,所以动力F要增大.(1)把质量分布均匀的杠杆中点作为支点,其目的是消除杠杆自重对实验得影响,实验时方便让杠杆在水平位置平衡;(2)如图所示,是已经平衡的杠杆,若在两侧的钩码下再各增加一个相同的钩码,杠杆会失去平衡;设杠杆一格长为L,每个钩码重为G;①左侧钩码向左移动4个格,可得:,杠杆不平衡;②右侧钩码向左移动2个格,可得:,杠杆平衡;③实验过程中不能通过调节平衡螺母来调整平衡,方法是错误的;可见②的方法杠杆会重新平衡,故选②.(3)小明改用弹簧测力计做实验,如图所示,使杠杆在水平位置平衡.当图中测力计竖直向上拉时,得:解得:;如图中,测力计斜着拉时,力F的力臂会减小,由于阻力和阻力臂不变,则动力臂减小,动力要增大,所以弹簧测力计的示数大于1N.【答案】(1)杠杆自重;(2)②;(3)大于.5.(益阳)如图所示,轻质杠杆在中点处悬挂重物,在杠杆的最右端施加一个竖直向上的力F,杠杆保持平衡,保持力F方向不变,当将重物向右移动时,要使杠杆保持平衡,力F将;将杠杆顺时针方向缓慢转动,力F将(两空均填“变大”、“变小”、“不变”)【解析】(1)由题知,杠杆最右端的力F竖直向上(方向不变),当重物向右移动时,重物对杠杆拉力的力臂L2变大,F的力臂L1不变(等于杠杆的长),阻力G不变,由杠杆平衡条件FL1=GL2可知,力F将变大;(2)如图:重物悬挂在杠杆的中点,水平平衡时,动力臂和阻力臂的关系:L1=2L2,保持力F方向不变,杠杆顺时针方向缓慢转动后,由图根据相似三角形知识可知,动力臂和阻力臂的关系:L1′=2L2′,物重G不变,动力臂与阻力臂的比值不变,由杠杆平衡条件可知,动力F的大小始终等于G,即力F将不变.故答案为:变大;不变.6.(达州)如图所示,光滑带槽的长木条AB(质量不计)可以绕支点O转动,木条的A端用竖直细线连接在地板上,OA=0.6m,OB=0.4m.在木条的B端通过细线悬挂一个长方体木块C,C的密度为0.8×103kg/m3,B端正下方放一盛满水的溢水杯.现将木块C缓慢浸入溢水杯中,当木块浸入水中一半时,从溢水口处溢出0.5N 的水,杠杆处于水平平衡状态,然后让质量为300g的小球从B点沿槽向A端匀速运动,经4s的时间系在A端细绳的拉力恰好等于0,下列结果不正确的是(忽略细线的重力,g取10N/kg)().A.木块受到的浮力为0.5N;。

杠杆动态变化问题的解题方法

杠杆动态变化问题的解题方法

杠杆动态变化问题的解题方法甘肃省永昌县红山窑中学 茹武年杠杆在我们生活中随处可见,广泛应用于各种机器、机械,在生活中应用也很广泛,比如吃饭用的筷子,钓鱼的鱼竿,修剪指甲的指甲刀,我们的胳膊,就连我们从地上抬起箱子的一端也能把箱子抽象的看成是杠杆。

初中物理关于杠杆知识的教学中,杠杆的动态变化问题是学生最难理解、教师最难讲解的问题,为了帮助同学们轻松理解杠杆变化问题,掌握其解题方法,我就初中物理杠杆变化的最常见问题,分两类分别介绍它们的变化情况和解题方法。

第一类是支点在杠杆中间,由力矩的变化量研究杠杆失去平衡发生倾斜的问题。

这有两种分析方法:1.赋值法。

对于有些问题,若能根据其具体情况,合理地、巧妙地对某些元素赋值,特别是赋予确定的特殊值,往往能使问题获得简捷有效的解决,这就是赋值法。

例1:如图1所示,杠杆处于水平平衡状态,杠杆上每小格之间的距离相等,每个钩码的质量相等,若在两边钩码下方各加挂一只相同的钩码,释放后观察到的现象将是什么?分析:我们给每一个钩码赋1N 的重力,杠杆上每一小格赋一个单位长度,原来水平平衡时支点左边的力矩为2×3=6,右边力矩为3×2=6,两边力矩相等。

若在两边钩码下方各加挂一只相同的钩码,支点左边力矩就变成了3×3=9,右边力矩变成了4×2=8,支点两边力矩不相等,左边力矩大于右边力矩,杠杆左端下沉。

方法简单,易于理解。

2.分析力矩的变化量,这里面又有两种情况(1)支点两边力矩的变化量都是增量的。

例2.如图2所示,杠杆处于水平平衡状态,每个钩码的质量相等,若在两边钩 码下方各加挂一只相同的钩码,杠杆的那端下沉?分析:由于杠杆上没有画小格,不好用赋值法,我们可以研究杠杆力矩的变化量。

杠杆原来是水平平衡的,原来的两个力矩就是相等的,M 1=M 2即G 1L 1=G 2L 2,由杠杆平衡条件可知,当G 1<G 2时,L 1>L 2。

现在在两边钩码下各加挂同重的一个钩码后,如图3所示,杠杆是否还能水平平衡,这就要看现在杠杆两边的两个力矩是否相等。

2024年中考物理复习专题:杠杆作图(三)

2024年中考物理复习专题:杠杆作图(三)

专题09 杠杆作图(三)四、综合作图例题1(中考题型)用一根钢棒撬动地面上的一块大石头,如图9-38所示,请你在图中作出最省力时的动力方向F并标出相应支点O的位置。

图9-38【解题思路】本题有两个作图要求:一是最小力;二是确定支点。

对于最小力的判断,我们前面讲过的都是支点固定,即阻力和阻力臂一定时,根据杠杆平衡条件:动力×动力臂=阻力×阻力臂,在阻力×阻力臂一定的情况下,动力臂越大,动力将越小。

本题支点不固定,则应先选择支点,保证阻力臂最小而动力臂最大。

解:支点是杠杆绕着转动的固定点,动力向下作用时,杠杆应绕小石块尖端转动,动力向上作用时,杠杆绕杠杆下端转动;由图示可知,当杠杆下端为支点时,OA为动力臂时最长,同时,此时阻力臂也是最小,此时动力最小,力垂直于杠杆向上,支点O与最小作用力F如图9-39所示。

图9-39【点拨】本题选择杠杆的作用点是解题的关键,另外还要注意,对于支点不固定的杠杆,画最小力时,除了动力臂最大外,还要阻力臂最小。

例题2(中考题型)如图9-40甲所示的自拍杆可看成一个杠杆,其简化示意图如图9-40乙所示,O点是支点,请在乙图中画出杠杆静止在此位置时,作用在A点的最小动力F1、作用在B点的阻力F2和阻力臂l2。

图9-40【解题思路】本题支点、动力和阻力的作用点已知,阻力是由于手机由于重力而产生的,所以大小等于重力的大小,方向竖直向下,再过支点作力的作用线的垂线段就得到阻力的力臂。

由阻力的大小和力臂的大小不变得出,动力最小必须动力臂最大,所以动力应该与杠杆垂直。

解:当AO作为动力臂时,力臂是最大的,此时的动力最小,根据实际使用确定动力的方向垂直杆而向上;作用在B点的阻力是由重力产生的,故阻力的方向是竖直向下的,从O点做该力的作用线的垂线,即为力臂,如图9-41所示。

图9-41【点拨】判断动力和阻力的方向有两种,一种是像本题应用有实际情景进行判断;另一种是前面我们讲过的,由动力和阻力是杠杆的转动方向相反去判断,这种方法适用于力的方向不太明确的情况下。

中考物理总复习-杠杆的动态平衡问题 重点及考点(共34张PPT)

中考物理总复习-杠杆的动态平衡问题  重点及考点(共34张PPT)

例5 如图所示的轻质杠杆,AO小于BO。在A、B两端悬挂重物(同种物质) G1和G2后杠 杆平衡。若将G1和G2同时浸没到水中则( ) A.杠杆仍保持平衡 B.杠杆的A端向下倾斜 C.杠杆的B端向下倾斜 D.无法判断
6. 杠杆调平衡后,将两个体积相同的重物分别挂在杠杆两侧的A、B处,杠杆仍然平衡,
极值法
李贺
12.从地面上搬起重物我们的常见做法是弯腰(如图甲)或人下蹲弯曲膝盖(如图乙)把它
搬起来,哪种方法好呢?下面就建立模型说明这个问题。把脊柱简化为杠杆如图丙所示,
脊柱可绕骶骨(轴)O转动,腰背部复杂肌肉的等效拉力F1作用在A点,其实际作用方向 与脊柱夹角为12°且保持不变。搬箱子拉力F2作用在肩关节B点,在B点挂一重物代替 箱子。用测力计沿F1方向拉,使模型静止,可测出腰背部复杂肌肉拉力的大小。接着, 改变脊柱与水平面的夹角即改变杠杆与水平面的夹角α,多次实验得出结论。
器。右侧用细线悬挂一质量为50 g的钩码(细线的质量忽略不计)。测量时往容器中加满
待测液体,移动钩码使杠杆在水平位置平衡,在钩码悬挂位置直接读出液体的密度。
(1)该“密度天平”的“零刻度”应标在右端离支点O
cm处。
(2)该“密度天平”的量程为多大?
(3)若将钩码的质量适当增大,该“密度天平”的量程将
4.(多选)如图所示,均匀细杆OA长为l,可以绕O点在竖直平面内自由移动,在O点正上 方距离同样是l的P处固定一定滑轮,细绳通过定滑轮与细杆的另一端A相连,并将细杆 A端绕O点从水平位置缓慢匀速向上拉起。已知绳上拉力为F1,当拉至细杆与水平面夹 角θ为30°时,绳上拉力为F2,在此过程中(不考虑绳重及摩擦),下列判断正确的是 () A.拉力F的大小保持不变 B.杆OA的重力势能增加 C.细杆重力的力臂逐渐减小 D.F1与F2两力之比为 2∶1

杠杆的动态平衡分析讲解

杠杆的动态平衡分析讲解
杠杆的动态平衡分析讲解
目录
• 杠杆基本原理与动态平衡概述 • 杠杆受力分析与静态平衡条件 • 动态平衡过程描述与数学模型建立 • 影响因素识别及其对动态平衡影响机制 • 调控策略制定及实施效果评估 • 总结与展望
01
杠杆基本原理与动态平衡概述
杠杆定义及作用
01
杠杆是一种简单机械,由支点、动力作用点、阻力 作用点和动力臂、阻力臂构成。
01
02
03
1. 确定杠杆的支点和转动方 向。
2. 画出动力和阻力及其力臂。
04
05
3. 根据杠杆平衡条件列方程 求解。
实例分析:静态平衡问题解决方法
实例一:天平平衡问 题
根据方程求解未知量, 如砝码质量、游码位 置等。
分析天平两侧受力情 况,列出平衡方程。
实例分析:静态平衡问题解决方法
实例二:杆秤称重问题 分析杆秤受力情况,列出平衡方程。
关注行业动态,了解新技术和新方法的应用情况,以便更好地适应未来发展的需要。
THANKS
感谢观看
稳定阶段
当施加的力与重力分力达到平衡时,杠杆停止倾斜并保持新的平衡状态。此时,杠杆的 动态平衡得以实现。
05
调控策略制定及实施效果评估
调控策略制定原则和方法
针对性原则
根据经济、金融市场的具体情况,制定相应的调控策略。
及时性原则
调控策略的制定和实施应及时,以迅速应对市场变化。
调控策略制定原则和方法
调控策略制定原则和方法
基于历史数据的统计分析
通过对历史数据的统计分析,发现市场运行的 规律,为制定调控策略提供依据。
基于经济模型的预测分析
利用经济模型对市场未来走势进行预测,制定 相应的调控策略。

杠杆动态变化的分析典型例题

杠杆动态变化的分析典型例题

• 【例3】小明为了在取书时不把书架弄乱, 设计了一个“方便书架”,每本书都加上 一个“铁支架”(如图甲所示)。小明取书时, 作用在按压块上的力始终与按压块垂直, 铁支架从图甲状态匀速转动到图乙状态的 减小 过程中,小明所用的力的大小 _______(选 填“增大”、“减小”或“不变”)。
• 【例4】图(a)是一台某种型号吊车的示意图, 吊车自身的重力为G。为防止吊起过重的货物 时向后翻倒,在吊起货物前,采取了如下措施: 把位于吊车四周略比车身宽一点的前后两组支 撑柱1、2放下,如图(b)所示。如果把整个 吊车视为一个杠杆,那么在图示吊起重物的情 形下,支撑柱放下前后相比较,吊车的重力G 变大 的力臂______。(填“变大”、“变小”或 “不变”)
Hale Waihona Puke • 【例9】 某科学兴趣小组的同学 利用羽毛球和小金属球来研究 “空气阻力和速度的关 系”.取三个相同的羽毛球, 每个羽毛球的质量为m,并编号 为甲、乙、丙,其中在乙羽毛 球内固定3倍于羽毛球质量的小 金属球,在丙羽毛球内固定8倍 于羽毛球质量的小金属球.然 后让它们从不同高度分别自由 落下.并以竖直砖墙为背景, 当进入竖直砖墙的区域时,用 数码相机自动连续拍摄的方法 记录羽毛球的运动过程.如图是 其中的一段.
• 〖变形1〗 如图所示,用一细线悬挂一根粗细均匀 的轻质细麦秸秆,使其静止在水平方向上,O为麦 秸秆的中点。这时有两只质量不等的大肚皮蚂蚁在 图示A、B位置,麦秸秆恰好在水平位置平衡。若 两蚂蚁同时从A、B两点以相同的速度爬向O点,则 麦秸秆( B ) • A.仍在水平位置平衡 • B.不能平衡,右端下降 • C.不能平衡,左端下降 • D.条件不足,无法判断
三、杠杆的动态变化新题型
• 【例5】如图所示,绳子OO′悬吊着 质量忽略不计的杆,在杆的a点挂上 重物G,在O右侧某点b处挂上钩 码.重物G的质量及a到O的距离不 变,要使杆保持水平,b点挂的钩码 个数(各个钩码质量相同)和b到O 的距离的关系是下列各图中哪一幅图 (B)

专题三:杠杆综合计算

专题三:杠杆综合计算

专题三:杠杆综合计算1.如图,用测力计将长杆一端A微微抬离地面,测力计示数是F1;同理,用测力计将长杆的另一端B微微抬离地面,测力计示数是F2。

则长杆的重力是(测力计保持竖直向上) ( ) A.(F1+F2)/2 B.F1+F2 C.F1/F2 D.F1×F2(1题)(2题)2.甲、乙两个身高相同的人抬着一个木箱沿斜坡上山,木箱的悬点恰好在抬杠的中央。

如图所示,则甲、乙两人所用的力F甲与F乙的关系是( )A.F甲=F乙B.F甲>F乙C.F甲<F乙D.已知条件不足,所以无法判断3.如图所示,一根均匀木尺放在水平桌面上,它的一端伸出桌面的外面,伸到桌面外面的部分长度是木尺长的1/4,在木尺末端的B点加一个作用力F,当力F=3N时,木尺的另一端A开始向上翘起,那么木尺受到的重力为( )A.3N B.9N C.1N D.2N(3题)(4题)4.如图甲所示,长1m的粗细均匀的光滑金属杆可绕O点转动,杆上有一光滑滑环,用竖直向上的测力计拉着滑环缓慢向右移动,使杆保持水平状态,测力计示数F与滑环离开O 点的距离S的关系如图所示,则杆重( )A.500N B.50N C.100N D.10N5.如图所示,长度为2L的轻质细杆可在竖直面内绕竖直墙壁上的固定转轴O无摩擦地转动。

AB为一段长度为1.5L的不可伸长的轻绳,绳AB能承受的最大拉力为F,现将绳的两端AB分别与墙壁及杆相连,使杆始终保持水平。

则杆的末端C处可悬挂重物的最大重力为_______。

(5题)(6题)6.如图所示,独轮车车身及车上物品总重力G为300N,作用线如图,O点为车轴。

将车把抬起时,作用在车把竖直向上的力至少为_______N。

独轮车属于_______(选填“省力”、“费力”)杠杆。

7.如图是人抬独轮车车把时的简化示意图,此时独轮车相当于一个_______杠杆(选填“省力”或“费力”);若动力臂是阻力臂的3倍,物体和车总重G为1200N,抬起车把的力F为_______N。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

低头角度θ/° 细线拉力F/N
0 15 30 45 60 0 7.3 14.0 20.2 25.0
(1)设头颅质量为8kg,当低头角度为60°时,颈部肌肉实际承受的拉力是 __2_0_0__N。
(2)在图乙中画出细线拉力的示意图。 解:如图所示
(3)请解释:为什么低头角度越大,颈部肌肉的拉力会越大? 答 : _人__低__头__的__角__度__越__大__,__G__的__力__臂__越__大_____________________________ 。
专项练习
1.如图所示,一根质地均匀的木杆可绕O点自由转动,在木杆的右端施 加一个始终垂直于杆的作用力F,使杆从OA位置匀速转到OB位置的过 程中,力F的大小将( C ) A.一直是变大的 B.一直是变小的 C.先变大,后变小 D.先变小,后变大
根据杠杆平衡条件F1L1=F2L2分析,将杠杆缓慢地由OA位置拉到水 平位置时,动力臂不变,阻力不变,阻力臂变大,所以动力变大。当杠 杆从水平位置拉到OB位置时,动力臂不变,阻力不变,阻力臂变小,所 以动力变小。故F先变大后变小。
1 2
L
(2)木棒的重力作用点在其长度二分之一处,随拉开角度θ的
增加,拉力F将如何变化?并写出拉力F与角度θ的关系式。
解:木棒的重力作用点在其长度二分之一处,随拉开角度θ的增加,拉力
F将变大,F与角度θ的关系式为F=
1 2
Gtanθ
【思路点拨】
(1)O为支点,沿力F的方向作出力的作用线,从O点作其垂线,垂线段长即F 的力臂。由θ=60°,得l=12 L。
木板原来是平衡的,两玩具车同时从O点附近分别向木板的两端匀速 运 动 , 若 保 持 木 板 平 衡 则 根 据 杠 杆 的 平 衡 条 件 有 : G1L1 = G2L2 , 即 : m1gv1t=m2gv2t,m1v1=m2v2,质量较小的车速度较大,故C正确。
3.〈2015·安徽〉如图所示,AB为能绕B点转动的轻质杠杆,中点C处用细 线悬挂一重物,在A端施加一个竖直向上大小为10N的拉力F,使杠杆在水 平位置保持平衡,则重物G=__2_0__N。若保持拉力方向不变,将A端缓慢 向上提升一小段距离,在提升的过程中,拉力 F将__不__变____(填“增大”“不变”或“减小”)。
(2)由右图可知随拉开角度θ的增加,l变小,LG变大,根据
杠杆的平衡条件得Fl=GLG,阻力G不变,所以动力F变 大;由图知l=cosθL,LG=12 sinθL, 根据杠杆的平衡条件有:F×cosθL=G×12 sinθL, 即:F=12 Gtanθ。
类型二 杠杆再平衡问题
杠杆再平衡的问题,实际上就是判断杠杆在发生变化前后,力和力臂的乘积 是否相等,乘积大的一端下降,乘积小的一端上升。
(1)如图甲,杠杆在水平位置,LBA=2LBC,杠杆平衡,
FLBA=GLBC,所以G=
F
LBA LBC
=10N 2LBC
LBC
=2×10N=20N;
(2)杠杆被拉起后,如图乙所示,BA′为动力臂,BC′为阻力臂,阻力不变
为G,△BC′D∽△BA′D′,BC′∶BA′=BD∶BD′=1∶2,杠杆
平衡,所以F′LBA′=GLBC′,F′=G
LBC LBA

=1
2
G=12
×20N=10N;
由此可知将杠杆A端缓慢提升一小段距离,力F的大小不变。
4.〈2015·扬州〉 “低头族”长时间低头看手机,会引起颈部肌肉损伤。当头 颅为竖直状态时,颈部肌肉的拉力为零,当头颅低下时,颈部肌肉会产生 一定的拉力。为了研究颈部肌肉的拉力与低头角度大小的关系,我们可以 建立一个头颅模型来模拟实验。如图甲所示,把人的颈椎简化成一个支点 O,用1kg的头颅模型在重力作用下绕着这个支点O转动,A点为头颅模型 的重心,B点为肌肉拉力的作用点。将细线的一端固定在B点,用弹簧测力 计拉着细线模拟测量肌肉的拉力,头颅模型在转动过程中,细线拉力的方 向始终垂直于OB,如图乙所示,让头颅模型从竖直状态开始转动,通过 实验记录出低头角度θ及细线拉力F的数据,如下表:
【例2】 〈2015·枣庄〉如图所示,杠杆处于平衡状态,
如果将物体A和B同时向靠近支点的方向移动相同的距
离,下列判断正确的是( C )
A.杠杆仍能平衡
B.杠杆不能平衡,右端下沉
C.杠杆不能平衡,左端下沉 D.无法判断
【思路点拨】 原来杠杆在水平位置处于平衡状态,如图所示,
此时作用在杠杆上的力分别等于物体A、B的重力,其 对 应 的 力 臂 分 别 为 OC 、 OD , 根 据 杠 杆 的 平 衡 条 件 可 得 : mAgOC = mBgOD,由图可知,OC>OD,所以mA<mB。当向支点移动相同的距离 ΔL时,两边的力臂都减小ΔL,此时左边为:mAg(OC-ΔL)=mAgOC- mAgΔL,右边为:mBg(OD-ΔL)=mBgOD-mBgΔL,由于mA<mB,所以 mAgΔL<mBgΔL;所以:mAgOC-mAgΔL>mBgOD-mBgΔL,因此杠杆不 能平衡,左端下沉。
专项突破 3 动态杠杆 专项解读
杠杆动态平衡是指构成杠杆的某些要素发生变化,而杠杆仍处于静 止状态或匀速转动状态,分析杠杆的动态平衡时,一般是动中取静,根 据杠杆平衡条件,分析比较,得出结论。
类型一 力或力臂变化问题
利用杠杆平衡条件F1l1=F2l2和控制变量法,抓住不变量,分析变量之 间的关系。
2.〈2015·厦门〉用细绳系住厚度不均匀的木板的O处,木板恰好处于静止
状态,且上表面保持水平。如图所示,两玩具车同时从O点附近分别向木
板的两端匀速运动,要使木板在此过程始终
保持平衡,必须满足的条件是( C )
A.两车的质量相等
B.两车的速度大小相等
C.质量较小的车Biblioteka 度较大 D.两车同时到达木板两端【例1】〈2015·杭州〉如右图所示,一根质量分布均匀的
木棒,质量为m,长度为L,竖直悬挂在转轴O处,在木棒
最下端用一方向始终水平向右的拉力F缓慢将木棒拉动到
与竖直方向夹角为θ的位置(转轴处摩擦不计),问:
(1)在图中画出θ=60°时拉力F的力臂l,并计算力臂的大小;
解:F的力臂l如右图所示,力臂的大小为
相关文档
最新文档