【月考试卷】河南省漯河市2015-2016学年八年级下第一次月考数学试卷含答案解析

合集下载

漯河市八年级下学期数学第一次月考试卷

漯河市八年级下学期数学第一次月考试卷

漯河市八年级下学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2016八下·宜昌期中) 式子在实数范围内有意义,则x的取值范围是()A . x>1B . x≥1C . x<1D . x≤12. (2分) (2019八下·岑溪期末) 下列式子中为最简二次根式的是()A .B .C .D .3. (2分)如图,在Rt△ABC中,∠C=90°,点B沿CB所在直线远离C点移动,下列说法不正确的是()A . 三角形面积随之增大B . ∠CAB的度数随之增大C . 边AB的长度随之增大D . BC边上的高随之增大4. (2分)关于四边形ABCD:①两组对边分别相等;②一组对边平行且相等;③一组对边平行且另一组对边相等;④两条对角线相等.以上四种条件中,可以判定四边形ABCD是平行四边形的有()A . ①②③④B . ①③④C . ①②D . ③④5. (2分) (2016九上·余杭期中) 如图,已知半径OD与弦AB互相垂直,垂足为点C,若AB=8,CD=3,则⊙O的半径为()A . 4B . 5C .D .6. (2分)下列二次根式中,最简二次根式是()A .B .C .D .7. (2分)若的整数部分是a,那么a应该等于()A . 3B . 5C . 4D . 不能确定8. (2分) (2018八下·韶关期末) 下列计算正确的是()A . +=B . ÷ =2C . ()-1=D . ( -1)2=210. (2分)如图,点O是△ABC的内切圆的圆心,若∠BAC=80°,则∠BOC=()A . 130°B . 100°C . 50°D . 65°二、填空题 (共6题;共9分)11. (2分) (2017八下·滨海开学考) 若 =-a,则a应满足的条件是________.12. (1分) (2015七下·定陶期中) 若实数m,m满足|m﹣2|+(n﹣2015)2=0,则m﹣1+n0=________.13. (2分) (2017八下·双柏期末) 如图,在四边形ABCD中,AB∥CD,请你添加一个条件,使得四边形ABCD 成为平行四边形,你添加的条件是________.14. (1分) (2019八上·无锡月考) 如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次变换,如果这样连续经过2020次变换后,等边△ABC的顶点C的坐标为________.15. (1分) (2016八上·龙湾期中) 直角三角形的两条直角边长为6,8,那么斜边上的中线长是________.16. (2分) (2020八上·邳州期末) 如图,已知某开发区有一块四边形空地ABCD,现计划在该空地上种植草皮,经测量∠ADC=90°,CD=6m,AD=8m,BC=24cm,AB=26m,若每平方米草皮需200元,则在该空地上种植草皮共需多少钱?三、解答题 (共6题;共52分)17. (20分) (2019八下·诸暨期中) 计算:(1)(2)18. (10分) (2017八上·余杭期中) 如图,正方形网格中的每个小正方形边长都是,图中虚线叫做格线,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形(只要求画出图形,不写作法和结论,作图需用黑笔描画):(1)使三角形为直角三角形,且不以格线为任意一边(在图中画一个即可);(2)使三角形的三边长分别为,,(在图中画一个即可);(3)使三角形为钝角三角形且面积为(在图中画一个即可).19. (10分) (2018八上·阿城期末) 先化简,再求值:,其中, .20. (5分)(2017·曹县模拟) 如图,四边形ABCD中,AD∥BC,∠A=90°,AD=1cm,AB=3cm,BC=5cm,动点P从点B出发以1cm/s的速度沿BC的方向运动,动点Q从点C出发以2cm/s的速度沿CD方向运动,P、Q两点同时出发,当Q到达点D时停止运动,点P也随之停止,设运动的时间为ts(t>0)(1)求线段CD的长;(2) t为何值时,线段PQ将四边形ABCD的面积分为1:2两部分?21. (5分)如图,在平行四边形ABCD中,点E在边BC上,点F在边AD的延长线上,且DF=BE,求证:BD∥EF.22. (2分)如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:ΔABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、10-1、二、填空题 (共6题;共9分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共6题;共52分) 17-1、17-2、18-1、18-2、18-3、19-1、20-1、20-2、21-1、22-1、22-2、。

2015-2016年河南省漯河市郾城区八年级(下)期中数学试卷(解析版)

2015-2016年河南省漯河市郾城区八年级(下)期中数学试卷(解析版)
2015-2016 学年河南省漯河市郾城区八年级(下)期中数学试卷
一、选择题(每题 3 分,共 30 分) 1. (3 分)下列式子一定是二次根式的是( A. B. C. ) D. )
2. (3 分)在下列四组线段中,能组成直角三角形的是( A.a=32,b=42,c=52 C.a=9,b=40,c=41
B.a=11,b=12,c=13 D.a:b:c=1:1:2 ) D.
3. (3 分)下列二次根式中属于最简二次根式的是( A. B. C.
4. (3 分)如图,在▱ABCD 中,AD=5,AB=3,AE 平分∠BAD 交 BC 边于点 E, 则线段 BE、EC 的长度分别为( )
A.1 和 4
B.4 和 1
13. (3 分)若菱形的两条对角线长分别是 6 和 8,则此菱形的周长是 面积是 14. (3 分)当 x= . ﹣1 时,代数式 x2+2x+2 的值是 .
15. (3 分)若直角三角形两直角边的比为 3:4,斜边长为 20,则此直角三角形 的周长为 .
第 2 页(共 18 页)
16. (3 分) 实数 a、 b 在数轴上对应点的位置如图所示: 则 3a﹣
参考答案与试题解析
一、选择题(每题 3 分,共 30 分) 1. (3 分)下列式子一定是二次根式的是( A. B. C. ) D.
【解答】解:根据二次根式的概念,知 A、B、C 中的被开方数都不会恒大于等于 0,故错误; D、因为 x2+2>0,所以一定是二次根式,故正确. 故选:D. 2. (3 分)在下列四组线段中,能组成直角三角形的是( A.a=32,b=42,c=52 C.a=9,b=40,c=41 )
第 1 页(共 18 页)

河南省漯河市八年级下学期数学第一次月考模拟卷

河南省漯河市八年级下学期数学第一次月考模拟卷

河南省漯河市八年级下学期数学第一次月考模拟卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)(2017·武汉模拟) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (2分) (2020七下·中山期末) 下列调查中,最适宜采用全面调查方式的是()A . 对全市中学生每天学习所用时间的调查B . 对全国中学生心理健康现状的调查C . 对全班学生体温情况的调查D . 对全市初中学生课外阅读量的调查3. (2分)如图,一个正在绘制的扇形统计图,整个圆表示某班参加体育活动的总人数,那么表示参加实心球训练的人数占总人数的35%的扇形是()A . EB . FC . GD . H4. (2分) (2020八下·哈尔滨月考) 三个正方形的面积如图,正方形A的面积为()A . 6B . 36C . 64D . 85. (2分)如图,边长为2的正方形ABCD中,点E、F分别在BC,CD上,△AEF是等边三角形,连接AC交EF 于G,下列结论:①∠DAF=15°;②AC垂直平分EF;③BE+DF=EF;④S△CEF=2S△ABE ,其中正确结论是()A . ①③B . ①③④C . ①②④D . ②④6. (2分)(2017·岱岳模拟) 如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE、BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD= AE2;④∠DFE=2∠DAC;⑤若连接CH,则CH∥EF,其中正确的个数为()A . 2个B . 3个C . 4个D . 5个7. (2分) (2019八下·北流期末) 点A,B均在由边长为1的正方形组成的网格的格点上,建立平面直角坐标系如图所示。

2015-2016八年级数学第一次月考试卷及答案

2015-2016八年级数学第一次月考试卷及答案

2015-2016学年度第一学期八年级第一次月考数 学 试 卷一、选择题(本大题共10小题,每小题3分,共30分)1.任意画一个三角形,它的三个内角之和为( )A .180°B .270°C .360°D .720°2.△ABC≌△DEF,且△ABC 的周长为100cm ,A 、B 分别与D 、E 对应,且AB=35cm ,DF=30cm ,则EF 的长为( )A .35cmB .30cmC .45cmD .55cm3.如果一个三角形的两边长分别为2和4,则第三边长可能是( )A .2B .4C .6D .84.如图1,在四边形ABCD 中,AB=AD ,CB=CD ,若连接AC 、BD 相交于点O ,则图中全等三角形共有( )A .1对B .2对C .3对D .4对5.如图2,一副分别含有30°和45°角的两个直角三角板,拼成如图,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD 的度数是( )A .15° B.25° C .30°D .10°6.过一个多边形的一个顶点的所有对角线把多边形分成6个三角形,则这个多边形的边数为( )A .5B .6C .7D .87.如图3,已知点A 、D 、C 、F 在同一直线上,且AB=DE ,BC=EF ,要使△ABC≌△DEF,还需要添加的一个条件是( )A .∠A=∠EDFB .∠B=∠EC .∠BCA=∠FD .BC∥EF8.具备下列条件的三角形ABC 中,不为直角三角形的是( )A .∠A+∠B=∠CB .∠A=∠B=∠C C .∠A=90°﹣∠BD .∠A﹣∠B=90°9.如图4,AM 是△ABC 的中线,若△ABM 的面积为4,则△ABC 的面积为( )A .2B .4C .6D .8图1 图2 图3 图4 图5 图610.如图5,在△ABC 中,∠ABC=45°,AC=8cm ,F 是高AD 和BE 的交点,则BF 的长是( )A .4cmB .6cmC .8cmD .9cm二、填空题(本大题共8个小题,每小题3分,共24分)11.三角形的重心是三角形的三条__________的交点.12.如图6,李叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原理是__________.13.如果一个等腰三角形有两边长分别为4和8,那么这个等腰三角形的周长为__________.14.如图,已知△ABD≌△CDB,且∠ABD=40°,∠CBD=20°,则∠A 的度数为__________.15.如图7,AB=AC ,要使△ABE≌△ACD,应添加的条件是__________(添加一个条件即可).16.下列条件:①一锐角和一边对应相等,②两边对应相等,③两锐角对应相等,其中能得到两个直角三角形全等的条件有__________(只填序号).17.如图9,已知∠B=46°,△ABC 的外角∠DAC 和∠ACF 的平分线交于点E ,则∠AEC=__________.18.如图1是二环三角形,可得S=∠A 1+∠A 2+…+∠A=360°,图2是二环四边形,可得S=∠A 1+∠A 2+…+∠A 7=720°,图3是二环五边形,可得S=1080°,…聪明的同学,请你根据以上规律直接写出二环n 边形(n≥3的整数)中,S=__________.(用含n 的代数式表示最后结果)三、解答题(本大题共8小题,共66分)19.如图,点B 在线段AD 上,BC∥DE,AB=ED ,BC=DB .求证:∠A=∠E.图4图7 图8 图920.一个多边形的外角和是内角和的,求这个多边形的边数.21.如图所示,将长方形ABCD沿DE折叠,使点C恰好落在BA边上,得到点C′,若∠C′EB=40°,求∠EDC′的度数.22.如图,在△ABC中,∠B=40°,∠C=60°,AD⊥BC于D,AE是∠BAC的平分线.(1)求∠DAE的度数;(2)写出以AD为高的所有三角形.23.如图,已知Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,BC与DE相交于点F,连接CD,EB.(1)图中还有几对全等三角形,请你一一列举;(2)求证:CF=EF.24.如图,O是△ABC内任意一点,连接OB、OC.(1)求证:∠BOC>∠A;(2)比较AB+AC与OB+OC的大小,并说明理由.25.看图回答问题:(1)内角和为2014°,小明为什么不说不可能?(2)小华求的是几边形的内角和?(3)错把外角当内角的那个外角的度数你能求出来吗?它是多少度?26.如图1,在△ABC中,∠BAC=90°,AB=AC,AE是过A的一条直线,且B,C在AE 的异侧,BD⊥AE于点D,CE⊥AE于点E.(1)求证:BD=DE+CE;(2)若直线AE绕点A旋转到图2位置时(BD<CE),其余条件不变,问BD与DE,CE 的关系如何,请证明;(3)若直线AE绕点A旋转到图3时(BD>CE),其余条件不变,BD与DE,CE的关系怎样?请直接写出结果,不须证明.(4)归纳(1),(2),(3),请用简捷的语言表述BD与DE,CE的关系.参考答案一、选择题1.:A.2. A.3 B.4.:C.5. A.6. D.7. B.8. D.9. D.10. C.二、填空题(本大题共8个小题,每小题3分,共24分)11:中线.12:三角形的稳定性.13.:20.14.120°.15.∠B=∠C或AE=AD.16①②.17.67°.18. 360(n﹣2)度.三、解答题(本大题共8小题,共66分)19.证明:如图,∵BC∥D E,∴∠ABC=∠BDE.在△ABC与△EDB中,∴△ABC≌△EDB(SAS),∴∠A=∠E.20..解:设这个多边形的边数为n,依题意得:(n﹣2)180°=360°,解得n=9.答:这个多边形的边数为9.21.解:由题意得△DEC≌△DEC',∴∠CED=∠DEC',∵∠C′EB=40°,∴∠CED=∠DEC'=,∴∠EDC′=90°﹣70°=20°.22.解:(1)∵在△ABC中,AE是∠BAC的平分线,且∠B=40°,∠C=60°,∴∠BAE=∠EAC=(180°﹣∠B﹣∠C)=(180°﹣40°﹣60°)=40°.在△ACD中,∠ADC=90°,∠C=60°,∴∠DAC=180°﹣90°﹣60°=30°,∠EAD=∠EAC﹣∠DAC=40°﹣30°=10°.(2)以AD为高的所有三角形:△ABC、△ABD、△ACE、△ABE、△ADF和△ACD.23.(1)解:△ADC≌△ABE,△CDF≌△EBF;(2)证法一:连接CE,∵Rt△ABC≌Rt△ADE,∴AC=AE.∴∠ACE=∠AEC(等边对等角).又∵Rt△ABC≌Rt△ADE,∴∠ACB=∠AE D.∴∠ACE﹣∠ACB=∠AEC﹣∠AED.即∠BCE=∠DEC.∴CF=EF.24.解:(1)证明:延长BO交AC于点D,∴∠BOC>∠ODC,又∠ODC>∠A,∴∠BOC>∠A;(2)AB+AC>OB+OC,∵AB+AD>OB+OD,OD+CD>OC,∴AB+AD+CD>OB+OC,即:AB+AC >OB+OC.25.解:(1)∵n边形的内角和是(n﹣2)•180°,∴内角和一定是180度的倍数,∵2014÷180=11…34,∴内角和为2014°不可能;(2)依题意有(x﹣2)•180°<2014°,解得x<13.因而多边形的边数是13,故小华求的是十三边形的内角和;(2)13边形的内角和是(13﹣2)×180°=1980°,2014°﹣1980°=34°,因此这个外角的度数为34°.26.(1)证明:在△ABD和△CAE中,∵∠CAD+∠BAD=90°,∠BAD+∠ABD=90°,∴∠CAD=∠ABD.又∠ADB=∠AEC=90°,AB=AC,∴△ABD≌△CAE.(AAS)∴BD=AE,AD=CE.又AE=AD+DE,∴AE=DE+CE,即BD=DE+CE.(2)BD=DE﹣CE.证明:∵∠BAC=90°,∴∠BAD+∠CAE=90°.又∵BD⊥DE,∴∠BAD+∠ABD=90°,∴∠ABD=∠CAE.又AB=AC,∠ADB=∠CEA=90°,∴△ADB≌△CEA.∴BD=AE,AD=CE.∵DE=AD+AE,∴DE=CE+BD,即 BD=DE﹣CE.(3)同理:BD=DE﹣CE.(4)当点BD、CE在AE异侧时,BD=DE+CE;当点BD、CE在AE同侧时,BD=DE﹣CE.。

2015-2016年河南省漯河市召陵区八年级(下)第二次月考数学试卷(解析版)

2015-2016年河南省漯河市召陵区八年级(下)第二次月考数学试卷(解析版)

2015-2016学年河南省漯河市召陵区八年级(下)第二次月考数学试卷一、选择题(每小题3分,共30分)1.(3分)已知一个正方形的面积是5,那么它的边长是()A.5B.C.D.以上都不对2.(3分)要使式子有意义,a的取值范围是()A.a≠0B.a>﹣2且a≠0C.a>﹣2或a≠0D.a≥﹣2且a≠0 3.(3分)化简的正确结果是()A.(m﹣5)B.(5﹣m)C.m﹣5D.5﹣m4.(3分)下列三角形中是直角三角形的是()A.三边之比为5:6:7B.三边满足关系a+b=cC.三边之长为9、40、41D.其中一边等于另一边的一半5.(3分)一艘轮船以16nmile/h的速度从港口A出发向东北方向航行,另一轮船以12nmile/h 的速度从港口A出发向东南方向航行,则3h后两船相距()A.36nmile B.48nmile C.60nmile D.54nmile6.(3分)国家级历史文化名城﹣﹣金华,风光秀丽,花木葱茏.某广场上一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有AB∥EF∥DC,BC∥GH∥AD,那么下列说法中错误的是()A.红花,绿花种植面积一定相等B.紫花,橙花种植面积一定相等C.红花,蓝花种植面积一定相等D.蓝花,黄花种植面积一定相等7.(3分)菱形具有而矩形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补8.(3分)已知n是一个正整数,是整数,则n的最小值是()A.3B.5C.15D.259.(3分)如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为()A.6B.12C.20D.2410.(3分)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,正方形A的边长为6cm,B的边长为5cm,C的边长为5cm,则正方形D的边长为()A.cm B.4cm C.cm D.3cm二、填空题(每小题3分,共21分)11.(3分)化简:=.12.(3分)在△ABC中,∠C=90°,AB=10,AC=6,则另一边BC=,面积为,AB边上的高为.13.(3分)如图,已知矩形ABCD的对角线长为8cm,E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH的周长等于cm.14.(3分)我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图(1)).图(2)由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若正方形EFGH的边长为2,则S1+S2+S3=.15.(3分)如图,以正方形ABCD的对角线AC为一边作菱形AEFC,则∠F AB=.16.(3分)若x,y为实数,且|x+2|+=0,则(x+y)2014的值为.17.(3分)如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24cm,△OAB的周长是18cm,则EF=cm.三、解答题(共69分)18.(12分)(1)化简(+2)﹣(2)计算:(+)×(4﹣3)÷2(+6)(3﹣)19.(5分)如图,修公路遇到一座山,于是要修一条隧道,为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C在AB的延长线上,设想过点C作直线AB的垂线l,过点B作一直线(在山的旁边经过),与l相交于D点,经测量∠ABD=135°,BD=800m,求直线l上距离D点多远的C处开挖?(≈1.414,精确到1米)20.(6分)如图,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点,作正方形DEFG,连接AE,若BC=DE=2,将正方形DEFG绕点D逆时针方向旋转,在旋转过程中,当AE为最大值时,求AF的值.21.(6分)先化简,再求值:(+)2﹣(﹣)(+),其中a=3,b=4.22.(6分)如图,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶D的仰角为30°,在A、C之间选择一点B(A、B、C三点在同一直线上).用测角仪测得塔顶D的仰角为75°,且AB间的距离为40m.(1)求点B到AD的距离;(2)求塔高CD(结果用根号表示).23.(8分)已知,如图,在▱ABCD中,AE⊥BC,垂足为E,CE=CD,点F为CE的中点,点G为CD上的一点,连接DF、EG、AG,∠1=∠2.(1)若CF=2,AE=3,求BE的长;(2)求证:∠CEG=∠AGE.24.(8分)能够成为直角三角形边长的三个正整数,我们称之为一组勾股数,观察表格所给出的三个数a,b,c,a<b<c.(1)试找出它们的共同点,并证明你的结论;(2)写出当a=17时,b,c的值.25.(9分)学校科技小组研制了一套信号发射、接收系统.在对系统进行测试中(如图),小明从路口A处出发,沿东南方向笔直公路行进,并发射信号,小华同时从A处出发,沿西南方向笔直公路行进,并接收信号.若小明步行速度为39米/分,小华步行速度为52米/分,恰好在出发后30分时信号开始不清晰.(1)你能求出他们研制的信号收发系统的信号传送半径吗?(以信号清晰为界限)(2)通过计算,你能找到题中数据与勾股数3、4、5的联系吗?试从中寻找求解决问题的简便算法.26.(9分)已知正方形ABCD的边长为a,两条对角线AC、BD相交于点O,P是射线AB 上任意一点,过P点分别作直线AC、BD的垂线PE、PF,垂足为E、F.(1)如图1,当P点在线段AB上时,求PE+PF的值.(2)如图2,当P点在线段AB的延长线上时,求PE﹣PF的值.2015-2016学年河南省漯河市召陵区八年级(下)第二次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)已知一个正方形的面积是5,那么它的边长是()A.5B.C.D.以上都不对【解答】解:∵正方形的面积是5,∴它的边长是.故选:B.2.(3分)要使式子有意义,a的取值范围是()A.a≠0B.a>﹣2且a≠0C.a>﹣2或a≠0D.a≥﹣2且a≠0【解答】解:根据题意,得解得a≥﹣2且a≠0.故选:D.3.(3分)化简的正确结果是()A.(m﹣5)B.(5﹣m)C.m﹣5D.5﹣m【解答】解:∵有意义,∴5﹣m≥0,即m≤5,∴原式=(5﹣m).故选:B.4.(3分)下列三角形中是直角三角形的是()A.三边之比为5:6:7B.三边满足关系a+b=cC.三边之长为9、40、41D.其中一边等于另一边的一半【解答】解:A、∵52+62≠72,可判断此三边不能构成直角三角形,此选项错误;B、三边满足a+b=c,不一定能判断此三角形是直角三角形,此选项错误;C、∵92+402=412,能判断此三角形是直角三角形,此选项正确;D、其中一边等于另一边的一半,不一定能判断此三角形是直角三角形,此选项错误;故选:C.5.(3分)一艘轮船以16nmile/h的速度从港口A出发向东北方向航行,另一轮船以12nmile/h 的速度从港口A出发向东南方向航行,则3h后两船相距()A.36nmile B.48nmile C.60nmile D.54nmile【解答】解:∵一轮船以16n mi1e/h的速度从港口A出发向东北方向航行,另一轮船以12n mi1e/h的速度同时从港口A出发向东南方向航行,∴∠BAC=90°,离开港口A3h后,AB=48n mi1e,AC=36n mi1e,∴BC==60(n mi1e).答:3h后两船相距60n mi1e.故选:C.6.(3分)国家级历史文化名城﹣﹣金华,风光秀丽,花木葱茏.某广场上一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有AB∥EF∥DC,BC∥GH∥AD,那么下列说法中错误的是()A.红花,绿花种植面积一定相等B.紫花,橙花种植面积一定相等C.红花,蓝花种植面积一定相等D.蓝花,黄花种植面积一定相等【解答】解:∵AB∥EF∥DC,BC∥GH∥AD∴GH、BD、EF把一个平行四边形分割成四个小平行四边形,∴一条对角线可以把一个平行四边形的面积一分为二,得S黄=S蓝,(故D正确)S绿=S红,(故A正确)S(紫+黄+绿)=S(橙+红+蓝),根据等量相减原理知S紫=S橙,(故B正确)S红与S蓝显然不相等.(故C错误)故选:C.7.(3分)菱形具有而矩形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补【解答】解:A、菱形对角线相互垂直,而矩形的对角线则不垂直;故本选项符合要求;B、矩形的对角线相等,而菱形的不具备这一性质;故本选项不符合要求;C、菱形和矩形的对角线都互相平分;故本选项不符合要求;D、菱形对角相等;但菱形不具备对角互补,故本选项不符合要求;故选:A.8.(3分)已知n是一个正整数,是整数,则n的最小值是()A.3B.5C.15D.25【解答】解:∵=3,若是整数,则也是整数;∴n的最小正整数值是15;故选:C.9.(3分)如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为()A.6B.12C.20D.24【解答】解:在Rt△BCE中,由勾股定理,得CE===5.∵BE=DE=3,AE=CE=5,∴四边形ABCD是平行四边形.四边形ABCD的面积为BC•BD=4×(3+3)=24,故选:D.10.(3分)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,正方形A的边长为6cm,B的边长为5cm,C的边长为5cm,则正方形D的边长为()A.cm B.4cm C.cm D.3cm【解答】解:设正方形D的边长为x.则6×6+5×5+5×5+x2=100;解得x=.故选:A.二、填空题(每小题3分,共21分)11.(3分)化简:=.【解答】解:原式=3﹣2=.故答案为:.12.(3分)在△ABC中,∠C=90°,AB=10,AC=6,则另一边BC=8,面积为24,AB边上的高为 4.8.【解答】解:根据勾股定理,得:BC==8,面积是×6×8=24,AB边上的高为=4.8,故答案为8,24,4.813.(3分)如图,已知矩形ABCD的对角线长为8cm,E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH的周长等于16cm.【解答】解:如图,连接AC、BD,∵四边形ABCD是矩形,∴AC=BD=8cm,∵E、F、G、H分别是AB、BC、CD、DA的中点,∴HG=EF=AC=4cm,EH=FG=BD=4cm,∴四边形EFGH的周长等于4cm+4cm+4cm+4cm=16cm,故答案为:16.14.(3分)我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图(1)).图(2)由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若正方形EFGH的边长为2,则S1+S2+S3=12.【解答】解:∵八个直角三角形全等,四边形ABCD,EFGH,MNKT是正方形,∴CG=KG,CF=DG=KF,∴S1=(CG+DG)2=CG2+DG2+2CG•DG=GF2+2CG•DG,S2=GF2,S3=(KF﹣NF)2=KF2+NF2﹣2KF•NF,∴S1+S2+S3=GF2+2CG•DG+GF2+KF2+NF2﹣2KF•NF=3GF2=12,故答案是:12.15.(3分)如图,以正方形ABCD的对角线AC为一边作菱形AEFC,则∠F AB=22.5°.【解答】解:∵四边形ABCD为正方形,AC为对角线,∴∠DAC=∠CAB=45°.∵四边形AEFC为菱形,AF为对角线,∴AF平分∠CAB,∴∠F AB=∠CAB=22.5°.故答案为:22.5°.16.(3分)若x,y为实数,且|x+2|+=0,则(x+y)2014的值为1.【解答】解:由题意,得:,解得;∴(x+y)2014=(﹣2+3)2014=1;故答案为1.17.(3分)如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24cm,△OAB的周长是18cm,则EF=3cm.【解答】解:∵四边形ABCD是平行四边形,∴OA=AC,OB=BD,∵AC+BD=24cm,∴OA+OB=12cm,∵△OAB的周长是18cm,∴AB=6cm,∵点E,F分别是线段AO,BO的中点,∴EF=AB=3cm.故答案为:3.三、解答题(共69分)18.(12分)(1)化简(+2)﹣(2)计算:(+)×(4﹣3)÷2(+6)(3﹣)【解答】解:(1)(+2)﹣=a+2﹣a=2;(2)(+)×==3+;(4﹣3)÷2==2﹣;(+6)(3﹣)==.19.(5分)如图,修公路遇到一座山,于是要修一条隧道,为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C在AB的延长线上,设想过点C作直线AB的垂线l,过点B作一直线(在山的旁边经过),与l相交于D点,经测量∠ABD =135°,BD=800m,求直线l上距离D点多远的C处开挖?(≈1.414,精确到1米)【解答】解:∵CD⊥AC,∴∠ACD=90°,∵∠ABD=135°,∴∠DBC=45°,∴∠D=45°,∴CB=CD,在Rt△DCB中:CD2+BC2=BD2,2CD2=8002,CD=400≈566(米),答:直线L上距离D点566米的C处开挖.20.(6分)如图,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点,作正方形DEFG,连接AE,若BC=DE=2,将正方形DEFG绕点D逆时针方向旋转,在旋转过程中,当AE为最大值时,求AF的值.【解答】解:如图,当A,D,E三点在一条直线上,且点D在线段AE上时,AE的长最大,∵△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点,BC=2,∴AD=BC=1,此时,AE=AD+DE=1+2=3,∵正方形DEFG中,∠E=90°,∴在Rt△AEF中,AF===.21.(6分)先化简,再求值:(+)2﹣(﹣)(+),其中a=3,b=4.【解答】解:原式=a+b+2﹣(a﹣b)=a+b+2﹣a+b=2b+2,当a=3,b=4时,原式=8+4.22.(6分)如图,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶D的仰角为30°,在A、C之间选择一点B(A、B、C三点在同一直线上).用测角仪测得塔顶D的仰角为75°,且AB间的距离为40m.(1)求点B到AD的距离;(2)求塔高CD(结果用根号表示).【解答】解:(1)过点B作BE⊥AD于点E,∵AB=40m,∠A=30°,∴BE=AB=20m,AE==20m,即点B到AD的距离为20m;(2)在Rt△ABE中,∵∠A=30°,∴∠ABE=60°,∵∠DBC=75°,∴∠EBD=180°﹣60°﹣75°=45°,∴DE=EB=20m,则AD=AE+EB=20+20=20(+1)(m),在Rt△ADC中,∠A=30°,∴DC==(10+10)m.答:塔高CD为(10+10)m.23.(8分)已知,如图,在▱ABCD中,AE⊥BC,垂足为E,CE=CD,点F为CE的中点,点G为CD上的一点,连接DF、EG、AG,∠1=∠2.(1)若CF=2,AE=3,求BE的长;(2)求证:∠CEG=∠AGE.【解答】(1)解:∵CE=CD,点F为CE的中点,CF=2,∴DC=CE=2CF=4,∵四边形ABCD是平行四边形,∴AB=CD=4,∵AE⊥BC,∴∠AEB=90°,在Rt△ABE中,由勾股定理得:BE==;(2)证明:过G作GM⊥AE于M,∵AE⊥BE,GM⊥AE,∴GM∥BC∥AD,∵在△DCF和△ECG中,,∴△DCF≌△ECG(AAS),∴CG=CF,CE=CD,∵CE=2CF,∴CD=2CG,即G为CD中点,∵AD∥GM∥BC,∴M为AE中点,∴AM=EM(一组平行线在一条直线上截得的线段相等,那么在另一条直线上截得的线段也相等),∵GM⊥AE,∴AG=EG,∴∠AGM=∠EGM,∴∠AGE=2∠MGE,∵GM∥BC,∴∠EGM=∠CEG,∴∠CEG=∠AGE.24.(8分)能够成为直角三角形边长的三个正整数,我们称之为一组勾股数,观察表格所给出的三个数a,b,c,a<b<c.(1)试找出它们的共同点,并证明你的结论;(2)写出当a=17时,b,c的值.【解答】解:(1)以上各组数的共同点可以从以下方面分析:①以上各组数均满足a2+b2=c2;②最小的数(a)是奇数,其余的两个数是连续的正整数;③最小奇数的平方等于另两个连续整数的和,如32=9=4+5,52=25=12+13,72=49=24+25,92=81=40+41…由以上特点我们可猜想并证明这样一个结论:设m为大于1的奇数,将m2拆分为两个连续的整数之和,即m2=n+(n+1),则m,n,n+1就构成一组简单的勾股数,证明:∵m2=n+(n+1)(m为大于1的奇数),∴m2+n2=2n+1+n2=(n+1)2,∴m,n,(n+1)是一组勾股数;(2)运用以上结论,当a=17时,∵172=289=144+145,∴b=144,c=145.25.(9分)学校科技小组研制了一套信号发射、接收系统.在对系统进行测试中(如图),小明从路口A处出发,沿东南方向笔直公路行进,并发射信号,小华同时从A处出发,沿西南方向笔直公路行进,并接收信号.若小明步行速度为39米/分,小华步行速度为52米/分,恰好在出发后30分时信号开始不清晰.(1)你能求出他们研制的信号收发系统的信号传送半径吗?(以信号清晰为界限)(2)通过计算,你能找到题中数据与勾股数3、4、5的联系吗?试从中寻找求解决问题的简便算法.【解答】解:(1)根据题意,得两条直角边分别是:39×30=1170,52×30=1560,利用勾股定理求出半径为=1950米;(2)小明所走的路程为39×30=3×13×30,小华所走的路程为52×30=4×13×30,根据前面的探索,可知勾股数3,4,5的倍数仍能构成一组勾股数,故所求半径为5×13×30=1950(米).26.(9分)已知正方形ABCD的边长为a,两条对角线AC、BD相交于点O,P是射线AB 上任意一点,过P点分别作直线AC、BD的垂线PE、PF,垂足为E、F.(1)如图1,当P点在线段AB上时,求PE+PF的值.(2)如图2,当P点在线段AB的延长线上时,求PE﹣PF的值.【解答】解:(1)∵ABCD是正方形,∴AC⊥BD,∵PF⊥BD,∴PF∥AC,同理PE∥BD,∴四边形PFOE为矩形,故PE=OF.又∵∠PBF=∠BPF=45°,∴PF=BF.∴PE+PF=OF+FB=OB=a cos45°=a.(2)∵四边形ABCD是正方形,∴AC⊥BD,∵PF⊥BF,∴PF∥AC,同理PE∥BD,∴四边形PFOE为矩形,故PE=OF.又∵∠PBF=∠OBA=45°,∴PF=BF.又∵BC=a,∴PE﹣PF=OF﹣BF=OB=BC cos45°=a cos45°=a.。

河南省漯河市八年级下学期第一次月考数学试卷

河南省漯河市八年级下学期第一次月考数学试卷

河南省漯河市八年级下学期第一次月考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2017八下·红桥期中) 下列各式是二次根式的是()A .B .C .D .2. (2分)估计的运算结果应在()A . 5到6之间B . 6到7之间C . 7到8之间D . 8到9之间3. (2分)若关于x的一元二次方程mx2﹣2x+1=0有实数根,则实数m的取值范围是()A . m≥1B . m≤1C . m≥1且m≠0D . m≤1且m≠04. (2分)下列函数中,自变量x的取值范围是x>2的函数是()A . y=B . y=C . y=D . y=5. (2分) (2016九上·岳池期末) 如果a、b是两个不相等的实数,且满足a2﹣a=2,b2﹣b=2,那么代数式2a2+ab+2b﹣2015的值为()A . 2011B . ﹣2011C . 2015D . ﹣20156. (2分)用配方法把代数式x2-4x+5变形,所得结果是()A . (x-2)2+1B . (x-2)2-9C . (x+2)2-1D . (x+2)2-57. (2分)湛江市2009年平均房价为每平方米4000元.连续两年增长后,2011年平均房价达到每平方米5500元,设这两年平均房价年平均增长率为x,根据题意,下面所列方程正确的是()A . 5500(1+x)2=4000B . 5500(1﹣x)2=4000C . 4000(1﹣x)2=5500D . 4000(1+x)2=55008. (2分)(2017·临沂模拟) 若x=﹣2是关于x的一元二次方程x2+ ax﹣a2=0的一个根,则a的值为()A . ﹣1或4B . ﹣1或﹣4C . 1或﹣4D . 1或49. (2分)实数a、b在数轴上对应的位置如图,则−=()A . b-aB . 2-aC . a-bD . 2+a10. (2分)(2016·邵阳) 分式方程 = 的解是()A . x=﹣1B . x=1C . x=2D . x=3二、填空题) (共7题;共11分)11. (4分)计算:=________,=________,=________,(x>0,y>0)=________.12. (1分)如图,P为正方形ABCD内一点,且PC=3,∠APB=135°,将△APB绕点B顺时针旋转90°得到△CP′B,连接PP′.若BP的长为整数,则AP=________ .13. (1分)设m、n是一元二次方程x2+2x﹣7=0的两个根,则m2+mn+n2=________.14. (2分)在3和4之间找出两个无理数:________和________.15. (1分)(2018·西华模拟) 关于x的一元二次方程x2- x+sinα=0有两个相等的实数根,则锐角α=________.16. (1分)已知x= +1,则x2﹣2x﹣3=________.17. (1分) (2016八下·高安期中) 已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,则Rt△ABC的面积等于________.三、解答题 (共7题;共70分)18. (20分) (2019七下·普陀期中) 计算:(1)计算:(2)计算:(3)计算:(4)计算:19. (10分) (2017九上·上杭期末) 解方程:(1)4x2﹣9=0(2)x(2x﹣5)=4x﹣10.20. (5分) (2017七下·汇川期中) 若a、b满足|a﹣2|+ =0,求代数式的值.21. (10分)(2019·梁平模拟) 已知x1 , x2是一元二次方程2x2﹣2x+m+1=0的两个实数根.(1)求实数m的取值范围;(2)如果x1,x2满足不等式7+4x1x2>x12+x22,且m为整数,求m的值.22. (10分)(2018·路北模拟) 在由6个边长为1的小正方形组成的方格中:(1)如图(1),A、B、C是三个格点(即小正方形的顶点),判断AB与BC的关系,并说明理由;(2)如图(2),连结三格和两格的对角线,求∠α+∠β的度数(要求:画出示意图并给出证明)23. (5分)某商店9月份的利润是2500元,要使11月的利润达到3600元,平均每月增长的百分率是多少?24. (10分)(2017·北区模拟) 如图①,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M,N分别是斜边AB,DE的中点,点P为AD的中点,连接AE、BD、MN.(1)求证:△PMN为等腰直角三角形;(2)现将图①中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图②,AE与MP,BD分别交于点G、H,请判断①中的结论是否成立,若成立,请证明;若不成立,请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题) (共7题;共11分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题 (共7题;共70分)18-1、18-2、18-3、18-4、19-1、19-2、20-1、21-1、21-2、22-1、22-2、23-1、24-1、24-2、。

河南省漯河市八年级下学期数学第一次月考试卷

河南省漯河市八年级下学期数学第一次月考试卷

河南省漯河市八年级下学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2019八上·荣昌期末) 下列图形中,是轴对称图形的是()A .B .C .D .2. (2分)下列事件中,必然事件是()A . 任意掷一枚均匀的硬币,正面朝上B . 打开电视正在播放甲型H1N1流感的相关知识C . 某射击运动员射击一次,命中靶心D . 在只装有5个红球的袋中摸出1球,是红球3. (2分)(2014·金华) 如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=20°,则∠B的度数是()A . 70°B . 65°C . 60°D . 55°4. (2分)如图,在平行四边形ABCD中,BC=7厘米,CD=5厘米,∠D=50°,BE平分∠ABC,下列结论中错误的是()A . ∠C=130°B . ∠BED=130°C . AE=5厘米D . ED=2厘米5. (2分) (2019八下·东莞月考) 如图,四边形ABCD是菱形,AC=8,AD=5,DH⊥AB于点H ,则DH的长为()A . 24B . 10C . 4.8D . 66. (2分)如图,矩形ABCD沿AE折叠,使点D落在BC边上的F点处,如果∠BAF=60°,那么∠DAE等于().A . 15°B . 30°C . 45°D . 60°7. (2分)如图,在□ABCD中,AB=4cm,AD=7cm,∠ABC的平分线交AD于点E ,交CD的延长线于点F ,则DF=().A . 3cmB . 2cmC . 4cmD . 3.5cm8. (2分) (2019九上·辽阳期末) 下列命题正确的是()A . 一组对边相等,另一组对边平行的四边形是平行四边形B . 对角线相互垂直的四边形是菱形C . 对角线相等的四边形是矩形D . 对角线相互垂直平分且相等的四边形是正方形二、填空题 (共10题;共11分)9. (1分) (2016八下·黄冈期中) 平行四边形ABCD中,∠A=2∠B,则∠C=________.10. (2分) (2017八下·双柏期末) 如图,在四边形ABCD中,AB∥CD,请你添加一个条件,使得四边形ABCD 成为平行四边形,你添加的条件是________.11. (1分) (2019八上·织金期中) 已知直角三角形的两条直角边分别为3cm、4cm,那么斜边为________cm;12. (1分) (2018八下·宁远期中) 已知三点A、B、O.如果点A'与点A关于点O对称,点B'与点B关于点O对称,那么线段AB与A'B'的关系是________.13. (1分)袋子里有6只红球,4只白球,每只球除颜色以外都相同,从中任意摸出1只球,是红的可能性________ 选填“大于”“小于”或“等于”)是白球的可能性.14. (1分) (2019八下·温州期中) 如图,在▱ABCD中,AB=6,AD=8,∠B=60°,∠BAD与∠CDA的角平分线AE、BF相交于点G,且交BC于点E、F,则图中阴影部分的面积是________.15. (1分)(2016·黄陂模拟) 如图,四边形ABCD中,两对角线相交于E,且E为对角线BD的中点,∠DAE=30°,∠BCE=120°.若CE=1,BC=2,则AC的长为________.16. (1分)(2018·安徽模拟) 如图,E,F,G,H分别是BD,BC,AC,AD的中点,且AB=CD.下列结论:①EG⊥FH,②四边形EFGH是矩形,③HF平分∠EHG,④EG= (BC-AD),⑤四边形EFGH是菱形.其中正确的是________(把所有正确结论的序号都选上).17. (1分)已知梯形ABCD中,AD∥BC,AB=15,CD=13,AD=8,∠B是锐角,∠B的正弦值为,那么BC 的长为________ .18. (1分) (2019八下·湖南期中) 如图,AD 是△ABC 的角平分线,DE,DF 分别是△BAD 和△ACD 的高,得到下列四个结论:①OA=OD;②AD⊥EF;③当∠A=90°时,四边形 AEDF 是正方形;④AE+DF=AF+DE.其中正确是________(填序号).三、解答题 (共5题;共36分)19. (2分)(2018·峨眉山模拟) 如图,在□ 中,、分别为边、的中点,是对角线,求证: = .20. (7分) (2020九上·长兴期末) 在一个不透明的盒子中装有5张卡片,5张卡片的正面分别标有数字1,2,3,4,5,这些卡片除数字外,其余都相同。

华师大版2015-2016学年度八年级数学下册第一次月考试题及答案

华师大版2015-2016学年度八年级数学下册第一次月考试题及答案

2015-2016 学 年 八 年 级 ( 下 ) 数 学x 2 9 x 311、当 x__________时,分式分式 的值为 0;分式、直角坐标系)12、 1纳米 =10 9 米,用科学记数法表示: 360纳米=_____________ 米( 满分: 120分;考试时间: 120分钟 ) 成绩:一 、 选 择 题 :(本大题共10小题 ,每小题 3分 ,共30分)1 x13、若分式 14、若方程 的值为负数,则 x 的取值范围是__________;3x 2 1、 在代数式 3x+ 、 、 、 、 、 、 中,分式有( )) . 6x y 3 1 52 1 23 2ab c mxa b 2 3 有增根,则m 的值为 ___________ ; 2 A 、 4个 B 、 3个a C 、 2个 5 D 、 12 个a5 y x 2 4 2 x2 x 2x x +y2、如果分式 中的 x 和 y 都扩大为原来的 2 倍,那么分式的值( 15、函数 y=的自变量的取值范围是 .1 2 x 1A 、扩大 2 倍B 、扩大 4 倍C 、不变D 、缩小 2 倍16、已知点 P ( x , x+y )与点 Q ( y+5, x-7)关于 x 轴对称,则点 Q 坐标为______x 1 x yy 2 x 1 x y 2 2 2 23 、下面各分式: , , , ,其中最简分式有( )个。

三 、 解 答 题 : ( )x x 2 x 1 x y2本大题共 2小题 ,共38分 x 2 17、计算:( 1 、 2 题各 3 分, 3-6 题各 4 分,共18分)A. 4B. 3C. 2D. 1a2 ab a b 4、纳米是一种长度单位, 1纳米 =10 米,已知某种植物花粉的直径约为 35000纳米,那么用科学记数-9 a b 3(2). ( ) b a 2( 1).a b32 3法表示该种花粉的直径为 A 、 3.5× 10 B 、35×10 ( )米a2 C 、 3.5×10-9 D 、 3.5× 10-54 -6 5、一件工程甲单独做 a 小时完成,乙单独做 b 小时完成,甲、乙二人合作完成此项工作需 要的小时数是 ( ) 1 abA 、 a +bB 、C 、D 、 1 1 a b a b6 、A 、 B 两地相距48千米,一艘轮船从 A 地顺流航行至 B 地,又立即从 B 地逆流返回 A 地,共用去 9 小 a b1 1 x7 a 4(4)时,已知水流速度为 4 千米 / 时,若设该轮船在静水中的速度为 x 千米 / 时,则可列方程() ( 3). (a 3 )2x 6 x 3 2(x 2 9)a 3 2a 6A 、B 、C D48 4896 964848489 4 99 23 69x 4 x 4 4 xxx 4 x 47 、解分式方程 , 分以下四步 , 其中 , 错误的一步是 ( ) x 1 x 1 x 2 1A 、方程两边分式的最简公分母是 (x-1)(x+1)B 、方程两边都乘以 (x-1)(x+1), 得整式方程2(x-1)+3(x+1)=6C 、解这个整式方程 , 得x=1 8、函数 y= 自变量 x 的取值范围是( A 、 3≥1 且 x ≠3B 、 x ≥1C 、 x ≠3D 、原方程的解为 x=1a 2a 4 1)b a a 2ab b 2 1 1 3 2 2 2 2 ( + ) ( 6 ) ) x - 1(5)÷(a + ) ( a2 4a 4 2 aa 2a 2 ab aa b D 、x>1且 x ≠3 x - 3 9 、在平面直角坐标系中一点 A 到 x 轴的距离为 0,到 y 轴的距离为 1,则 A 点的坐标为( ) A 、( 0,1)或( 0 ,-1) C 、( 1, 0)或(-1,0) B 、( 0,1)或( 1,0) D 、(-1,0)或( 0,-1)10 、( 2012 资阳)如图所示的球形容器上连接着两根导管,容器中盛满了不溶于水的比空气重的某种 气 体,现在要用向容器中注水的方法来排净里面的气体.水从左导管匀速地注入,气体从右导管排 出,那么,容器内剩余气体的体积与注水时间的函数关系的大致图象是() 18、解方程 :(每小题 5分,共20分)11 x2 x7 9x 4x 51 ( 1 )、x 2 2 3x 2 3x( 2 )、 ( 4 )、 2 3 6 5 1( 3 )、填 空二、 1 x 1 x x 21x 2 3x x2 x 题 (本大题共 6小题 ,每小题 3分 ,共18分)四、 应用与实践(共 6小题,34分)2x a x a 的解是正数,求 的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年河南省漯河市八年级(下)第一次月考数学试卷一、选择题(每小题3分,共30分)1.下列计算正确的是()A.×=B.+=C.=4D.﹣=2.如果是任意实数,下列各式中一定有意义的是()A.B. C.D.3.下列各组线段中,不能构成直角三角形的是()A.2、1、B.5、5、5C.6、8、9 D.3k、4k、5k(k>0)4.下列的式子一定是二次根式的是()A.B.C.D.5.若x<0,则的结果是()A.0 B.﹣2 C.0或﹣2 D.26.下列二次根式中属于最简二次根式的是()A. B. C.D.7.下列命题:①如果a、b、c为一组勾股数,那么4a、4b、4c仍是勾股数;②如果直角三角形的两边是3,4,那么斜边必是5;③如果一个三角形的三边是12,25,21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a、b、c,(a>b=c),那么a2:b2:c2=2:1:1.其中正确的是()A.①②B.①③C.①④D.②④8.小明的作业本上有以下四题:①②③;④.做错的题是()A.①B.②C.③D.④9.把根号外的因式移入根号内得()A.B.C.D.10.如图,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底端C的距离为0.7米,如果梯子的顶端下滑0.4米,则梯足将向外移()A.0.6米B.0.7米C.0.8米D.0.9米二.填空题(每题3分)11.若式子有意义,则x的取值范围是.12.若一直角三角形的两边长为4、5,则第三边的长为.13.已知是整数,则满足条件的最小正整数n为.14.若不是二次根式,则x的取值范围是.15.一个直角三角形的三边长的平方和为200,则斜边长为.16.如图所示,四边形OABC为正方形,边长为6,点A、C分别在x轴,y轴的正半轴上,点D在OA上,且D点的坐标为(2,0),P是OB上的一个动点,试求PD+PA和的最小值是.17.该试题已被管理员删除18.若|a﹣b+1|与互为相反数,则(a﹣b)2005=.三、计算(共66分)19.(1)(+)2(2)(3)(4).20.已知:a+=1+,求的值.21.若x,y是实数,且,求的值.22.如图,在矩形纸片ABCD中,AB=12,BC=5,点E在AB上,将△DAE沿DE折叠,使点A落在对角线BD上的点A′处,求AE的长为多少?23.如图,已知一等腰三角形的周长是16,底边上的高是4.求这个三角形各边的长.24.如图,已知长方体的长为AC=2cm,宽BC=1cm,高AA′=4.一只蚂蚁如果沿长方体的表面从A点爬到B′点,那么沿哪条路最近?最短路程是多少?2015-2016学年河南省漯河市八年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.下列计算正确的是()A.×=B.+=C.=4D.﹣=【考点】二次根式的混合运算.【分析】分别利用二次根式的乘法运算法则以及二次根式的加减运算法则化简分析得出即可.【解答】解:A、×=,正确;B、+无法计算,故此选项错误;C、=2,故此选项错误;D、﹣=2﹣,故此选项错误;故选:A.2.如果是任意实数,下列各式中一定有意义的是()A.B. C.D.【考点】二次根式有意义的条件.【分析】根据被开方数非负数和平方数非负数的性质对各选项分析判断利用排除法求解.【解答】解:A、a<0时,无意义,故本选项错误;B、a=0时,分母等于0,无意义,故本选项错误;C、a2+1≥1,所以,对全体实数都有意义,故本选项正确;D、只有a=0时有意义,故本选项错误.故选C.3.下列各组线段中,不能构成直角三角形的是()A.2、1、B.5、5、5C.6、8、9 D.3k、4k、5k(k>0)【考点】勾股定理的逆定理.【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、12+()2=22,故是直角三角形,故正确;B、52+52=(5)2,故是直角三角形,故正确;C、62+82≠92,故不是直角三角形,故错误;D、(3k)2+(4k)2=(5k)2,故是直角三角形,故正确.故选C.4.下列的式子一定是二次根式的是()A.B.C.D.【考点】二次根式的定义.【分析】根据二次根式的被开方数是非负数对每个选项做判断即可.【解答】解:A、当x=0时,﹣x﹣2<0,无意义,故本选项错误;B、当x=﹣1时,无意义;故本选项错误;C、∵x2+2≥2,∴符合二次根式的定义;故本选项正确;D、当x=±1时,x2﹣2=﹣1<0,无意义;故本选项错误;故选:C.5.若x<0,则的结果是()A.0 B.﹣2 C.0或﹣2 D.2【考点】二次根式的性质与化简.【分析】根据二次根式的意义化简.【解答】解:若x<0,则=﹣x,∴===2,故选D.6.下列二次根式中属于最简二次根式的是()A. B. C.D.【考点】最简二次根式.【分析】B、D选项的被开方数中含有未开尽方的因数或因式;C选项的被开方数中含有分母;因此这三个选项都不是最简二次根式.【解答】解:因为:B、=4;C、=;D、=2;所以这三项都不是最简二次根式.故选A.7.下列命题:①如果a、b、c为一组勾股数,那么4a、4b、4c仍是勾股数;②如果直角三角形的两边是3,4,那么斜边必是5;③如果一个三角形的三边是12,25,21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a、b、c,(a>b=c),那么a2:b2:c2=2:1:1.其中正确的是()A.①②B.①③C.①④D.②④【考点】勾股定理的逆定理;勾股数.【分析】本题主要依据勾股定理的逆定理,判定三角形是否为直角三角形.【解答】解:①正确,∵a2+b2=c2,∴(4a)2+(4b)2=(4c)2,②错误,应为“如果直角三角形的两直角边是3,4,那么斜边必是5”③错误,∵122+212≠252,∴不是直角三角形;④正确,∵b=c,c2+b2=2b2=a2,∴a2:b2:c2=2:1:1,故选C.8.小明的作业本上有以下四题:①②③;④.做错的题是()A.①B.②C.③D.④【考点】算术平方根.【分析】①②③④分别利用二次根式的性质及其运算法则计算即可判定.【解答】解:①和②是正确的;在③中,由式子可判断a>0,从而③正确;在④中,左边两个不是同类二次根式,不能合并,故错误.故选D.9.把根号外的因式移入根号内得()A.B.C.D.【考点】二次根式的乘除法.【分析】根据二次根式的性质及二次根式成立的条件解答.【解答】解:∵成立,∴﹣>0,即m<0,原式=﹣=﹣.故选:D.10.如图,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底端C的距离为0.7米,如果梯子的顶端下滑0.4米,则梯足将向外移()A.0.6米B.0.7米C.0.8米D.0.9米【考点】勾股定理的应用.【分析】在本题中,运用两次勾股定理,即分别求出AC和B′C,求二者之差即可解答.【解答】解:在直角三角形ABC中,首先根据勾股定理求得AC=2.4,则A′C=2.4﹣0.4=2,在直角三角形A′B′C中,根据勾股定理求得B′C=1.5,所以B′B=1.5﹣0.7=0.8,故选C.二.填空题(每题3分)11.若式子有意义,则x的取值范围是x≥﹣1且x≠0.【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据二次根式及分式有意义的条件解答即可.【解答】解:根据二次根式的性质可知:x+1≥0,即x≥﹣1,又因为分式的分母不能为0,所以x的取值范围是x≥﹣1且x≠0.12.若一直角三角形的两边长为4、5,则第三边的长为和3.【考点】勾股定理.【分析】考虑两种情况:4和5都是直角边或5是斜边.根据勾股定理进行求解.【解答】解:当4和5都是直角边时,则第三边是=;当5是斜边时,则第三边是3.故答案为:和3.13.已知是整数,则满足条件的最小正整数n为5.【考点】二次根式的定义.【分析】因为是整数,且==2,则5n是完全平方数,满足条件的最小正整数n为5.【解答】解:∵==2,且是整数;∴2是整数,即5n是完全平方数;∴n的最小正整数值为5.故答案为:5.14.若不是二次根式,则x的取值范围是x<5.【考点】二次根式有意义的条件.【分析】根据二次根式的性质和分式的意义,被开方数小于0,即可求解.【解答】解:根据题意得:x﹣5<0,解得:x<5.故答案是:x<5.15.一个直角三角形的三边长的平方和为200,则斜边长为10.【考点】勾股定理.【分析】直接利用直角三角形的性质得出斜边长的平方为100,进而得出答案.【解答】解:∵一个直角三角形的三边长的平方和为200,∴斜边长的平方为100,则斜边长为:10.故答案为:10.16.如图所示,四边形OABC为正方形,边长为6,点A、C分别在x轴,y轴的正半轴上,点D在OA上,且D点的坐标为(2,0),P是OB上的一个动点,试求PD+PA和的最小值是2.【考点】轴对称-最短路线问题;坐标与图形性质;正方形的性质.【分析】作出D关于OB的对称点D′,则D′的坐标是(0,2).则PD+PA的最小值就是AD′的长,利用勾股定理即可求解.【解答】解:作出D关于OB的对称点D′,则D′的坐标是(0,2).则PD+PA的最小值就是AD′的长.则OD′=2,因而AD′===2.则PD+PA和的最小值是2.故答案是:2.17.该试题已被管理员删除18.若|a﹣b+1|与互为相反数,则(a﹣b)2005=﹣1.【考点】解二元一次方程组;非负数的性质:绝对值;非负数的性质:算术平方根.【分析】根据互为相反数两数之和为0列出等式,利用非负数的性质求出a与b的值,即可确定出所求式子的值.【解答】解:根据题意得:|a﹣b+1|+=0,∴,解得:,则(a﹣b)2005=(﹣1)2005=﹣1.故答案为:﹣1三、计算(共66分)19.(1)(+)2(2)(3)(4).【考点】二次根式的混合运算;负整数指数幂.【分析】(1)根据完全平方公式将原式展开,然后再合并同类项即可解答本题;(2)先将原式化简再合并同类项即可解答本题;(3)先将原式化简再合并同类项即可解答本题;(4)先将原式化简在相乘约分即可.【解答】解:(1)(+)2==3++6=9+;(2)==;(3)===;(4)==﹣=﹣45.20.已知:a+=1+,求的值.【考点】二次根式的化简求值.【分析】把a+=1+的两边分别平方,进一步整理得出的值即可.【解答】解:∵a+=1+,∴(a+)2=(1+)2,∴+2=11+2,∴=9+2.21.若x,y是实数,且,求的值.【考点】二次根式有意义的条件;代数式求值.【分析】首先根据二次根式的定义即可确定x的值,进而求出y的取值范围,再根据绝对值的性质即可得出的值.【解答】解:根据题意,x﹣1与1﹣x互为相反数,则x=1,故y<,所以==﹣1.故的值为﹣1.22.如图,在矩形纸片ABCD中,AB=12,BC=5,点E在AB上,将△DAE沿DE折叠,使点A落在对角线BD上的点A′处,求AE的长为多少?【考点】翻折变换(折叠问题).【分析】首先利用勾股定理计算出BD的长,再根据折叠可得AD=A′D=5,进而得到A′B的长,再设AE=x,则A′E=x,BE=12﹣x,再在Rt△A′EB中利用勾股定理可得方程:(12﹣x)2=x2+82,解出x的值,可得答案.【解答】解:∵AB=12,BC=5,∴AD=5,∴BD==13,根据折叠可得:AD=A′D=5,∴A′B=13﹣5=8,设AE=x,则A′E=x,BE=12﹣x,在Rt△A′EB中:(12﹣x)2=x2+82,解得:x=.故AE的长为.23.如图,已知一等腰三角形的周长是16,底边上的高是4.求这个三角形各边的长.【考点】等腰三角形的性质;勾股定理.【分析】由于等腰三角形中底边上的高平分底边,故周长的一半为AB与BD的和,可设出未知数,利用勾股定理建立方程求解.【解答】解:设BD=x,则AB=8﹣x由勾股定理,可以得到AB2=BD2+AD2,也就是(8﹣x)2=x2+42,∴x=3,∴AB=AC=5,BC=6.24.如图,已知长方体的长为AC=2cm,宽BC=1cm,高AA′=4.一只蚂蚁如果沿长方体的表面从A点爬到B′点,那么沿哪条路最近?最短路程是多少?【考点】平面展开-最短路径问题.【分析】要求长方体中两点之间的最短路径,最直接的作法,就是将正方体展开,然后利用两点之间线段最短解答.【解答】解:如图:根据题意,如上图所示,最短路径有以下三种情况:(1)沿AA′,A′C′,C′B′,B′B剪开,得图(1)AB′2=AB2+BB′2=(2+1)2+42=25;(2)沿AC,CC′,C′B′,B′D′,D′A′,A′A剪开,得图(2)AB′2=AC2+B′C2=22+(4+1)2=4+25=29;(3)沿AD,DD′,B′D′,C′B′,C′A′,AA′剪开,得图(3)AB′2=AD2+B′D2=12+(4+2)2=1+36=37;综上所述,最短路径应为(1)所示,所以AB′2=25,即AB′=5cm.2016年4月19日。

相关文档
最新文档