2019年江苏省高考数学试卷

合集下载

2019年江苏省高考数学试卷及答案(Word解析版)

2019年江苏省高考数学试卷及答案(Word解析版)

2019年普通高等学校统一考试试题(江苏卷)一、填空题:本大题共14小题,每小题5分,共计70分。

请把答案填写在答题卡相印位置上。

1.函数)42sin(3π+=x y 的最小正周期为 .【答案】π【解析】T =|2πω |=|2π2 |=π.2.设2)2(i z -=(i 为虚数单位),则复数z 的模为 . 【答案】5【解析】z =3-4i ,i 2=-1,| z |==5.3.双曲线191622=-y x 的两条渐近线的方程为 . 【答案】x y 43±= 【解析】令:091622=-y x ,得x x y 431692±=±=. 4.集合}1,0,1{-共有 个子集.【答案】8【解析】23=8.5.右图是一个算法的流程图,则输出的n 的值是 . 【答案】3【解析】n =1,a =2,a =4,n =2;a =10,n =3;a =28,n =4. 6则成绩较为稳定(方差较小)的那位运动员成绩的方差为 . 【答案】2【解析】易得乙较为稳定,乙的平均值为:9059288919089=++++=x .方差为:25)9092()9088()9091()9090()9089(222222=-+-+-+-+-=S . 7.现在某类病毒记作n m Y X ,其中正整数m ,n (7≤m ,9≤n )可以任意选取,则n m , 都取到奇数的概率为 .【答案】6320 【解析】m 取到奇数的有1,3,5,7共4种情况;n 取到奇数的有1,3,5,7,9共5种情况,则n m ,都取到奇数的概率为63209754=⨯⨯. 8.如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V .【答案】1:24【解析】三棱锥ADE F -与三棱锥ABC A -1的相似比为1:2,故体积之比为1:8.又因三棱锥ABC A -1与三棱柱ABC C B A -111的体积之比为1:3.所以,三棱锥ADE F -与三棱柱ABC C B A -111的体积之比为1:24.9.抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界) .若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范围是 . 【答案】[—2,12 ]【解析】抛物线2x y =在1=x 处的切线易得为y =2x —1,令z =y x 2+,y =—12 x +z 2 . 画出可行域如下,易得过点(0,—1)时,z min =—2,过点(12 ,0)时,z max =12 .10.设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=, 若21λλ+=(21λλ,为实数),则21λλ+的值为 . 【答案】12【解析】)(32213221AC BA AB BC AB BE DB DE ++=+=+=xAB C1A DE F1B1C213261λλ+=+-=所以,611-=λ,322=λ,=+21λλ12 . 11.已知)(x f 是定义在R 上的奇函数。

2019年江苏高考数学试卷及答案

2019年江苏高考数学试卷及答案

2019年江苏高考数学试卷及答案一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位......置上...1.已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则A B =▲.2.已知复数(2i)(1i)a ++的实部为0,其中i 为虚数单位,则实数a 的值是▲.3.下图是一个算法流程图,则输出的S 的值是▲.4.函数y =的定义域是▲.5.已知一组数据6,7,8,8,9,10,则该组数据的方差是▲.6.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是▲.7.在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是▲.8.已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是▲.9.如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是▲.10.在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线x +y =0的距离的最小值是▲.11.在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是▲.12.如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅ ,则ABAC的值是▲.13.已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是▲.14.设(),()f x g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当2(]0,x ∈时,2()1(1)f x x =--,(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中k >0.若在区间(0,9]上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是▲.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b ,cos B =23,求c 的值;(2)若sin cos 2A B a b =,求sin(2B π+的值.16.(本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1;(2)BE ⊥C 1E .17.(本小题满分14分)如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1.已知DF 1=52.(1)求椭圆C 的标准方程;(2)求点E 的坐标.18.(本小题满分16分)如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)对规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.19.(本小题满分16分)设函数()()()(),,,R f x x a x b x c a b c =---∈、()f 'x 为f (x )的导函数.(1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f (x )和()f 'x 的零点均在集合{3,1,3}-中,求f (x )的极小值;(3)若0,01,1a b c =<= ,且f (x )的极大值为M ,求证:M ≤427.20.(本小满分16分)定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }*()n ∈N 满足:245324,440a a a a a a =-+=,求证:数列{a n }为“M -数列”;(2)已知数列{b n }满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和.①求数列{b n }的通项公式;②设m 为正整数,若存在“M -数列”{c n }*()n ∈N ,对任意正整数k ,当k ≤m 时,都有1k k k c b c + 成立,求m 的最大值.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 三小题,请选定其中两小题........,.并在相应的答题区域内作答.............若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-2:矩阵与变换](本小题满分10分)已知矩阵3122⎡⎤=⎢⎥⎣⎦A (1)求A 2;(2)求矩阵A 的特征值.B.[选修4-4:坐标系与参数方程](本小题满分10分)在极坐标系中,已知两点3,,42A B ππ⎛⎫⎫ ⎪⎪⎝⎭⎭,直线l 的方程为sin 34ρθπ⎛⎫+= ⎪⎝⎭.(1)求A ,B 两点间的距离;(2)求点B 到直线l 的距离.C.[选修4-5:不等式选讲](本小题满分10分)设x ∈R ,解不等式||+|2 1|>2x x -.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)设2*012(1),4,n n n x a a x a x a x n n +=++++∈N .已知23242a a a =.(1)求n 的值;(2)设(1n a +=+*,a b ∈N ,求223a b -的值.23.(本小题满分10分)在平面直角坐标系xOy 中,设点集{(0,0),(1,0),(2,0),,(,0)}n A n =⋯,{(0,1),(,1)},{(0,2),(1,2),(2,2),,(,2)},.n n B n C n n *==∈N 令n n n n M A B C = .从集合M n 中任取两个不同的点,用随机变量X 表示它们之间的距离.(1)当n =1时,求X 的概率分布;数学试卷参考答案1.{1,6}2.23.54.[1,7]- 5.536.7107.y =8.169.1010.411.(e, 1)13.21014.12,34⎡⎫⎪⎢⎪⎣⎭15.解:(1)因为23,3a cb B ===,由余弦定理222cos 2a c b B ac +-=,得2222(3)(2)323c c c c+-=⨯⨯,即213c =.所以33c =.(2)因为sin cos 2A Ba b =,由正弦定理sin sin a b A B =,得cos sin 2B Bb b=,所以cos 2sin B B =.从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =.因为sin 0B >,所以cos 2sin 0B B =>,从而25cos 5B =.因此π25sin cos 25B B ⎛⎫+== ⎪⎝⎭.16.证明:(1)因为D ,E 分别为BC ,AC 的中点,所以ED ∥AB.在直三棱柱ABC-A1B1C1中,AB ∥A1B1,所以A1B1∥ED.又因为ED ⊂平面DEC1,A1B1⊄平面DEC1,所以A1B1∥平面DEC1.(2)因为AB=BC ,E 为AC 的中点,所以BE ⊥AC.因为三棱柱ABC-A1B1C1是直棱柱,所以CC1⊥平面ABC.又因为BE ⊂平面ABC ,所以CC1⊥BE.因为C1C ⊂平面A1ACC1,AC ⊂平面A1ACC1,C1C ∩AC=C 所以BE ⊥平面A1ACC1.因为C1E ⊂平面A1ACC1,所以BE ⊥C1E.17.解:(1)设椭圆C 的焦距为2c.因为F1(-1,0),F2(1,0),所以F1F2=2,c=1.又因为DF1=52,AF2⊥x 轴,所以32==,因此2a=DF1+DF2=4,从而a=2.由b2=a2-c2,得b2=3.因此,椭圆C 的标准方程为22143x y +=.(2)由(1)知,椭圆C :22143x y +=,a=2,因为AF2⊥x 轴,所以点A 的横坐标为1.将x=1代入圆F2的方程(x-1)2+y2=16,解得y=±4.因为点A 在x 轴上方,所以A(1,4).又F1(-1,0),所以直线AF1:y=2x+2.由22()22116y x x y =+-+=⎧⎨⎩,得256110x x +-=,解得1x =或115x =-.将115x =-代入22y x =+,得125y =-,因此1112(,)55B --.又F2(1,0),所以直线BF2:3(1)4y x =-.由221433(1)4x y x y ⎧⎪⎪⎨⎪+=-⎩=⎪,得276130x x --=,解得1x =-或137x =.又因为E 是线段BF2与椭圆的交点,所以1x =-.将1x =-代入3(1)4y x =-,得32y =-.因此3(1,)2E --.18.(1)过A 作AE BD ⊥,垂足为E.由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====.'因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠==.所以12154cos 5BD PB PBD ===∠.因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求.②若Q 在D 处,连结AD ,由(1)知2210AD AE ED =+=,从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角.所以线段AD 上存在点到点O 的距离小于圆O 的半径.因此,Q 选在D 处也不满足规划要求.综上,P 和Q 均不能选在D 处.(3)先讨论点P 的位置.当∠OBP<90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B=15,此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=;当∠OBP>90°时,在1PPB △中,115PB PB >=.由上可知,d ≥15.再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA=15时,2222156321CQ QA AC =-=-=.此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当PB ⊥AB ,点Q 位于点C 右侧,且CQ=321时,d 最小,此时P ,Q 两点间的距离PQ=PD+CD+CQ=17+321因此,d 最小时,P ,Q 两点间的距离为17+321(百米).19.解:(1)因为a b c ==,所以3()()()()()f x x a x b x c x a =---=-.因为(4)8f =,所以3(4)8a -=,解得2a =.(2)因为b c =,所以2322()()()(2)(2)f x x a x b x a b x b a b x ab =--=-+++-,从而2()3()3a b f 'x x b x +⎛⎫=-- ⎪⎝⎭.令()0f 'x =,得x b =或23a b x +=.因为2,,3a ba b +,都在集合{3,1,3}-中,且a b ≠,所以21,3,33a ba b +===-.此时2()(3)(3)f x x x =-+,()3(3)(1)f 'x x x =+-.令()0f 'x =,得3x =-或1x =.列表如下:x(,3)-∞-3-(3,1)-1(1,)+∞()f 'x +0–0+()f x极大值极小值所以()f x 的极小值为2(1)(13)(13)32f =-+=-.(3)因为0,1a c ==,所以32()()(1)(1)f x x x b x x b x bx =--=-++,2()32(1)f 'x x b x b =-++.因为01b <≤,所以224(1)12(21)30b b b ∆=+-=-+>,则()f 'x 有2个不同的零点,设为()1212,x x x x <.由()0f 'x =,得1211,33b b b b b b x x ++==.列表如下:x1(,)x -∞1x ()12,x x 2x 2(,)x +∞()f 'x +0–0+()f x极大值极小值所以()f x 的极大值()1M f x =.()321111(1)M f x x b x bx ==-++()()221111211(1)32(1)3999b b x b b b x b x b x -+++⎛⎫=-++--+ ⎪⎝⎭()2321(1)(1)227927b b b b b --+++=++23(1)2(1)(1)2272727b b b b +-+=-+(1)24272727b b +≤+≤.因此427M ≤.20.解:(1)设等比数列{an}的公比为q ,所以a1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M —数列”.(2)①因为1122n n n S b b +=-,所以0n b ≠.由1111,b S b ==得212211b =-,则22b =.由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-,当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{bn}是首项和公差均为1的等差数列.因此,数列{bn}的通项公式为bn=n ()*n ∈N .②由①知,bk=k ,*k ∈N .因为数列{cn}为“M –数列”,设公比为q ,所以c1=1,q>0.因为ck ≤bk ≤ck+1,所以1k k q k q -≤≤,其中k=1,2,3,…,m.当k=1时,有q ≥1;当k=2,3,…,m 时,有ln ln ln 1k kq k k ≤≤-.设f (x )=ln (1)x x x >,则21ln ()xf 'x x -=.令()0f 'x =,得x=e.列表如下:x(1,e)e (e ,+∞)()f 'x +–f (x )极大值因为ln 2ln8ln 9ln 32663=<=,所以max ln 3()(3)3f k f ==.取q =k=1,2,3,4,5时,ln ln kq k,即k k q ≤,经检验知1k q k -≤也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k=3,6,得3≤q3,且q5≤6,从而q15≥243,且q15≤216,所以q 不存在.因此所求m 的最大值小于6.综上,所求m 的最大值为5.数学Ⅱ(附加题)参考答案21.A .[选修4–2:矩阵与变换]本小题主要考查矩阵的运算、特征值等基础知识,考查运算求解能力.满分10分.解:(1)因为3122⎡⎤=⎢⎥⎣⎦A ,所以231312222⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦A =3312311223222122⨯+⨯⨯+⨯⎡⎤⎢⎥⨯+⨯⨯+⨯⎣⎦=115106⎡⎤⎢⎥⎣⎦.(2)矩阵A 的特征多项式为231()5422f λλλλλ--==-+--.令()0f λ=,解得A 的特征值121,4λλ==.B .[选修4–4:坐标系与参数方程]本小题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.满分10分.解:(1)设极点为O.在△OAB 中,A (3,4π),B ,2π),由余弦定理,得AB==.(2)因为直线l 的方程为sin(34ρθπ+=,则直线l 过点2π,倾斜角为34π.又)2B π,所以点B 到直线l 的距离为3sin(242ππ⨯-=.C .[选修4–5:不等式选讲]本小题主要考查解不等式等基础知识,考查运算求解和推理论证能力.满分10分.解:当x<0时,原不等式可化为122x x -+->,解得x<–13:当0≤x ≤12时,原不等式可化为x+1–2x>2,即x<–1,无解;当x>12时,原不等式可化为x+2x –1>2,解得x>1.综上,原不等式的解集为1{|1}3x x x <->或.22.解:(1)因为0122(1)C C C C 4n n nn n n n x x x x n +=++++≥ ,,所以2323(1)(1)(2)C ,C 26n n n n n n n a a ---====,44(1)(2)(3)C 24nn n n n a ---==.因为23242a a a =,所以2(1)(2)(1)(1)(2)(3)[26224n n n n n n n n n ------=⨯⨯,解得5n =.(2)由(1)知,5n =.5(1(1n=+02233445555555C C C C C C =++++a =+因为*,a b ∈N ,所以024135555555C 3C 9C 76,C 3C 9C 44a b =++==++=,从而222237634432a b -=-⨯=-.23.解:(1)当1n =时,X的所有可能取值是12.X的概率分布为22667744(1),(C 15C 15P X P X ======,22662222(2),(C 15C 15P X P X ======.(2)设()A a b ,和()B c d ,是从n M 中取出的两个点.因为()1()P X n P X n ≤=->,所以仅需考虑X n >的情况.①若b d =,则AB n ≤,不存在X n >的取法;②若01b d ==,,则AB =≤所以X n >当且仅当AB =此时0 a c n ==,或 0a n c ==,,有2种取法;③若02b d ==,,则AB =≤,因为当3n ≥n ≤,所以X n >当且仅当AB =,此时0 a c n ==,或 0a n c ==,,有2种取法;④若12b d ==,,则AB =≤所以X n >当且仅当AB =此时0 a c n ==,或 0a n c ==,,有2种取法.综上,当X n >时,X,且22242442(,(C C n n P X P X ++====.因此,2246()1((1C n P X n P X P X +≤=-=-==-.。

2019年江苏高考数学真题及答案

2019年江苏高考数学真题及答案

求证:(1)A B ∥平面 DEC ;
11
1
(2)BE⊥C E. 1
17.(本小题满分 14 分)
如图,在平面直角坐标系 xOy 中,椭圆 C:
x2 a2
y2 b2
1(a b 0) 的焦点为 F (–1、0), 1
F (1,0).过 F 作 x 轴的垂线 l,在 x 轴的上方,l 与圆 F : (x 1)2 y2 4a2 交于点 A,与椭圆 C
111 1
1
10.在平面直角坐标系 xOy
中,P
是曲线
y
x
4 x
(x
0)
上的一个动点,则点 P
到直线
x+y=0
的距离的最
小值是▲.
11.在平面直角坐标系 xOy 中,点 A 在曲线 y=lnx 上,且该曲线在点 A 处的切线经过点(-e,-1)(e 为自
然对数的底数),则点 A 的坐标是▲.
uuur uuur uuur uuur 12.如图,在△ABC 中, D是 BC 的中点, E在边 AB 上,BE=2EA,AD 与 CE 交于点O.若 AB AC 6AO EC ,
满分 14 分.
解:(1)因为a 3c, b
2,cos B 2 , 3
由余弦定理 cos B
a2 c2 b2 2ac
2 (3c)2 c2 ( ,得 3 2 3c c
2) 2
,即 c2
1
.
3
所以 c
3
.
3
(2)因为
sin a
A
cos B 2b

由正弦定理
a sin A
b sin B
15 .
5
因此道路 PB 的长为 15(百米).

2019年江苏省高考数学试卷及答案(Word版)

2019年江苏省高考数学试卷及答案(Word版)

YN 输出n 开始1a 2n ←←,1n n ←+32a a ←+20a <结束 (第5题)2019年普通高等学校招生全国统一考试 (江苏卷)数学Ⅰ 注意事项绝密★启用前考生在答题前请认真阅读本注意事项及各题答题要求:1.本试卷共4页,均为非选择题(第1题~第20题,共20题).本卷满分为160分.考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请您务必将自己的姓名、考试证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符.4.作答试题必须用0.5毫米黑色墨水的签字笔在答题卡的指定位置作答,在其它位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上......... 1.函数)42sin(3π-=x y 的最小正周期为 ▲ .解析:2==2T ππ 2.设2)2(i z -=(i 为虚数单位),则复数z 的模为 ▲ . 解析:()2234,34=5Z i Z =-=+-3.双曲线191622=-y x 的两条渐近线的方程为 ▲ . 解析:3y=4x ±4.集合{}1,0,1-共有 ▲ 个子集. 解析:328=(个)5.右图是一个算法的流程图,则输出的n 的值是 ▲解析:经过了两次循环,n 值变为36.抽样统计甲,乙两位射击运动员的5次训练成绩(单位:环),结果如下: 运动员 第1次 第2次 第3次 第4次 第5次 甲 87 91 90 89 93 乙8990918892则成绩较为稳定(方差较小)的那位运动员成绩的方差为 ▲ . 解析:易知均值都是90,乙方差较小,()()()()()()()22222221118990909091908890929025n i i s x xn ==-=-+-+-+-+-=∑7.现有某类病毒记作n m Y X ,其中正整数)9,7(,≤≤n m n m 可以任意选取,则n m ,都取到奇数的概率为 ▲ . 解析:m 可以取的值有:1,2,3,4,5,6,7共7个 n 可以取的值有:1,2,3,4,5,6,7,8,9共9个所以总共有7963⨯=种可能 符合题意的m 可以取1,3,5,7共4个 符合题意的n 可以取1,3,5,7,9共5个 所以总共有4520⨯=种可能符合题意 所以符合题意的概率为20638.如图,在三棱柱ABC C B A -111中,F E D ,,分别是1,,AA AC AB 的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V ▲ . 解析:112211111334224ADE ABC V S h S h V ==⨯⨯=所以121:24V V =A BC1ADEF 1B1C9.抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界).若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范围是 ▲ .解析:易知切线方程为:21y x =-所以与两坐标轴围成的三角形区域三个点为()()()0,00.5,00,1A B C - 易知过C 点时有最小值2-,过B 点时有最大值0.510.设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=,若AC AB DE 21λλ+=(21,λλ为实数),则21λλ+的值为 ▲ .解析:易知()121212232363DE AB BC AB AC AB AB AC =+=+-=-+u u u r u u u r u u u r u u u r u u u r u u ur u u u r所以1212λλ+=11.已知)(x f 是定义在R 上的奇函数.当0>x 时,x x x f 4)(2-=,则不等式x x f >)(的解集用区间表示为 ▲ . 解析:因为)(x f 是定义在R 上的奇函数,所以易知0x ≤时,2()4f x x x =-- 解不等式得到x x f >)(的解集用区间表示为()()5,05,-+∞U12.在平面直角坐标系xOy 中,椭圆C 的标准方程为)0,0(12222>>=+b a by a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d .若126d d =,则椭圆的离心率为 ▲ . 解析:由题意知2212,bc a b d d c a c c==-= 所以有26b bcc a= 两边平方得到2246a b c =,即42246a a c c -= 两边同除以4a 得到2416e e -=,解得213e =,即33e =13.平面直角坐标系xOy 中,设定点),(a a A ,P 是函数)0(1>=x xy 图像上一动点,若点A P ,之间最短距离为22,则满足条件的实数a 的所有值为 ▲ . 解析: 由题意设()0001,,0P x x x ⎛⎫> ⎪⎝⎭则有()222222200000200000111112++2=+-2+22PA x a a x a x a x a x a x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=-+-=+-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 令()001t 2x t x +=≥ 则()222=(t)=t 2222PA f at a t -+-≥ 对称轴t a = 1.2a ≤时,22min 2(2)2422428PA f a a a a ==-+∴-+=1a =- , 3a =(舍去) 2.2a >时,22min 2()228PA f a a a ==-∴-=10a = , 10a =-(舍去) 综上1a =-或10a =14.在正项等比数列{}n a 中,215=a ,376=+a a .则满足n n a a a a a a a a ......321321>++++的最大正整数n 的值为 ▲ . 解析:2252552667123123115521155223 (1),.222222011521312913236002292212n n n n n n n n n n a a a a a a a a a a q a q q a a n nq n q n q a -------=+=+-+=∴++++>∴->∴->>-∴->-+∴<<=>∴==Q QQ n N +∈112,n n N +∴≤≤∈又12n =时符合题意,所以n 的最大值为12二、解答题:本大题共6小题,共计90分。

2019年江苏省高考数学试卷

2019年江苏省高考数学试卷

2019年江苏省高考数学试卷试题数:25.满分:2001.(填空题.5分)已知集合A={-1.0.1.6}.B={x|x>0.x∈R}.则A∩B=___ .2.(填空题.5分)已知复数(a+2i)(1+i)的实部为0.其中i为虚数单位.则实数a的值是___ .3.(填空题.5分)如图是一个算法流程图.则输出的S的值是___ .4.(填空题.5分)函数y= $\sqrt{7+6x-{x}^{2}}$ 的定义域是___ .5.(填空题.5分)已知一组数据6.7.8.8.9.10.则该组数据的方差是___ .6.(填空题.5分)从3名男同学和2名女同学中任选2名同学参加志愿者服务.则选出的2名同学中至少有1名女同学的概率是___ .7.(填空题.5分)在平面直角坐标系xOy中.若双曲线x2- $\frac{{y}^{2}}{{b}^{2}}$ =1(b>0)经过点(3.4).则该双曲线的渐近线方程是___ .8.(填空题.5分)已知数列{a n}(n∈N*)是等差数列.S n是其前n项和.若a2a5+a8=0.S9=27.则S8的值是___ .9.(填空题.5分)如图.长方体ABCD-A1B1C1D1的体积是120.E为CC1的中点.则三棱锥E-BCD的体积是 ___ .10.(填空题.5分)在平面直角坐标系xOy中.P是曲线y=x+ $\frac{4}{x}$ (x>0)上的一个动点.则点P到直线x+y=0的距离的最小值是___ .11.(填空题.5分)在平面直角坐标系xOy中.点A在曲线y=lnx上.且该曲线在点A处的切线经过点(-e.-1)(e为自然对数的底数).则点A的坐标是___ .12.(填空题.5分)如图.在△ABC中.D是BC的中点.E在边AB上.BE=2EA.AD与CE交于点O.若 $\overrightarrow{AB}$ • $\overrightarrow{AC}$ =6 $\overrightarrow{AO}$ •$\overrightarrow{EC}$ .则 $\frac{AB}{AC}$ 的值是 ___ .13.(填空题.5分)已知 $\frac{tanα}{tan(α+\frac{π}{4})}$ =- $\frac{2}{3}$ .则sin(2α+ $\frac{π}{4}$)的值是___ .14.(填空题.5分)设f(x).g(x)是定义在R上的两个周期函数.f(x)的周期为4.g(x)的周期为2.且f(x)是奇函数.当x∈(0.2]时.f(x)= $\sqrt{1-(x-1)^{2}}$ .g(x)=$\left\{\begin{array}{l}{k(x+2).}&{0<x≤1.}\\{-\frac{1}{2}.}&{1<x≤2.}\end{array}\right.$ 其中k>0.若在区间(0.9]上.关于x的方程f(x)=g(x)有8个不同的实数根.则k的取值范围是___ .15.(问答题.14分)在△ABC中.角A.B.C的对边分别为a.b.c.(1)若a=3c.b= $\sqrt{2}$ .cosB= $\frac{2}{3}$ .求c的值;(2)若 $\frac{sinA}{a}$ = $\frac{cosB}{2b}$ .求sin(B+ $\frac{π}{2}$)的值.16.(问答题.14分)如图.在直三棱柱ABC-A1B1C1中.D.E分别为BC.AC的中点.AB=BC.求证:(1)A1B1 || 平面DEC1;(2)BE⊥C1E.17.(问答题.14分)如图.在平面直角坐标系xOy中.椭圆C: $\frac{{x}^{2}}{{a}^{2}}$ + $\frac{{y}^{2}}{{b}^{2}}$ =1(a>b>0)的焦点为F1(-1.0).F2(1.0).过F2作x轴的垂线l.在x轴的上方.l与圆F2:(x-1)2+y2=4a2交于点A.与椭圆C交于点D.连结AF1并延长交圆F2于点B.连结BF2交椭圆C于点E.连结DF1.已知DF1= $\frac{5}{2}$ .(1)求椭圆C的标准方程;(2)求点E的坐标.18.(问答题.16分)如图.一个湖的边界是圆心为O的圆.湖的一侧有一条直线型公路l.湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P.Q.并修建两段直线型道路PB.QA.规划要求:线段PB.QA上的所有点到点O的距离均不小于圆O的半径.已知点A.B到直线l的距离分别为AC和BD(C.D为垂足).测得AB=10.AC=6.BD=12(单位:百米).(1)若道路PB与桥AB垂直.求道路PB的长;(2)在规划要求下.P和Q中能否有一个点选在D处?并说明理由;(3)在规划要求下.若道路PB和QA的长度均为d(单位:百米).求当d最小时.P、Q两点间的距离.19.(问答题.16分)设函数f(x)=(x-a)(x-b)(x-c).a.b.c∈R.f′(x)为f(x)的导函数.(1)若a=b=c.f(4)=8.求a的值;(2)若a≠b.b=c.且f(x)和f′(x)的零点均在集合{-3.1.3}中.求f(x)的极小值;(3)若a=0.0<b≤1.c=1.且f(x)的极大值为M.求证:M≤ $\frac{4}{27}$ .20.(问答题.16分)定义首项为1且公比为正数的等比数列为“M-数列”.(1)已知等比数列{a n}(n∈N*)满足:a2a4=a5.a3-4a2+4a1=0.求证:数列{a n}为“M-数列”;(2)已知数列{b n}(n∈N*)满足:b1=1. $\frac{1}{{S}_{n}}$ = $\frac{2}{{b}_{n}}$ -$\frac{2}{{b}_{n+1}}$ .其中S n为数列{b n}的前n项和.① 求数列{b n}的通项公式;② 设m为正整数.若存在“M-数列”{c n}(n∈N*).对任意正整数k.当k≤m时.都有c k≤b k≤c k+1成立.求m的最大值.21.(问答题.10分)已知矩阵A= $\left[\begin{array}{l}{3}&{1}\\{2}&{2}\end{array}\right]$ .(1)求A2;(2)求矩阵A的特征值.22.(问答题.10分)在极坐标系中.已知两点A(3. $\frac{π}{4}$).B( $\sqrt{2}$ .$\frac{π}{2}$).直线l的方程为ρsin(θ+ $\frac{π}{4}$)=3.(1)求A.B两点间的距离;(2)求点B到直线l的距离.23.(问答题.10分)设x∈R.解不等式|x|+|2x-1|>2.24.(问答题.10分)设(1+x)n=a0+a1x+a2x2+…+a n x n.n≥4.n∈N*.已知a32=2a2a4.(1)求n的值;(2)设(1+ $\sqrt{3}$ )n=a+b $\sqrt{3}$ .其中a.b∈N*.求a2-3b2的值.25.(问答题.10分)在平面直角坐标系xOy中.设点集A n={(0.0).(1.0).(2.0).….(n.0)}.B n={(0.1).(n.1)}.C n={(0.2).(1.2).(2.2).…….(n.2)}.n∈N*.令M n=A n∪B n∪C n.从集合M n中任取两个不同的点.用随机变量X表示它们之间的距离.(1)当n=1时.求X的概率分布;(2)对给定的正整数n(n≥3).求概率P(X≤n)(用n表示).2019年江苏省高考数学试卷参考答案与试题解析试题数:25.满分:2001.(填空题.5分)已知集合A={-1.0.1.6}.B={x|x>0.x∈R}.则A∩B=___ .【正确答案】:[1]{1.6}【解析】:直接利用交集运算得答案.【解答】:解:∵A={-1.0.1.6}.B={x|x>0.x∈R}.∴A∩B={-1.0.1.6}∩{x|x>0.x∈R}={1.6}.故答案为:{1.6}.【点评】:本题考查交集及其运算.是基础题.2.(填空题.5分)已知复数(a+2i)(1+i)的实部为0.其中i为虚数单位.则实数a的值是___ .【正确答案】:[1]2【解析】:利用复数代数形式的乘除运算化简.再由实部为0求的a值.【解答】:解:∵(a+2i)(1+i)=(a-2)+(a+2)i的实部为0.∴a-2=0.即a=2.故答案为:2.【点评】:本题考查复数代数形式的乘除运算.考查复数的基本概念.是基础题.3.(填空题.5分)如图是一个算法流程图.则输出的S的值是___ .【正确答案】:[1]5【解析】:由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值.模拟程序的运行过程.分析循环中各变量值的变化情况.可得答案.【解答】:解:模拟程序的运行.可得x=1.S=0S=0.5不满足条件x≥4.执行循环体.x=2.S=1.5不满足条件x≥4.执行循环体.x=3.S=3不满足条件x≥4.执行循环体.x=4.S=5此时.满足条件x≥4.退出循环.输出S的值为5.故答案为:5.【点评】:本题考查了程序框图的应用问题.解题时应模拟程序框图的运行过程.以便得出正确的结论.是基础题.4.(填空题.5分)函数y= $\sqrt{7+6x-{x}^{2}}$ 的定义域是___ .【正确答案】:[1][-1.7]【解析】:由根式内部的代数式大于等于0求解一元二次不等式得答案.【解答】:解:由7+6x-x2≥0.得x2-6x-7≤0.解得:-1≤x≤7.∴函数y= $\sqrt{7+6x-{x}^{2}}$ 的定义域是[-1.7].故答案为:[-1.7].【点评】:本题考查函数的定义域及其求法.考查一元二次不等式的解法.是基础题.5.(填空题.5分)已知一组数据6.7.8.8.9.10.则该组数据的方差是___ .【正确答案】:[1] $\frac{5}{3}$【解析】:先求出一组数据6.7.8.8.9.10的平均数.由此能求出该组数据的方差.【解答】:解:一组数据6.7.8.8.9.10的平均数为:$\overline{x}$ = $\frac{1}{6}$ (6+7+8+8+9+10)=8.∴该组数据的方差为:S2= $\frac{1}{6}$ [(6-8)2+(7-8)2+(8-8)2+(8-8)2+(9-8)2+(10-8)2]=$\frac{5}{3}$ .故答案为: $\frac{5}{3}$ .【点评】:本题考查一组数据的方差的求法.考查平均数、方差等基础知识.考查运算求解能力.是基础题.6.(填空题.5分)从3名男同学和2名女同学中任选2名同学参加志愿者服务.则选出的2名同学中至少有1名女同学的概率是___ .【正确答案】:[1] $\frac{7}{10}$【解析】:基本事件总数n= ${C}_{5}^{2}$ =10.选出的2名同学中至少有1名女同学包含的基本事件个数m= ${C}_{3}^{1}{C}_{2}^{1}$ + ${C}_{2}^{2}$ =7.由此能求出选出的2名同学中至少有1名女同学的概率.【解答】:解:从3名男同学和2名女同学中任选2名同学参加志愿者服务.基本事件总数n= ${C}_{5}^{2}$ =10.选出的2名同学中至少有1名女同学包含的基本事件个数:m= ${C}_{3}^{1}{C}_{2}^{1}$ + ${C}_{2}^{2}$ =7.∴选出的2名同学中至少有1名女同学的概率是p= $\frac{m}{n}=\frac{7}{10}$ .故答案为: $\frac{7}{10}$ .【点评】:本题考查概率的求法.考查古典概型、排列组合等基础知识.考查运算求解能力.考查数形结合思想.是基础题.7.(填空题.5分)在平面直角坐标系xOy中.若双曲线x2- $\frac{{y}^{2}}{{b}^{2}}$ =1(b>0)经过点(3.4).则该双曲线的渐近线方程是___ .【正确答案】:[1]y= $±\sqrt{2}x$【解析】:把已知点的坐标代入双曲线方程.求得b.则双曲线的渐近线方程可求.【解答】:解:∵双曲线x2- $\frac{{y}^{2}}{{b}^{2}}$ =1(b>0)经过点(3.4).∴ ${3}^{2}-\frac{16}{{b}^{2}}=1$ .解得b2=2.即b= $\sqrt{2}$ .又a=1.∴该双曲线的渐近线方程是y= $±\sqrt{2}x$ .故答案为:y= $±\sqrt{2}x$ .【点评】:本题考查双曲线的标准方程.考查双曲线的简单性质.是基础题.8.(填空题.5分)已知数列{a n}(n∈N*)是等差数列.S n是其前n项和.若a2a5+a8=0.S9=27.则S8的值是___ .【正确答案】:[1]16【解析】:设等差数列{a n}的首项为a1.公差为d.由已知列关于首项与公差的方程组.求解首项与公差.再由等差数列的前n项和求得S8的值.【解答】:解:设等差数列{a n}的首项为a1.公差为d.则$\left\{\begin{array}{l}{({a}_{1}+d)({a}_{1}+4d)+{a}_{1}+7d=0}\\{9{a}_{1}+\frac{9×8}{2}d =27}\end{array}\right.$ .解得 $\left\{\begin{array}{l}{{a}_{1}=-5}\\{d=2}\end{array}\right.$ .∴ ${S}_{8}=8{a}_{1}+\frac{8×7d}{2}$ =8×(-5)+56=16.故答案为:16.【点评】:本题考查等差数列的通项公式.考查等差数列的前n项和.是基础题.9.(填空题.5分)如图.长方体ABCD-A1B1C1D1的体积是120.E为CC1的中点.则三棱锥E-BCD的体积是 ___ .【正确答案】:[1]10【解析】:推导出 ${V}_{ABCD-{A}_{1}{B}_{1}{C}_{1}{D}_{1}}$ =AB×BC×DD1=120.三棱锥E-BCD的体积:V E-BCD= $\frac{1}{3}×{S}_{△ BCD}×CE$ =$\frac{1}{3}×\frac{1}{2}×BC×DC×CE$ = $\frac{1}{12}$ ×AB×BC×DD1.由此能求出结果.【解答】:解:∵长方体ABCD-A1B1C1D1的体积是120.E为CC1的中点.∴ ${V}_{ABCD-{A}_{1}{B}_{1}{C}_{1}{D}_{1}}$ =AB×BC×DD1=120.∴三棱锥E-BCD的体积:V E-BCD= $\frac{1}{3}×{S}_{△ BCD}×CE$= $\frac{1}{3}×\frac{1}{2}×BC×DC×CE$= $\frac{1}{12}$ ×AB×BC×DD1=10.故答案为:10.【点评】:本题考查三棱锥的体积的求法.考查长方体的结构特征、三棱锥的性质等基础知识.考查运算求解能力.考查数形结合思想.是中档题.10.(填空题.5分)在平面直角坐标系xOy中.P是曲线y=x+ $\frac{4}{x}$ (x>0)上的一个动点.则点P到直线x+y=0的距离的最小值是___ .【正确答案】:[1]4【解析】:利用导数求平行于x+y=0的直线与曲线y=x+ $\frac{4}{x}$ (x>0)的切点.再由点到直线的距离公式求点P到直线x+y=0的距离的最小值.【解答】:解:由y=x+ $\frac{4}{x}$ (x>0).得y′=1- $\frac{4}{{x}^{2}}$ .设斜率为-1的直线与曲线y=x+ $\frac{4}{x}$ (x>0)切于(x0.${x}_{0}+\frac{4}{{x}_{0}}$ ).由 $1-\frac{4}{{{x}_{0}}^{2}}=-1$ .解得 ${x}_{0}=\sqrt{2}$ (x0>0).∴曲线y=x+ $\frac{4}{x}$ (x>0)上.点P( $\sqrt{2}.3\sqrt{2}$ )到直线x+y=0的距离最小.最小值为 $\frac{|\sqrt{2}+3\sqrt{2}|}{\sqrt{2}}=4$ .故答案为:4.【点评】:本题考查利用导数研究过曲线上某点处的切线方程.考查点到直线距离公式的应用.是中档题.11.(填空题.5分)在平面直角坐标系xOy中.点A在曲线y=lnx上.且该曲线在点A处的切线经过点(-e.-1)(e为自然对数的底数).则点A的坐标是___ .【正确答案】:[1](e.1)【解析】:设A(x0.lnx0).利用导数求得曲线在A处的切线方程.代入已知点的坐标求解x0即可.【解答】:解:设A(x0.lnx0).由y=lnx.得y′= $\frac{1}{x}$ .∴ $y′{|}_{x={x}_{0}}=\frac{1}{{x}_{0}}$ .则该曲线在点A处的切线方程为y-lnx0=$\frac{1}{{x}_{0}}(x-{x}_{0})$ .∵切线经过点(-e.-1).∴ $-1-ln{x}_{0}=-\frac{e}{{x}_{0}}-1$ .即 $ln{x}_{0}=\frac{e}{{x}_{0}}$ .则x0=e.∴A点坐标为(e.1).故答案为:(e.1).【点评】:本题考查利用导数研究过曲线上某点处的切线方程.区分过点处与在点处的不同.是中档题.12.(填空题.5分)如图.在△ABC中.D是BC的中点.E在边AB上.BE=2EA.AD与CE交于点O.若 $\overrightarrow{AB}$ • $\overrightarrow{AC}$ =6 $\overrightarrow{AO}$ •$\overrightarrow{EC}$ .则 $\frac{AB}{AC}$ 的值是 ___ .【正确答案】:[1] $\sqrt{3}$【解析】:首先算出 $\overrightarrow{AO}$ = $\frac{1}{2}$ $\overrightarrow{AD}$ .然后用$\overrightarrow{AB}$ 、 $\overrightarrow{AC}$ 表示出 $\overrightarrow{AO}$ 、$\overrightarrow{EC}$ .结合 $\overrightarrow{AB}$ • $\overrightarrow{AC}$ =6$\overrightarrow{AO}$ • $\overrightarrow{EC}$ 得$\frac{1}{2}$ ${\overrightarrow{AB}}^{2}$ = $\frac{3}{2}$ ${\overrightarrow{AC}}^{2}$ .进一步可得结果.【解答】:解:设 $\overrightarrow{AO}$ =λ $\overrightarrow{AD}$ =$\frac{λ}{2}$( $\overrightarrow{AB}+\overrightarrow{AC}$ ).$\overrightarrow{AO}$ = $\overrightarrow{AE}$ + $\overrightarrow{EO}$ =$\overrightarrow{AE}$ +μ $\overrightarrow{EC}$ = $\overrightarrow{AE}$ +μ( $\overrightarrow{AC}-\overrightarrow{AE}$ )=(1-μ) $\overrightarrow{AE}$ +μ $\overrightarrow{AC}$ = $\frac{1-μ}{3}$ $\overrightarrow{AB}$ +μ $\overrightarrow{AC}$∴ $\left\{\begin{array}{l}{\frac{λ}{2}=\frac{1-μ}{3}}\\{\frac{λ}{2}=μ}\end{array}\right.$ .∴ $\left\{\begin{array}{l}{λ=\frac{1}{2}}\\{μ=\frac{1}{4}}\end{array}\right.$ .∴ $\overrightarrow{AO}$ = $\frac{1}{2}$ $\overrightarrow{AD}$ =$\frac{1}{4}$ ( $\overrightarrow{AB}+\overrightarrow{AC}$ ).$\overrightarrow{EC}$ = $\overrightarrow{AC}-\overrightarrow{AE}$ =-$\frac{1}{3}$ $\overrightarrow{AB}$ + $\overrightarrow{AC}$ .6 $\overrightarrow{AO}$ • $\overrightarrow{EC}$ =6×$\frac{1}{4}$ ( $\overrightarrow{AB}+\overrightarrow{AC}$ )•(-$\frac{1}{3}$ $\overrightarrow{AB}$ + $\overrightarrow{AC}$ )= $\frac{3}{2}$ ( $-\frac{1}{3}$ ${\overrightarrow{AB}}^{2}$ +$\frac{2}{3}$ $\overrightarrow{AB}\bullet \overrightarrow{AC}$ +${\overrightarrow{AC}}^{2}$ )= $-\frac{1}{2}$ ${\overrightarrow{AB}}^{2}$ + $\overrightarrow{AB}\bullet\overrightarrow{AC}$ + $\frac{3}{2}$ ${\overrightarrow{AC}}^{2}$ .∵ $\overrightarrow{AB}$ • $\overrightarrow{AC}$ = $-\frac{1}{2}$ ${\overrightarrow{AB}}^{2}$ + $\overrightarrow{AB}\bullet\overrightarrow{AC}$ + $\frac{3}{2}$ ${\overrightarrow{AC}}^{2}$ .∴ $\frac{1}{2}$ ${\overrightarrow{AB}}^{2}$ = $\frac{3}{2}$ ${\overrightarrow{AC}}^{2}$ .∴ $\frac{{\overrightarrow{AB}}^{2}}{{\overrightarrow{AC}}^{2}}$ =3.∴ $\frac{AB}{AC}$ = $\sqrt{3}$ .故答案为: $\sqrt{3}$【点评】:本题考查向量的数量积的应用.考查向量的表示以及计算.考查计算能力.13.(填空题.5分)已知 $\frac{tanα}{tan(α+\frac{π}{4})}$ =- $\frac{2}{3}$ .则sin(2α+ $\frac{π}{4}$)的值是___ .【正确答案】:[1] $\frac{\sqrt{2}}{10}$【解析】:由已知求得tanα.分类利用万能公式求得sin2α.cos2α的值.展开两角和的正弦求sin (2α+ $\frac{π}{4}$)的值.【解答】:解:由 $\frac{tanα}{tan(α+\frac{π}{4})}$ =- $\frac{2}{3}$ .得$\frac{tanα}{\frac{tanα+tan\frac{π}{4}}{1-tanαtan\frac{π}{4}}}=-\frac{2}{3}$ .∴ $\frac{tanα(1-tanα)}{1+tanα}=-\frac{2}{3}$ .解得tanα=2或tan $α=-\frac{1}{3}$ .当tanα=2时.sin2α= $\frac{2tanα}{1+ta{n}^{2}α}=\frac{4}{5}$ .cos2α= $\frac{1-ta{n}^{2}α}{1+ta{n}^{2}α}=-\frac{3}{5}$ .∴sin(2α+ $\frac{π}{4}$)= $sin2αcos\frac{π}{4}+cos2αsin\frac{π}{4}$ =$\frac{4}{5}×\frac{\sqrt{2}}{2}-\frac{3}{5}×\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{10}$ ;当tanα= $-\frac{1}{3}$ 时.sin2α= $\frac{2tanα}{1+ta{n}^{2}α}$ = $-\frac{3}{5}$ .cos2α= $\frac{1-ta{n}^{2}α}{1+ta{n}^{2}α}=\frac{4}{5}$ .∴sin(2α+ $\frac{π}{4}$)= $sin2αcos\frac{π}{4}+cos2αsin\frac{π}{4}$ = $-\frac{3}{5}×\frac{\sqrt{2}}{2}+\frac{4}{5}×\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{10}$ .综上.sin(2α+ $\frac{π}{4}$)的值是 $\frac{\sqrt{2}}{10}$ .故答案为: $\frac{\sqrt{2}}{10}$ .【点评】:本题考查三角函数的恒等变换与化简求值.考查两角和的三角函数及万能公式的应用.是中档题.14.(填空题.5分)设f(x).g(x)是定义在R上的两个周期函数.f(x)的周期为4.g(x)的周期为2.且f(x)是奇函数.当x∈(0.2]时.f(x)= $\sqrt{1-(x-1)^{2}}$ .g(x)=$\left\{\begin{array}{l}{k(x+2).}&{0<x≤1.}\\{-\frac{1}{2}.}&{1<x≤2.}\end{array}\right.$ 其中k>0.若在区间(0.9]上.关于x的方程f(x)=g(x)有8个不同的实数根.则k的取值范围是___ .【正确答案】:[1][ $\frac{1}{3}$ . $\frac{\sqrt{2}}{4}$ )【解析】:由已知函数解析式结合周期性作出图象.数形结合得答案.【解答】:解:作出函数f(x)与g(x)的图象如图.由图可知.函数f(x)与g(x)=- $\frac{1}{2}$ (1<x≤2.3<x≤4.5<x≤6.7<x≤8)仅有2个实数根;要使关于x的方程f(x)=g(x)有8个不同的实数根.则f(x)= $\sqrt{1-(x-1)^{2}}$ .x∈(0.2]与g(x)=k(x+2).x∈(0.1]的图象有2个不同交点.由(1.0)到直线kx-y+2k=0的距离为1.得 $\frac{|3k|}{\sqrt{{k}^{2}+1}}=1$ .解得k= $\frac{\sqrt{2}}{4}$ (k>0).∵两点(-2.0).(1.1)连线的斜率k= $\frac{1}{3}$ .∴ $\frac{1}{3}$ ≤k< $\frac{\sqrt{2}}{4}$ .即k的取值范围为[ $\frac{1}{3}$ . $\frac{\sqrt{2}}{4}$ ).故答案为:[ $\frac{1}{3}$ . $\frac{\sqrt{2}}{4}$ ).【点评】:本题考查函数零点的判定.考查分段函数的应用.体现了数形结合的解题思想方法.是中档题.15.(问答题.14分)在△ABC中.角A.B.C的对边分别为a.b.c.(1)若a=3c.b= $\sqrt{2}$ .cosB= $\frac{2}{3}$ .求c的值;(2)若 $\frac{sinA}{a}$ = $\frac{cosB}{2b}$ .求sin(B+ $\frac{π}{2}$)的值.【正确答案】:【解析】:(1)由余弦定理得:cosB= $\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$ =$\frac{10{c}^{2}-2}{6{c}^{2}}$ = $\frac{2}{3}$ .由此能求出c的值.(2)由 $\frac{sinA}{a}$ = $\frac{cosB}{2b}$ .利用正弦定理得2sinB=cosB.再由sin2B+cos2B=1.能求出sinB= $\frac{\sqrt{5}}{5}$ .cosB= $\frac{2\sqrt{5}}{5}$ .由此利用诱导公式能求出sin(B+ $\frac{π}{2}$)的值.【解答】:解:(1)∵在△ABC中.角A.B.C的对边分别为a.b.c.a=3c.b= $\sqrt{2}$ .cosB= $\frac{2}{3}$ .∴由余弦定理得:cosB= $\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$ = $\frac{10{c}^{2}-2}{6{c}^{2}}$ =$\frac{2}{3}$ .解得c= $\frac{\sqrt{3}}{3}$ .(2)∵ $\frac{sinA}{a}$ = $\frac{cosB}{2b}$ .∴由正弦定理得: $\frac{sinA}{a}=\frac{sinB}{b}=\frac{cosB}{2b}$ .∴2sinB=cosB.∵sin2B+cos2B=1.∴sinB= $\frac{\sqrt{5}}{5}$ .cosB= $\frac{2\sqrt{5}}{5}$ .∴sin(B+ $\frac{π}{2}$)=cosB= $\frac{2\sqrt{5}}{5}$ .【点评】:本题考查三角形边长、三角函数值的求法.考查正弦定理、余弦定理、诱导公式、同角三角函数关系式等基础知识.考查推理能力与计算能力.属于中档题.16.(问答题.14分)如图.在直三棱柱ABC-A1B1C1中.D.E分别为BC.AC的中点.AB=BC.求证:(1)A1B1 || 平面DEC1;(2)BE⊥C1E.【正确答案】:【解析】:(1)推导出DE || AB.AB || A1B1.从而DE || A1B1.由此能证明A1B1 || 平面DEC1.(2)推导出BE⊥AA1.BE⊥AC.从而BE⊥平面ACC1A1.由此能证明BE⊥C1E.【解答】:证明:(1)∵在直三棱柱ABC-A1B1C1中.D.E分别为BC.AC的中点.∴DE || AB.AB || A1B1.∴DE || A1B1.∵DE⊂平面DEC1.A1B1⊄平面DEC1.∴A1B1 || 平面DEC1.解:(2)∵在直三棱柱ABC-A1B1C1中.E是AC的中点.AB=BC.∴BE⊥AC.∵直三棱柱ABC-A1B1C1中.AA1⊥平面ABC.BE⊂平面ABC.∴BE⊥AA1.又AA1∩AC=A.∴BE⊥平面ACC1A1.∵C1E⊂平面ACC1A1.∴BE⊥C1E.【点评】:本题考查线面平行、线线垂直的证明.考查空间中线线、线面、面面间的位置关系等基础知识.考查运算求解能力.考查数形结合思想.是中档题.17.(问答题.14分)如图.在平面直角坐标系xOy中.椭圆C: $\frac{{x}^{2}}{{a}^{2}}$ + $\frac{{y}^{2}}{{b}^{2}}$ =1(a>b>0)的焦点为F1(-1.0).F2(1.0).过F2作x轴的垂线l.在x轴的上方.l与圆F2:(x-1)2+y2=4a2交于点A.与椭圆C交于点D.连结AF1并延长交圆F2于点B.连结BF2交椭圆C于点E.连结DF1.已知DF1= $\frac{5}{2}$ .(1)求椭圆C的标准方程;(2)求点E的坐标.【正确答案】:【解析】:(1)由题意得到F1D || BF2.然后求AD.再由AD=DF1= $\frac{5}{2}$ 求得a.则椭圆方程可求;(2)求出D的坐标.得到 ${k}_{B{F}_{2}}={k}_{D{F}_{1}}$ =$\frac{\frac{3}{2}}{2}=\frac{3}{4}$ .写出BF2的方程.与椭圆方程联立即可求得点E的坐标.【解答】:解:(1)如图.∵F2A=F2B.∴∠F2AB=∠F2BA.∵F2A=2a=F2D+DA=F2D+F1D.∴AD=F1D.则∠DAF1=∠DF1A.∴∠DF1A=∠F2BA.则F1D || BF2.∵c=1.∴b2=a2-1.则椭圆方程为 $\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{a}^{2}-1}=1$ .取x=1.得 ${y}_{D}=\frac{{a}^{2}-1}{a}$ .则AD=2a- $\frac{{a}^{2}-1}{a}$ =$\frac{{a}^{2}+1}{a}$ .又DF1= $\frac{5}{2}$ .∴ $\frac{{a}^{2}+1}{a}=\frac{5}{2}$ .解得a=2(a>0).∴椭圆C的标准方程为 $\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$ ;(2)由(1)知.D(1. $\frac{3}{2}$ ).F1(-1.0).∴ ${k}_{B{F}_{2}}={k}_{D{F}_{1}}$ = $\frac{\frac{3}{2}}{2}=\frac{3}{4}$ .则BF2:y=$\frac{3}{4}(x-1)$ .联立 $\left\{\begin{array}{l}{y=\frac{3}{4}(x-1)}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$ .得21x2-18x-39=0.解得x1=-1或 ${x}_{2}=\frac{13}{7}$ (舍).∴ ${y}_{1}=-\frac{3}{2}$ .即点E的坐标为(-1.- $\frac{3}{2}$ ).【点评】:本题考查直线与圆.圆与椭圆位置关系的应用.考查计算能力.证明DF1 || BF2是解答该题的关键.是中档题.18.(问答题.16分)如图.一个湖的边界是圆心为O的圆.湖的一侧有一条直线型公路l.湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P.Q.并修建两段直线型道路PB.QA.规划要求:线段PB.QA上的所有点到点O的距离均不小于圆O的半径.已知点A.B到直线l的距离分别为AC和BD(C.D为垂足).测得AB=10.AC=6.BD=12(单位:百米).(1)若道路PB与桥AB垂直.求道路PB的长;(2)在规划要求下.P和Q中能否有一个点选在D处?并说明理由;(3)在规划要求下.若道路PB和QA的长度均为d(单位:百米).求当d最小时.P、Q两点间的距离.【正确答案】:【解析】:(1)设BD与圆O交于M.连接AM.以C为坐标原点.l为x轴.建立直角坐标系.则A (0.-6).B(-8.-12).D(-8.0)设点P(x1.0).PB⊥AB.运用两直线垂直的条件:斜率之积为-1.求得P的坐标.可得所求值;(2)当QA⊥AB时.QA上的所有点到原点O的距离不小于圆的半径.设此时Q(x2.0).运用两直线垂直的条件:斜率之积为-1.求得Q的坐标.即可得到结论;(3)设P(a.0).Q(b.0).则a≤-17.b≥- $\frac{9}{2}$ .结合条件.可得b的最小值.由两点的距离公式.计算可得PQ.【解答】:解:设BD与圆O交于M.连接AM.AB为圆O的直径.可得AM⊥BM.即有DM=AC=6.BM=6.AM=8.以C为坐标原点.l为x轴.建立直角坐标系.则A(0.-6).B(-8.-12).D(-8.0)(1)设点P(x1.0).PB⊥AB.则k BP•k AB=-1.即 $\frac{0-(-12)}{{x}_{1}-(-8)}$ • $\frac{-6-(-12)}{0-(-8)}$ =-1.解得x1=-17.所以P(-17.0).PB= $\sqrt{(-17+8)^{2}+(0+12)^{2}}$ =15;(2)当QA⊥AB时.QA上的所有点到原点O的距离不小于圆的半径.设此时Q(x2.0).则k QA•k AB=-1.即 $\frac{0-(-6)}{{x}_{2}-0}$ • $\frac{-6-(-12)}{0-(-8)}$ =-1.解得x2=-$\frac{9}{2}$ .Q(- $\frac{9}{2}$ .0).由-17<-8<- $\frac{9}{2}$ .在此范围内.不能满足PB.QA上所有点到O的距离不小于圆的半径. 所以P.Q中不能有点选在D点;(3)设P(a.0).Q(b.0).由(1)(2)可得a≤-17.b≥- $\frac{9}{2}$ .由两点的距离公式可得PB2=(a+8)2+144≥225.当且仅当a=-17时.d=|PB|取得最小值15.又QA2=b2+36≥225.则b≥3 $\sqrt{21}$ .当d最小时.a=-17.b=3 $\sqrt{21}$ .PQ=17+3$\sqrt{21}$ .【点评】:本题考查直线和圆的位置关系.考查直线的斜率和两直线垂直的条件:斜率之积为-1.以及两点的距离公式.分析问题和解决问题的能力.考查运算能力.属于中档题.19.(问答题.16分)设函数f(x)=(x-a)(x-b)(x-c).a.b.c∈R.f′(x)为f(x)的导函数.(1)若a=b=c.f(4)=8.求a的值;(2)若a≠b.b=c.且f(x)和f′(x)的零点均在集合{-3.1.3}中.求f(x)的极小值;(3)若a=0.0<b≤1.c=1.且f(x)的极大值为M.求证:M≤ $\frac{4}{27}$ .【正确答案】:【解析】:(1)由a=b=c.可得f(x)=(x-a)3.根据f(4)=8.可得(4-a)3=8.解得a.(2)a≠b.b=c.设f(x)=(x-a)(x-b)2.令f(x)=(x-a)(x-b)2=0.解得x=a.或x=b.f′(x)=(x-b)(3x-b-2a).令f′(x)=0.解得x=b.或x= $\frac{2a+b}{3}$ .根据f (x)和f′(x)的零点均在集合A={-3.1.3}中.通过分类讨论可得:只有a=3.b=-3.可得$\frac{2a+b}{3}$ = $\frac{6-3}{3}$ =1∈A.可得:f(x)=(x-3)(x+3)2.利用导数研究其单调性可得x=1时.函数f(x)取得极小值.(3)a=0.0<b≤1.c=1.f(x)=x(x-b)(x-1).f′(x)=3x2-(2b+2)x+b.△>0.令f′(x)=3x2-(2b+2)x+b=0.解得:x1= $\frac{b+1-\sqrt{{b}^{2}-b+1}}{3}$ ∈$(0.\frac{1}{3}]$ .x2= $\frac{b+1+\sqrt{{b}^{2}-b+1}}{3}$ .x1<x2.可得x=x1时.f(x)取得极大值为M.f′(x1)= $3{x}_{1}^{2}$ -(2b+2)x1+b=0.令x1=t∈ $(0.\frac{1}{3}]$ .可得:b= $\frac{3{t}^{2}-2t}{2t-1}$ .M=f(x1)=x1(x1-b)(x1-1)=t(t-b)(t-1)= $\frac{-{t}^{4}+2{t}^{3}-{t}^{2}}{2t-1}$ .利用导数研究函数的单调性即可得出.【解答】:解:(1)∵a=b=c.∴f(x)=(x-a)3.∵f(4)=8.∴(4-a)3=8.∴4-a=2.解得a=2.(2)a≠b.b=c.设f(x)=(x-a)(x-b)2.令f(x)=(x-a)(x-b)2=0.解得x=a.或x=b.f′(x)=(x-b)2+2(x-a)(x-b)=(x-b)(3x-b-2a).令f′(x)=0.解得x=b.或x= $\frac{2a+b}{3}$ .∵f(x)和f′(x)的零点均在集合A={-3.1.3}中.若:a=-3.b=1.则 $\frac{2a+b}{3}$ = $\frac{-6+1}{3}$ =- $\frac{5}{3}$ ∉A.舍去.a=1.b=-3.则 $\frac{2a+b}{3}$ = $\frac{2-3}{3}$ =- $\frac{1}{3}$ ∉A.舍去.a=-3.b=3.则 $\frac{2a+b}{3}$ = $\frac{-6+3}{3}$ =-1∉A.舍去..a=3.b=1.则 $\frac{2a+b}{3}$ = $\frac{6+1}{3}$ = $\frac{7}{3}$ ∉A.舍去.a=1.b=3.则 $\frac{2a+b}{3}$ = $\frac{5}{3}$ ∉A.舍去.a=3.b=-3.则 $\frac{2a+b}{3}$ = $\frac{6-3}{3}$ =1∈A.因此a=3.b=-3. $\frac{2a+b}{3}$ =1∈A.可得:f(x)=(x-3)(x+3)2.f′(x)=3[x-(-3)](x-1).可得x=1时.函数f(x)取得极小值.f(1)=-2×42=-32.(3)证明:a=0.0<b≤1.c=1.f(x)=x(x-b)(x-1).f′(x)=(x-b)(x-1)+x(x-1)+x(x-b)=3x2-(2b+2)x+b.△=4(b+1)2-12b=4b2-4b+4=4 $(b-\frac{1}{2})^{2}$ +3≥3.令f′(x)=3x2-(2b+2)x+b=0.解得:x1= $\frac{b+1-\sqrt{{b}^{2}-b+1}}{3}$ ∈ $(0.\frac{1}{3}]$ .x2=$\frac{b+1+\sqrt{{b}^{2}-b+1}}{3}$ .x1<x2.x1+x2= $\frac{2b+2}{3}$ .x1x2= $\frac{b}{3}$ .可得x=x1时.f(x)取得极大值为M.∵f′(x1)= $3{x}_{1}^{2}$ -(2b+2)x1+b=0.令x1=t∈ $(0.\frac{1}{3}]$ .可得:b= $\frac{3{t}^{2}-2t}{2t-1}$ .∴M=f(x1)=x1(x1-b)(x1-1)=t(t-b)(t-1)= $\frac{-{t}^{4}+2{t}^{3}-{t}^{2}}{2t-1}$ . M′= $\frac{-6{t}^{4}+12{t}^{3}-8{t}^{2}+2t}{(2t-1)^{2}}$ .令g(t)=-6t3+12t2-8t+2.g′(t)=-18t2+24t-8=-2(3t-2)2<0.∴函数g(t)在t∈ $(0.\frac{1}{3}]$ 上单调递减. $g(\frac{1}{3})$ = $\frac{4}{9}$ >0.∴t•g(t)>0.∴M′>0.∴函数M(t)在t∈ $(0.\frac{1}{3}]$ 上单调递增.∴M(t)≤ $M(\frac{1}{3})$ = $\frac{4}{27}$ .【点评】:本题考查了利用导数研究函数的单调性、方程与不等式的解法、分类讨论方法、等价转化方法.考查了推理能力与计算能力.属于难题.20.(问答题.16分)定义首项为1且公比为正数的等比数列为“M-数列”.(1)已知等比数列{a n}(n∈N*)满足:a2a4=a5.a3-4a2+4a1=0.求证:数列{a n}为“M-数列”;(2)已知数列{b n}(n∈N*)满足:b1=1. $\frac{1}{{S}_{n}}$ = $\frac{2}{{b}_{n}}$ -$\frac{2}{{b}_{n+1}}$ .其中S n为数列{b n}的前n项和.① 求数列{b n}的通项公式;② 设m为正整数.若存在“M-数列”{c n}(n∈N*).对任意正整数k.当k≤m时.都有c k≤b k≤c k+1成立.求m的最大值.【正确答案】:【解析】:(1)设等比数列{a n}的公比为q.然后根据a2a4=a5.a3-4a2+4a1=0列方程求解.在根据新定义判断即可;(2)求出b2.b3.b4猜想b n.然后用数学归纳法证明;(3)设{c n}的公比为q.将问题转化为 $[\frac{lnk}{k}]_{max}≤[\frac{lnk}{k-1}]_{min}$ .然后构造函数f(x)= $\frac{lnx}{x}(x≥3)$ .g(x)= $\frac{lnx}{x-1}(x≤3)$ .分别求解其最大值和最小值.最后解不等式 $\frac{ln3}{3}≤\frac{lnm}{m-1}$ .即可.【解答】:解:(1)设等比数列{a n}的公比为q.则由a2a4=a5.a3-4a2+4a1=0.得$\left\{\begin{array}{l}{{{a}_{1}}^{2}{q}^{4}={a}_{1}{q}^{4}}\\{{a}_{1}{q}^{2}-4{a}_{1}q+4{a}_{1}=0}\end{array}\right.$ ∴$\left\{\begin{array}{l}{{a}_{1}=1}\\{q=2}\end{array}\right.$ .∴数列{a n}首项为1且公比为正数即数列{a n}为“M-数列”;(2)① ∵b1=1. $\frac{1}{{S}_{n}}$ = $\frac{2}{{b}_{n}}$ - $\frac{2}{{b}_{n+1}}$ .∴当n=1时. $\frac{1}{S_1}=\frac{1}{b_1}=\frac{2}{b_1}-\frac{2}{b_2}$ .∴b2=2.当n=2时. $\frac{1}{S_2}=\frac{1}{b_1+b_2}=\frac{2}{b_2}-\frac{2}{b_3}$ .∴b3=3.当n=3时. $\frac{1}{S_3}=\frac{1}{b_1+b_2+b_3}=\frac{2}{b_3}-\frac{2}{b_4}$ .∴b4=4.猜想b n=n.下面用数学归纳法证明;(i)当n=1时.b1=1.满足b n=n.(ii)假设n=k时.结论成立.即b k=k.则n=k+1时.由 $\frac{1}{S_{k}}=\frac{2}{b_{k}}-\frac{2}{b_{k+1}}$ .得$b_{k+1}=\frac{2b_kS_k}{2S_k-b_k}$ = $\frac{2k\bullet \frac{k(k+1)}{2}}{2\bullet\frac{k(k+1)}{2}-k}$ =k+1.故n=k+1时结论成立.根据(i)(ii)可知.b n=n对任意的n∈N*都成立.故数列{b n}的通项公式为b n=n;② 设{c n}的公比为q.存在“M-数列”{c n}(n∈N*).对任意正整数k.当k≤m时.都有c k≤b k≤c k+1成立.即q k-1≤k≤q k对k≤m恒成立.当k=1时.q≥1.当k=2时. $\sqrt{2}≤q≤2$ .当k≥3.两边取对数可得. $\frac{lnk}{k}≤lnq≤\frac{lnk}{k-1}$ 对k≤m有解.即$[\frac{lnk}{k}]_{max}≤lnq≤[\frac{lnk}{k-1}]_{min}$ .令f(x)= $\frac{lnx}{x}(x≥3)$ .则 $f'(x)=\frac{1-lnx}{x^2}$ .当x≥3时.f'(x)<0.此时f(x)递减.∴当k≥3时. $[\frac{lnk}{k}]_{max}=\frac{ln3}{3}$ .令g(x)= $\frac{lnx}{x-1}(x≤3)$ .则 $g'(x)=\frac{1-\frac{1}{x}-lnx}{x^2}$ .令 $ϕ(x)=1-\frac{1}{x}-lnx$ .则 $ϕ'(x)=\frac{1-x}{x^2}$ .当x≥3时.ϕ'(x)<0.即g'(x)<0.∴g(x)在[3.+∞)上单调递减.即k≥3时. $[\frac{lnk}{k-1}]_{min}=\frac{lnm}{m-1}$ .则 $\frac{ln3}{3}≤\frac{lnm}{m-1}$ .下面求解不等式 $\frac{ln3}{3}≤\frac{lnm}{m-1}$ .化简.得3lnm-(m-1)ln3≥0.令h(m)=3lnm-(m-1)ln3.则h'(m)= $\frac{3}{m}$ -ln3.由k≥3得m≥3.h'(m)<0.∴h(m)在[3.+∞)上单调递减.又由于h(5)=3ln5-4ln3=ln125-ln81>0.h(6)=3ln6-5ln3=ln216-ln243<0.∴存在m0∈(5.6)使得h(m0)=0.∴m的最大值为5.此时q∈ $[3^{\frac{1}{3}}$ . $5^{\frac{1}{4}}]$ .【点评】:本题考查了由递推公式求等比数列的通项公式和不等式恒成立.考查了数学归纳法和构造法.是数列、函数和不等式的综合性问题.属难题.21.(问答题.10分)已知矩阵A= $\left[\begin{array}{l}{3}&{1}\\{2}&{2}\end{array}\right]$ .(1)求A2;(2)求矩阵A的特征值.【正确答案】:【解析】:(1)根据矩阵A直接求解A2即可;(2)矩阵A的特征多项式为f(λ)= $\left|\b egin{array}{l}{λ-3}&{-1}\\{-2}&{λ-2}\end{array}\right|$ =λ2-5λ+4.解方程f(λ)=0即可.【解答】:解:(1)∵A= $\left[\begin{array}{l}{3}&{1}\\{2}&{2}\end{array}\right]$∴A2=$\left[\begin{array}{l}{3}&{1}\\{2}&{2}\end{array}\right]$ $\left[\begin{array}{l}{3}&{1}\\{ 2}&{2}\end{array}\right]$= $\left[\begin{array}{l}{11}&{5}\\{10}&{6}\end{array}\right]$(2)矩阵A的特征多项式为:f(λ)= $\left|\begin{array}{l}{λ-3}&{-1}\\{-2}&{λ-2}\end{array}\right|$ =λ2-5λ+4.令f(λ)=0.则由方程λ2-5λ+4=0.得λ=1或λ=4.∴矩阵A的特征值为1或4.【点评】:本题考查了矩阵的运算和特征值等基础知识.考查运算与求解能力.属基础题.22.(问答题.10分)在极坐标系中.已知两点A(3. $\frac{π}{4}$).B( $\sqrt{2}$ .$\frac{π}{2}$).直线l的方程为ρsin(θ+ $\frac{π}{4}$)=3.(1)求A.B两点间的距离;(2)求点B到直线l的距离.【正确答案】:【解析】:(1)设极点为O.则由余弦定理可得 $AB^2=OA^2+OB^2-2OA\bulletOBcos\angleAOB$ .解出AB;(2)根据直线l的方程和点B的坐标可直接计算B到直线l的距离.【解答】:解:(1)设极点为O.则在△OAB中.由余弦定理.得AB2=OA2+OB2-2OA $\bulletOBcos\angleAOB$ .∴AB= $\sqrt{{3}^{2}+(\sqrt{2})^{2}-2×3×\sqrt{2}×cos(\frac{π}{2}-\frac{π}{4})}$ =$\sqrt{5}$ ;(2)由直线l的方程ρsin(θ+ $\frac{π}{4}$)=3.知直线l过(3 $\sqrt{2}$ . $\frac{π}{2}$).倾斜角为 $\frac{3π}{4}$ .又B( $\sqrt{2}$ . $\frac{π}{2}$).∴点B到直线l的距离为 $(3\sqrt{2}-\sqrt{2})\bulletsin(\frac{3π}{4}-\frac{π}{2})=2$.【点评】:本题考查了在极坐标系下计算两点间的距离和点到直线的距离.属基础题.23.(问答题.10分)设x∈R.解不等式|x|+|2x-1|>2.【正确答案】:【解析】:对|x|+|2x-1|去绝对值.然后分别解不等式即可.【解答】:解:|x|+|2x-1|= $\left\{\begin{array}{l}{3x-1.x>\frac{1}{2}}\\{-x+1.0≤x≤\frac{1}{2}}\\{-3x+1.x<0}\end{array}\right.$ .∵|x|+|2x-1|>2.∴ $\left\{\begin{array}{l}{3x-1>2}\\{x>\frac{1}{2}}\end{array}\right.$ 或$\left\{\begin{array}{l}{-x+1>2}\\{0≤x≤\frac{1}{2}}\end{array}\right.$ 或$\left\{\begin{array}{l}{-3x+1>2}\\{x<0}\end{array}\right.$ .∴x>1或x∈∅或x<- $\frac{1}{3}$ .∴不等式的解集为{x|x<- $\frac{1}{3}$ 或x>1}.【点评】:本题考查了绝对值不等式的解法.属基础题.24.(问答题.10分)设(1+x)n=a0+a1x+a2x2+…+a n x n.n≥4.n∈N*.已知a32=2a2a4.(1)求n的值;(2)设(1+ $\sqrt{3}$ )n=a+b $\sqrt{3}$ .其中a.b∈N*.求a2-3b2的值.【正确答案】:【解析】:(1)运用二项式定理.分别求得a2.a3.a4.结合组合数公式.解方程可得n的值;(2)方法一、运用二项式定理.结合组合数公式求得a.b.计算可得所求值;方法二、由于a.b∈N*.求得(1- $\sqrt{3}$ )5=a-b $\sqrt{3}$ .再由平方差公式.计算可得所求值.【解答】:解:(1)由(1+x)n=C ${}_{n}^{0}$ +C ${}_{n}^{1}$ x+C ${}_{n}^{2}$ x2+…+C ${}_{n}^{n}$ x n.n≥4.可得a2=C ${}_{n}^{2}$ = $\frac{n(n-1)}{2}$ .a3=C ${}_{n}^{3}$ = $\frac{n(n-1)(n-2)}{6}$ .a4=C ${}_{n}^{4}$ = $\frac{n(n-1)(n-2)(n-3)}{24}$ .a32=2a2a4.可得( $\frac{n(n-1)(n-2)}{6}$ )2=2• $\frac{n(n-1)}{2}$ • $\frac{n(n-1)(n-2)(n-3)}{24}$ .解得n=5;(2)方法一、(1+ $\sqrt{3}$ )5=C ${}_{5}^{0}$ +C ${}_{5}^{1}$ $\sqrt{3}$ +C${}_{5}^{2}$ ( $\sqrt{3}$ )2+C ${}_{5}^{3}$ ( $\sqrt{3}$ )3+C ${}_{5}^{4}$ ( $\sqrt{3}$ )4+C ${}_{5}^{5}$ ( $\sqrt{3}$ )5=a+b $\sqrt{3}$ .由于a.b∈N*.可得a=C ${}_{5}^{0}$ +3C ${}_{5}^{2}$ +9C ${}_{5}^{4}$ =1+30+45=76.b=C ${}_{5}^{1}$ +3C ${}_{5}^{3}$ +9C ${}_{5}^{5}$ =44.可得a2-3b2=762-3×442=-32;方法二、(1+ $\sqrt{3}$ )5=C ${}_{5}^{0}$ +C ${}_{5}^{1}$ $\sqrt{3}$ +C${}_{5}^{2}$ ( $\sqrt{3}$ )2+C ${}_{5}^{3}$ ( $\sqrt{3}$ )3+C ${}_{5}^{4}$ ( $\sqrt{3}$ )4+C ${}_{5}^{5}$ ( $\sqrt{3}$ )5=a+b $\sqrt{3}$ .(1- $\sqrt{3}$ )5=C ${}_{5}^{0}$ +C ${}_{5}^{1}$ (- $\sqrt{3}$ )+C ${}_{5}^{2}$ (-$\sqrt{3}$ )2+C ${}_{5}^{3}$ (- $\sqrt{3}$ )3+C ${}_{5}^{4}$ (- $\sqrt{3}$ )4+C${}_{5}^{5}$ (- $\sqrt{3}$ )5=C ${}_{5}^{0}$ -C ${}_{5}^{1}$ $\sqrt{3}$ +C ${}_{5}^{2}$ ( $\sqrt{3}$ )2-C${}_{5}^{3}$ ( $\sqrt{3}$ )3+C ${}_{5}^{4}$ ( $\sqrt{3}$ )4-C ${}_{5}^{5}$ ( $\sqrt{3}$ )5.由于a.b∈N*.可得(1- $\sqrt{3}$ )5=a-b $\sqrt{3}$ .可得a2-3b2=(1+ $\sqrt{3}$ )5•(1- $\sqrt{3}$ )5=(1-3)5=-32.【点评】:本题主要考查二项式定理、组合数公式的运用.考查运算能力和分析问题能力.属于中档题.25.(问答题.10分)在平面直角坐标系xOy中.设点集A n={(0.0).(1.0).(2.0).….(n.0)}.B n={(0.1).(n.1)}.C n={(0.2).(1.2).(2.2).…….(n.2)}.n∈N*.令M n=A n∪B n∪C n.从集合M n中任取两个不同的点.用随机变量X表示它们之间的距离.(1)当n=1时.求X的概率分布;(2)对给定的正整数n(n≥3).求概率P(X≤n)(用n表示).【正确答案】:【解析】:(1)当n=1时.X的所有可能取值为1. $\sqrt{2}$ .2. $\sqrt{5}$ .由古典概率的公式.结合组合数可得所求值;(2)设A(a.b)和B(c.d)是从M n中取出的两个点.因为P(X≤n)=1-P(X>n).所以只需考虑X>n的情况.分别讨论b.d的取值.结合古典概率的计算公式和对立事件的概率.即可得到所求值.【解答】:解:(1)当n=1时.X的所有可能取值为1. $\sqrt{2}$ .2. $\sqrt{5}$ .X的概率分布为P(X=1)= $\frac{7}{{C}_{6}^{2}}$ = $\frac{7}{15}$ ;P(X= $\sqrt{2}$ )= $\frac{4}{{C}_{6}^{2}}$ = $\frac{4}{15}$ ;P(X=2)= $\frac{2}{{C}_{6}^{2}}$ = $\frac{2}{15}$ ;P(X= $\sqrt{5}$ )=$\frac{2}{{C}_{6}^{2}}$ = $\frac{2}{15}$ ;(2)设A(a.b)和B(c.d)是从M n中取出的两个点.因为P(X≤n)=1-P(X>n).所以只需考虑X>n的情况.① 若b=d.则AB≤n.不存在X>n的取法;② 若b=0.d=1.则AB= $\sqrt{(a-c)^{2}+1}$ ≤ $\sqrt{{n}^{2}+1}$ .所以X>n当且仅当AB= $\sqrt{{n}^{2}+1}$ .此时a=0.c=n或a=n.c=0.有两种情况;③ 若b=0.d=2.则AB= $\sqrt{(a-c)^{2}+4}$ ≤ $\sqrt{{n}^{2}+4}$ .所以X>n当且仅当AB= $\sqrt{{n}^{2}+4}$ .此时a=0.c=n或a=n.c=0.有两种情况;④ 若b=1.d=2.则AB= $\sqrt{(a-c)^{2}+1}$ ≤ $\sqrt{{n}^{2}+1}$ .所以X>n当且仅当AB= $\sqrt{{n}^{2}+1}$ .此时a=0.c=n或a=n.c=0.有两种情况;综上可得当X>n.X的所有值是 $\sqrt{{n}^{2}+1}$ 或 $\sqrt{{n}^{2}+4}$ .且P(X= $\sqrt{{n}^{2}+1}$ )= $\frac{4}{{C}_{2n+4}^{2}}$ .P(X= $\sqrt{{n}^{2}+4}$ )= $\frac{2}{{C}_{2n+4}^{2}}$ .可得P(X≤n)=1-P(X= $\sqrt{{n}^{2}+1}$ )-P(X= $\sqrt{{n}^{2}+4}$ )=1-$\frac{6}{{C}_{2n+4}^{2}}$ .【点评】:本题考查随机变量的概率的分布.以及古典概率公式的运用.考查分类讨论思想方法.以及化简运算能力.属于难题.。

【真题】2019年江苏省高考数学试题(含附加题+答案)

【真题】2019年江苏省高考数学试题(含附加题+答案)

15.(本小题满分 14 分) 在△ABC 中,角 A,B,C 的对边分别为 a,b,c.
(1)若 a=3c,b=
2
,cosB=
2
,求
c
的值;(2)若
sin
A
cos
B
,求
sin(B
)
的值.
3
a 2b
2
第 3 页 共 18 页
16.(本小题满分 14 分) 如图,在直三棱柱 ABC-A1B1C1 中,D,E 分别为 BC,AC 的中点,AB=BC. 求证:(1)A1B1∥平面 DEC1; (2)BE⊥C1E.
置。 3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。 4.作答试题,必须用 0.5 毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。 5.如需作图,须用 2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。 参考公式:
样本数据 x1, x2 ,…, xn 的方差 s2
5.已知一组数据 6,7,8,8,9,10,则该组数据的方差是 ▲ . 6.从 3 名男同学和 2 名女同学中任选 2 名同学参加志愿者服务,则选出的 2 名同学中至少有 1 名女同学
的概率是 ▲ .
7.在平面直角坐标系
xOy
中,若双曲线
x2
y2 b2
1(b
0)
经过点(3,4),则该双曲线的渐近线方程是
绝密★考试结束前
2019 年普通高等学校招生全国统一考试(江苏卷) 数学Ⅰ
注意事项
考生在答题前请认真阅读本注意事项及各题答题要求 1.本试卷共 4 页,均为非选择题(第 1 题~第 20 题,共 20 题)。本卷满分为 160 分,考试时间为 120 分钟。

2019年江苏省高考数学试卷(含参考答案)

2019年江苏省高考数学试卷(含参考答案)

2019年江苏省高考数学试卷一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.(5分)已知集合A={﹣1,0,1,6},B={x|x>0,x∈R},则A∩B=.2.(5分)已知复数(a+2i)(1+i)的实部为0,其中i为虚数单位,则实数a的值是.3.(5分)如图是一个算法流程图,则输出的S的值是.4.(5分)函数y=的定义域是.5.(5分)已知一组数据6,7,8,8,9,10,则该组数据的方差是.6.(5分)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是.7.(5分)在平面直角坐标系xOy中,若双曲线x2﹣=1(b>0)经过点(3,4),则该双曲线的渐近线方程是.8.(5分)已知数列{a n}(n∈N*)是等差数列,S n是其前n项和.若a2a5+a8=0,S9=27,则S8的值是.9.(5分)如图,长方体ABCD﹣A1B1C1D1的体积是120,E为CC1的中点,则三棱锥E﹣BCD的体积是.10.(5分)在平面直角坐标系xOy中,P是曲线y=x+(x>0)上的一个动点,则点P到直线x+y=0的距离的最小值是.11.(5分)在平面直角坐标系xOy中,点A在曲线y=lnx上,且该曲线在点A处的切线经过点(﹣e,﹣1)(e为自然对数的底数),则点A的坐标是.12.(5分)如图,在△ABC中,D是BC的中点,E在边AB上,BE=2EA,AD与CE交于点O.若•=6•,则的值是.13.(5分)已知=﹣,则sin(2α+)的值是.14.(5分)设f(x),g(x)是定义在R上的两个周期函数,f(x)的周期为4,g(x)的周期为2,且f(x)是奇函数.当x∈(0,2]时,f(x)=,g(x)=其中k>0.若在区间(0,9]上,关于x的方程f(x)=g(x)有8个不同的实数根,则k的取值范围是.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)在△ABC中,角A,B,C的对边分别为a,b,c.(1)若a=3c,b=,cos B=,求c的值;(2)若=,求sin(B+)的值.16.(14分)如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.17.(14分)如图,在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的焦点为F1(﹣1,0),F2(1,0).过F2作x轴的垂线l,在x轴的上方,1与圆F2:(x﹣1)2+y2=4a2交于点A,与椭圆C交于点D.连结AF1并延长交圆F2于点B,连结BF2交椭圆C 于点E,连结DF1.已知DF1=.(1)求椭圆C的标准方程;(2)求点E的坐标.18.(16分)如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P,Q,并修建两段直线型道路PB,QA,规划要求:线段PB,QA上的所有点到点O的距离均不小于...圆O的半径.已知点A,B到直线l的距离分别为AC和BD(C,D为垂足),测得AB=10,AC=6,BD=12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)在规划要求下,若道路PB和QA的长度均为d(单位:百米),求当d最小时,P、Q两点间的距离.19.(16分)设函数f(x)=(x﹣a)(x﹣b)(x﹣c),a,b,c∈R,f′(x)为f(x)的导函数.(1)若a=b=c,f(4)=8,求a的值;(2)若a≠b,b=c,且f(x)和f′(x)的零点均在集合{﹣3,1,3}中,求f(x)的极小值;(3)若a=0,0<b≤1,c=1,且f(x)的极大值为M,求证:M≤.20.(16分)定义首项为1且公比为正数的等比数列为“M﹣数列”.(1)已知等比数列{a n}(n∈N*)满足:a2a4=a5,a3﹣4a2+4a1=0,求证:数列{a n}为“M﹣数列”;(2)已知数列{b n}(n∈N*)满足:b1=1,=﹣,其中S n为数列{b n}的前n 项和.①求数列{b n}的通项公式;②设m为正整数,若存在“M﹣数列”{c n}(n∈N*),对任意正整数k,当k≤m时,都有c k≤b k≤c k+1成立,求m的最大值.【选做题】本题包括A、B、C三小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-2:矩阵与变换](本小题满分10分)21.(10分)已知矩阵A=.(1)求A2;(2)求矩阵A的特征值.B.[选修4-4:坐标系与参数方程](本小题满分10分)22.(10分)在极坐标系中,已知两点A(3,),B(,),直线1的方程为ρsin (θ+)=3.(1)求A,B两点间的距离;(2)求点B到直线l的距离.C.[选修4-5:不等式选讲](本小题满分0分)23.设x∈R,解不等式|x|+|2x﹣1|>2.【必做题】第24题、第25题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.24.(10分)设(1+x)n=a0+a1x+a2x2+…+a n x n,n≥4,n∈N*.已知a32=2a2a4.(1)求n的值;(2)设(1+)n=a+b,其中a,b∈N*,求a2﹣3b2的值.25.(10分)在平面直角坐标系xOy中,设点集A n={(0,0),(1,0),(2,0),…,(n,0)},B n={(0,1),(n,1)},∁n={(0,2),(1,2),(2,2),……,(n,2)},n∈N*.令M n=A n∪B n∪∁n.从集合M n中任取两个不同的点,用随机变量X表示它们之间的距离.(1)当n=1时,求X的概率分布;(2)对给定的正整数n(n≥3),求概率P(X≤n)(用n表示).2019年江苏省高考数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.(5分)已知集合A={﹣1,0,1,6},B={x|x>0,x∈R},则A∩B={1,6}.解:∵A={﹣1,0,1,6},B={x|x>0,x∈R},∴A∩B={﹣1,0,1,6}∩{x|x>0,x∈R}={1,6}.故答案为:{1,6}.2.(5分)已知复数(a+2i)(1+i)的实部为0,其中i为虚数单位,则实数a的值是2.解:∵(a+2i)(1+i)=(a﹣2)+(a+2)i的实部为0,∴a﹣2=0,即a=2.故答案为:2.3.(5分)如图是一个算法流程图,则输出的S的值是5.解:模拟程序的运行,可得x=1,S=0S=0.5不满足条件x≥4,执行循环体,x=2,S=1.5不满足条件x≥4,执行循环体,x=3,S=3不满足条件x≥4,执行循环体,x=4,S=5此时,满足条件x≥4,退出循环,输出S的值为5.故答案为:5.4.(5分)函数y=的定义域是[﹣1,7].解:由7+6x﹣x2≥0,得x2﹣6x﹣7≤0,解得:﹣1≤x≤7.∴函数y=的定义域是[﹣1,7].故答案为:[﹣1,7].5.(5分)已知一组数据6,7,8,8,9,10,则该组数据的方差是.解:一组数据6,7,8,8,9,10的平均数为:=(6+7+8+8+9+10)=8,∴该组数据的方差为:S2=[(6﹣8)2+(7﹣8)2+(8﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=.故答案为:.6.(5分)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是.解:从3名男同学和2名女同学中任选2名同学参加志愿者服务,基本事件总数n==10,选出的2名同学中至少有1名女同学包含的基本事件个数:m=+=7,∴选出的2名同学中至少有1名女同学的概率是p=.故答案为:.7.(5分)在平面直角坐标系xOy中,若双曲线x2﹣=1(b>0)经过点(3,4),则该双曲线的渐近线方程是y=.解:∵双曲线x2﹣=1(b>0)经过点(3,4),∴,解得b2=2,即b=.又a=1,∴该双曲线的渐近线方程是y=.故答案为:y=.8.(5分)已知数列{a n}(n∈N*)是等差数列,S n是其前n项和.若a2a5+a8=0,S9=27,则S8的值是16.解:设等差数列{a n}的首项为a1,公差为d,则,解得.∴=6×(﹣5)+15×2=16.故答案为:16.9.(5分)如图,长方体ABCD﹣A1B1C1D1的体积是120,E为CC1的中点,则三棱锥E﹣BCD的体积是10.解:∵长方体ABCD﹣A1B1C1D1的体积是120,E为CC1的中点,∴=AB×BC×DD 1=120,∴三棱锥E﹣BCD的体积:V E﹣BCD===×AB×BC×DD1=10.故答案为:10.10.(5分)在平面直角坐标系xOy中,P是曲线y=x+(x>0)上的一个动点,则点P到直线x+y=0的距离的最小值是4.解:由y=x+(x>0),得y′=1﹣,设斜率为﹣1的直线与曲线y=x+(x>0)切于(x0,),由,解得(x 0>0).∴曲线y=x+(x>0)上,点P()到直线x+y=0的距离最小,最小值为.故答案为:4.11.(5分)在平面直角坐标系xOy中,点A在曲线y=lnx上,且该曲线在点A处的切线经过点(﹣e,﹣1)(e为自然对数的底数),则点A的坐标是(e,1).解:设A(x0,lnx0),由y=lnx,得y′=,∴,则该曲线在点A处的切线方程为y﹣lnx0=,∵切线经过点(﹣e,﹣1),∴,即,则x0=e.∴A点坐标为(e,1).故答案为:(e,1).12.(5分)如图,在△ABC中,D是BC的中点,E在边AB上,BE=2EA,AD与CE交于点O.若•=6•,则的值是.解:设=λ=(),=+=+μ=+μ()=(1﹣μ)+μ=+μ∴,∴,∴==(),==﹣+,6•=6×()×(﹣+)=(++)=++,∵•=++,∴=,∴=3,∴=.故答案为:13.(5分)已知=﹣,则sin(2α+)的值是.解:由=﹣,得,∴,解得tanα=2或tan.当tanα=2时,sin2α=,cos2α=,∴sin(2α+)==;当tanα=时,sin2α==,cos2α=,∴sin(2α+)==.综上,sin(2α+)的值是.故答案为:.14.(5分)设f(x),g(x)是定义在R上的两个周期函数,f(x)的周期为4,g(x)的周期为2,且f(x)是奇函数.当x∈(0,2]时,f(x)=,g(x)=其中k>0.若在区间(0,9]上,关于x的方程f(x)=g(x)有8个不同的实数根,则k的取值范围是[,).解:作出函数f(x)与g(x)的图象如图,由图可知,函数f(x)与g(x)=﹣(1<x≤2,3<x≤4,5<x≤6,7<x≤8)仅有2个实数根;要使关于x的方程f(x)=g(x)有8个不同的实数根,则f(x)=,x∈(0,2]与g(x)=k(x+2),x∈(0,1]的图象有2个不同交点,由(1,0)到直线kx﹣y+2k=0的距离为1,得,解得k=(k>0),∵两点(﹣2,0),(1,1)连线的斜率k=,∴≤k<.即k的取值范围为[,).故答案为:[,).二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)在△ABC中,角A,B,C的对边分别为a,b,c.(1)若a=3c,b=,cos B=,求c的值;(2)若=,求sin(B+)的值.解:(1)∵在△ABC中,角A,B,C的对边分别为a,b,c.a=3c,b=,cos B=,∴由余弦定理得:cos B===,解得c=.(2)∵=,∴由正弦定理得:,∴2sin B=cos B,∵sin2B+cos2B=1,∴sin B=,cos B=,∴sin(B+)=cos B=.16.(14分)如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.证明:(1)∵在直三棱柱ABC﹣A1B1C1中,D,E分别为BC,AC的中点,∴DE∥AB,AB∥A1B1,∴DE∥A1B1,∵DE⊂平面DEC1,A1B1⊄平面DEC1,∴A1B1∥平面DEC1.解:(2)∵在直三棱柱ABC﹣A1B1C1中,E是AC的中点,AB=BC.∴BE⊥AA1,BE⊥AC,又AA1∩AC=A,∴BE⊥平面ACC1A1,∵C1E⊂平面ACC1A1,∴BE⊥C1E.17.(14分)如图,在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的焦点为F1(﹣1,0),F2(1,0).过F2作x轴的垂线l,在x轴的上方,1与圆F2:(x﹣1)2+y2=4a2交于点A,与椭圆C交于点D.连结AF1并延长交圆F2于点B,连结BF2交椭圆C 于点E,连结DF1.已知DF1=.(1)求椭圆C的标准方程;(2)求点E的坐标.解:(1)如图,∵F2A=F2B,∴∠F2AB=∠F2BA,∵F2A=2a=F2D+DA=F2D+F1D,∴AD=F1D,则∠DAF1=∠DF1A,∴∠DF1A=∠F2BA,则F1D∥BF2,∵c=1,∴b2=a2﹣1,则椭圆方程为,取x=1,得,则AD=2a﹣=.又DF1=,∴,解得a=2(a>0).∴椭圆C的标准方程为;(2)由(1)知,D(1,),F1(﹣1,0),∴=,则BF2:y=,联立,得21x2﹣18x﹣39=0.解得x1=﹣1或(舍).∴.即点E的坐标为(﹣1,﹣).18.(16分)如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P,Q,并修建两段直线型道路PB,QA,规划要求:线段PB,QA上的所有点到点O的距离均不小于...圆O的半径.已知点A,B到直线l的距离分别为AC和BD(C,D为垂足),测得AB=10,AC=6,BD=12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)在规划要求下,若道路PB和QA的长度均为d(单位:百米),求当d最小时,P、Q两点间的距离.解:设BD与圆O交于M,连接AM,AB为圆O的直径,可得AM⊥BM,即有DM=AC=6,BM=6,AM=8,以C为坐标原点,l为x轴,建立直角坐标系,则A(0,﹣6),B(﹣8,﹣12),D(﹣8,0)(1)设点P(x1,0),PB⊥AB,则k BP•k AB=﹣1,即•=﹣1,解得x1=﹣17,所以P(﹣17,0),PB==15;(2)当QA⊥AB时,QA上的所有点到原点O的距离不小于圆的半径,设此时Q(x2,0),则k QA•k AB=﹣1,即•=﹣1,解得x2=﹣,Q(﹣,0),由﹣17<﹣8<﹣,在此范围内,不能满足PB,QA上所有点到O的距离不小于圆的半径,所以P,Q中不能有点选在D点;(3)设P(a,0),Q(b,0),则a≤﹣17,b≥﹣,PB2=(a+8)2+144≥225,QA2=b2+36≥225,则b≥3,当d最小时,PQ=17+3.19.(16分)设函数f(x)=(x﹣a)(x﹣b)(x﹣c),a,b,c∈R,f′(x)为f(x)的导函数.(1)若a=b=c,f(4)=8,求a的值;(2)若a≠b,b=c,且f(x)和f′(x)的零点均在集合{﹣3,1,3}中,求f(x)的极小值;(3)若a=0,0<b≤1,c=1,且f(x)的极大值为M,求证:M≤.解:(1)∵a=b=c,∴f(x)=(x﹣a)3,∵f(4)=8,∴(4﹣a)3=8,∴4﹣a=2,解得a=2.(2)a≠b,b=c,设f(x)=(x﹣a)(x﹣b)2.令f(x)=(x﹣a)(x﹣b)2=0,解得x=a,或x=b.f′(x)=(x﹣b)2+2(x﹣a)(x﹣b)=(x﹣b)(3x﹣b﹣2a).令f′(x)=0,解得x=b,或x=.∵f(x)和f′(x)的零点均在集合A={﹣3,1,3}中,若:a=﹣3,b=1,则==﹣∉A,舍去.a=1,b=﹣3,则==﹣∉A,舍去.a=﹣3,b=3,则==﹣1∉A,舍去..a=3,b=1,则==∉A,舍去.a=1,b=3,则=∉A,舍去.a=3,b=﹣3,则==1∈A,.因此a=3,b=﹣3,=1∈A,可得:f(x)=(x﹣3)(x+3)2.f′(x)=3[x﹣(﹣3)](x﹣1).可得x=1时,函数f(x)取得极小值,f(1)=﹣2×42=﹣32.(3)证明:a=0,0<b≤1,c=1,f(x)=x(x﹣b)(x﹣1).f′(x)=(x﹣b)(x﹣1)+x(x﹣1)+x(x﹣b)=3x2﹣(2b+2)x+b.△=4(b+1)2﹣12b=4b2﹣4b+4=4+3≥3.令f′(x)=3x2﹣(2b+2)x+b=0.解得:x1=∈,x2=.x1<x2,x1+x2=,x1x2=,可得x=x1时,f(x)取得极大值为M,∵f′(x1)=﹣(2b+2)x1+b=0,可得:=[(2b+2)x1﹣b],M=f(x1)=x1(x1﹣b)(x1﹣1)=(x1﹣b)(﹣x1)=(x1﹣b)(﹣x1)=[(2b﹣1)﹣2b2x1+b2]==,∵﹣2b2+2b﹣2=﹣2﹣<0,∴M在x1∈(0,]上单调递减,∴M≤=≤.∴M≤.20.(16分)定义首项为1且公比为正数的等比数列为“M﹣数列”.(1)已知等比数列{a n}(n∈N*)满足:a2a4=a5,a3﹣4a2+4a1=0,求证:数列{a n}为“M﹣数列”;(2)已知数列{b n}(n∈N*)满足:b1=1,=﹣,其中S n为数列{b n}的前n 项和.①求数列{b n}的通项公式;②设m为正整数,若存在“M﹣数列”{c n}(n∈N*),对任意正整数k,当k≤m时,都有c k≤b k≤c k+1成立,求m的最大值.解:(1)设等比数列{a n}的公比为q,则由a2a4=a5,a3﹣4a2+4a1=0,得∴,∴数列{a n}首项为1且公比为正数即数列{a n}为“M﹣数列”;(2)①∵b1=1,=﹣,∴当n=1时,,∴b2=2,当n=2时,,∴b3=3,当n=3时,,∴b4=4,猜想b n=n,下面用数学归纳法证明;(i)当n=1时,b1=1,满足b n=n,(ii)假设n=k时,结论成立,即b k=k,则n=k+1时,由,得==k+1,故n=k+1时结论成立,根据(i)(ii)可知,b n=n对任意的n∈N*都成立.故数列{b n}的通项公式为b n=n;②设{c n}的公比为q,存在“M﹣数列”{c n}(n∈N*),对任意正整数k,当k≤m时,都有c k≤b k≤c k+1成立,即q k﹣1≤k≤k对k≤m恒成立,当k=1时,q≥1,当k=2时,,当k≥3,两边取对数可得,对k≤m有解,即,令f(x)=,则,当x≥3时,f'(x)<0,此时f(x)递增,∴当k≥3时,,令g(x)=,则,令,则,当x≥3时,ϕ'(x)<0,即g'(x)<0,∴g(x)在[3,+∞)上单调递减,即k≥3时,,则,下面求解不等式,化简,得3lnm﹣(m﹣1)ln3≤0,令h(m)=3lnm﹣(m﹣1)ln3,则h'(m)=﹣ln3,由k≥3得m≥3,h'(m)<0,∴h(m)在[3,+∞)上单调递减,又由于h(5)=3ln5﹣4ln3=ln125﹣ln81>0,h(6)=3ln6﹣5ln3=ln216﹣ln243<0,∴存在m0∈(5,6)使得h(m0)=0,∴m的最大值为5,此时q∈,.【选做题】本题包括A、B、C三小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-2:矩阵与变换](本小题满分10分)21.(10分)已知矩阵A=.(1)求A2;(2)求矩阵A的特征值.解:(1)∵A=∴A2==(2)矩阵A的特征多项式为:f(λ)==λ2﹣5λ+4,令f(λ)=0,则由方程λ2﹣5λ+4=0,得λ=1或λ=4,∴矩阵A的特征值为1或4.B.[选修4-4:坐标系与参数方程](本小题满分10分)22.(10分)在极坐标系中,已知两点A(3,),B(,),直线1的方程为ρsin (θ+)=3.(1)求A,B两点间的距离;(2)求点B到直线l的距离.解:(1)设极点为O,则在△OAB中,由余弦定理,得AB2=OA2+OB2﹣2OA,∴AB==;(2)由直线1的方程ρsin(θ+)=3,知直线l过(3,),倾斜角为,又B(,),∴点B到直线l的距离为.C.[选修4-5:不等式选讲](本小题满分0分)23.设x∈R,解不等式|x|+|2x﹣1|>2.解:|x|+|2x﹣1|=,∵|x|+|2x﹣1|>2,∴或或,∴x>1或x∈∅或x <﹣,∴不等式的解集为{x|x <﹣或x>1}.【必做题】第24题、第25题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.24.(10分)设(1+x)n=a0+a1x+a2x2+…+a n x n,n≥4,n∈N*.已知a32=2a2a4.(1)求n的值;(2)设(1+)n=a+b,其中a,b∈N*,求a2﹣3b2的值.解:(1)由(1+x)n=C+C x+C x2+…+C x n,n≥4,可得a2=C =,a3=C =,a4=C =,a32=2a2a4,可得()2=2••,解得n=5;(2)方法一、(1+)5=C+C+C ()2+C ()3+C ()4+C ()5=a+b,由于a,b∈N*,可得a=C+3C+9C=1+30+45=76,b=C+3C+9C=44,可得a2﹣3b2=762﹣3×442=﹣32;方法二、(1+)5=C+C+C ()2+C ()3+C ()4+C ()5=a+b,(1﹣)5=C+C (﹣)+C (﹣)2+C (﹣)3+C (﹣)4+C (﹣)5=C﹣C+C ()2﹣C ()3+C ()4﹣C ()5,由于a,b∈N*,可得(1﹣)5=a﹣b,第21页(共22页)可得a2﹣3b2=(1+)5•(1﹣)5=(1﹣3)5=﹣32.25.(10分)在平面直角坐标系xOy中,设点集A n={(0,0),(1,0),(2,0),…,(n,0)},B n={(0,1),(n,1)},∁n={(0,2),(1,2),(2,2),……,(n,2)},n∈N*.令M n=A n∪B n∪∁n.从集合M n中任取两个不同的点,用随机变量X表示它们之间的距离.(1)当n=1时,求X的概率分布;(2)对给定的正整数n(n≥3),求概率P(X≤n)(用n表示).解:(1)当n=1时,X的所有可能取值为1,,2,,X的概率分布为P(X=1)==;P(X =)==;P(X=2)==;P(X =)==;(2)设A(a,b)和B(c,d)是从M n中取出的两个点,因为P(X≤n)=1﹣P(X>n),所以只需考虑X>n的情况,①若b=d,则AB≤n,不存在X>n的取法;②若b=0,d=1,则AB =≤,所以X>n当且仅当AB =,此时a=0.c=n或a=n,c=0,有两种情况;③若b=0,d=2,则AB =≤,所以X>n当且仅当AB =,此时a=0.c=n或a=n,c=0,有两种情况;④若b=1,d=2,则AB =≤,所以X>n当且仅当AB =,此时a=0.c=n或a=n,c=0,有两种情况;综上可得当X>n,X 的所有值是或,且P(X =)=,P(X =)=,可得P(X≤n)=1﹣P(X =)﹣P(X =)=1﹣.第22页(共22页)。

2019年江苏省高考数学试卷(解析版)

2019年江苏省高考数学试卷(解析版)

2019年江苏省高考数学试卷(解析版)学校:________ 班级:________ 姓名:________ 学号:________一、填空题(共14小题)1.已知集合A={﹣1,0,1,6},B={x|x>0,x∈R},则A∩B=.2.已知复数(a+2i)(1+i)的实部为0,其中i为虚数单位,则实数a的值是.3.如图是一个算法流程图,则输出的S的值是.4.函数y=的定义域是﹣.5.已知一组数据6,7,8,8,9,10,则该组数据的方差是.6.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是.7.在平面直角坐标系xOy中,若双曲线x2﹣=1(b>0)经过点(3,4),则该双曲线的渐近线方程是.8.已知数列{a n}(n∈N*)是等差数列,S n是其前n项和.若a2a5+a8=0,S9=27,则S8的值是.9.如图,长方体ABCD﹣A1B1C1D1的体积是120,E为CC1的中点,则三棱锥E﹣BCD的体积是.10.在平面直角坐标系xOy中,P是曲线y=x+(x>0)上的一个动点,则点P到直线x+y=0的距离的最小值是.11.在平面直角坐标系xOy中,点A在曲线y=lnx上,且该曲线在点A处的切线经过点(﹣e,﹣1)(e为自然对数的底数),则点A的坐标是.12.如图,在△ABC中,D是BC的中点,E在边AB上,BE=2EA,AD与CE交于点O.若•=6•,则的值是.13.已知=﹣,则sin(2α+)的值是.14.设f(x),g(x)是定义在R上的两个周期函数,f(x)的周期为4,g(x)的周期为2,且f(x)是奇函数.当x∈(0,2]时,f(x)=,g(x)=其中k>0.若在区间(0,9]上,关于x的方程f(x)=g(x)有8个不同的实数根,则k的取值范围是.二、解答题(共11小题)15.在△ABC中,角A,B,C的对边分别为a,b,c.(1)若a=3c,b=,cos B=,求c的值;(2)若=,求sin(B+)的值.16.如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.17.如图,在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的焦点为F1(﹣1,0),F2(1,0).过F2作x轴的垂线l,在x轴的上方,1与圆F2:(x﹣1)2+y2=4a2交于点A,与椭圆C交于点D.连结AF1并延长交圆F2于点B,连结BF2交椭圆C于点E,连结DF1.已知DF1=.(1)求椭圆C的标准方程;(2)求点E的坐标.18.如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P,Q,并修建两段直线型道路PB,QA,规划要求:线段PB,QA上的所有点到点O的距离均不小于...圆O的半径.已知点A,B到直线l的距离分别为AC和BD(C,D为垂足),测得AB=10,AC=6,BD=12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)在规划要求下,若道路PB和QA的长度均为d(单位:百米),求当d最小时,P、Q两点间的距离.19.设函数f(x)=(x﹣a)(x﹣b)(x﹣c),a,b,c∈R,f′(x)为f(x)的导函数.(1)若a=b=c,f(4)=8,求a的值;(2)若a≠b,b=c,且f(x)和f′(x)的零点均在集合{﹣3,1,3}中,求f(x)的极小值;(3)若a=0,0<b≤1,c=1,且f(x)的极大值为M,求证:M≤.20.定义首项为1且公比为正数的等比数列为“M﹣数列”.(1)已知等比数列{a n}(n∈N*)满足:a2a4=a5,a3﹣4a2+4a1=0,求证:数列{a n}为“M﹣数列”;(2)已知数列{b n}(n∈N*)满足:b1=1,=﹣,其中S n为数列{b n}的前n项和.①求数列{b n}的通项公式;②设m为正整数,若存在“M﹣数列”{c n}(n∈N*),对任意正整数k,当k≤m时,都有c k≤b k≤c k+1成立,求m的最大值.21.已知矩阵A=.(1)求A2;(2)求矩阵A的特征值.22.在极坐标系中,已知两点A(3,),B(,),直线1的方程为ρsin(θ+)=3.(1)求A,B两点间的距离;(2)求点B到直线l的距离.23.设x∈R,解不等式|x|+|2x﹣1|>2.24.设(1+x)n=a0+a1x+a2x2+…+a n x n,n≥4,n∈N*.已知a32=2a2a4.(1)求n的值;(2)设(1+)n=a+b,其中a,b∈N*,求a2﹣3b2的值.25.在平面直角坐标系xOy中,设点集A n={(0,0),(1,0),(2,0),…,(n,0)},B n={(0,1),(n,1)},∁n={(0,2),(1,2),(2,2),……,(n,2)},n∈N*.令M n=A n∪B n∪∁n.从集合M n中任取两个不同的点,用随机变量X表示它们之间的距离.(1)当n=1时,求X的概率分布;(2)对给定的正整数n(n≥3),求概率P(X≤n)(用n表示).2019年江苏省高考数学试卷(解析版)参考答案一、填空题(共14小题)1.【分析】直接利用交集运算得答案.【解答】解:∵A={﹣1,0,1,6},B={x|x>0,x∈R},∴A∩B={﹣1,0,1,6}∩{x|x>0,x∈R}={1,6}.故答案为:{1,6}.【知识点】交集及其运算2.【分析】利用复数代数形式的乘除运算化简,再由实部为0求的a值.【解答】解:∵(a+2i)(1+i)=(a﹣2)+(a+2)i的实部为0,∴a﹣2=0,即a=2.故答案为:2.【知识点】复数代数形式的乘除运算3.【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:模拟程序的运行,可得x=1,S=0S=0.5不满足条件x≥4,执行循环体,x=2,S=1.5不满足条件x≥4,执行循环体,x=3,S=3不满足条件x≥4,执行循环体,x=4,S=5此时,满足条件x≥4,退出循环,输出S的值为5.故答案为:5.【知识点】程序框图4.【分析】由根式内部的代数式大于等于0求解一元二次不等式得答案.【解答】解:由7+6x﹣x2≥0,得x2﹣6x﹣7≤0,解得:﹣1≤x≤7.∴函数y=的定义域是[﹣1,7].故答案为:[﹣1,7].【知识点】函数的定义域及其求法5.【分析】先求出一组数据6,7,8,8,9,10的平均数,由此能求出该组数据的方差.【解答】解:一组数据6,7,8,8,9,10的平均数为:=(6+7+8+8+9+10)=8,∴该组数据的方差为:S2=[(6﹣8)2+(7﹣8)2+(8﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=.故答案为:.【知识点】极差、方差与标准差6.【分析】基本事件总数n==10,选出的2名同学中至少有1名女同学包含的基本事件个数m=+=7,由此能求出选出的2名同学中至少有1名女同学的概率.【解答】解:从3名男同学和2名女同学中任选2名同学参加志愿者服务,基本事件总数n==10,选出的2名同学中至少有1名女同学包含的基本事件个数:m=+=7,∴选出的2名同学中至少有1名女同学的概率是p=.故答案为:.【知识点】古典概型及其概率计算公式7.【分析】把已知点的坐标代入双曲线方程,求得b,则双曲线的渐近线方程可求.【解答】解:∵双曲线x2﹣=1(b>0)经过点(3,4),∴,解得b2=2,即b=.又a=1,∴该双曲线的渐近线方程是y=.故答案为:y=.【知识点】双曲线的标准方程8.【分析】设等差数列{a n}的首项为a1,公差为d,由已知列关于首项与公差的方程组,求解首项与公差,再由等差数列的前n项和求得S8的值.【解答】解:设等差数列{a n}的首项为a1,公差为d,则,解得.∴=8×(﹣5)+56=16.故答案为:16.【知识点】等差数列的前n项和9.【分析】推导出=AB×BC×DD 1=120,三棱锥E﹣BCD的体积:V E﹣BCD===×AB×BC×DD1,由此能求出结果.【解答】解:∵长方体ABCD﹣A1B1C1D1的体积是120,E为CC1的中点,∴=AB×BC×DD1=120,∴三棱锥E﹣BCD的体积:V E﹣BCD===×AB×BC×DD1=10.故答案为:10.【知识点】棱柱、棱锥、棱台的体积10.【分析】利用导数求平行于x+y=0的直线与曲线y=x+(x>0)的切点,再由点到直线的距离公式求点P到直线x+y=0的距离的最小值.【解答】解:由y=x+(x>0),得y′=1﹣,设斜率为﹣1的直线与曲线y=x+(x>0)切于(x0,),由,解得(x 0>0).∴曲线y=x+(x>0)上,点P()到直线x+y=0的距离最小,最小值为.故答案为:4.【知识点】利用导数研究曲线上某点切线方程11.【分析】设A(x0,lnx0),利用导数求得曲线在A处的切线方程,代入已知点的坐标求解x0即可.【解答】解:设A(x0,lnx0),由y=lnx,得y′=,∴,则该曲线在点A处的切线方程为y﹣lnx0=,∵切线经过点(﹣e,﹣1),∴,即,则x0=e.∴A点坐标为(e,1).故答案为:(e,1).【知识点】利用导数研究曲线上某点切线方程12.【分析】首先算出=,然后用、表示出、,结合•=6•得=,进一步可得结果.【解答】解:设=λ=(),=+=+μ=+μ()=(1﹣μ)+μ=+μ∴,∴,∴==(),==﹣+,6•=6×()×(﹣+)=(++)=++,∵•=++,∴=,∴=3,∴=.故答案为:【知识点】平面向量数量积的性质及其运算律13.【分析】由已知求得tanα,分类利用万能公式求得sin2α,cos2α的值,展开两角和的正弦求sin(2α+)的值.【解答】解:由=﹣,得,∴,解得tanα=2或tan.当tanα=2时,sin2α=,cos2α=,∴sin(2α+)==;当tanα=时,sin2α==,cos2α=,∴sin(2α+)==.综上,sin(2α+)的值是.故答案为:.【知识点】三角函数的恒等变换及化简求值14.【分析】由已知函数解析式结合周期性作出图象,数形结合得答案.【解答】解:作出函数f(x)与g(x)的图象如图,由图可知,函数f(x)与g(x)=﹣(1<x≤2,3<x≤4,5<x≤6,7<x≤8)仅有2个实数根;要使关于x的方程f(x)=g(x)有8个不同的实数根,则f(x)=,x∈(0,2]与g(x)=k(x+2),x∈(0,1]的图象有2个不同交点,由(1,0)到直线kx﹣y+2k=0的距离为1,得,解得k=(k>0),∵两点(﹣2,0),(1,1)连线的斜率k=,∴≤k<.即k的取值范围为[,).故答案为:[,).【知识点】分段函数的应用二、解答题(共11小题)15.【分析】(1)由余弦定理得:cos B===,由此能求出c的值.(2)由=,利用正弦定理得2sin B=cos B,再由sin2B+cos2B=1,能求出sin B=,cos B=,由此利用诱导公式能求出sin(B+)的值.【解答】解:(1)∵在△ABC中,角A,B,C的对边分别为a,b,c.a=3c,b=,cos B=,∴由余弦定理得:cos B===,解得c=.(2)∵=,∴由正弦定理得:,∴2sin B=cos B,∵sin2B+cos2B=1,∴sin B=,cos B=,∴sin(B+)=cos B=.【知识点】余弦定理、三角函数的恒等变换及化简求值16.【分析】(1)推导出DE∥AB,AB∥A1B1,从而DE∥A1B1,由此能证明A1B1∥平面DEC1.(2)推导出BE⊥AA1,BE⊥AC,从而BE⊥平面ACC1A1,由此能证明BE⊥C1E.【解答】证明:(1)∵在直三棱柱ABC﹣A1B1C1中,D,E分别为BC,AC的中点,∴DE∥AB,AB∥A1B1,∴DE∥A1B1,∵DE⊂平面DEC1,A1B1⊄平面DEC1,∴A1B1∥平面DEC1.解:(2)∵在直三棱柱ABC﹣A1B1C1中,E是AC的中点,AB=BC.∴BE⊥AA1,BE⊥AC,又AA1∩AC=A,∴BE⊥平面ACC1A1,∵C1E⊂平面ACC1A1,∴BE⊥C1E.【知识点】直线与平面平行的判定、棱柱的结构特征17.【分析】(1)由题意得到F1D∥BF2,然后求AD,再由AD=DF1=求得a,则椭圆方程可求;(2)求出D的坐标,得到=,写出BF2的方程,与椭圆方程联立即可求得点E的坐标.【解答】解:(1)如图,∵F2A=F2B,∴∠F2AB=∠F2BA,∵F2A=2a=F2D+DA=F2D+F1D,∴AD=F1D,则∠DAF1=∠DF1A,∴∠DF1A=∠F2BA,则F1D∥BF2,∵c=1,∴b2=a2﹣1,则椭圆方程为,取x=1,得,则AD=2a﹣=.又DF1=,∴,解得a=2(a>0).∴椭圆C的标准方程为;(2)由(1)知,D(1,),F1(﹣1,0),∴=,则BF2:y=,联立,得21x2﹣18x﹣39=0.解得x1=﹣1或(舍).∴.即点E的坐标为(﹣1,﹣).【知识点】椭圆的简单性质18.【分析】(1)设BD与圆O交于M,连接AM,以C为坐标原点,l为x轴,建立直角坐标系,则A(0,﹣6),B(﹣8,﹣12),D(﹣8,0)设点P(x1,0),PB⊥AB,运用两直线垂直的条件:斜率之积为﹣1,求得P的坐标,可得所求值;(2)当QA⊥AB时,QA上的所有点到原点O的距离不小于圆的半径,设此时Q(x2,0),运用两直线垂直的条件:斜率之积为﹣1,求得Q的坐标,即可得到结论;(3)设P(a,0),Q(b,0),则a≤﹣17,b≥﹣,结合条件,可得b的最小值,由两点的距离公式,计算可得PQ.【解答】解:设BD与圆O交于M,连接AM,AB为圆O的直径,可得AM⊥BM,即有DM=AC=6,BM=6,AM=8,以C为坐标原点,l为x轴,建立直角坐标系,则A(0,﹣6),B(﹣8,﹣12),D(﹣8,0)(1)设点P(x1,0),PB⊥AB,则k BP•k AB=﹣1,即•=﹣1,解得x1=﹣17,所以P(﹣17,0),PB==15;(2)当QA⊥AB时,QA上的所有点到原点O的距离不小于圆的半径,设此时Q(x2,0),则k QA•k AB=﹣1,即•=﹣1,解得x2=﹣,Q(﹣,0),由﹣17<﹣8<﹣,在此范围内,不能满足PB,QA上所有点到O的距离不小于圆的半径,所以P,Q中不能有点选在D点;(3)设P(a,0),Q(b,0),则a≤﹣17,b≥﹣,PB2=(a+8)2+144≥225,QA2=b2+36≥225,则b≥3,当d最小时,PQ=17+3.【知识点】直线和圆的方程的应用19.【分析】(1)由a=b=c,可得f(x)=(x﹣a)3,根据f(4)=8,可得(4﹣a)3=8,解得a.(2)a≠b,b=c,设f(x)=(x﹣a)(x﹣b)2.令f(x)=(x﹣a)(x﹣b)2=0,解得x=a,或x=b.f′(x)=(x﹣b)(3x﹣b﹣2a).令f′(x)=0,解得x=b,或x=.根据f(x)和f′(x)的零点均在集合A={﹣3,1,3}中,通过分类讨论可得:只有a=3,b=﹣3,可得==1∈A,可得:f(x)=(x﹣3)(x+3)2.利用导数研究其单调性可得x=1时,函数f(x)取得极小值.(3)a=0,0<b≤1,c=1,f(x)=x(x﹣b)(x﹣1).f′(x)=3x2﹣(2b+2)x+b.△>0.令f′(x)=3x2﹣(2b+2)x+b=0.解得:x1=∈,x2=.x1<x2,可得x=x1时,f(x)取得极大值为M,通过计算化简即可证明结论.【解答】解:(1)∵a=b=c,∴f(x)=(x﹣a)3,∵f(4)=8,∴(4﹣a)3=8,∴4﹣a=2,解得a=2.(2)a≠b,b=c,设f(x)=(x﹣a)(x﹣b)2.令f(x)=(x﹣a)(x﹣b)2=0,解得x=a,或x=b.f′(x)=(x﹣b)2+2(x﹣a)(x﹣b)=(x﹣b)(3x﹣b﹣2a).令f′(x)=0,解得x=b,或x=.∵f(x)和f′(x)的零点均在集合A={﹣3,1,3}中,若:a=﹣3,b=1,则==﹣∉A,舍去.a=1,b=﹣3,则==﹣∉A,舍去.a=﹣3,b=3,则==﹣1∉A,舍去..a=3,b=1,则==∉A,舍去.a=1,b=3,则=∉A,舍去.a=3,b=﹣3,则==1∈A,.因此a=3,b=﹣3,=1∈A,可得:f(x)=(x﹣3)(x+3)2.f′(x)=3[x﹣(﹣3)](x﹣1).可得x=1时,函数f(x)取得极小值,f(1)=﹣2×42=﹣32.(3)证明:a=0,0<b≤1,c=1,f(x)=x(x﹣b)(x﹣1).f′(x)=(x﹣b)(x﹣1)+x(x﹣1)+x(x﹣b)=3x2﹣(2b+2)x+b.△=4(b+1)2﹣12b=4b2﹣4b+4=4+3≥3.令f′(x)=3x2﹣(2b+2)x+b=0.解得:x1=∈,x2=.x1<x2,x1+x2=,x1x2=,可得x=x1时,f(x)取得极大值为M,∵f′(x1)=﹣(2b+2)x1+b=0,可得:=[(2b+2)x1﹣b],M=f(x1)=x1(x1﹣b)(x1﹣1)=(x1﹣b)(﹣x1)=(x1﹣b)(﹣x1)=[(2b﹣1)﹣2b2x1+b2]==,∵﹣2b2+2b﹣2=﹣2﹣<0,∴M在x1∈(0,]上单调递减,∴M≤=≤.∴M≤.【知识点】利用导数研究函数的极值20.【分析】(1)设等比数列{a n}的公比为q,然后根据a2a4=a5,a3﹣4a2+4a1=0列方程求解,在根据新定义判断即可;(2)求出b2,b3,b4猜想b n,然后用数学归纳法证明;(3)设{c n}的公比为q,将问题转化为,然后构造函数f(x)=,g(x)=,分别求解其最大值和最小值,最后解不等式,即可.【解答】解:(1)设等比数列{a n}的公比为q,则由a2a4=a5,a3﹣4a2+4a1=0,得∴,∴数列{a n}首项为1且公比为正数即数列{a n}为“M﹣数列”;(2)①∵b1=1,=﹣,∴当n=1时,,∴b2=2,当n=2时,,∴b3=3,当n=3时,,∴b4=4,猜想b n=n,下面用数学归纳法证明;(i)当n=1时,b1=1,满足b n=n,(ii)假设n=k时,结论成立,即b k=k,则n=k+1时,由,得==k+1,故n=k+1时结论成立,根据(i)(ii)可知,b n=n对任意的n∈N*都成立.故数列{b n}的通项公式为b n=n;②设{c n}的公比为q,存在“M﹣数列”{c n}(n∈N*),对任意正整数k,当k≤m时,都有c k≤b k≤c k+1成立,即q k﹣1≤k≤q k对k≤m恒成立,当k=1时,q≥1,当k=2时,,当k≥3,两边取对数可得,对k≤m有解,即,令f(x)=,则,当x≥3时,f'(x)<0,此时f(x)递减,∴当k≥3时,,令g(x)=,则,令,则,当x≥3时,ϕ'(x)<0,即g'(x)<0,∴g(x)在[3,+∞)上单调递减,即k≥3时,,则,下面求解不等式,化简,得3lnm﹣(m﹣1)ln3≥0,令h(m)=3lnm﹣(m﹣1)ln3,则h'(m)=﹣ln3,由k≥3得m≥3,h'(m)<0,∴h(m)在[3,+∞)上单调递减,又由于h(5)=3ln5﹣4ln3=ln125﹣ln81>0,h(6)=3ln6﹣5ln3=ln216﹣ln243<0,∴存在m0∈(5,6)使得h(m0)=0,∴m的最大值为5,此时q∈,.【知识点】数列与不等式的综合21.【分析】(1)根据矩阵A直接求解A2即可;(2)矩阵A的特征多项式为f(λ)==λ2﹣5λ+4,解方程f(λ)=0即可.【解答】解:(1)∵A=∴A2==(2)矩阵A的特征多项式为:f(λ)==λ2﹣5λ+4,令f(λ)=0,则由方程λ2﹣5λ+4=0,得λ=1或λ=4,∴矩阵A的特征值为1或4.【知识点】二阶矩阵、特征值与特征向量的计算22.【分析】(1)设极点为O,则由余弦定理可得,解出AB;(2)根据直线l的方程和点B的坐标可直接计算B到直线l的距离.【解答】解:(1)设极点为O,则在△OAB中,由余弦定理,得AB2=OA2+OB2﹣2OA,∴AB==;(2)由直线1的方程ρsin(θ+)=3,知直线l过(3,),倾斜角为,又B(,),∴点B到直线l的距离为.【知识点】极坐标刻画点的位置23.【分析】对|x|+|2x﹣1|去绝对值,然后分别解不等式即可.【解答】解:|x|+|2x﹣1|=,∵|x|+|2x﹣1|>2,∴或或,∴x>1或x∈∅或x<﹣,∴不等式的解集为{x|x<﹣或x>1}.【知识点】绝对值不等式的解法24.【分析】(1)运用二项式定理,分别求得a2,a3,a4,结合组合数公式,解方程可得n的值;(2)方法一、运用二项式定理,结合组合数公式求得a,b,计算可得所求值;方法二、由于a,b∈N*,求得(1﹣)5=a﹣b,再由平方差公式,计算可得所求值.【解答】解:(1)由(1+x)n=C+C x+C x2+…+C x n,n≥4,可得a2=C=,a3=C=,a4=C=,a32=2a2a4,可得()2=2••,解得n=5;(2)方法一、(1+)5=C+C+C()2+C()3+C()4+C()5=a+b,由于a,b∈N*,可得a=C+3C+9C=1+30+45=76,b=C+3C+9C=44,可得a2﹣3b2=762﹣3×442=﹣32;方法二、(1+)5=C+C+C()2+C()3+C()4+C()5=a+b,(1﹣)5=C+C(﹣)+C(﹣)2+C(﹣)3+C(﹣)4+C(﹣)5=C﹣C+C()2﹣C()3+C()4﹣C()5,由于a,b∈N*,可得(1﹣)5=a﹣b,可得a2﹣3b2=(1+)5•(1﹣)5=(1﹣3)5=﹣32.【知识点】二项式定理25.【分析】(1)当n=1时,X的所有可能取值为1,,2,,由古典概率的公式,结合组合数可得所求值;(2)设A(a,b)和B(c,d)是从M n中取出的两个点,因为P(X≤n)=1﹣P(X>n),所以只需考虑X>n的情况,分别讨论b,d的取值,结合古典概率的计算公式和对立事件的概率,即可得到所求值.【解答】解:(1)当n=1时,X的所有可能取值为1,,2,,X的概率分布为P(X=1)==;P(X=)==;P(X=2)==;P(X=)==;(2)设A(a,b)和B(c,d)是从M n中取出的两个点,因为P(X≤n)=1﹣P(X>n),所以只需考虑X>n的情况,①若b=d,则AB≤n,不存在X>n的取法;②若b=0,d=1,则AB=≤,所以X>n当且仅当AB=,此时a=0.c=n或a=n,c=0,有两种情况;③若b=0,d=2,则AB=≤,所以X>n当且仅当AB=,此时a=0.c=n或a=n,c=0,有两种情况;④若b=1,d=2,则AB=≤,所以X>n当且仅当AB=,此时a=0.c=n或a=n,c=0,有两种情况;综上可得当X>n,X的所有值是或,且P(X=)=,P(X=)=,可得P(X≤n)=1﹣P(X=)﹣P(X=)=1﹣.【知识点】古典概型及其概率计算公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年江苏省高考数学试卷一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.已知集合{1A =-,0,1,6},{|0B x x =>,}x R ∈,则A B = .2.已知复数(2)(1)a i i ++的实部为0,其中i 为虚数单位,则实数a 的值是 . 3.如图是一个算法流程图,则输出的S 的值是 .4.函数276y x x =+-的定义域是 .5.已知一组数据6,7,8,8,9,10,则该组数据的方差是 .6.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 .7.在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是 .8.已知数列*{}()n a n N ∈是等差数列,n S 是其前n 项和.若2580a a a +=,927S =,则8S 的值是 .9.如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E BCD -的体积是 .10.在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线0x y +=的距离的最小值是 .11.在平面直角坐标系xOy 中,点A 在曲线y lnx =上,且该曲线在点A 处的切线经过点(e -,1)(e -为自然对数的底数),则点A 的坐标是 .12.如图,在ABC ∆中,D 是BC 的中点,E 在边AB 上,2BE EA =,AD 与CE 交于点O .若6AB AC AO EC =,则ABAC的值是 .13.已知tan 23tan()4απα=-+,则sin(2)4πα+的值是 . 14.设()f x ,()g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当(0x ∈,2]时,2()1(1)f x x =--,(2),01,()1,12,2k x x g x x +<⎧⎪=⎨-<⎪⎩其中0k >.若在区间(0,9]上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是 .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c .(1)若3a c =,2b =,2cos 3B =,求c 的值;(2)若sin cos 2A Ba b=,求sin()2B π+的值. 16.(14分)如图,在直三棱柱111ABC A B C -中,D ,E 分别为BC ,AC 的中点,AB BC =. 求证:(1)11//A B 平面1DEC ; (2)1BE C E ⊥.17.(14分)如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的焦点为1(1,0)F -,2(1,0)F .过2F 作x 轴的垂线l ,在x 轴的上方,1与圆2222:(1)4F x y a -+=交于点A ,与椭圆C 交于点D .连结1AF 并延长交圆2F 于点B ,连结2BF 交椭圆C 于点E ,连结1DF .已知152DF =.(1)求椭圆C 的标准方程; (2)求点E 的坐标.18.(16分)如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥(AB AB 是圆O 的直径),规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA ,规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆O 的半径.已知点A 、B 到直线l 的距离分别为AC 和(BD C 、D 为垂足),测得10AB =,6AC =,12BD =(单位:百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由; (3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米),求当d 最小时,P 、Q 两点间的距离.19.(16分)设函数()()()()f x x a x b x c =---,a ,b ,c R ∈,()f x '为()f x 的导函数. (1)若a b c ==,f (4)8=,求a 的值;(2)若a b ≠,b c =,且()f x 和()f x '的零点均在集合{3-,1,3}中,求()f x 的极小值;(3)若0a =,01b <,1c =,且()f x 的极大值为M ,求证:427M .20.(16分)定义首项为1且公比为正数的等比数列为“M -数列”. (1)已知等比数列*{}()n a n N ∈满足:245a a a =,321440a a a -+=,求证:数列{}n a 为“M -数列”;(2)已知数列*{}()n b n N ∈满足:11b =,1122n n n S b b +=-,其中n S 为数列{}n b 的前n 项和.①求数列{}n b 的通项公式;②设m 为正整数,若存在“M -数列” *{}()n c n N ∈,对任意正整数k ,当k m 时,都有1k k k c b c +成立,求m 的最大值.【选做题】本题包括A 、B 、C 三小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A.[选修4-2:矩阵与变换](本小题满分10分)21.(10分)已知矩阵3122A ⎡⎤=⎢⎥⎣⎦. (1)求2A ;(2)求矩阵A 的特征值.B.[选修4-4:坐标系与参数方程](本小题满分10分)22.(10分)在极坐标系中,已知两点(3,)4A π,B ,)2π,直线1的方程为sin()34πρθ+=.(1)求A ,B 两点间的距离; (2)求点B 到直线l 的距离.C.[选修4-5:不等式选讲](本小题满分10分)23.设x R ∈,解不等式|||21|2x x +->.【必做题】第24题、第25题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.24.(10分)设2012(1)n n n x a a x a x a x +=+++⋯+,4n ,*n N ∈.已知23242a a a =. (1)求n 的值;(2)设(1n a =+a ,*b N ∈,求223a b -的值. 25.(10分)在平面直角坐标系xOy 中,设点集{(0,0)n A =,(1,0),(2,0),⋯,(,0)}n ,{(0,1)n B =,(,1)}n ,{(0,2)n C =,(1,2),(2,2),⋯⋯,(,2)}n ,*n N ∈.令n nn n M A B C =.从集合n M 中任取两个不同的点,用随机变量X 表示它们之间的距离. (1)当1n =时,求X 的概率分布;(2)对给定的正整数(3)n n ,求概率()P X n (用n 表示).2019年江苏省高考数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.已知集合{1A =-,0,1,6},{|0B x x =>,}x R ∈,则A B = {1,6} .【思路分析】直接利用交集运算得答案. 【解析】:{1A =-,0,1,6},{|0B x x =>,}x R ∈, {1AB ∴=-,0,1,6}{|0x x >,}{1x R ∈=,6}.故答案为:{1,6}.【归纳与总结】本题考查交集及其运算,是基础题.2.已知复数(2)(1)a i i ++的实部为0,其中i 为虚数单位,则实数a 的值是 2 . 【思路分析】利用复数代数形式的乘除运算化简,再由实部为0求的a 值. 【解析】:(2)(1)(2)(2)a i i a a i ++=-++的实部为0, 20a ∴-=,即2a =.故答案为:2.【归纳与总结】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题. 3.如图是一个算法流程图,则输出的S 的值是 5 .【思路分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解析】:模拟程序的运行,可得 1x =,0S = 0.5S =不满足条件4x ,执行循环体,2x =, 1.5S = 不满足条件4x ,执行循环体,3x =,3S = 不满足条件4x ,执行循环体,4x =,5S =此时,满足条件4x ,退出循环,输出S 的值为5. 故答案为:5.【归纳与总结】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.4.函数276y x x =+-的定义域是 [1-,7] .【思路分析】由根式内部的代数式大于等于0求解一元二次不等式得答案. 【解析】:由2760x x +-,得2670x x --,解得:17x -.∴函数276y x x =+-[1-,7].故答案为:[1-,7].【归纳与总结】本题考查函数的定义域及其求法,考查一元二次不等式的解法,是基础题.5.已知一组数据6,7,8,8,9,10,则该组数据的方差是 2 .【思路分析】先求出一组数据6,7,8,9,10的平均数,由此能求出该组数据的方差. 【解析】:一组数据6,7,8,9,10的平均数为:1(678910)85x =++++=,∴该组数据的方差为:2222221[(68)(78)(88)(98)(108)]25S =-+-+-+-+-=.故答案为:2.【归纳与总结】本题考查一组数据的方差的求法,考查平均数、方差等基础知识,考查运算求解能力,是基础题.6.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 710.【思路分析】基本事件总数2510n C ==,选出的2名同学中至少有1名女同学包含的基本事件个数1123227m C C C =+=,由此能求出选出的2名同学中至少有1名女同学的概率. 【解析】:从3名男同学和2名女同学中任选2名同学参加志愿者服务, 基本事件总数2510n C ==,选出的2名同学中至少有1名女同学包含的基本事件个数:1123227m C C C =+=,∴选出的2名同学中至少有1名女同学的概率是710m p n ==.故答案为:710.【归纳与总结】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,考查数形结合思想,是基础题.7.在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是y = .【思路分析】把已知点的坐标代入双曲线方程,求得b ,则双曲线的渐近线方程可求.【解析】:双曲线2221(0)y x b b-=>经过点(3,4),∴221631b-=,解得22b =,即b又1a =,∴该双曲线的渐近线方程是y =.故答案为:y =.【归纳与总结】本题考查双曲线的标准方程,考查双曲线的简单性质,是基础题. 8.已知数列*{}()n a n N ∈是等差数列,n S 是其前n 项和.若2580a a a +=,927S =,则8S 的值是 16 .【思路分析】设等差数列{}n a 的首项为1a ,公差为d ,由已知列关于首项与公差的方程组,求解首项与公差,再由等差数列的前n 项和求得8S 的值.【解析】:设等差数列{}n a 的首项为1a ,公差为d ,则1111()(4)70989272a d a d a d a d ++++=⎧⎪⎨⨯+=⎪⎩,解得152a d =-⎧⎨=⎩. ∴818786(5)152162dS a ⨯=+=⨯-+⨯=.【归纳与总结】本题考查等差数列的通项公式,考查等差数列的前n 项和,是基础题. 9.如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E BCD -的体积是 10 .【思路分析】推导出11111120ABCD A B C D V AB BC DD -=⨯⨯=,三棱锥E BCD -的体积:1111133212E BCD BCD V S CE BC DC CE AB BC DD -∆=⨯⨯=⨯⨯⨯⨯=⨯⨯⨯,由此能求出结果.【解析】:长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,∴11111120ABCD A B C D V AB BC DD -=⨯⨯=, ∴三棱锥E BCD -的体积:13E BCD BCD V S CE -∆=⨯⨯1132BC DC CE =⨯⨯⨯⨯ 1112AB BC DD =⨯⨯⨯ 10=.故答案为:10.【归纳与总结】本题考查三棱锥的体积的求法,考查长方体的结构特征、三棱锥的性质等基础知识,考查运算求解能力,考查数形结合思想,是中档题.10.在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线0x y +=的距离的最小值是 4 .【思路分析】利用导数求平行于0x y +=的直线与曲线4(0)y x x x=+>的切点,再由点到直线的距离公式求点P 到直线0x y +=的距离的最小值.【解析】:由4(0)y x x x =+>,得241y x'=-,设斜率为1-的直线与曲线4(0)y x x x=+>切于0(x ,004)x x +,由20411x -=-,解得002(0)x x =>. ∴曲线4(0)y x x =+>上,点(2,32)P 到直线0x y +=的距离最小, |232|42+=.【归纳与总结】本题考查利用导数研究过曲线上某点处的切线方程,考查点到直线距离公式的应用,是中档题.11.在平面直角坐标系xOy 中,点A 在曲线y lnx =上,且该曲线在点A 处的切线经过点(e -,1)(e -为自然对数的底数),则点A 的坐标是 (,1)e .【思路分析】设0(A x ,0)lnx ,利用导数求得曲线在A 处的切线方程,代入已知点的坐标求解0x 即可.【解析】:设0(A x ,0)lnx ,由y lnx =,得1y x'=,∴001|x x y x ='=,则该曲线在点A 处的切线方程为0001()y lnx x x x -=-,切线经过点(,1)e --,∴0011elnx x --=--, 即00elnx x =,则0x e =. A ∴点坐标为(,1)e . 故答案为:(,1)e .【归纳与总结】本题考查利用导数研究过曲线上某点处的切线方程,区分过点处与在点处的不同,是中档题.12.如图,在ABC ∆中,D 是BC 的中点,E 在边AB 上,2BE EA =,AD 与CE 交于点O .若6AB AC AO EC =,则ABAC的值是 3 .【思路分析】首先算出12AO AD =,然后用AB 、AC 表示出AO 、EC ,结合6AB AC AO EC =得221322AB AC =,进一步可得结果. 【解析】:设()2AO AD AB AC λλ==+,()AO AE EO AE EC AE AC AE μμ=+=+=+-1(1)3AE AC AB AC μμμμ-=-+=+∴1232λμλμ-⎧=⎪⎪⎨⎪=⎪⎩,∴1214λμ⎧=⎪⎪⎨⎪=⎪⎩,∴11()24AO AD AB AC ==+,13EC AC AE AB AC =-=-+,1166()()43AO EC AB AC AB AC =⨯+⨯-+22312()233AB AB AC AC =-++221322AB AB AC AC =-++,221322AB AC AB AB AC AC =-++,∴221322AB AC =,∴223AB AC =,∴AB AC【归纳与总结】本题考查向量的数量积的应用,考查向量的表示以及计算,考查计算能力.13.已知tan 23tan()4απα=-+,则sin(2)4πα+的值是 10 . 【思路分析】由已知求得tan α,分类利用万能公式求得sin 2α,cos2α的值,展开两角和的正弦求sin(2)4πα+的值.【解析】:由tan 23tan()4απα=-+,得tan 23tan tan 41tan tan4απαπα=-+-, ∴tan (1tan )21tan 3ααα-=-+,解得tan 2α=或1tan 3α=-.当tan 2α=时,22tan 4sin 215tan ααα==+,2213cos2tan αα-==-+, 43sin(2)sin 2cos cos2sin 44455πππααα∴+=+=-=; 当1tan 3α=-时,22tan 3sin 215tan ααα==-+,2214cos21tan αα-==+, 34sin(2)sin 2cos cos2sin 4455πππααα∴+=+=- 综上,sin(2)4πα+..【归纳与总结】本题考查三角函数的恒等变换与化简求值,考查两角和的三角函数及万能公式的应用,是基础题.14.设()f x ,()g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当(0x ∈,2]时,()f x =,(2),01,()1,12,2k x x g x x +<⎧⎪=⎨-<⎪⎩其中0k >.若在区间(0,9]上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是 . 【思路分析】由已知函数解析式结合周期性作出图象,数形结合得答案. 【解析】:作出函数()f x 与()g x 的图象如图,由图可知,函数()f x 与1()(122g x x =-<,34x <,56x <,78)x <仅有2个实数根;要使关于x 的方程()()f x g x =有8个不同的实数根,则2()1(1)f x x =--,(0x ∈,2]与()(2)g x k x =+,(0x ∈,1]的图象有2个不同交点, 由(1,0)到直线20kx y k -+=的距离为1211k =+,解得0)22k k =>,两点(2,0)-,(1,1)连线的斜率13k =,∴1322k <. 即k 的取值范围为1[3)22.故答案为:1[3)22.【归纳与总结】本题考查函数零点的判定,考查分段函数的应用,体现了数形结合的解题思想方法,是中档题.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c .(1)若3a c =,2b =,2cos 3B =,求c 的值;(2)若sin cos 2A Ba b=,求sin()2B π+的值. 【思路分析】(1)由余弦定理得:222221022cos 263a cbc B ac c +--===,由此能求出c 的值.(2)由sin cos A Ba =,利用正弦定理得2sin cos B B =,再由22sin cos 1B B +=,能求出5sin B =,25cos B =,由此利用诱导公式能求出sin()2B π+的值. 【解析】:(1)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c .3a c =,2b =,2cos 3B =,∴由余弦定理得:222221022cos 263a cbc B ac c +--===,解得3c =. (2)sin cos 2A Ba b=, ∴由正弦定理得:sin sin cos 2A B Ba b b==, 2sin cos B B ∴=, 22sin cos 1B B +=,5sin B ∴=,25cos B =, 25sin()cos 2B B π∴+==. 【归纳与总结】本题考查三角形边长、三角函数值的求法,考查正弦定理、余弦定理、诱导公式、同角三角函数关系式等基础知识,考查推理能力与计算能力,属于中档题.16.(14分)如图,在直三棱柱111ABC A B C -中,D ,E 分别为BC ,AC 的中点,AB BC =. 求证:(1)11//A B 平面1DEC ;(2)1BE C E ⊥.【思路分析】(1)推导出//DE AB ,11//AB A B ,从而11//DE A B ,由此能证明11//A B 平面1DEC .(2)推导出1BE AA ⊥,BE AC ⊥,从而BE ⊥平面11ACC A ,由此能证明1BE C E ⊥. 【解答】证明:(1)在直三棱柱111ABC A B C -中,D ,E 分别为BC ,AC 的中点, //DE AB ∴,11//AB A B ,11//DE A B ∴, DE ⊂平面1DEC ,11A B ⊂/平面1DEC , 11//A B ∴平面1DEC . 解:(2)在直三棱柱111ABC A B C -中,E 是AC 的中点,AB BC =. 1BE AA ∴⊥,BE AC ⊥,又1AA AC A =,BE ∴⊥平面11ACC A ,1C E ⊂平面11ACC A ,1BE C E ∴⊥.【归纳与总结】本题考查线面平行、线线垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.17.(14分)如图,在平面直角坐标系xOy中,椭圆2222:1(0)x yC a ba b+=>>的焦点为1(1,0)F-,2(1,0)F.过2F作x轴的垂线l,在x轴的上方,1与圆2222:(1)4F x y a-+=交于点A ,与椭圆C交于点D.连结1AF并延长交圆2F于点B,连结2BF交椭圆C于点E,连结1DF.已知152DF=.(1)求椭圆C的标准方程;(2)求点E的坐标.【思路分析】(1)由题意得到12//F D BF,然后求AD,再由152AD DF==求得a,则椭圆方程可求;(2)求出D的坐标,得到2133224BF DFk k===,写出2BF的方程,与椭圆方程联立即可求得点E的坐标.【解析】:(1)如图,22F A F B=,22F AB F BA∴∠=∠,22212F A a F D DA F D F D==+=+,1AD F D∴=,则11DAF DF A∠=∠,12DF A F BA∴∠=∠,则12//F D BF,1c=,221b a∴=-,则椭圆方程为222211x ya a+=-,取1x=,得21Daya-=,则22112a aAD aa a-+=-=.又152DF=,∴2152aa+=,解得2(0)a a=>.∴椭圆C的标准方程为22143x y+=;(2)由(1)知,3(1,)2D,1(1,0)F-,∴2133224BF DFk k===,则23:(1)4BF y x=-,联立223(1)4143y xx y⎧=-⎪⎪⎨⎪+=⎪⎩,得22118390x x--=.解得11x=-或2137x=(舍).∴132y =-.即点E 的坐标为3(1,)2--.【归纳与总结】本题考查直线与圆,圆与椭圆位置关系的应用,考查计算能力,证明12//DF BF 是解答该题的关键,是中档题.18.(16分)如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥(AB AB 是圆O 的直径),规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA ,规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆O 的半径.已知点A 、B 到直线l 的距离分别为AC 和(BD C 、D 为垂足),测得10AB =,6AC =,12BD =(单位:百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由; (3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米),求当d 最小时,P 、Q 两点间的距离.【思路分析】(1)设BD 与圆O 交于M ,连接AM ,以C 为坐标原点,l 为x 轴,建立直角坐标系,则(0,6)A -,(8,12)B --,(8,0)D -设点1(P x ,0),PB AB ⊥,运用两直线垂直的条件:斜率之积为1-,求得P 的坐标,可得所求值;(2)当QA AB ⊥时,QA 上的所有点到原点O 的距离不小于圆的半径,设此时2(Q x ,0),运用两直线垂直的条件:斜率之积为1-,求得Q 的坐标,即可得到结论;(3)设(,0)P a ,(,0)Q b ,则17a -,92b -,结合条件,可得b 的最小值,由两点的距离公式,计算可得PQ .【解析】:设BD 与圆O 交于M ,连接AM , AB 为圆O 的直径,可得AM BM ⊥, 即有6DM AC ==,6BM =,8AM =,以C 为坐标原点,l 为x 轴,建立直角坐标系,则(0,6)A -,(8,12)B --,(8,0)D - (1)设点1(P x ,0),PB AB ⊥, 则1BP AB k k =-, 即10(12)6(12)1(8)0(8)x -----=-----,解得117x=-,所以(17,0)P -,22(178)(012)15PB =-+++=;(2)当QA AB ⊥时,QA 上的所有点到原点O 的距离不小于圆的半径,设此时2(Q x ,0),则1QA AB k k =-,即20(6)6(12)100(8)x -----=----,解得292x =-,9(2Q -,0),由91782-<-<-,在此范围内,不能满足PB ,QA 上所有点到O 的距离不小于圆的半径,所以P ,Q 中不能有点选在D 点;(3)设(,0)P a ,(,0)Q b ,则17a -,92b -,22(8)144225PB a =++,2236225QA b =+,则321b ,当d 最小时,17321PQ =+.【归纳与总结】本题考查直线和圆的位置关系,考查直线的斜率和两直线垂直的条件:斜率之积为1-,以及两点的距离公式,分析问题和解决问题的能力,考查运算能力,属于中档题.19.(16分)设函数()()()()f x x a x b x c =---,a ,b ,c R ∈,()f x '为()f x 的导函数. (1)若a b c ==,f (4)8=,求a 的值;(2)若a b ≠,b c =,且()f x 和()f x '的零点均在集合{3-,1,3}中,求()f x 的极小值;(3)若0a =,01b <,1c =,且()f x 的极大值为M ,求证:427M .【思路分析】(1)由a b c ==,可得3()()f x x a =-,根据f (4)8=,可得3(4)8a -=,解得a .(2)a b ≠,b c =,设2()()()f x x a x b =--.令2()()()0f x x a x b =--=,解得x a =,或x b =.()()(32)f x x b x b a '=---.令()0f x '=,解得x b =,或23a bx +=.根据()f x 和()f x '的零点均在集合{3A =-,1,3}中,通过分类讨论可得:只有3a =,3b =-,可得263133a b A +-==∈,可得:2()(3)(3)f x x x =-+.利用导数研究其单调性可得1x =时,函数()f x 取得极小值.(3)0a =,01b <,1c =,()()(1)f x x x b x =--.2()3(22)f x x b x b '=-++.△0>.令2()3(22)0f x x b x b '=-++=.解得:21111(0,]3b b b x +--+,2211b b b x ++-+.12x x <,可得1x x =时,()f x 取得极大值为M ,通过计算化简即可证明结论.【解析】:(1)a b c ==,3()()f x x a ∴=-,f (4)8=,3(4)8a ∴-=, 42a ∴-=,解得2a =.(2)a b ≠,b c =,设2()()()f x x a x b =--. 令2()()()0f x x a x b =--=,解得x a =,或x b =.2()()2()()()(32)f x x b x a x b x b x b a '=-+--=---.令()0f x '=,解得x b =,或23a bx +=.()f x 和()f x '的零点均在集合{3A =-,1,3}中,若:3a =-,1b =,则2615333a b A +-+==-∉,舍去.1a =,3b =-,则2231333a b A +-==-∉,舍去.3a =-,3b =,则263133a b A +-+==-∉,舍去.. 3a =,1b =,则2617333a b A ++==∉,舍去.1a =,3b =,则2533a b A +=∉,舍去.3a =,3b =-,则263133a b A +-==∈,. 因此3a =,3b =-,213a bA +=∈,可得:2()(3)(3)f x x x =-+. ()3[(3)](1)f x x x '=---.可得1x =时,函数()f x 取得极小值,f (1)22432=-⨯=-. (3)证明:0a =,01b <,1c =, ()()(1)f x x x b x =--.2()()(1)(1)()3(22)f x x b x x x x x b x b x b '=--+-+-=-++.△22214(1)124444()332b b b b b =+-=-+=-+.令2()3(22)0f x x b x b '=-++=.解得:11(0,]3x =,2x =.12x x <,12223b x x ++=,123b x x =, 可得1x x =时,()f x 取得极大值为M ,2111()3(22)0f x x b x b '=-++=,可得:2111[(22)]3x b x b =+-,1111()()(1)M f x x x b x ==--222211111111(22)1()()()()[(21)2]33b x b x b x x x b x b x b x b +-=--=--=--+2222111(22)11[(21)2][(222)]339b x b b b x b b b x b b +-=--+=-+-++, 22132222()022b b b -+-=---<,M ∴在1(0x ∈,1]3上单调递减,2221252524()932727b b b b M b b -+-+-∴++=.427M∴. 【归纳与总结】本题考查了利用导数研究函数的单调性、方程与不等式的解法、分类讨论方法、等价转化方法,考查了推理能力与计算能力,属于难题.20.(16分)定义首项为1且公比为正数的等比数列为“M -数列”. (1)已知等比数列*{}()n a n N ∈满足:245a a a =,321440a a a -+=,求证:数列{}n a 为“M -数列”;(2)已知数列*{}()n b n N ∈满足:11b =,1122n n n S b b +=-,其中n S 为数列{}n b 的前n 项和.①求数列{}n b 的通项公式;②设m 为正整数,若存在“M -数列” *{}()n c n N ∈,对任意正整数k ,当k m 时,都有1k k k c b c +成立,求m 的最大值.【思路分析】(1)设等比数列{}n a 的公比为q ,然后根据245a a a =,321440a a a -+=列方程求解,在根据新定义判断即可;(2)求出2b ,3b ,4b 猜想n b ,然后用数学归纳法证明;(3)设{}n c 的公比为q ,将问题转化为[][]1max min lnk lnkk k -,然后构造函数()(3)lnx f x x x =,()(3)1lnx g x x x =-,分别求解其最大值和最小值,最后解不等式331ln lnmm -,即可.【解析】:(1)设等比数列{}n a 的公比为q ,则 由245a a a =,321440a a a -+=,得244112111440a q a qa q a q a ⎧=⎪⎨-+=⎪⎩∴112a q =⎧⎨=⎩, ∴数列{}n a 首项为1且公比为正数即数列{}n a 为“M -数列”;(2)①11b =,1122n n n S b b +=-,∴当1n =时,11121122S b b b ==-,22b ∴=, 当2n =时,212231122S b b b b ==-+,33b ∴=,当3n =时,3123341122S b b b b b ==-++,44b ∴=, 猜想n b n =,下面用数学归纳法证明; ()i 当1n =时,11b =,满足n b n =,()ii 假设n k =时,结论成立,即k b k =,则1n k =+时, 由1122k k k S b b +=-,得 1(1)2221(1)222k k k k k k k kb S b k k k S b k++===++--, 故1n k =+时结论成立,根据()()i ii 可知,n b n =对任意的*n N ∈都成立. 故数列{}n b 的通项公式为n b n =; ②设{}n c 的公比为q ,存在“M -数列” *{}()n c n N ∈,对任意正整数k ,当k m 时,都有1k k k c b c +成立, 即1k kq k-对k m 恒成立,当1k =时,1q ,当2k =2,当3k ,两边取对数可得,1lnk lnkk k -对k m 有解,即[][]1max min lnk lnk k k -,令()(3)lnx f x x x =,则21()lnxf x x -'=, 当3x 时,()0f x '<,此时()f x 递增,∴当3k 时,3[]3max lnk ln k =, 令()(3)1lnx g x x x =-,则211()lnxx g x x --'=, 令1()1x lnx x φ=--,则21()xx xφ-'=,当3x 时,()0x φ'<,即()0g x '<, ()g x ∴在[3,)+∞上单调递减,即3k 时,[]11min lnk lnmk m =--,则 331ln lnmm -,下面求解不等式331ln lnmm -,化简,得3(1)30lnm m ln --,令()3(1)3h m lnm m ln =--,则3()3h m ln m'=-,由3k 得3m ,()0h m '<,()h m ∴在[3,)+∞上单调递减,又由于h (5)3543125810ln ln ln ln =-=->,h (6)36532162430ln ln ln ln =-=-<, ∴存在0(5,6)m ∈使得0()0h m =, m ∴的最大值为5,此时13[3q ∈,145].【归纳与总结】本题考查了由递推公式求等比数列的通项公式和不等式恒成立,考查了数学归纳法和构造法,是数列、函数和不等式的综合性问题,属难题.【选做题】本题包括A 、B 、C 三小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A.[选修4-2:矩阵与变换](本小题满分10分)21.(10分)已知矩阵3122A ⎡⎤=⎢⎥⎣⎦. (1)求2A ;(2)求矩阵A 的特征值. 【思路分析】(1)根据矩阵A 直接求解2A 即可;(2)矩阵A 的特征多项式为231()5422f λλλλλ--==-+--,解方程()0f λ=即可.【解析】:(1)3122A ⎡⎤=⎢⎥⎣⎦231312222A ⎡⎤⎡⎤∴=⎢⎥⎢⎥⎣⎦⎣⎦ 115106⎡⎤=⎢⎥⎣⎦(2)矩阵A 的特征多项式为:231()5422f λλλλλ--==-+--,令()0f λ=,则由方程2540λλ-+=,得1λ=或4λ=,∴矩阵A 的特征值为1或4.【归纳与总结】本题考查了矩阵的运算和特征值等基础知识,考查运算与求解能力,属基础题.B.[选修4-4:坐标系与参数方程](本小题满分10分)22.(10分)在极坐标系中,已知两点(3,)4A π,B ,)2π,直线1的方程为sin()34πρθ+=.(1)求A ,B 两点间的距离; (2)求点B 到直线l 的距离.【思路分析】(1)设极点为O ,则由余弦定理可得2222?cos AB OA OB OA OB AOB =+-∠,解出AB ;(2)根据直线l 的方程和点B 的坐标可直接计算B 到直线l 的距离. 【解析】:(1)设极点为O ,则在OAB ∆中,由余弦定理,得 2222?cos AB OA OB OA OB AOB =+-∠,AB ∴=(2)由直线1的方程sin()34πρθ+=,知直线l过)2π,倾斜角为34π,又B )2π,∴点B 到直线l的距离为3?()242sin ππ-=.【归纳与总结】本题考查了在极坐标系下计算两点间的距离和点到直线的距离,属基础题.C.[选修4-5:不等式选讲](本小题满分10分)23.设x R ∈,解不等式|||21|2x x +->.【思路分析】对|||21|x x +-去绝对值,然后分别解不等式即可.【解析】:131,21|||21|1,0231,0x x x x x x x x ⎧->⎪⎪⎪+-=-+⎨⎪-+<⎪⎪⎩,|||21|2x x +->,∴31212x x ->⎧⎪⎨>⎪⎩或12102x x -+>⎧⎪⎨⎪⎩或3120x x -+>⎧⎨<⎩, 1x ∴>或x ∈∅或13x <-,∴不等式的解集为1{|3x x <-或1}x >.【归纳与总结】本题考查了绝对值不等式的解法,属基础题.【必做题】第24题、第25题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.24.(10分)设2012(1)n n n x a a x a x a x +=+++⋯+,4n ,*n N ∈.已知23242a a a =.(1)求n的值;(2)设(1n a =+a ,*b N ∈,求223a b -的值.【思路分析】(1)运用二项式定理,分别求得2a ,3a ,4a ,结合组合数公式,解方程可得n 的值;(2)方法一、运用二项式定理,结合组合数公式求得a ,b ,计算可得所求值;方法二、由于a ,*bN ∈,求得5(1a -=-,再由平方差公式,计算可得所求值.【解析】:(1)由0122(1)n n nnn n n x C C x C x C x +=+++⋯+,4n , 可得22(1)2n n n a C -==,33(1)(2)6n n n n a C --==,44(1)(2)(3)24n n n n n a C ---==, 23242a a a =,可得2(1)(2)(1)(1)(2)(3)()26224n n n n n nn n n ------=,解得5n =;(2)方法一、502233445555555(1C C C C C C a +=++++=+由于a ,*b N ∈,可得024555391304576a C C C =++=++=,1355553944b C C C =++=, 可得222237634432a b-=-⨯=-;方法二、502233445555555(1C C C CC C a +=++++=+50122334455555555(1(((((C C C CC C -=+++++02233445555555C C CC C C =--+-,由于a ,*b N∈,可得5(1a =-可得225553(1(13)(13)32a b -=+-=-=-.【归纳与总结】本题主要考查二项式定理、组合数公式的运用,考查运算能力和分析问题能力,属于中档题.25.(10分)在平面直角坐标系xOy 中,设点集{(0,0)n A =,(1,0),(2,0),⋯,(,0)}n ,{(0,1)n B =,(,1)}n ,{(0,2)n C =,(1,2),(2,2),⋯⋯,(,2)}n ,*n N ∈.令n nn n M A B C =.从集合n M 中任取两个不同的点,用随机变量X 表示它们之间的距离. (1)当1n =时,求X 的概率分布;(2)对给定的正整数(3)n n,求概率()P X n (用n表示).【思路分析】(1)当1n =时,X 的所有可能取值为1,2,由古典概率的公式,结合组合数可得所求值;(2)设(,)A a b 和(,)B c d 是从n M 中取出的两个点,因为()1()P X n P X n =->,所以只需考虑X n >的情况,分别讨论b ,d 的取值,结合古典概率的计算公式和对立事件的概率,即可得到所求值.【解析】:(1)当1n =时,X 的所有可能取值为1,2,2,5,X 的概率分布为2677(1)15P X C ===;2644(2)15P X C ===;2622(2)15P X C ===;2622(5)15P X C ===; (2)设(,)A a b 和(,)B c d 是从n M 中取出的两个点,因为()1()P X n P X n =->,所以只需考虑X n >的情况, ①若b d =,则AB n ,不存在X n >的取法;②若0b =,1d =,则22()11AB a c n =-++,所以X n >当且仅当21AB n =+,此时0a =.c n =或a n =,0c =,有两种情况;③若0b =,2d =,则22()44AB a c n =-++,所以X n >当且仅当24AB n =+,此时0a =.c n =或a n =,0c =,有两种情况;④若1b =,2d =,则22()11AB a c n =-++,所以X n >当且仅当21AB n =+,此时0a =.c n =或a n =,0c =,有两种情况; 综上可得当X n >,X 的所有值是21n +或24n +,且22244(1)n P X n C +=+=,22242(4)n P X n C +=+=,可得222246()1(1)(4)1n P X n P X n P X n C+=-=+-=+=-.【归纳与总结】本题考查随机变量的概率的分布,以及古典概率公式的运用,考查分类讨论思想方法,以及化简运算能力,属于难题.————————————————————————————————————《高中数学教研微信系列群》简介:目前有6个群,共2000多优秀、特、高级教师,省、市、区县教研员、教辅公司数学编辑、报刊杂志高中数学编辑等汇聚而成,是一个围绕高中数学教学研究展开教研活动的微信群.宗旨:脚踏实地、不口号、不花哨、接地气的高中数学教研! 特别说明:1.本系列群只探讨高中数学教学研究、高中数学试题研究等相关话题;2.由于本群是集“研究—写作—发表(出版)”于一体的“桥梁”,涉及业务合作,特强调真诚交流,入群后立即群名片:教师格式:省+市+真实姓名,如:四川成都张三 编辑格式:公司或者刊物(简写)+真实姓名欢迎各位老师邀请你身边热爱高中数学教研(不喜欢研究的谢绝)的教师好友(学生谢绝)加入,大家共同研究,共同提高!群主二维码:见右图————————————————————————————————————。

相关文档
最新文档