人教七数上册几何图形初步专题训练.doc
人教版数学七年级上册 几何图形初步专题练习(word版

一、初一数学几何模型部分解答题压轴题精选(难)1.如图 1,CE 平分∠ACD,AE 平分∠BAC,且∠EAC+∠ACE=90°.(1)请判断 AB 与 CD 的位置关系,并说明理由;(2)如图2,若∠E=90°且AB 与CD 的位置关系保持不变,当直角顶点E 移动时,写出∠BAE 与∠ECD 的数量关系,并说明理由;(3)如图 3,P 为线段 AC 上一定点,点 Q 为直线 CD 上一动点,且 AB 与 CD 的位置关系保持不变,当点 Q 在射线 CD 上运动时(不与点 C 重合),∠PQD,∠APQ 与∠ BAC 有何数量关系?写出结论,并说明理由.【答案】(1),理由如下:CE 平分,AE 平分,;(2),理由如下:如图,延长AE交CD于点F,则由三角形的外角性质得:;(3),理由如下:,即由三角形的外角性质得:又,即即.【解析】【分析】(1)根据角平分线的定义、平行线的判定即可得;(2)根据平行线的性质(两直线平行,内错角相等)、三角形的外角性质即可得;(3)根据平行线的性质(两直线平行,同旁内角互补)、三角形的外角性质、邻补角的定义即可得.2.已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系________;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.【答案】(1)∠A+∠C=90°;(2)解:如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,∴∠C=∠CBG,∴∠ABD=∠C;(3)解:如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【解析】【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)先过点B作BG∥DM,根据同角的余角相等,得出∠ABD=∠CBG,再根据平行线的性质,得出∠C=∠CBG,即可得到∠ABD=∠C;(3)先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.3.综合题(1)ⅰ问题引入如图①,在△ABC中,点O是∠ABC和∠ACB平分线的交点,若∠A=α,则∠BOC=________(用α表示);ⅱ拓展研究如图②,∠CBO=∠ABC,∠BCO=∠ACB,∠A=α,试求∠BOC的度数________(用α表示).ⅲ归纳猜想若BO、CO分别是△ABC的∠ABC、∠ACB的n等分线,它们交于点O,∠CBO=∠ABC,∠BCO=∠ACB,∠A=α,则∠BOC=________(用α表示).(2)类比探索ⅰ特例思考如图③,∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,求∠BOC的度数________(用α表示).ⅱ一般猜想若BO、CO分别是△ABC的外角∠DBC、∠ECB的n等分线,它们交于点O,∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,请猜想∠BOC=________(用α表示).【答案】(1)90°+∠α;120°+∠α;(2)120°-∠α; .【解析】【解答】(1)ⅰ90°+∠α;ⅱ如图②,∵∠CBO=∠ABC,∠BCO=∠ACB,∠A=α,∴∠BOC=180°-(∠ABC+∠ACB)=180°-(180°-∠A)=180°-(180°-∠α)=180°-60°+∠α=120°+∠α;ⅲ;( 2 )ⅰ如图③,∵∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,∴∠BOC=180°-(∠DBC+∠ECB)=180°- [360°-(∠ABC+∠ACB)]=180°- [360°-(180°-∠A)]=180°-(180°+∠α)=180°-60°-∠α=120°-∠α.;ⅱ .【分析】(1)ⅰ根据角平分线的定义,可得出∠CBO=∠ABC,∠OCB=∠ACB,可得出∠CBO+∠OCB=(180°-∠A),再在△COB中,利用三角形内角和定理得出∠BOC=180°-(∠CBO+∠OCB),即可得出结果;ⅱ根据∠CBO=∠ABC,∠OCB=∠ACB,可得出∠CBO+∠OCB=(180°-∠A),再在△COB中,利用三角形内角和定理得出∠BOC=180°-(∠CBO+∠OCB),即可得出结果;ⅲ根据∠CBO=∠ABC,∠OCB=∠ACB,可得出∠CBO+∠OCB=(180°-∠A),再在△COB中,利用三角形内角和定理得出∠BOC=180°-(∠CBO+∠OCB),即可得出结果。
人教版数学七年级上册 几何图形初步单元练习(Word版 含答案)

一、初一数学几何模型部分解答题压轴题精选(难)1.数轴上A, B, C, D四点表示的有理数分别为1, 3, -5, -8(1)计算以下各点之间的距离:①A、B两点, ②B、C两点,③C、D两点,(2)若点M、N两点所表示的有理数分别为m、n,求M、N两点之间的距离.【答案】(1)AB=3-1=2;BC=3-(-5)=8;CD=-5-(-8)=-5+8=3.(2)MN=【解析】【分析】(1)数轴上两点间的距离等于数值较大的数减去数值较小的数,据此计算即可;(2)因为m、n的大小未知,则M、N两点间的距离为它们所表示的有理数之差的绝对值.2.将一副三角板中的两个直角顶点叠放在一起(如图①),其中,, .(1)猜想与的数量关系,并说明理由;(2)若,求的度数;(3)若按住三角板不动,绕顶点转动三角,试探究等于多少度时,并简要说明理由.【答案】(1)解:,理由如下:,(2)解:如图①,设,则,由(1)可得,,,(3)解:分两种情况:①如图1所示,当时,,又,;②如图2所示,当时,,又,.综上所述,等于或时, .【解析】【分析】(1)由∠BCD=∠ACB+∠ACD=90°+∠ACD,即可求出∠BCD+∠ACE的度数.(2)如图①,设∠ACE=a,可得∠BCD=3a,结合(1)可得3a+a=180°,求出a的度数,即得∠BCD的度数.(3)分两种情况讨论,①如图1所示,当AB∥CE时,∠BCE=180°-∠B=120°,②如图2所示,当AB∥CE时,∠BCE=∠B=60°,分别求出∠BCD的度数即可.3.如图1,点A、B分别在数轴原点O的左右两侧,且 OA+50=OB,点B对应数是90.(1)求A点对应的数;(2)如图2,动点M、N、P分别从原点O、A、B同时出发,其中M、N均向右运动,速度分别为2个单位长度/秒,7个单位长度/秒,点P向左运动,速度为8个单位长度/秒,设它们运动时间为t秒,问当t为何值时,点M、N之间的距离等于P、M之间的距离;(3)如图3,将(2)中的三动点M、N、P的运动方向改为与原来相反的方向,其余条件不变,设Q为线段MN的中点,R为线段OP的中点,求22RQ﹣28RO﹣5PN的值.【答案】(1)解:如图1,∵点B对应数是90,∴OB=90.又∵ OA+50=OB,即 OA+50=90,∴OA=120.∴点A所对应的数是﹣120(2)解:依题意得,MN=|(﹣120+7t)﹣2t|=|﹣120+5t|,PM=|2t﹣(90﹣8t)|=|10t﹣90|,又∵MN=PM,∴|﹣120+5t|=|10t﹣90|,∴﹣120+5t=10t﹣90或﹣120+5t=﹣(10t﹣90)解得t=﹣6或t=14,∵t≥0,∴t=14,点M、N之间的距离等于点P、M之间的距离(3)解:依题意得RQ=( 45+4t)﹣(﹣60﹣4.5t)=105+8.5t,RO=45+4t,PN=(90+8t)﹣(﹣120﹣7t)=210+15t,则22RQ﹣28RO﹣5PN=22(105+8.5t)﹣28(45+4t)﹣5(210+15t)=0【解析】【分析】(1)根据点B对应的数求得OB的长度,结合已知条件和图形来求点A 所对应的数;(2)由M、N之间的距离等于P、M之间的距离列式为,列方程求出t;(3)由M、N之间的距离等于P、M之间的距离列式为,列方程求出t,并求出RQ,RO 及PN,再求出22RQ﹣28RO﹣5PN的值.4.将一副直角三角板如图1摆放在直线AD上(直角三角板OBC和直角三角板MON,∠OBC=90°,∠BOC=45°,∠MON=90°,∠MNO=30°),保持三角板OBC不动,将三角板MON绕点O以每秒10°的速度顺时针旋转,旋转时间为t秒(1)当t=________秒时,OM平分∠AOC?如图2,此时∠NOC﹣∠AOM=________°;(2)继续旋转三角板MON,如图3,使得OM、ON同时在直线OC的右侧,猜想∠NOC 与∠AOM有怎样的数量关系?并说明理由;(3)若在三角板MON开始旋转的同时,另一个三角板OBC也绕点O以每秒5°的速度顺时针旋转,当OM旋转至射线OD上时同时停止,(自行画图分析)①当t=________秒时,OM平分∠AOC?(4)②请直接写出在旋转过程中,∠NOC与∠AOM的数量关系.【答案】(1)2.25;45(2)解:∠NOC﹣∠AOM=45°,∵∠AON=90°+10t,∴∠NOC=90°+10t﹣45°=45°+10t,∵∠AOM=10t,∴∠NOC﹣∠AOM=45°(3)3(4)解:②∠NOC﹣∠AOM=45°.∵∠AOB=5t,∠AOM=10t,∠MON=90°,∠BOC=45°,∵∠AON=90°+∠AOM=90°+10t,∠AOC=∠AOB+∠BOC=45°+5t,∴∠NOC=∠AON﹣∠AOC=90°+10t﹣45°﹣5t=45°+5t,∴∠NOC﹣∠AOM=45°.【解析】【解答】解:(1)∵∠AOC=45°,OM平分∠AOC,∴∠AOM= =22.5°,∴t=2.25秒,∵∠MON=90°,∠MOC=22.5°,∴∠NOC﹣∠AOM=∠MON﹣∠MOC﹣∠AOM=45°;故答案为:2.25,45;·(3)①∵∠AOB=5t,∠AOM=10t,∴∠AOC=45°+5t,∵OM平分∠AOC,∴∠AOM= AOC,∴10t= (45°+5t),∴t=3秒,故答案为:3.【分析】(1)根据角平分线的定义得到∠AOM= =22.5°,于是得到t=2.25秒,由于∠MON=90°,∠MOC=22.5°,即可得到∠NOC﹣∠AOM=∠MON﹣∠MOC﹣∠AOM=45°;(2)根据题意得∠AON=90°+10t,求得∠NOC=90°+10t﹣45°=45°+10t,即可得到结论;(3)①根据题意得∠AOB=5t,∠AOM=10t,求得∠AOC=45°+5t,根据角平分线的定义得到∠AOM= AOC,列方程即可得到结论;(4)②根据角的和差即可得到结论.5.如图1,已知线段AB=16cm,点C为线段AB上的一个动点,点D、E分别是AC和BC 的中点.(1)若点C恰为AB的中点,求DE的长;(2)若AC=6cm,求DE的长;(3)试说明不论AC取何值(不超过16cm),DE的长不变;(4)知识迁移:如图2,已知∠AOB=130°,过角的内部任一点C画射线OC,若OD、OE 分别平分∠AOC和∠BOC,试说明∠DOE=65°与射线OC的位置无关.【答案】(1)解:∵点C恰为AB的中点,∴AC=BC= AB=8cm,∵点D、E分别是AC和BC的中点,∴DC= AC=4cm,CE= BC=4cm,∴DE=8cm(2)解:∵AB=16cm,AC=6cm,∴BC=10cm,由(1)得,DC= AC=3cm,CE= CB=5cm,∴DE=8cm(3)解:∵点D、E分别是AC和BC的中点,∴DC= AC,CE= BC,∴DE= (AC+BC)= AB,∴不论AC取何值(不超过16cm),DE的长不变(4)解:∵OD、OE分别平分∠AOC和∠BOC,∴∠DOC= ∠AOC,∠EOC= ∠BOC,∴∠DOE=∠DOC+∠EOC= (∠AOC+∠BOC)= ∠AOB=65°,∴∠DOE=65°与射线OC的位置无关【解析】【分析】(1)由点C恰为AB的中点,得到AC=BC的值,再由点D、E分别是AC和BC的中点,求出DE的值;(2)由(1)得,DC= AC的值,CE= CB的值,得到DE的值;(3)由点D、E分别是AC和BC的中点,得到不论AC取何值(不超过16cm),DE 的长不变;(4)由OD、OE分别平分∠AOC和∠BOC,根据角平分线定义,得到∠DOE=∠DOC+∠EOC=(∠AOC+∠BOC)=∠AOB,得到∠DOE=65°与射线OC的位置无关.6.已知,AB//CD,(1)如图,若E 为DC 延长线上一点,AF、CG 分别为∠BAC、∠ACE 的平分线.(1)求证:AF//CG.(2)若 E 为线段 DC 上一点(E 不与 C 重合),AF、CG 分别为∠BAC、∠ACE的平分线,画出图形,试判断 AF,CG 的位置关系,并证明你的结论.【答案】(1)证明:∵AB//CD∴∠BAC=∠ACE,∵AF、CG 分别为∠BAC、∠ACE的平分线,∴∠CAF= ∠BAC, ∠ACG= ∠ACE,∴∠CAF=∠ACG∴AF//CG.(2)解:AF⊥CG,理由如下:如图,AF、CG 分别为∠BAC、∠ACE的平分线,∴∠1= ∠BAC,∠2= ∠ACD,∵AB//CD,∴∠BAC+∠ACD=180°,∴∠1+∠2= ∠BAC+ ∠ACD= (∠BAC+∠ACD)=90°,∴∠3=180°-(∠1+∠2)=90°,∴AF⊥CG.【解析】【分析】(1)根据二直线平行,内错角相等得出∠BAC=∠ACE,根据角平分线的定义得出∠CAF=∠ACG ,进而根据内错角相等,二直线平行得出AF∥CG;(2)根据题意作出图形,根据角平分线的定义得出∠1= ∠BAC,∠2= ∠ACD, 根据二直线平行,同旁内角互补得出∠BAC+∠ACD=180°,从而即可得出∠1+∠2= 90°,根据三角形的内角和定理得出∠3=90°,进而根据垂直的定义得出AF⊥CG.7.如图,四边形ABCD,BE、DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD=α,∠BCD=β(1)如图,若α+β=120°,求∠MBC+∠NDC的度数;(2)如图,若BE与DF相交于点G,∠BGD=30°,请写出α、β所满足的等量关系式;(3)如图,若α=β,判断BE、DF的位置关系,并说明理由.【答案】(1)解:在四边形ABCD中,∠BAD+∠ABC+∠BCD+∠ADC=360°,∴∠ABC+∠ADC=360°-(α+β),∵∠MBC+∠ABC=180°,∠NDC+∠ADC=180°∴∠MBC+∠NDC=180°-∠ABC+180°-∠ADC=360°-(∠ABC+∠ADC)=360°-[360°-(α+β)]=α+β,∵α+β=120°,∴∠MBC+∠NDC=120°(2)解:β﹣α=60°理由:如图1,连接BD,由(1)得,∠MBC+∠NDC=α+β,∵BE、DF分别平分四边形的外角∠MBC和∠NDC,∴∠CBG= ∠MBC,∠CDG= ∠NDC,∴∠CBG+∠CDG= ∠MBC+ ∠NDC= (∠MBC+∠NDC)= (α+β),在△BCD中,∠BDC+∠CDB=180°﹣∠BCD=180°﹣β,在△BDG中,∠GBD+∠GDB+∠BGD=180°,∴∠CBG+∠CBD+∠CDG+∠BDC+∠BGD=180°,∴(∠CBG+∠CDG)+(∠BDC+∠CDB)+∠BGD=180°,∴(α+β)+180°﹣β+30°=180°,∴β﹣α=60°(3)解:平行,理由:如图2,延长BC交DF于H,由(1)有,∠MBC+∠NDC=α+β,∵BE、DF分别平分四边形的外角∠MBC和∠NDC,∴∠CBE= ∠MBC,∠CDH= ∠NDC,∴∠CBE+∠CDH= ∠MBC+ ∠NDC= (∠MBC+∠NDC)= (α+β),∵∠BCD=∠CDH+∠DHB,∴∠CDH=∠BCD﹣∠DHB=β﹣∠DHB,∴∠CBE+β﹣∠DHB= (α+β),∵α=β,∴∠CBE+β﹣∠DHB= (β+β)=β,∴∠CBE=∠DHB,∴BE∥DF【解析】【分析】(1)由四边形的内角和等于360°并结合已知条件可求得∠ABC+∠ADC 的度数;再根据邻补角的定义可得:∠MBC+∠NDC=180°-∠ABC+180°-∠ADC=360°-(∠ABC+∠ADC),代入计算即可求解;(2)由(1)得,∠MBC+∠NDC=α+β,由角平分线的性质可得∠CBG=∠MBC,∠CDG=∠NDC,所以∠CBG+∠CDG=(∠MBC+∠NDC)=(α+β),分别在三角形BCD 和三角形BDG中,根据三角形内角和定理可得:∠BDC+∠CDB=180°﹣∠BCD=180°﹣β,∠GBD+∠GDB+∠BGD=180°,即∠CBG+∠CBD+∠CDG+∠BDC+∠BGD=180°,分别把(∠CBG+∠CDG)、(∠BDC+∠CDB)、∠BGD代入计算即可求解;(3)延长BC交DF于H,由(1)得,∠MBC+∠NDC=α+β,由角平分线的性质可得:∠CBE=∠MBC,∠CDH=∠NDC,两式相加整理可得∠CBE+∠CDH=(α+β);由三角形的外角的性质可得∠BCD=∠CDH+∠DHB,所以∠CDH=β﹣∠DHB,则∠CBE+β﹣∠DHB=(α+β),把α=β代入整理可得∠CBE=∠DHB,由内错角相等两直线平行可得BE∥DF。
人教版初中七年级数学上册第四章《几何图形初步》经典练习题(含答案解析)

人教版初中七年级数学上册第四章《几何图形初步》经典练习题(含答案解析)一、选择题1.如图所示的四个几何体中,从正面、上面、左面看得到的平面图形都相同的有()A.1个B.2个C.3个D.4个B解析:B【分析】分别找出每个图形从三个方向看所得到的图形即可得到答案.【详解】解:①正方体从上面、正面、左侧三个不同方向看到的形状都是正方形,故此选项正确;②球从上面、正面、左侧三个不同方向看到的形状都是圆,故此选项正确;③圆锥,从左边看是三角形,从正面看是三角形,从上面看是圆,故此选项错误;④圆柱从左面和正面看都是矩形,从上边看是圆,故此选项错误;故选B.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.2.观察下列图形,其中不是正方体的表面展开图的是()A.B.C.D. B解析:B【分析】利用正方体及其表面展开图的特点解题.【详解】解:A、C、D均是正方体表面展开图;B、是凹字格,故不是正方体表面展开图.故选:B.【点睛】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.3.一副三角板按如图方式摆放,且1∠的度数比2∠的度数小20︒,则2∠的度数为( )A .35︒B .40︒C .45︒D .55︒D解析:D【分析】 根据题意结合图形列出方程组,解方程组即可.【详解】解:由题意得,1290,2120∠+∠︒⎧⎨∠-∠︒⎩==,解得135,255.∠︒⎧⎨∠︒⎩==. 故选:D .【点睛】本题考查的是余角和补角的概念和性质,两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.4.如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF m =,CD n =,则AB =( )A .m n -B .m n +C .2m n -D .2m n + C解析:C【分析】由条件可知EC+DF=m-n ,又因为E ,F 分别是AC ,BD 的中点,所以AE+BF=EC+DF=m-n ,利用线段和差AB=AE+BF+EF 求解.【详解】解:由题意得,EC+DF=EF-CD=m-n∵E 是AC 的中点,F 是BD 的中点,∴AE=EC ,DF=BF ,∴AE+BF=EC+DF=m-n ,∵AB=AE+EF+FB ,∴AB=m-n+m=2m-n故选:C【点睛】本题考查中点性质及线段和差问题,利用中点性质转化线段之间的倍分关系和灵活运用线段的和、差转化线段之间的数量关系是解答此题的关键.5.已知∠AOB=40°,∠BOC=20°,则∠AOC的度数为( )A.60°B.20°C.40°D.20°或60°D解析:D【分析】考虑两种情形①当OC在∠AOB内部时,∠AOC=∠AOB-∠BOC=40°-20°=20°,②当OC’在∠AOB外部时,∠AOC’=∠AOB+∠BOC=40°+20°=60°.【详解】解:如图当OC在∠AOB内部时,∠AOC=∠AOB-∠BOC=40°-20°=20°,当OC’在∠AOB外部时,∠AOC’=∠AOB+∠BOC=40°+20°=60°,故答案为20°或60°,故选D.【点睛】本题考查角的计算,解决本题的关键是学会正确画出图形,根据角的和差关系进行计算. 6.体育课上,小悦在点O处进行了四次铅球试投,铅球分别落在图中的M,N,P,Q四个点处,则表示他最好成绩的点是()A.M B.N C.P D.Q C解析:C【分析】根据点和圆的位置关系,知最好成绩在P点.【详解】P点与O点距离最长,且在有效范围内,所以最好成绩在P点.【点睛】考查了点和圆的位置关系.7.已知线段AB=6cm,反向延长线段AB到C,使BC=83AB,D是BC的中点,则线段AD的长为____cmA.2 B.3 C.5 D.6A 解析:A【分析】由BC =83AB 可求出BC 的长,根据中点的定义可求出BD 的长,利用线段的和差关系求出AD 的长即可.【详解】∵BC =83AB ,AB=6cm , ∴BC=6×83=16cm , ∵D 是BC 的中点,∴BD=12BC=8cm , ∵反向延长线段AB 到C ,∴AD=BD-AB=8-6=2cm ,故选A.【点睛】本题考查了比较线段的长短,理解线段中点的概念,利用中点的性质转化线段之间的倍分关系是解题关键.8.22°20′×8等于( ).A .178°20′B .178°40′C .176°16′D .178°30′B解析:B【分析】根据角的换算关系即可求解.【详解】22°×8=176°,20′×8=160′=2°40′,故22°20′×8=176°+2°40′=178°40′故选B.【点睛】本题考查了角的度量单位以及单位之间的换算,掌握'160︒=,''160'=是解题的关键. 9.如图,从A 地到C 地,可供选择的方案是走水路、走陆路、走空中,从A 地到B 地有三条水路、两条陆路,从B 地到C 地有4条陆路可供选择,走空中,从A 地不经B 地直线到C 地,则从A 地到C 地可供选择的方案有( )A .10种B .20种C .21种D .626种C解析:C【分析】本题只需分别数出A 到B 、B 到C 、A 到C 的条数,再进一步分析计算即可.【详解】观察图形,得:A到B有5条,B到C有4条,所以A到B到C有5×4=20条,A到C一条.所以从A地到C地可供选择的方案共21条.故选C.【点睛】解决本题的关键是能够有顺序地数出所有情况.10.下列说法不正确的是()A.两条直线相交,只有一个交点B.两点之间,线段最短C.两点确定一条直线D.过平面上的任意三点,一定能作三条直线D解析:D【解析】【分析】根据直线公理、线段公理进行逐一分析判断.【详解】A. 根据直线公理“两点确定一条直线”,则两条直线相交,只有一个交点,故该选项正确;B.两点之间,线段最短,是线段公理,故该选项正确;C. 两点确定一条直线,是直线公理,故该选项正确;D. 当三点共线时,则只能确定一条直线,故该选项错误.故选 D.【点睛】此题考查直线、射线、线段,直线的性质:两点确定一条直线,线段的性质:两点之间线段最短,解题关键在于掌握各性质定义.二、填空题11.如图,点C、D在线段AB上,D是线段AB的中点,AC=13AD ,CD=4cm ,则线段AB的长为_____cm【分析】根据AC=ADCD=4cm求出再根据是线段的中点即可求得答案【详解】∵AC=ADCD=4cm∴∴∵是线段的中点∴∴故答案为【点睛】本题考查了线段中点的几何意义以及求线段的长根据题目中的几何语解析:12【分析】根据AC=13AD ,CD=4cm ,求出AD,再根据D是线段AB的中点,即可求得答案.【详解】∵AC=13AD ,CD=4cm ,∴12433CD AD AC AD AD AD =-=-== ∴6AD =,∵D 是线段AB 的中点,∴212AB AD ==∴12AB cm =故答案为12【点睛】 本题考查了线段中点的几何意义以及求线段的长,根据题目中的几何语言列出等式,是解题的关键.12.线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC =__________.4【分析】根据线段的和差关系即可求解【详解】∵线段在线段的延长线上截取则AB+BC=4cm 故填:4【点睛】此题主要考查线段的长度解题的关键是熟知线段的和差关系解析:4【分析】根据线段的和差关系即可求解.【详解】∵线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC =AB+BC=4cm ,故填:4.【点睛】此题主要考查线段的长度,解题的关键是熟知线段的和差关系.13.如图是一个正方体的表面展开图,已知正方体的每个面上都是一个有理数,且相对面上的两个数互为倒数,那么代数式a b c-的值是_________. 【解析】【分析】将此正方体的表面展开图折叠成正方体观察abc 分别对应的值即可得出答案【详解】将图中所示图形折叠成正方体后a 与4相对应b 与2相对应c 与-1相对应∴∴【点睛】由平面图形的折叠及立体图形的解析:34- 【解析】【分析】将此正方体的表面展开图折叠成正方体,观察a ,b ,c 分别对应的值,即可得出答案.【详解】将图中所示图形折叠成正方体后,a 与4相对应,b 与2相对应,c 与-1相对应, ∴1a 4=,1b 2=,c 1=- ∴3=-4a b c - 【点睛】由平面图形的折叠及立体图形的表面展开图的特点解题.14.下午3:40时,时钟上分针与时针的夹角是_________度.130【分析】分别求出时针走过的度数和分针走过的度数用分针走过的度数减去时针走过的度数即可得出答案【详解】时针每小时走30°分针每分钟走6°∴下午3:40时时针走了3×30°+×30°=110°分针解析:130【分析】分别求出时针走过的度数和分针走过的度数,用分针走过的度数减去时针走过的度数,即可得出答案.【详解】时针每小时走30°,分针每分钟走6°∴下午3:40时,时针走了3×30°+4060×30°=110° 分针走了40×6°=240°∴夹角=240°-110°=130°【点睛】本题考查的是钟面角问题,易错点在于计算时针走过的度数时,往往大部分人只计算了前面3个小时时针走过的度数,容易忽略后面40分钟时针也在走.15.看图填空.(1)AC =AD -_______=AB +_______,(2)BC +CD =_______=_______-AB ,(3)AD =AC+___.CDBCBDADCD 【分析】根据线段之间的和差关系进行解答即可得答案【详解】(1)AC=AD-CD=AB+BC (2)BC+CD=BD=AD-AB (3)AD=AC+CD 故答案为:CD ;BC ;BD ;AD解析:CD BC BD AD CD【分析】根据线段之间的和差关系进行解答即可得答案.【详解】(1)AC=AD-CD=AB+BC ,(2)BC+CD=BD=AD-AB,(3)AD=AC+CD,故答案为:CD;BC;BD;AD;CD【点睛】本题主要考查线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.16.如图所示,∠BOD=45°,那么不大于90°的角有___个,它们的度数之和是____.450°【分析】(1)∠AOE=90°故图中所有的角都是不大于90°的角;(2)将所有的角相加发现有的角相加等于∠EOA即和为90°而有的角相加等于∠BOD即和为45°将这样的角凑在一起计算即可求出解析:450°【分析】(1)∠AOE=90°,故图中所有的角都是不大于90°的角;(2)将所有的角相加,发现有的角相加等于∠EOA,即和为90°,而有的角相加等于∠BOD,即和为45°,将这样的角凑在一起计算,即可求出所有角的度数.【详解】不大于 90°的角有∠EOD,∠EOC,∠EOB,∠EOA,∠DOC,∠DOB,∠DOA,∠COB,∠COA,∠BOA共10个;它们的度数之和是(∠EOD+∠DOA)+(∠EOC+∠COA)+(∠ EOB+∠BOA)+[(∠DOC+∠COB)+∠DOB]+∠EOA=90°+90°+90°+(45°+45°)+90°=450°.故答案为10;450°.【点睛】此题主要考查角的表示与和差关系,解题的关键是熟知角的定义运算法则.17.如图,点C是线段AB的中点,点D,E分别在线段AB上,且ADDB=23,AEEB=2,则CDCE的值为____.【分析】由线段中点的定义可得AC=BC=AB根据线段的和差关系及==2可得出CDCE与AB的关系进而可得答案【详解】∵点C是线段AB的中点∴AC=BC=AB∵==2BD=AB-ADAE=AB-BE∴解析:3 5【分析】由线段中点的定义可得AC=BC=12AB,根据线段的和差关系及ADDB=23,AEEB=2,可得出CD、CE与AB的关系,进而可得答案.【详解】∵点C是线段AB的中点,∴AC=BC=12AB,∵ADDB =23,AEEB=2,BD=AB-AD,AE=AB-BE,∴AD=25AB,BE=13AB,∵CD=AC-AD,CE=BC-BE,∴CD=12AB-25AB=110AB,CE=12AB-13AB=16AB,∴CDCE=11016ABAB=35,故答案为3 5【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.18.(1)比较两条线段的长短,常用的方法有_________,_________.(2)比较两条线段a和b的大小,结果可能有种情况,它们是_______________.(1)度量比较法叠合比较法;(2)3a>ba=ba<b【分析】(1)比较两条线段长短的方法有两种:度量比较法叠合比较法依此即可求解;(2)两条线段a和b的大小有三种情况【详解】(1)比较两条线段的大解析:(1)度量比较法,叠合比较法;(2)3,a>b、a=b、a<b【分析】(1)比较两条线段长短的方法有两种:度量比较法、叠合比较法.依此即可求解;(2)两条线段a和b的大小有三种情况.【详解】(1)比较两条线段的大小通常有两种方法,分别是度量比较法、重合比较法.(2)比较两条线段a和b的大小,结果可能有3种情况,它们是a>b、a=b、a<b.故答案为度量比较法,重合比较法;3,a>b、a=b、a<b.【点睛】本题考查了比较线段的长短,是基础题型,是需要识记的知识.19.如图所示,能用一个字母表示的角有________个,以点A为顶点的角有________个,图中所有大于0°小于180°的角有________个.37【分析】根据角的概念和角的表示方法依题意求得答案【详解】能用一个字母表示的角有2个:∠B∠C;以A为顶点的角有3个:∠BAD∠BAC∠DAC;大于0°小于180°的角有7个:∠BAD∠BAC∠D解析:3 7【分析】根据角的概念和角的表示方法,依题意求得答案.【详解】能用一个字母表示的角有2个:∠B,∠C;以A为顶点的角有3个:∠BAD,∠BAC,∠DAC;大于0°小于180°的角有7个:∠BAD,∠BAC,∠DAC,∠B,∠C,∠ADB,∠ADC.故答案为2,3,7.【点睛】利用了角的概念求解.从一点引出两条射线组成的图形就叫做角.角的表示方法一般有以下几种:1.角+3个大写英文字母;2.角+1个大写英文字母;3.角+小写希腊字母;4.角+阿拉伯数字.20.已知∠A=67°,则∠A的余角等于______度.23【解析】∵∠A=67°∴∠A的余角=90°﹣67°=23°故答案为23解析:23【解析】∵∠A=67°,∴∠A的余角=90°﹣67°=23°,故答案为23.三、解答题21.如图所示,已知射线OC将∠AOB分成1∶3的两部分,射线OD将∠AOB分成5∶7的两部分,若∠COD=15°,求∠AOB的度数.解析:90°【分析】设∠AOB的度数为x,根据题意用含x的式子表示出∠AOC,∠AOD,根据角的关键列出方程即可求解.【详解】解:设∠AOB的度数为x.因为射线OC将∠AOB分成1∶3两部分,所以∠AOC=14 x.因为射线OD将∠AOB分成5∶7两部分,所以∠AOD=512x.又因为∠COD=∠AOD-∠AOC,∠COD=15°,所以15°=512x-14x.解得x=90°,即∠AOB的度数为90°.【点睛】本题考查了角的和差,设出未知数,表示出∠AOC,∠AOD,列出方程是解题关键.22.如图,点C是AB的中点,D,E分别是线段AC,CB上的点,且AD=23AC,DE=35AB,若AB=24 cm,求线段CE的长.解析:CE=10.4cm.【分析】根据中点的定义,可得AC、BC的长,然后根据题已知求解CD、DE的长,再代入CE=DE-CD即可.【详解】∵AC=BC=12AB=12cm,CD=13AC=4cm,DE=35AB=14.4cm,∴CE=DE﹣CD=10.4cm.23.如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,射线OE是射线OB的反向延长线.(1)求射线OC的方向角;(2)求∠COE的度数;(3)若射线OD平分∠COE,求∠AOD的度数.解析:(1)射线OC的方向是北偏东70°;(2)∠COE=70°;(3)∠AOD=90°.【分析】(1)先求出∠AOC=55°,再求得∠NOC的度数,即可确定OC的方向;(2)根据∠AOC=55°,∠AOC=∠AOB,得出∠BOC=110°,进而求出∠COE的度数;(3)根据射线OD平分∠COE,即可求出∠COD=35°再利用∠AOC=55°求出答案即可.【详解】(1)∵射线OA的方向是北偏东15°,射线OB的方向是北偏西40°即∠NOA=15°,∠NOB=40°,∴∠AOB=∠NOA+∠NOB=55°,又∵∠AOB=∠AOC,∴∠AOC=55°,=°,∴∠NOC=∠NOA+∠AOC=15°+ 55°70∴射线OC的方向是北偏东70°.(2)∵∠AOB=55°,∠AOB=∠AOC,∴∠BOC=∠AOB+∠AOC=55°+55°=110°,又∵射线OD是OB的反向延长线,∴∠BOE=180°,∴∠COE=180°-110°=70°,(3)∵∠COE=70°,OD平分∠COE,∴∠COD=35°,∴∠AOD=∠AOC+∠COD=55°+35°=90°.【点睛】此题主要考查了方向角的表达即方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)多少度.24.如图,点C为线段AD上一点,点B为CD的中点,且6cmBD=.AC=,2cm(1)图中共有多少条线段?(2)求AD的长.解析:(1)6条;(2)10cm【分析】(1)根据线段的定义,即可得到答案;(2)由点B 为CD 的中点,即可求出CD 的长度,然后求出AD 的长度.【详解】解:(1)根据题意,图中共有6条线段,分别是AC ,AB ,AD ,CB ,CD ,BD . (2)因为点B 是CD 的中点,2cm BD =,所以24cm CD BD ==,所以10cm AD AC CD =+=.【点睛】本题考查了线段中点的有关计算,以及线段的定义,解题的关键是熟练掌握线段有关的计算问题.25.如图,直线AB 与CD 相交于点O ,∠AOE=90°.(1)如图1,若OC 平分∠AOE,求∠AOD 的度数;(2)如图2,若∠BOC=4∠FOB ,且OE 平分∠FOC ,求∠EOF 的度数.解析:(1)135°;(2)54°【分析】(1)利用OC 平分∠AOE ,可得∠AOC =12∠AOE =12×90°=45°,再利用∠AOC+∠AOD=180°,即可得出.(2)由∠BOC=4∠FOB ,设∠FOB=x°,∠BOC=4x°,可得∠COF=∠COB-∠BOF=3x°,根据OE 平分∠COF ,可得∠COE=∠EOF=12∠COF=32x°,即可得出. 【详解】(1)∵∠AOE=90°,OC 平分∠AOE ,∴∠AOC =12∠AOE =12×90°=45°, ∵∠AOC+∠AOD=180°,∴∠AOD=180°-∠AOC=180°-45°=135°,即∠AOD的度数为135°.(2)∵∠BOC=4∠FOB,∴设∠FOB=x°,∠BOC=4x°∴∠COF=∠COB-∠BOF=4x°-x°=3x°∵OE平分∠COF∴∠COE=∠EOF=12∠COF=32x°∵32x+x=90°∴x=36,∴∠EOF=32x°=32×36°=54°即∠EOF的度数为54°.【点睛】本题考查了角平分线的性质、方程思想方法、数形结合方法,考查了推理能力与计算能力.26.如图,∠AOC:∠COD:∠BOD=2:3:4,且A,O,B三点在一条直线上,OE,OF分别平分∠AOC和∠BOD,OG平分∠EOF,求∠GOF的度数。
七年级数学上册第四章《几何图形初步》测试卷-人教版(含答案)

七年级数学上册第四章《几何图形初步》测试卷-人教版(含答案)班级姓名(满分100分,限时60分钟)一、选择题(每小题3分,共30分)1.(2022独家原创)你见过一种折叠灯笼吗?它看起来是平面的,可是提起来后却变成了美丽的灯笼,这个过程可近似地用哪个数学原理来解释( )A.点动成线B.线动成面C.面动成体D.面与面相交的地方是线2.(2021江苏镇江中考)如图所示,该几何体从上面看到的图形是( )A.正方形B.长方形C.三角形D.圆3.(2022甘肃白银期末)如图,观察图形,下列结论中不正确的是( )A.直线BA和直线AB是同一条直线B.图中有5条线段C.AB+BD>ADD.射线AC和射线AD是同一条射线4.如图所示,小于平角的角有( )A.9个B.8个C.7个D.6个5.(2022山东临沂沂水期末)如图,OA表示北偏东25°方向,OB表示南偏西50°方向,则∠AOB的度数是( )A.165°B.155°C.135°D.115°6.建筑工人砌墙时,经常用细绳在墙的两端之间拉一条参照线,使砌的每一层砖在一条直线上,这样做蕴含的数学原理是( )A.过一点有无数条直线B.两点确定一条直线C.两点之间线段最短D.线段是直线的一部分7.如图,下列各式中错误的是( )A.∠AOB<∠AODB.∠BOC<∠AOBC.∠COD>∠AODD.∠AOD>∠AOC8.(2022北京怀柔期末)如图是某个几何体的展开图,该几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.射线OA上有B、C两点,若OB=8,BC=2,线段OB、BC的中点分别为D、E,则线段DE的长为( )A.5B.3C.1D.5或310.时钟显示为8:20时,时针与分针所夹的角是( )A.130°B.120°C.110°D.100°二、填空题(每小题3分,共30分)11.(2022独家原创)篮球运动员将篮球抛出后在空中形成一道弧线,这说明的数学原理是.12.如图所示,延长线段AB到C,使BC=4,若AB=8,则线段AC的长是BC长的倍.13.(2022山东济南历下期末)计算:30°12'=°.14.如图,从A地到B地有①,②,③三条线路,其中最短的线路是(填“①”“②”或“③”),理由是.15.(2022北京通州期末)如图,棋盘上有黑、白两色棋子若干,若直线l经过3枚颜色相同的棋子,则这样的直线共有条.16.如图所示,O是直线AB上一点,OC是∠AOB的平分线.(1)图中互余的角是;(2)图中互补的角是.17.如图所示,图中有条直线, 条射线, 条线段.18.(2021湖北黄冈期末模拟)如图,将一副直角三角板叠在一起,使直角顶点重合于点O,则∠AOB+∠DOC= 度.19.如图,C,D是线段AB上两点,若BC=4cm,AD=7cm,且D是BC的中点,则AC的长等于cm.20.(2022安徽合肥蜀山期末)在同一平面内,∠AOC=∠BOD=50°,射线OB在∠AOC的内部,且∠AOB=20°,OE平分∠AOD,则∠COE的度数是.三、解答题(共40分)21.(5分)如图,已知不在同一直线上的四个点A、B、C、D.(1)画直线AD;(2)连接AB;(3)画射线CD;(4)延长线段BA至点E,使BE=2BA;(5)反向延长射线CD至点F,使DC=2CF.22.(2022北京东城期末)(5分)若一个角的补角是它的余角的6倍,求这个角的度数.23.(6分)如图,点O为直线AB上的一点,已知∠1=65°15',∠2=78°30',求∠1+∠2-∠3的大小.24.(2022广西玉林博白期末)(8分)如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,射线OD是OB的反向延长线.(1)射线OC的方向是;(2)若射线OE平分∠COD,求∠AOE的度数.25.(8分)如图,已知线段AC=12cm,点B在线段AC上,满足BC=1AB.2(1)求AB的长;(2)若D是AB的中点,E是AC的中点,求DE的长.26.(8分)点O为直线AB上一点,将一直角三角板OMN的直角顶点放在点O处,射线OC平分∠MOB.(1)如图(a),若∠AOM=30°,求∠CON的度数;(2)在图(a)中,若∠AOM=α,直接写出∠CON的度数(用含α的式子表示);(3)将图(a)中的直角三角板OMN绕顶点O顺时针旋转至图(b)的位置,一边OM在直线AB上方,另一边ON在直线AB下方.①探究∠AOM和∠CON的度数之间的关系,写出你的结论,并说明理由;②当∠AOC=3∠BON时,求∠AOM的度数.图(a) 图(b)参考答案1.C 由平面图形变成立体图形的过程是面动成体.2.C 从上面看该几何体,所看到的图形是三角形.3.B 题图中有6条线段,故选B.4.C 符合条件的角中以A为顶点的角有1个,以B为顶点的角有2个,以C为顶点的角有1个,以D为顶点的角有1个,以E为顶点的角有2个,共有1+2+1+1+2=7个,故选C.5.B 由题意得∠AOB=25°+90°+40°=155°.6.B 用细绳在墙的两端之间拉一条参照线,使砌的每一层砖在一条直线上,依据是两点确定一条直线.7.C 因为OC在∠AOD的内部,所以∠COD<∠AOD,故C错误,符合题意.8.B 从展开图可知,该几何体有五个面,两个三角形的面,三个长方形的面,因此该几何体是三棱柱.9.D 如图1,DE=3;如图2,DE=5.故选D.图1 图210.A 8:20时,时针与分针之间有4+2060=133个大格,故8:20时,时针与分针所夹的角是30°×133=130°,故选A.11.点动成线解析将篮球看成一个点,这种现象说明的数学原理是点动成线.12.3解析因为AC=AB+BC=8+4=12,所以AC=3BC.13.30.2解析因为1°=60',所以12'=0.2°,所以30°12'=30.2°. 14.①;两点之间,线段最短解析从A地到B地最短的线路是①,依据是两点之间,线段最短.15.3解析如图所示:所以满足条件的直线共有3条.16.(1)∠AOD与∠DOC(2)∠AOD与∠BOD,∠AOC与∠BOC解析(1)因为O是直线AB上一点,OC是∠AOB的平分线,∠AOB=90°,所以∠AOC=∠BOC=12所以∠AOD+∠DOC=90°,即∠AOD与∠DOC互余.(2)∠AOD+∠BOD=180°,∠AOC+∠BOC=180°,即∠AOD与∠BOD互补,∠AOC与∠BOC互补.17.1;6;6解析题图中有1条直线,为直线AD;6条射线,分别为以A为端点的3条,以B为端点的1条,以D为端点的2条;6条线段,分别是AB、AC、AD、BC、CD、BD.18.180解析∠AOB+∠DOC=∠AOD+∠DOC+∠BOC+∠DOC=∠AOC+∠DOB=90°+90°=180°.19.5解析因为D是线段BC的中点,BC=4cm,BC=2cm,所以CD=12因为AD=7cm,所以AC=7-2=5(cm).20.15°或65°解析①当OD与OC在OA的同侧时,如图,因为∠AOC=∠BOD=50°,∠AOB=20°,所以∠AOD=∠BOD+∠AOB=70°,因为OE平分∠AOD,∠AOD=35°,所以∠AOE=12所以∠COE=∠AOC-∠AOE=15°;②当OD与OC在OA的异侧时,如图,因为∠AOC=∠BOD=50°,∠AOB=20°,所以∠AOD=∠BOD-∠AOB=30°,因为OE平分∠AOD,所以∠AOE=1∠AOD=15°,2所以∠COE=∠AOC+∠AOE=65°.综上所述,∠COE的度数为15°或65°.21.解析如图所示.22.解析设这个角为x°,根据题意,得180-x=6(90-x),解得x=72.答:这个角是72°.23.解析∠1+∠2-∠3=65°15'+78°30'-(180°-65°15'-78°30')=143°45'-36°15'=107°30'.24.解析(1)北偏东70°.(2)因为∠AOB=40°+15°=55°,∠AOC=∠AOB,所以∠AOC=55°,∠BOC=110°.因为射线OD是OB的反向延长线,所以∠BOD=180°.所以∠COD=180°-110°=70°.因为OE 平分∠COD, 所以∠COE=35°. 又因为∠AOC=55°, 所以∠AOE=90°.25.解析 (1)因为BC=12AB,AC=AB+BC=12 cm, 所以AB+12AB=12 cm, 所以AB=8 cm.(2)因为D 是AB 的中点,AB=8 cm, 所以AD=12AB=4 cm,因为E 是AC 的中点,AC=12 cm, 所以AE=12AC=6 cm, 所以DE=AE-AD=6-4=2(cm).26.解析 (1)由已知得∠BOM=180°-∠AOM=150°, 因为∠MON 是直角,OC 平分∠BOM,所以∠CON=∠MON-12∠BOM=90°-12×150°=15°. (2)由已知得∠BOM=180°-∠AOM=180°-α, 因为∠MON 是直角,OC 平分∠BOM,所以∠CON=∠MON-12∠BOM=90°-12×(180°-α)=12α. (3)设∠AOM=β,则∠BOM=180°-β. ①∠AOM=2∠CON,理由如下: 因为OC 平分∠BOM,所以∠MOC=12∠BOM=12(180°-β)=90°-12β, 因为∠MON=90°,所以∠CON=∠MON-∠MOC=90°-(90°−12β)=12β,所以∠AOM=2∠CON.②由①可知∠BON=∠MON-∠BOM=90°-(180°-β)=β-90°,∠AOC=∠AOM+∠MOC=β+90°-12β=90°+12β,因为∠AOC=3∠BON,所以90°+12β=3(β-90°),解得β=144°, 所以∠AOM=144°.。
七年级数学上册几何图形初步专题练习(word版

一、初一数学几何模型部分解答题压轴题精选(难)1.如图下图所示,已知AB//CD, ∠B=30°,∠D=120°;(1)若∠E=60°,则∠F=________;(2)请探索∠E与∠F之间满足的数量关系?说明理由.(3)如下图所示,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P的度数;【答案】(1)90°(2)解:如图,分别过点E,F作EM∥AB,FN∥AB∴EM∥AB∥FN∴∠B=∠BEM=30°,∠MEF=∠EFN又∵AB∥CD,AB∥FN∴CD∥FN∴∠D+∠DFN=180°又∵∠D =120°∴∠DFN=60°∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°∴∠EFD=∠MEF +60°∴∠EFD=∠BEF+30°(3)解:如图,过点F作FH∥EP由(2)知,∠EFD=∠BEF+30°设∠BEF=2x°,则∠EFD=(2x+30)°∵EP平分∠BEF,GF平分∠EFD∴∠PEF= ∠BEF=x°,∠EFG= ∠EFD=(x+15)°∵FH∥EP∴∠PEF=∠EFH=x°,∠P=∠HFG ∵∠HFG=∠EFG-∠EFH=15°∴∠P=15°【解析】【解答】解:(1)分别过点E、F作EM∥AB,FN∥AB,则有AB∥EM∥FN∥CD.∴∠B=∠BEM=30°,∠MEF=∠EFN,∠DFN=180°-∠CDF=60°,∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°,∴∠EFD=∠BEF+30°=90°.【分析】(1)分别过点E、F作AB的平行线,根据平行线的性质即可求解;(2)根据平行线的性质可得∠DFN=60°,∠BEM=30°,∠MEF=∠NFE,即可得到结论;(3)过点F作FH∥EP,设∠BEF=2x°,根据(2)中结论即可表示出∠BFD,根据角平分线的定义可得∠PEF=x°,∠EFG=(x+15)°,再根据平行线的性质即可得到结论.2.已知点C在线段AB上,AC=2BC,点D、E在直线AB上,点D在点E的左侧(1)若AB=18,DE=8,线段DE在线段AB上移动①如图1,当E为BC中点时,求AD的长;②点F(异于A,B,C点)在线段AB上,AF=3AD,CE+EF=3,求AD的长;(2)若AB=2DE,线段DE在直线AB上移动,且满足关系式,则________.【答案】(1)解:①又 E为BC中点;②设,因点F(异于A、B、C点)在线段AB上,可知:,和当时,此时可画图如图2所示,代入得:解得:,即AD的长为3当时,此时可画图如图3所示,代入得:解得:,即AD的长为5综上,所求的AD的长为3或5;(2) .【解析】【解答】(2)①若DE在如图4的位置设,则又(不符题设,舍去)②如DE在如图5的位置设,则又代入得:解得:则 .【分析】(1)①根据AB的长和可求出AC和BC,根据中点的定义可得CE,再由可得CD,最后根据计算即可得;②设,因点F(异于A、B、C点)在线段AB上,可知,和,所以需分2种情况进行讨论:和,如图2、3(见解析),先根据已知条件判断点E、F位置,再将EF和CE用含x的式子表示出来,最后代入求解即可;(2)设,先判断出DE在AB上的位置,再根据得出x和y 满足的等式,然后将其代入化简即可得.3.在△ABC中,∠ACB=2∠B,如图①,当∠C=90°,AD为∠BAC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD。
人教版七年级上册数学 第四章 几何图形的初步 专题训练(含答案)

人教版七年级上册数学第四章几何图形的初步专题训练一、单选题1.用一个平面去截正方体(如图),下列关于截面(截出的面)的形状的结论:①可能是锐角三角形;②可能是七边形;③可能是直角三角形;④可能是平行四边形.其中所有正确结论的序号是()A.①② B.①④C.①②④ D.①②③④2.如图,梯形绕虚线旋转一周所形成的图形是()A. B. C. D.3.下列几何体中,是棱锥的为()A. B. C. D.4.下列几何体的侧面展开图形状不是矩形的是()A.圆柱B.圆锥C.棱柱D.正方体5.下图中射线OA与OB表示同一条射线的是( )A. B.C.D.6.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是( )A.两条直线相交,只有一个交点 B.两点确定一条直线 C.两点之间线段最短 D.直线比线段长7.如图,O 是直线AB 上一点,OD 平分∠BOC ,OE 平分∠AOC ,则下列说法错误的是( )A .∠DOE 为直角B .∠DOC 和∠AOE 互余 C .∠AOD 和∠DOC 互补 D .∠AOE 和∠BOC 互补8.如图,直线AB 与CD 相交于点,60O AOC ∠=,一直角三角尺EOF 的直角顶点与点O 重合,OE 平分AOC ∠,现将三角尺EOF 以每秒3的速度绕点O 顺时针旋转,同时直线CD 也以每秒9的速度绕点O 顺时针旋转,设运动时间为t 秒(040t ≤≤),当CD 平分EOF ∠时,t 的值为( ) A .2.5 B .2.5或30 C .30 D .2.5或32.59.如图所示,海岛B 在海岛A 的方向是( ).A .北偏西20°B .南偏东20°C .北偏西70°D .南偏东70°10.定义:△ABC 中,一个内角的度数为α,另一个内角的度数为β,若满足290αβ+=︒,则称这个三角形为“准直角三角形”.如图,在Rt △ABC 中,∠C=90°, AC=8,BC=6,D 是BC 上的一个动点,连接AD ,若△ABD 是“准直角三角形”,则CD 的长是( )A .127B .2413C .83D .135二、填空题11.如图,在线段AB 上有两点C 、D ,AB =28 cm ,AC =4 cm ,点D 是BC 的中点,则线段 AD =________cm .12.笔尖在纸上快速滑动写出一个又一个字,用数学知识可以理解为___________.13.桌面上有一个正六面体骰子,若将骰子沿如图所示的方向顺时针滚动,每滚动90°为1次,则滚动2020次后,骰子朝下一面的点数是___.14.将一副三角板如图摆放,若∠BAE=135°17′,则∠CAD 的度数是__________.三、解答题15.如图,长度为12cm 的线段AB 的中点为M ,C 点在线段MB 上,且2BC MC =,求线段AC 的长;16.已知如图是一个长方体无盖盒子的展开图,16,3,24AB cm CD cm IH cm ===.求:(1)求盒子的底面积.(2)求盒子的容积.17.如图,已知数轴上点A 表示的数为6,B 是数轴上一点,且AB =10,动点P 从点A 出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒,(1)写出数轴上点B 所表示的数 ;(2)求线段AP 的中点所表示的数(用含t 的代数式表示);(3)M 是AP 的中点,N 为PB 的中点,点P 在运动的过程中,线段MN 的长度是否发生变化?若变化,说明理由;若不变,请你画出图形,并求出线段MN 的长.18.如图,已知O 为直线AB 上一点,过点O 向直线AB 上方引三条射线OC 、OD 、OE ,且OC 平分AOD ∠,3BOE DOE ∠=∠,70COE ∠=,求∠BOE 的度数19.如图1,将一副直角三角尺的顶点叠一起放在点O 处,90BOA ∠=,60COD ∠=,OC 与OB 重合,在OD 外AOB ∠,射线OM 、ON 分别是AOC ∠、BOD ∠的角平分线(1)求MON ∠的度数;(2)如图2,若保持三角尺AOB 不动,三角尺COD 绕点逆时针旋转(060)n n <<时,其他条件不变,求MON ∠的度数(提示:旋转角BOC n ∠=)(3)在旋转的过程中,当120AOC BOD ∠+∠=时,直接写出BOC ∠的值答案一、选择1.B 2.D 3.D 4.B 5.B 6.B 7.D 8.D 9.D 10.C二、填空11.16 12.点动成线 13.4 14.三、解答15.8cm16.(1)2143()cm ;(2)3429()cm17.(1)-4;(2)63t - ;(3)不变,MN 的长度为5.18.∠BOE 的度数为60°19.(1)75;(2)75º;(3)15︒。
人教版七年级数学上册《几何图形初步》练习专题

三视图、展开图专题【题型一】从不同方向看几何体1、如图所示的立体图形从上面看到的图形是()2、从左面看图中四个几何体,得到的图形是四边形的几何体共有()A.1个B.2个C.3个D.4个3、从不同方向看一只茶壶,如图,下列选项中从上往下看的效果图是()。
A B C D4、从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是()。
A. 圆柱B. 三棱锥C. 球D. 圆锥从正面看从左面看从上面看5、由四个相同的小正方体搭建了一个积木,它的左视图和主视图均如图所示,则这堆积木不可能是()A B C D6、由7 个大小相同的正方体搭成的几何体如图所示,则关于它的视图说法正确的是()A .从正面看面积最大B .从左面看面积最大C.从上面看面积最大 D .三个视图的面积一样大7、5 个棱长为 1 的正方体组成图所示的几何体.(1)该几何体的体积是(立方单位),表面积是(平方单位).(2)画出从正面看和从左面看到的平面图形.8、如图,这个图形从正面看是__________,从左面看是__________,从上面看是__________ .【题型二】正方体的展开与折叠1、如图是一个长方体包装盒,则它的平面展开图是()A.B.C.D.2、下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方形包装盒的是()A.B.C.D.3、把如图中的三棱柱展开,所得到的展开图是()B.D.A.C.4、下列四个图形中,是三棱柱的平面展开图的是()A.B.C.D.5、小明为了鼓励芦山地震灾区的学生早日走出阴影,好好学习,制作了一个正方体礼盒(如图).礼盒每个面上各有一个字,连起来组成“芦山学子加油”,其中“芦”的对面是“学”,“加”的对面是“油”,则它的平面展开图可能是().A. B. C.D6、一个正方体的平面展开图如图所示,将它折成正方体后,与汉字“岳”相对的面上的汉字是()A.建B.设C.和D.谐7、如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是()A.我B.中C.国D.梦月8、一个正方体礼品盒,其对面图案都相同,那么这个正方体的平面展开图可能是()A B C D9、下面四个图形中,经过折叠能围成如图所示的几何图形的是【】10、若要使图中平面展开图按折叠成正方体后,相对面上两个数之和为6,x=_ ___ , y=______.12 3x y。
【数学】新人教版数学七年级(上)第7章《几何图形初步》单元综合练习卷(含答案).doc

人教版七年级数学上册第4章《几何图形初步》单元检测一.选择题(共10小题,每小题3分,共30分)1.下列几何体是棱锥的是()A.B.C.D.2.下面几种几何图形中,属于平面图形的是()①三角形;②长方形;③正方体;④圆;⑤四棱锥;⑥圆柱.A.①②④B.①②③C.①②⑥D.④⑤⑥3.如图的平面图形绕直线l旋转一周,可以得到的立体图形是()A.B.C.D.4.如图,图中共有线段()A.7条B.8条C.9条D.10条5.如图,轩轩同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.两条直线相交,只有一个交点B.两点确定一条直线C.经过一点的直线有无数条D.两点之间,线段最短6.已知线段AB=10cm,PA+PB=20cm,下列说法正确的是()A.点P不能在直线AB上B.点P只能在直线AB上C.点P只能在线段AB的延长线上D.点P不能在线段AB上7.在△ABC中,作BC边上的高,以下作图正确的是()A.B.C.D.8.如图,下列条件中不能确定的是OC是∠AOB的平分线的是()A.∠AOC=∠BOC B.∠AOB=2∠AOCC.∠AOC+∠BOC=∠AOB D.9.嘉琪同学将一副三角板按如图所示位置摆放,其中∠α与∠B一定互补的是()A.B.C.D.10.下列说法正确的个数是()(1)连接两点之间的线段叫两点间的距离;(2)木匠师傅锯木料时,一般先在模板上画出两个点,然后过这两点弹出一条墨线,这样做的原理是:两点之间,线段最短;(3)若AB=2CB,则点C是AB的中点;(4)若∠A=20°18′.∠B=20°28″,∠C=20.25°,则有∠A>∠C>∠B.A.1个B.2个C.3个D.4个二.填空题(共8小题,每小题3分,共24分)11.如图所示的三角形绕边AB所在直线旋转一周所形成的几何体是.12.如图,C是线段BD的中点,AD=3,AC=7,则AB的长等于.13.把一根木条固定在墙上,至少要钉2根钉子,这是根据.14.从重庆乘火车到北京,沿途经过5个车站方可达到北京站,那么在重庆与北京两站之间需要安排不同的车票种.15.已知∠A=110.32°,用度、分、秒表示为∠A=.16.如图,上午6:30时,时针和分针所夹锐角的度数是.17.若一个角的补角比它的余角的2倍还多70°,则这个角的度数为度.18.图中,∠1与∠2的关系是.三.解答题(共5小题,19--22每小题6分,23题5分,满分29分)19.两种规格的长方体纸盒,尺寸如下(单位:厘米)(1)做这种规格的纸盒各一个,共用料多少平方厘米?(2)做一个大纸盒与做三个小纸盒,哪个用料多?多多少平方厘米?20.如图,已知∠AOB=∠COD=90°,∠BOC=34°.(1)判断∠BOC与∠AOD之间的数量关系,并说明理由;(2)若OE平分∠AOC,求∠EOC的余角的度数.21.(1)观察思考:如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建:如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用:某班45名同学在毕业后的一次聚会中,若每两人握1次手问好,那么共握多少次手?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.22.如图,点O在直线AB上,OM平分∠AOC,ON平分∠BOC,如果∠1:∠2=1:2,求∠1的度数.23.如图,∠AOB=90°,∠COD=90°,OE平分∠BOC,若∠1=30°,求∠COE的度数.解:∵∠AOB=90°∴∠1与∠2互余∵∠COD=90°∴∠BOC与∠2互余∴∠1=∠()∵∠1=30°∴∠BOC=30°∵OE平分∠BOC(已知)∴∠COE=BOC∴∠COE=15°四.综合运用(共2小题,24题8分,25题9分,满分17分)24.如图,数轴上有三个点A,B,C,表示的数分别是﹣4,﹣2,3.(1)若使C、B两点的距离是A、B两点的距离的2倍,则需将点C向左移动个单位;(2)点A、B、C开始在数轴上运动,若点A以每秒a个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,设运动时间为t秒:①点A、B、C表示的数分别是、、(用含a、t的代数式表示);②若点B与点C之间的距离表示为d1,点A与点B之间的距离表示为d2,当a为何值时,5d1﹣3d2的值不会随着时间t的变化而改变,并求此时5d1﹣3d2的值.25.以直线AB上点O为端点作射线OC,使∠BOC=60°,将直角△DOE的直角顶点放在点O处.(1)如图1,若直角△DOE的边OD放在射线OB上,则∠COE=;(2)如图2,将直角△DOE绕点O按逆时针方向转动,使得OE平分∠AOC,说明OD所在射线是∠BOC的平分线;(3)如图3,将直角△DOE绕点O按逆时针方向转动,使得∠COD=15∠AOE.求∠BOD的度数.2018—2019学年人教版七年级数学上册第4章《几何图形初步》单元检测参考简答一.选择题(共10小题)1.D.2.A.3.B.4.B.5.D.6.D.7.D.8.C.9.D.10.A.二.填空题(共8小题)11.圆锥.12.11.13.两点确定一条直线.14.42.15.110°19′12″.16.15°.17.70.18.互余.三.解答题(共5小题)19.两种规格的长方体纸盒,尺寸如下(单位:厘米)(1)做这种规格的纸盒各一个,共用料多少平方厘米?(2)做一个大纸盒与做三个小纸盒,哪个用料多?多多少平方厘米?【解】:(1)2 (1.5a×2b+1.5a×30+2b×30)+2(ab+20a+20b)=6ab+90a+120b+2ab+40a+40b=8ab+130a+160b(平方厘米).答:共用料(8ab+130a+160b)平方厘米;(2)2 (1.5a×2b+1.5a×30+2b×30)=6ab+90a+120b(平方厘米);2(ab+20a+20b)×3=6ab+120a+120b (平方厘米);(6ab+120a+120b)﹣(6ab+90a+120b)=30a(平方厘米).答:做三个小纸盒的用料多,多30a平方厘米.20.如图,已知∠AOB=∠COD=90°,∠BOC=34°.(1)判断∠BOC与∠AOD之间的数量关系,并说明理由;(2)若OE平分∠AOC,求∠EOC的余角的度数.【解】:(1)∠BOC与∠AOD之间的数量关系为∠BOC+∠AOD=180°,因为∠AOB=∠COD=90°,∠AOB+∠BOC+∠COD+∠AOD=360°,所以∠BOC+∠AOD=360°﹣∠AOB﹣∠COD=180°,(2)因为∠AOB=90°,∠BOC=34°,所以∠AOC=∠AOB+∠BOC=124°,因为OE平分∠AOC,所以∠E0C=∠AOE=12∠AOC=62°,所以∠EOC余角的度数为90°﹣∠E0C=28°.21.(1)观察思考:如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建:如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用:某班45名同学在毕业后的一次聚会中,若每两人握1次手问好,那么共握多少次手?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.【解】:(1)∵以点A为左端点向右的线段有:线段AB、AC、AD,以点C为左端点向右的线段有线段CD、CB,以点D为左端点的线段有线段DB,∴共有3+2+1=6条线段;(2)设线段上有m个点,该线段上共有线段x条,则x=(m﹣1)+(m﹣2)+(m﹣3)+…+3+2+1,∴倒序排列有x=1+2+3+…+(m﹣3)+(m﹣2)+(m﹣1),∴2x=mm+m+…+m=m(m﹣1),∴x=12m(m﹣1);(3)把45位同学看作直线上的45个点,每两位同学之间的一握手看作为一条线段,直线上45个点所构成的线段条数就等于握手的次数,因此一共要进行12×45×(45﹣1)=990次握手.22.如图,点O在直线AB上,OM平分∠AOC,ON平分∠BOC,如果∠1:∠2=1:2,求∠1的度数.【解】:∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠1=12∠BOC,∠2=12∠AOC,∵∠AOC+∠BOC=180°,∴∠1+∠2=90°,∵∠1:∠2=1:2,∴∠1=30°,答:∠1的度数为30°.23.如图,∠AOB=90°,∠COD=90°,OE平分∠BOC,若∠1=30°,求∠COE的度数.解:∵∠AOB=90°∴∠1与∠2互余互余定义∵∠COD=90°∴∠BOC与∠2互余∴∠1=∠BOC(同角的余角相等)∵∠1=30°∴∠BOC=30°等量代换∵OE平分∠BOC(已知)∴∠COE=BOC角平分线定义∴∠COE=15°【解】:∵∠AOB=90°∴∠1与∠2互余(互余定义)∵∠COD=90°∴∠BOC与∠2互余∴∠1=∠BOC (同角的余角相等)∵∠1=30°∴∠BOC=30°(等量代换)∵OE平分∠BOC(已知)∴∠COE=BOC (角平分线定义)∴∠COE=15°;故答案为:互余定义;BOC;同角的余角相等;等量代换;角平分线定义.四.综合运用(共2小题)24.如图,数轴上有三个点A,B,C,表示的数分别是﹣4,﹣2,3.(1)若使C、B两点的距离是A、B两点的距离的2倍,则需将点C向左移动1或10个单位;(2)点A、B、C开始在数轴上运动,若点A以每秒a个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,设运动时间为t秒:①点A、B、C表示的数分别是﹣4﹣at、﹣2+2t、3+5t(用含a、t的代数式表示);②若点B与点C之间的距离表示为d1,点A与点B之间的距离表示为d2,当a为何值时,5d1﹣3d2的值不会随着时间t的变化而改变,并求此时5d1﹣3d2的值.【解】:(1)由数轴可知:A、B两点的距离为2,B点、C点表示的数分别为:﹣2、3,所以当C、B两点的距离是A、B两点的距离的2倍时,需将点C向左移动1或10个单位;故答案是:1或10;(2)①点A表示的数是﹣4﹣at;点B表示的数是﹣2+2t;点C所表示的数是3+5t.故答案是:﹣4﹣at;﹣2+2t;3+5t;②∵点A以每秒a个单位的速度向左运动,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,∴d1=3t+5,d2=(a+2)t+2,∴5d1﹣3d2=5(3t+5)﹣3[(a+2)t+2]=(9﹣3a)t+19,9﹣3a=0,解得a=3,故当a为3时,5d1﹣3d2的值不会随着时间t的变化而改变,此时5d1﹣3d2的值为19.25.以直线AB上点O为端点作射线OC,使∠BOC=60°,将直角△DOE的直角顶点放在点O处.(1)如图1,若直角△DOE的边OD放在射线OB上,则∠COE=30°;(2)如图2,将直角△DOE绕点O按逆时针方向转动,使得OE平分∠AOC,说明OD所在射线是∠BOC的平分线;(3)如图3,将直角△DOE绕点O按逆时针方向转动,使得∠COD=15∠AOE.求∠BOD的度数.【解】:(1)∵∠BOE=∠COE+∠COB=90°,又∵∠COB=60°,∴∠COE=30°,故答案为:30°;(2)∵OE平分∠AOC,∴∠COE=∠AOE=12 COA,∵∠EOD=90人教版七年级数学上册《第4章几何图形初步》单元测试一.选择题1.由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块有()A.3块B.4块C.6块D.9块2.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.3.下列图形不是正方体展开图的是()A.B.C.D.4.如图,下列不正确的几何语句是()A.直线AB与直线BA是同一条直线B.射线OA与射线OB是同一条射线C.射线OA与射线AB是同一条射线D.线段AB与线段BA是同一条线段5.若∠C=90°,∠A=25°30',则∠C﹣∠A的结果是()A.75°30'B.74°30'C.65°30'D.64°30'6.下列说法中正确的有()A.连接两点的线段叫做两点间的距离B.过一点有且只有一条直线与已知直线垂直C.对顶角相等D.线段AB的延长线与射线BA是同一条射线7.如图,AB是一条直线,OC是∠AOD的平分线,OE在∠BOD 内,∠DOE=∠BOD,∠COE=72°,则∠EOB=()A.36°B.72°C.108°D.120°8.若∠A,∠B互为补角,且∠A<∠B,则∠A的余角是()A.(∠A+∠B)B.∠B C.(∠B﹣∠A)D.∠A 9.如图,M是线段AB的中点,NB为MB的四分之一,MN=a,则AB表示为()A.B.C.2a D.1.5a10.如图,将矩形ABCD沿EM折叠,使顶点B恰好落在CD边的中点N上.若AB=6,AD=9,则五边形ABMND的周长为()A.28B.26C.25D.22二.填空题11.青青同学把一张长方形纸折了两次,如图,使点A,B都落在DG 上,折痕分别是DE,DF,则∠EDF的度数为.12.如图,已知直线AB、CD相交于点O,OE平分∠COB,若∠EOB=50°,则∠BOD的度数是.13.图1是一个正方体的展开图,该正方体从图2所示的位置依次翻到第1格、第2格、第3格、第4格、第5格,此时这个正方体朝上一面的字是.14.如图所示的图案,可以看成是由字母“Y”绕中心每次旋转度构成的.15.如图,射线OA的方向是北偏东20°,射线OB的方向是北偏西40°,OD是OB的反向延长线.若OC是∠AOD的平分线,则∠BOC=°,射线OC的方向是.16.如图所示的三角形绕边AB所在直线旋转一周所形成的几何体是.17.一个角的补角加上10°后,等于这个角的余角的3倍,则这个角=°.18.如图,以图中的A、B、C、D为端点的线段共有条.三.解答题19.如图,已知线段AB和CD的公共部分BD=AB=CD,线段AB、CD的中点E、F之间距离是10cm,求AB,CD的长.20.如图,直线AB、CD相交于O,∠BOC=70°,OE是∠BOC的角平分线,OF是OE的反向延长线.(1)求∠1,∠2,∠3的度数;(2)判断OF是否平分∠AOD,并说明理由.21.如图,已知OD平分∠AOB,射线OC在∠AOD内,∠BOC=2∠AOC,∠AOB=114°,求∠COD度数.22.有一个正方体,在它的各个面上分别标上数字1、2、3、4、5、6,甲、乙、丙三位同学从三个不同的角度去观察此正方体,观察结果如图所示:请画出正方体的一种表面展开图,(要求把数字标注在表面展开图中)23.将一张纸如图所示折叠后压平,点F在线段BC上,EF、GF为两条折痕,若∠1=57°,∠2=20°,求∠3的度数.24.如图,线段AC=6cm,线段BC=15cm,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2,求MN的长.25.(14分)数学活动课上,小聪同学摆弄着自己刚购买的一套三角板,将两块直角三角板的直角顶点C叠放在一起,然后转动三角板,在转动过程中,请解决以下问题:(1)如图(1):当∠DCE=30°时,∠ACB+∠DCE=,若∠DCE为任意锐角时,你还能求出∠ACB与∠DCE的数量关系吗?若能,请求出;若不能,请说明理由.(2)当转动到图(2)情况时,∠ACB与∠DCE有怎样的数量关系?请说明理由.新人教版七年级数学上册《第4章几何图形初步》单元测试参考答案与试题解析一.选择题1.B.2.A.3.B.4.C.5.D.6.C.7.B.8.C.9.A.10.A.二.填空题11.90°.12.80°.13.我.14.36.15.120,北偏东80°.16.圆锥.17.40.18.6.三.解答题19.解:设BD=xcm,则AB=3xcm,CD=4xcm,AC=6xcm.∵点E、点F分别为AB、CD的中点,∴AE=AB=1.5xcm,CF=CD=2xcm.∴EF=AC﹣AE﹣CF=6x﹣1.5x﹣2x=2.5xcm.∵EF=10cm,∴2.5x=10,解得:x=4.∴AB=12cm,CD=16cm.20.解:(1)∵∠BOC+∠2=180°,∠BOC=70°,∴∠2=180°﹣70°=110°;∵OE是∠BOC的角平分线,∴∠1=35°.∵∠1+∠2+∠3=180°,∴∠3=180°﹣∠1﹣∠2=180°﹣35°﹣110°=35°.(2)∵∠2+∠3+∠AOF=180°,∴∠AOF=180°﹣∠2﹣∠3=180°﹣110°﹣35°=35°.∴∠AOF=∠3=35°,∴OF平分∠AOD.21.解:∵OD平分∠AOB,∴∠AOD=∠AOB=×114°=57°,∵∠BOC=2∠AOC,∠AOB=114°,∴∠AOC=∠AOB=×114°=38°,∴∠COD=∠AOD﹣∠AOC=57°﹣38°=19°.22.解:从3个小立方体上的数可知,与写有数字1的面相邻的面上数字是2,3,4,6,所以数字1面对数字5面,同理,立方体面上数字3对6.故立方体面上数字2对4.作图为:23.解:如图由折叠可知,∠EFB′=∠1=57°,∠2=20°,∠3=∠GFC′,∵∠EFB′+∠1+∠2+∠3+∠GFC′=180°,∴∠3==23°.24.解:∵M是AC的中点,∴MC=AM=AC=×6=3cm,又∵CN:NB=1:2∴CN=BC=×15=5cm,∴MN=MC+NC=3cm+5cm=8cm.25.解:(1)∠ACB+∠DCE=180°;若∠DCE为任意锐角时,∠ACB+∠DCE=180°,理由如下:∵∠ACE+∠DCE=90°,∠BCD+∠DCE=90°,∴∠ACB+∠DCE=∠ACE+∠DCE+∠BCD+∠DCE=90°+90°=180°;(2)∠ACB+∠DCE=180°.理由如下:∵∠ACD=90°=∠ECB,∠ACD+∠ECB+∠ACB+∠DCE=360°,∴∠ECD+∠ACB=360°﹣(∠ACD+∠ECB)=360°﹣180°=180°人教版七年级数学上册第四章《几何图形初步》单元培优测试题一.选择题(每小题3分,共36分)1.下列语句错误的是()A.两点确定一条直线B.同角的余角相等C.两点之间线段最短D.两点之间的距离是指连接这两点的线段2.如图,建筑工人砌墙时,经常用细绳在墙的两端之间拉一条参照线,使砌的每一层转在一条直线上,这样做蕴含的数学原理是()A.过一点有无数条直线B.两点确定一条直线C.两点之间线段最短D.线段是直线的一部分3.如图,点A、B在线段EF上,点M、N分别是线段EA、BF的中点,EA:AB:BF=1:2:3,若MN=8cm,则线段EF的长是()A.10 cm B.11 cm C.12 cm D.13 cm4.如图,从A地到B地有多条道路,一般地,为了省时人们会走中间的一条直路而不会走其它的路,其理由是()A.两点确定一条直线B.垂线段最短C.两点之间,线段最短D.两点之间,直线最短5.小明看钟表上时间为3:30,则时针、分针成的角是()A.70度B.75度C.85度D.90度6.已知∠A=55°,则它的余角是()A.25°B.35°C.45°D.55°7.将一副直角三角尺如图放置,若∠BOC=160°,则∠AOD的大小为()A.15°B.20°C.25°D.30°8.如图,已知线段AB长度为a,CD长度为b,则图中所有线段的长度和为()A.3a+b B.3a﹣b C.a+3b D.2a+2b9.一个角的补角比这个角的余角3倍还多10°,则这个角的度数为()A.40°B.50°C.140°D.130°10.李明为好友制作一个(如图)正方体礼品盒,六面上各有一字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是()A.B.C.D.11.将长方形ABCD沿AE折叠,得到如图所示的图形,已知∠CEB′=50°,∠DAB′的度数是()A.40°B.60°C.75°D.80°12.如图是一个长方体纸盒的表面展开图,纸片厚度忽略不计,按图中数据,这个盒子容积为()A.6 B.8 C.10 D.15二.填空题(每小题3分,共24分)13.已知∠α=32°25′,则∠α的余角为.14.已知∠AOB=45°,OC是∠AOB的一条三等分线,则∠AOC的度数是.15.50°﹣25°13′=16.如图是一个正方体的表面展开图,若正方体中相对的面上的数互为相反数,则2x﹣y 的值为.17.直线AB,BC,CA的位置关系如图所示,则下列语句:①点A在直线BC上;②直线AB 经过点C;③直线AB,BC,CA两两相交;④点B是直线AB,BC,CA的公共点,正确的有(只填写序号).18.建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上.这样做的依据是:.19.如果一个角的补角是150°,那么这个角的余角的度数是度.20.如图,已知C为线段AB的中点,D在线段CB上.若DA=6,DB=4,则CD=.三.解答题(每题8分,共40分)21.如图所示,OA表示国道,OB表示省道,M表示蔬菜市场,N表示杂货批发市场,现计划建一中转站P,使点P到国道、省道的距离相等,且到两市场的距离相等,请用直尺和圆规画出点P的位置,不写作法,保留作图痕迹.22.计算:175°16′30″﹣47°30′÷6+4°12′50″×3.23.直线上有A,B,C三点,点M是线段AB的中点,点N是线段BC的一个三等分点,如果AB=6,BC=12,求线段MN的长度.24.如图1,已知点C在线段AB上,线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点.(1)求线段MN的长度;(2)根据第(1)题的计算过程和结果,设AC+BC=a,其他条件不变,求MN的长度;(3)动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B,点Q以1cm/s的速度沿AB向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C、P、Q三点有一点恰好是以另两点为端点的线段的中点?25.如图,已知点O为直线AB上一点,将一直角三角板的直角顶点放在点O处.(1)如图1,将三角板的一边ON与射线OB重合,过点O在三角板的内部,作射线OC,使∠NOC:∠MOC=2:1,求∠AOC的度数;(2)如图2,将三角板绕点O逆时针旋转一定角度到图2的位置,过点O在三角板MON的内部作射线OC,使得OC恰好是∠MOB对的角平分线,此时∠AOM与∠NOC满足怎样的数量关系?并说明理由.参考答案一.选择题1.解:A、两点确定一条直线是正确的,不符合题意;B、同角的余角相等是正确的,不符合题意;C、两点之间,线段最短是正确的,不符合题意;D、两点之间的距离是指连接这两点的线段的长度,原来的说法是错误的,符合题意.故选:D.2.解:建筑工人砌墙时,经常用细绳在墙的两端之间拉一条参照线,使砌的每一层转在一条直线上,这种做法用几何知识解释应是:两点确定一条直线.故选:B.3.解:∵EA:AB:BF=1:2:3,设EA=x,AB=2x,BF=3x,∵M、N分别为EA、BF的中点,∴MA=EA,NB=BF,∴MN=MA+AB+BN=x+2x+x=4x,∵MN=8cm,∴4x=8,∴x=2,∴EF=EA+AB+BF=6x=12,∴EF的长为12cm.故选:C.4.解:图中A和B处在同一条直线上,根据两点之间线段最短,知其路程最短.故选:C.5.解:∵3:30点整,时针指向数字3与4的中间,即相差2.5格,分针指向6,4与6之间相差两个数字,钟表12个数字,每相邻两个数字之间的夹角为30°,∴3:30点整分针与时针的夹角是2.5×6°+2×30°=75度.故选:B.6.解:∵∠A=55°,∴它的余角是90°﹣∠A=90°﹣55°=35°,故选:B.7.解:∵∠COB=∠COD+∠AOB﹣∠AOD,∴90°+90°﹣∠AOD=160°,∴∠AOD=20°.故选:B.8.解:∵线段AB长度为a,∴AB=AC+CD+DB=a,又∵CD长度为b,∴AD+CB=a+b,∴图中所有线段的长度和为:AB+AC+CD+DB+AD+CB=a+a+a+b=3a+b,故选:A.9.解:设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,根据题意得,180°﹣α=3(90°﹣α)+10°,180°﹣α=270°﹣3α+10°,解得α=50°.故选:B.10.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,A、“预”的对面是“考”,“成”的对面是“祝”,故本选项错误;B、“预”的对面是“功”,“成”的对面是“祝”,故本选项错误;C、“预”的对面是“中”,“成”的对面是“功”,故本选项正确;D、“预”的对面是“中”,“成”的对面是“祝”,故本选项错误.故选:C.11.解:∵∠AEB′是△AEB沿AE折叠而得,∴∠AEB′=∠AEB.又∵∠BEC=180°,即∠AEB′+∠AEB+∠CEB′=180°,又∵∠CEB′=50°,∴∠AEB′==65°,∴∠BAE=∠EAB′=90°﹣65°=25°,∴∠DAB′=90°﹣50°=40°,故选:A.12.解:根据题意得:1×2×3=6,则这个盒子的容积为6,故选:A.二.填空题(共8小题)13.解:∠α的余角是:90°﹣32°25′=57°35′.故答案为57°35′.14.解:当∠AOC=∠AOB时,则∠AOC=×45°=15°,当∠AOC=∠AOB时,则∠AOC=×45°=30°,则∠AOC的度数是15°或30°;故答案为:15°或30°.15.解:原式=49°60′﹣25°13′=24°47′,故答案为:24°47′.16.解:∵“5”与“2x﹣3”是对面,“x”与“y”是对面,∴2x﹣3=﹣5,y=﹣x,解得x=﹣1,y=1,∴2x﹣y=﹣2﹣1=﹣3.故答案为:﹣3.17.解:①点A在直线BC上是错误的;②直线AB经过点C是错误的;③直线AB,BC,CA两两相交是正确的;④点B是直线AB,BC,CA的公共点是错误的.故答案为:③.18.解:建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上,沿着这条线就可以砌出直的墙,则其中的道理是:两点确定一条直线.故答案为:两点确定一条直线.19.解:180°﹣150°=30°,90°﹣30°=60°.故答案为:60°.20.解:∵DA=6,DB=4,∴AB=DB+DA=4+6=10,∵C为线段AB的中点,∴BC=AB=×10=5,∴CD=BC﹣DB=5﹣4=1.故答案为:1.三.解答题(共5小题)21.解:如图,点P即为所求.22.解:175°16′30″﹣47°30′÷6+4°12′50″×3=175°16′30″﹣42°330′÷6+12°36′150″=175°16′30″﹣7°55′+12°38′30″=167°21′30″+12°38′30″=180°.23.解:(1)点C在射线AB上,如:点M是线段AB的中点,点N是线段BC的三等分点,MB=AB=3,BN=CB=4,或BN=BC=8,MN=BM+BN=3+4=7,或MN=BM+BN=3+8=11;(2)点C在射线BA上,如:点M是线段AB的中点,点N是线段BC三等分点,MB=AB=3,BN=CB=4,或BN=BC=8,MN=BN﹣BM=4﹣3=1,或MN=BN﹣BM=8﹣3=5.24.解:(1)∵线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点,∴CM=AC=5厘米,CN=BC=3厘米,∴MN=CM+CN=8厘米;(2)∵点M,N分别是AC,BC的中点,∴CM=AC,CN=BC,∴MN=CM+CN=AC+BC=a;(3)①当0<t≤5时,C是线段PQ的中点,得10﹣2t=6﹣t,解得t=4;②当5<t≤时,P为线段CQ的中点,2t﹣10=16﹣3t,解得t=;③当<t≤6时,Q为线段PC的中点,6﹣t=3t﹣16,解得t=;④当6<t≤8时,C为线段PQ的中点,2t﹣10=t﹣6,解得t=4(舍),综上所述:t=4或或.25.解:(1)∵∠NOC:∠MOC=2:1,∴∠MOC=90°×=30°,∴∠AOC=∠AOM+∠MOC=90°+30°=120°.(2)∠AOM=2∠NOC,令∠NOC为β,∠AOM为γ,∠MOC=90°﹣β,∵∠AOM+∠MOC+∠BOC=180°,∴γ+90°﹣β+90°﹣β=180°,∴γ﹣2β=0,即γ=2β,∴∠AOM=2∠NOC.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.(2015•甘孜州)如图所示的几何体,从正面看的平面图形是(A )3.(2015-通辽)如图,由几个相同的小正方体搭成的一个几何体,< D ) 5.下面的图形'是由A 、B 、C 、D中的哪个图旋转形成的(A )第四章《几何图形初步》章末专题训练 类型1:立体图形的三种视图及展开图1.(2015-黄石)下列四个立体图形中'从左面看为长方形的是(B )S © A 3①正方体②球③国锥 ④国柱A.①③B.①④C.②③D.③④BC.B.4・在下面的图形中是正方体的展开图的是(B )B. C.6.(2015-茂名)如囹是一个正方体的平面展开图,折盏成正方体后与“建”字所在面相对的面的字是(C )A-创 B.教 C.强 D.市7.如图,在平整的地面上,有若干个完全相同的棱长为10cm的小正方体堆成一个几何体.(1)这个几何体由10个小正方体组成.(2)如果在这个几何体的表面喷上黄色的赧,则在所有的小正方体中,有1个正方体只有一个面是黄色,有2个正方体只有两个面是黄色,有3个正方体只有三个<3)这个几何体喷糠的面积为3200 cm2.8.(2015-随州)如图是一个长方体的三视图(单位:cm),根据图中数据计算这个长方体的体积是24 cm3.9.以长为24皿,赏为10cm的长方形的一边所在直线为旋转轴,旋转一周形成一个圆柱.贝U这个圆柱的底面半径是24或10 cm.10.(2015-牡丹江)由一些大小相同的小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体的小正方体最多是7个.主视图俯视图类型2:线段的和、差、倍、分的计算1・如图,点C为线段局的中点'点D为线段AC的中点、已知AB=8,则BD= ( C )2.如果线段AB=6cm, BC=4cm,且线段A 、B 、C 在同一直线上,那么A 、C 间的 距离是(C )A. 10cmC . 10cm或者2cmB • 2cm D.无法确定如虱 AC=|A B, BD=V AB, AE =CD , 3 4i则CE 与AB 之比为(C )A 3.IIC ED BB. 1: 8C. 1: 12D. 1: 164. 如图所示,线段AB=10, M 为线段AB 的中点,C 为.. . 共 L线段MB 的中点,N 为线段AM 的一点,线段NC 的长(D )才丈节一仓为A. 2B.2.5C • 3D.3.55. 已知:如图,B, C 两点把线段AD 分成2: 4: 3三部分'M 是AD 的中点,CD=6CM ,则线段MC 的长为3cm.•"・ ・' ・■'•A B M C D6. 如右图所示,B 、C 是线段AD 上任意两点,M 是AB 的中点,N 是CD 中点,若MN=a, BC=b,则线段AD 的长是 2aT )♦ -------------- • ---------------- ♦ ---------------------------- ♦ ---------- ♦ --------- •A MB CN D第6题图7.如图,一条街道旁有L B 、C 、D 、E 五幢居民楼, ° 某桶装水经销商统计各楼居民每周所需桶装水的数量如下表:他们计划在这五幢楼中租赁一间门市房,设立桶装水供应点.若仅考虑这五幢楼内居民取水所走的路程 之和最小,可以选择的地点应在D 楼.8.如图,点C 在线段AB±, AC = 8 cm, CB = 6 cm,点M 、N 分别是AC 、BC 的中点. (1)求线段MN 的长;(2)若C为线段AB上任一点,满足AC+CB= QC,〃,其它条件不变,你能猜想MN的长度吗?并说明理由.(3)若C在线段AB的延长线上,且满足AC — CB = bcm, M、N分别为AC、BC的中点, 你能猜想MN 的长度吗?请画出图形,写出你的结论,并说明理由.A M C~~N B8题图解:(1)如图①VAC 二8 cm, CB = 6 cm・.・ AB = AC+C3 = 8 + 6 = 14cm I I ]A M (又•.•点M、N分别是AC、BC的中点1i 8题图①/• MC = — AC,CN = — BC22.・. MN = -AC + -CB = -(AC + CB) = -AB = lcm 2 2 2 2答:MN的长为7cm.(2)如图②若C为线段AB上任一点,满足AC + CB = gn ,其它条件不变,则MN=-acm 2理由是:......................A M C N B•・•点M、N分别是AC、BC的中点8题图②・・・ MC = -AC,CN = -BC 2 2AC + CB - acm.・. MN = -AC + -CB = -(AC + CB) = -acm 2 2 2 2(3)如图③.・•点M、N分别是AC、BC的中点 A MBH C:,M C^AC,N C^BC8 题图③•「AC一CB = bcm・.・ MN = MC-NC = -AC ——CB = -(AC-CB) = -bcm 2 2 2 29.如图'已知数轴上点A表示的数为6, B是数轴上一点> 且AB=10,动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒,<1)写出数轴上点B所表示的数-4 5(2)点P所表示的数6-6t 5 (用含t的代数式表示);(3)M是AP的中点,M为PB的中点,点P在运动的过程中,线段MM的长度是否发生变化?若变化,说明理由;若不变,请你画出图形,并求出线段MM的长.0 6解:(1)・.•数轴上点A表示的数为6,・・・0A=6,贝i]0B=AB-0A=4,点B在原点左边,所以数轴上点B所表示的数为-4,故笞案为:-4;(2)点P运动t秒的长度为6t,・.•动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,・.・P所表示的数为:6-6七,故笞案为:6-6t ?(3)线段MN的长度不发生变化,理由:分两种情况:B Nop M 、%1当点P在A s B两点之间运动时,如图MN= MP +NP=^BP +?P A= vAB=5* 2 2 2%1当点P运动到B的左边时,如图P N 5 Mo A• . . . . • >MN 二MP-NP =顼P-?PB 二顼二52 2 2综上所述,线段MN的长度不发生变化,其值为5类型3:余角和补角、以及角的有关计算1.若/虹64°,则它的余角等于(A )2.—个角的补角与这个角的余角的和比平角少10° ,这个角为(A )A. 50B. 60C. 90 D . 1203.如虱已知NMOQ是直角,NQON是锐角,OR平分ZQON, OP平分ZM0N,则ZPOR的度数为(D )A. 45。
4ZQ0NB. 60° c. IZQON4.如图所示,把一个长方形纸片沿EF折急后,点D、D. 60°B. 65°C. 75°A. 125B. 120C. 115D. 126 C分别落在D,、C'的位置.若匕AED,=50° ,则ZDEF等于(A. 5005.时钟在6点10分时'时针和分针所成角度是(A)6・已知点A在点B的北偏东30°方向'点B在点C的正西方向'则匕ABC的度数是(A )A. 60B. 90C. 120D. 1507 .计算(1)9° 167 +71° 50,= 81° 6,;E(2)53° 8,T7° 5’ = 36° 3’;(3)9° 6,X3= 27° 18z j(4)151° 15,4-5= 30° 15y.8.如图所示,。
是直线AC上一点,0B是一条射线,0D平分ZAOB,0E在ZBOC内,ZBOE=|ZEOC, ZD0E=60° > 则/EOC的度数是矣9•点0为直线AB上一点,过点0作射线0C,使ZB0C=65° ,将一直角三角板的直角(1)如图①,将三角板mON的一边ON与射线0B重合时'则ZMOC= 25°5(2)如图②,将三角板MON绕点。
逆时针旋转一定角度,此时0C是/MOB的角平分线,求旋转角/BON和匕CON的度数;解:(1 ) •/ ZM0N=90o,ZBOC=65°,A ZMOC=ZMON-ZBOC=90°一65° =25° .故笞案为:25°.(2) ,/ ZBOC=65°,0C 是ZMOB 的角平分线,A ZMOB=2ZBOC=130° .・.・ ZB0N=ZM0B-ZM0N=13。
° -90°=40° .ZCON=ZCOB-ZBON= 65° -40°= 25° .(3 )・.・ ZNOC := T ZAOM,4・.・ ZA0M=4ZN0C.V ZBOC=65°,・•・ ZAOC=ZAOB-ZBOC= 180° -65°=115°・V ZMON=90°,・.・ Z AOM+ Z NOC= Z AOC- Z MON =115。
-90°= 25°・A4ZNOC+ZNOC=25°・ZNOC=5°・/. ZNOB=ZNOC+ZBOC=70°・10.如副0M 是ZAOC 的平分线,ON 是匕BOC 的平分线.解:(1 )如图 1,v ZAOB=90° ,ZBOC=60° ,・.・ ZAOC=90° +60° =150°,・.・0M 平分NAOC ,ON 平分NBOC , ZMOC=4ZAOC=75°,ZN0C=^ZB0C=30o2 2/. ZMON=ZMOC-ZNOC=45° . (2)如图2,ZM0N=|a ,理由是:V ZA0B=a , ZBOC=60°, ・.・ NAOC*+60°,・.・OM 平分NAOC ,ON 平分NBOC , A ZMOC=|ZAOC=^+30°,ZNOC=|ZBOC=30°2 2 2 /. ZMON=ZMOC-ZNOC=(如+30。
) -30° =顼 ・22(3)如图3,匕mON=;a ,与$的大小无关. 理由:・.・ZA0B=a , ZBOC= &, 匕 A0C=a + $ ・•.・0M 是ZA0C 的平分线,ON 是匕BOC 的平分线, ZMOC=izAOC=i ( a + $ ),22 /NOC^NBOC*,22・•・ Z AON= Z AOC- Z : NOC= a -1 = ac +l . 22・.・ ZMON=ZMOC-ZNOC=1 ( a + $ ) -1 =lac22 2即 ZM0N=|a .(1)(2)如图 如图2, 如图3, 当ZA0B 是直角,ZB0C=60°时'/MON 的度数是多少? 当ZA0B=a, ZB0C=60°时,猜想ZM0N 与a 的数量关系; 当 Z AOB =Q , ZBOC=P 时,猜想ZH0N 与a 、6有数量关系吗?如果有,指出结论并说明 国1。