四川省绵阳市2018届高三第一次诊断性考试数学(文)试题+Word版含答案
(完整word版)2018-2019高三第一次模拟试题文科数学

高三年级第一次模拟考试60分.在每小题给出的四个选项中,有且合 题目要畚考公式:样本败据x lt 鬲的标准差 尸¥门如一訝+他— 英叩丘为样車屮均数柱体的体积公式Y=*其中/为底!ftl 曲积・h 为海341(1)复数 I ~i = (A) 1+2i (B) 1-2i(C) 2-i (D) 2+i⑵函数的定义域为(A) (-1,2) (B) (0, 2] (C) (0, 2) (D) (-1,2] ⑶ 己知命题p :办I 砒+ llX ,则了为 锥体的体积公式v=*h 乩中$为底面面枳,h 为商 耶的親血祝*休枳公式$=4庆,評It 中月为球的半牲(A) (C)函数|;宀林匚阴的图象可以由函数'尸沁酬的图象 (A) 64 (B) 31 (C) 32 (D) 63(7) 已知某几何体的三视图如图所示,则其表面积为 (A)右+4观(B)「(C) 2 (D) 8一、选择题:本大题共12小题,毎小题5〕 分,共 只有一 项 符(B)(D)(A) (C)向左平移个单位得到JL个单位得到(B)向右平移3个单位得到 向左平移设变量x 、y 满足约束条件 ⑸ (A) 3 (B) 2 (C) 1 (D) 5(D)向右平移个单位得到g+2y —2 鼻(h[2x +工一7冬6则的最小值为(6)等比数列{an }的公比a>1,血,则-血+口 $+他"卜彌=(8) 算法如图,若输入 m=210,n= 119,则输出的n 为 (A) 2 (B) 3 (C) 7 (D) 11(9) 在 中,/恥C 权」,AB=2, AC=3,则 = (A) 10 (B)-10(C) -4 (D) 4(10) 点A 、B 、C D 均在同一球面上,其中 的体积为(11) 已知何m 2 '黑⑴-代2侧集合」「等于D |『工=对止卡(B)卜: (12) 抛物线 的焦点为F,点A 、B 、C 在此抛物线上,点A 坐标为(1,2).若点F 恰为 的重心,则直线 BC 的方程为 (A)龙卄一0 (B): tT '■(C)Ly=0 (D) | It \.■二、填空题:本大题共 4小题,每小题5分,共20分.(13) 班主任为了对本班学生的考试成绩进行分析,从全班 50名同学中按男生、女生用分层 抽样的方法随机地抽取一个容量为 10的样本进行分析•己知抽取的样本中男生人数为 6,则班内女生人数为 ________ .Lif ]町= :—(14) 函数.文+】(X 〉0)的值域是 _________ .(15) 在数列1禺1中,尙=1,如 厂% = 2门丨,则数列的通项 □」= _________ .—7 --- F ------(16) —P 尺的一个顶点P ( 7,12)在双曲线 产 3上,另外两顶点 F1、F2为该双曲线是正三角形,AD 丄平面 AD=2AB=6则该球(D)(C) 卜 j(—Ak 土(D)(A) (B) 15 (C)的左、右焦点,则屮八几的内心的横坐标为 __________ .三、解答题:本大题共 6小题,共70分.解答应写出文字说明、证明过程或演算步骤 (17) (本小题满分12分)在厶ABC 中,角A 、B C 的对边分别为a 、b 、c, A=2B,呦占」5 ' (I ) 求cosC 的值;[c\(II)求的值•(18) (本小题满分12分)某媒体对“男女同龄退休”这一公众关注的问题进行了民意调查, 右表是在某单位得到的数据(人数)•(I )能否有90%以上的把握认为对这一问题的看法与性别有关?(II)从反对“男女同龄退休”的甲、 乙等6名男士中选出2人进行陈述,求甲、乙至少有- 人被选出的概率.反对 合计|男 5 6 H 1 女II1 3 "14 合计 16925(19) (本小题满分12分)如图,在三棱柱.A 尅匚 "Q 中,CC1丄底面ABC 底面是边长为2的正三角形,M N 、G 分别是棱CC1 AB, BC 的中点. (I ) 求证:CN//平面AMB1 (II)若X 严2迄,求证:平面AMG.(20) (本小题满分12 分)X'设函数:「—L(I )当a=0时,求曲线在点(1, f(1))处的切线 方程;P(K 2^k) 0.25 Od U 0J0 kL323 2.072 2.706__ ,讯耐一比严 ____(a+附:(II )讨论f(x)的单调性•(21) (本小题满分12分)中心在原点0,焦点F1、F2在x 轴上的椭圆E 经过点C(2, 2),且 ―二◎土::(I) 求椭圆E 的方程;(II) 垂直于0C 的直线I 与椭圆E 交于A B 两点,当以AB 为直径的圆P 与y 轴相切时,求 直线I 的方程和圆P 的方程•请考生在第(22)、( 23)、(24)三题中任选一题作答,如果多做,则按所做的第一题记分 •作答时用2B 铅笔在答题卡上把所选题目对应的题号涂黑 •(22) (本小题满分10分)选修4-1:几何证明选讲如图,AB 是圆0的直径,以B 为圆心的圆B 与圆0的一个交点为P.过点A 作直线交圆Q 于 点交圆B 于点M N. (I )求证:QM=QNi110(II)设圆0的半径为2,圆B 的半径为1,当AM= 时,求MN 的长.(23) (本小题满分10分)选修4-4:坐标系与参数 方程 以直角坐标系的原点 O 为极点,x 轴正半轴为极轴,.已知直线I 的参数方程为 (t 为参数,(I )求曲线C 的直角坐标方程;(II)设直线I 与曲线C 相交于A B 两点,当a 变化时,求|AB|的最小值.(24) (本小题满分10分)选修4-5:不等式选讲 设曲线C 的极坐标方程为2cos 0 L朋& *并在两种坐标系中取相同的长度单位(I) 求不等式的解集S;(II) 若关于x不等式应总=1我=;『;:纂釧有解,求参数t的取值范围(18) 解: 由此可知,有90%的把握认为对这一问题的看法与性别有关.…5分(H)记反对“男女同龄退休”的6男士为ai , i = 1, 2,…,6,其中甲、乙分别为a2,从中选出2人的不同情形为: a1a2, a1a3, a1a4, a1a5, a1a6, a2a3, a2a4, a2a5 , a2a6, a3a4, a3a5, a3a6 , a4a5, a4a6, a5a6,…9分共15种可能,其中甲、乙至少有1人的情形有9种,93 所求概率为P = .…12分(19)解:(I)设 AB1的中点为 P ,连结NP 、MP1 1•/ CM^ — A1 , NP^— A1 , • CM^ NP,2 2文科数学参考答案 一、 选择题: A 卷: ADCDC B 卷: BCDAB 二、 填空题: (13) 20 三、 解答题: (17)解:DACB ADDCAB(14) BB CA(-1,1)(15) n2(16) 1(I): B =(0,亍),••• cosB = 1— s in 2B =•/ A = 2B ,「.4si nA = 2si nBcosB = , cosA = cos2B = 1 — 2si n2B = 5 , ••• cosC = cos[ —(A + B)] = — cos(A + B) = si nAsi nB — cosAcosB =— 2.525 'sinC =1 — cos2C=11 .525 ,根据由正弦定理,c si nC 11b sinB 5…12分(I) K2= 25 X (5 X 3— 6 X11)216 X 9X 11 X 142.932 > 2.706 a1 ,• CNPK是平行四边形,• CN// MP•/ CN平面AMB1 MP平面AMB1 • CN//平面AMB1 …4分(n)v cc 仏平面 ABC •••平面 CC1B1E L 平面 ABC , •/ AG 丄 BC, • AGL 平面 CC1B1B • B1M L AG •/ CC1 丄平面 ABC 平面 A1B1C1 //平面 ABC •- CC L AC, CC1 丄 B1C1 ,在 Rt △ MCA 中 , AM k CM 即 AC2= 6. 同理,B1M=6.•/ BB1/ CC1, • BB1 丄平面 ABC •- BB1 丄 AB, • AB1= B1B2+ AB2= C1C2+ AB2= 2.3 , • AM2+ B1M2= AB2, • B1ML AM 又 AG A AM= A , • B1ML 平面 AMG (20)解:, , x2 x(x — 2) (I)当 a = 0 时,f(x) = , f (x)=—亠exex1 1f(i) =T ,f (i) =-^,曲线y = f(x)在点(1 , f(1))处的切线方程为(2x — a)ex — (x2 — ax 土 a)ex e2x(1 )若 a = 2,贝U f (x) w 0 , f(x)在(一a , +s )单调递减. …7 分(2 )若 a v 2,贝 U…10分 …12分1y =肓(x — 1) +(x — 2)(x — a)exA Bf (x)当x€ ( —a , a)或x€ (2 , +a )时,f (x) v 0,当x € (a , 2)时,f (x) > 0 , 此时f(x)在(—a , a)和(2 , +a )单调递减,在(a , 2)单调递增.(3)若a> 2,贝U当x€ ( —a , 2)或x€ (a , +a )时,f (x) v 0,当x € (2 , a)时,f (x) >0 , 此时f(x)在(—a , 2)和(a , +a )单调递减,在(2 , a)单调递增. …12分x2 y2(21)解:(I)设椭圆E的方程为02+ b2 = 1 (a>b> 0),贝y a2+ b2记c= ,a2—b2 ,不妨设F1( — c , 0) , F2(c , 0),则C f1= ( —c—2, —2) , C f2= (c —2, —2),则C f1 • C f2= 8 —c2 = 2 , c2 = 6,即a2 —b2= 6.由①、②得a2= 12, b2= 6. 当m= 3时,直线I 方程为y =— x + 3, 此时,x1 + x2 = 4,圆心为(2 , 1),半径为2,圆P 的方程为(x — 2)2 + (y — 1)2 = 4; 同理,当 m=— 3时,直线I 方程为y = — x — 3,圆P 的方程为(x + 2)2 + (y + 1)2 = 4. …12分 (22)解:(I)连结 BM BN BQ BP. •/ B 为小圆的圆心,••• BM= BN 又••• AB 为大圆的直径,• BQL MN , •- QM= QN …4 分 (n)v AB 为大圆的直径,•/ APB= 90 , • AP 为圆B 的切线,• AP2= AM- AN …6分 由已知 AB= 4, PB= 1 , AP2= AB2- PB2= 15,所以曲线C 的直角坐标方程为 y2= 2x .(n)将直线l 的参数方程代入 y2 = 2x ,得t2sin2 a — 2tcos a — 1= 0.所以椭圆E 的方程为 x2 y2 i2+ 6 = 1. (也可通过2a = iCFlI + |C ?2|求出a ) (n)依题意,直线 0C 斜率为1,由此设直线I 的方程为y = — X + m 代入椭圆 E 方程,得 3x2 — 4m 灶2m2- 12= 0. 由△= 16m2- 12(2m2 — 12) = 8(18 — m2),得 m2< 18. 4m 2m2— 12 记 A(x1 , y1)、B(x2 , y2),贝U x1 + x2=^ , x1x2 = -—. 3 3 x1 + x2 圆P 的圆心为(一_, y1 + y2 2 ),半径r = 当圆P 与y 轴相切时, x1 + x2 r = 1 2 1, 2x1x2 = (x1 + x2)2 4 2(2m2 — 12)= 3 = 4m2 —,m2= 9v 18. …10分 (I)由 2cos 0 p = sinr v ,得(p sin 0 )2 = 2 p cos 0, …6分 7 6设A、B两点对应的参数分别为t1、t2,则4C0S2 a 4 2 + = ------------------------ sin4 a sin2 a sin2 a当a =—亍时,|AB|取最小值2 .…10分 (24)解:—x + 3, x v — 3,(I) f(x) = — 3x — 3,— 3<x < 0,x — 3, x >0.如图,函数y = f(x)的图象与直线 y = 7相交于横坐标为 x1 =— 4,x2 = 10的两点, 由此得 S = [ — 4, 10].\ :I…6分(n)由(I )知,f (x )的最小值为一3,则不等式 f(x) + |2t —3| < 0有解必须且只需—3 + |2t — 3| < 0,解得0W t < 3,所以t 的取值范围是[0 , 3]. t1 + t2 = 2C0S a sin2 at1t2 sin2 a :.|AB| = |t1 - t2| = (t1 + t2)2 - 4t1t2 …10分。
四川省绵阳市高中2018级第一次诊断性考试理科数学(含答案)

1秘密★启用前【考试时间: 2020年11月1日15: 00— 17: 00】四川省绵阳市高中2018级第一次诊断性考试理科数学注意事项:1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2. 回答选择题时,选出每小题 答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3. 考试结束后, 将答题卡交回。
一 、 选择题:本大题共12小题, 每小题5分,共60分。
在每小题给出的四个选项中, 只有一项是符合题目要求的。
1. 已知A = {x |0< x <2}, B = {x |x (l −x )≥0}, 则A B =A.∅B.(−∞,1]C. [l, 2)D.(0,1]2. 下列函数中,既是奇函数又是增函数的是A.y =tan xB.y =ln xC.y =x 3D.y =x 23. 若log a b > 1, 其中a >0且a ≠1, b >1, 则A.0<a <l<bB.1<a <bC.1<b <aD.1<b <a 24. 函数ππ()sin()24f x x =+的图象的一条对称轴是A.x =−3B. x =0C.x=π2D. x=32−5. 函数2()ln ||f x x x x=+的大致图象是6. 已知命题p : 在△ABC 中,若cos A =cos B , 则A =B ;命题q : 向量a 与向量b相等的充要条件2是|a |=| b |且a //b .下列四个命题是真命题的是 A.p ∧(⌝q )B. (⌝p ) ∧(⌝q )C.(⌝p )∧qD. p ∧q7.若曲线y =(0, −1)处的切线与曲线y =ln x 在点 P 处的切线垂直,则点 P 的坐标为A.(e,1)B.(1,0)C. (2, ln2)D. 1(,ln 2)2−8. 已知菱形ABCD 的对角线 相交于点O , 点E 为AO 的中 点, 若AB =2, ∠BAD =60°,则AB DE ⋅= A.−2B. 12−C. 72−D. 129. 若a <b < 0, 则下列不等式中成立的是A. 11a b a<− B. 11a b b a+>+C.11b b a a −<−D. (1)(1)a b a b −>−10. 某城市要在广场中央的圆形地面设计 一块浮雕,彰显城市积极向上的活力.某公司设计方案如图, 等腰△PMN 的顶点P 在半径为20m 的大⊙O 上, 点M , N 在半径为10m 的小⊙O 上, 圆心O 与点P 都在弦MN 的同侧. 设弦MN 与对应劣弧所围成的弓形面积为S , △OPM 与△OPN 的面积之和为S 1,∠MON =2α, 当S 1−S 的值最大时,该设计方案最美, 则此时cos α= A. 12C.11. 数列{a n }满足21121n n n a a a ++=−,2411,59a a ==,数列{b n }的前n 项和为S n ,若b n =a n a n +1,则使不等式427n S >成立的n 的最小值为 A. 11B. 12C. 13D. 1412. 若1823,23a b +==,则以下 结论正确的有 ①b −a <1 ②112a b+> ③34ab > ④22b a > A.1个B.2个C.3个D.4个二、填空题:本大题共4小题, 每小题5分, 共20分.313. 已知向量a =(l, 0), b =(l, 1), 且a +λb 与a 垂直,则实数λ= .14. 若实数x ,y 满足0,,22,x x y x y ≥⎧⎪≤⎨⎪+≥⎩则z =2x +y 的最大值为 .15. 已知sin x +cos y =14, 则sin x −sin 2y 的最大值为 .16. 若函数f (x )=(x 2 +ax +2a )e x 在区间(−2, 1)上恰有一个极值点,则实数a 的取值范围为 .三、解答题:共70分。
推荐-四川省绵阳市高中2018级第一次诊断性考试数学(文史类) 精品

保密★启用前【考试时间:2018年11月1日下午3:00—5;00】四川省绵阳市高中2018级第一次诊断性考试数学(文史类)本试卷分试题卷和答题卷两部分。
第1卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页。
全卷共150分。
第1卷答案涂在答题卡上,第Ⅱ卷答案写在答题卷上。
第Ⅰ卷(选择题,共60分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用4B 或5B 铅笔填写在答题卡上。
2.每小题选出答案后,用4B 或5B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答萎,不能答在试卷上。
3.参考公式:如果事件A 、B 互斥,那么 P (A +B )=P (A )+P (B ); 如果事件A 、B 相互独立,那么 P (A·B )=P (A )· P (B );如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率:Pn (k )=C kn·Pk·(1-P )n -k正棱锥、圆锥的侧面积公式:S 锥侧=12Cl 球的体积公式V =43πR3其中R 表示球 的半径对数换底公式:log log log mNaN mO0<a ,m ≠ 1,N > 0一、选择题:本大题共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的,把它选出来填涂在答题卡上。
1.右图中阴影部分表示的集合是A .P QB .P Q C .(PQ )D .(PQ )2.用反证法证明命题:若P 则q ,其第一步是反设命题的结论不成立,这个正确的反设是A .若P 则非qB .若非P 则qC .非PD .非q3.已知数列{a n }的通项公式为2245n a n n =-+ 则{a n }的最大项是A .a 1B .a 2C .a 3D .a 44.右图是一个样本容量为50的样本频率分布直方图,据此估计数据落在[15.5,24.5]的概率约为A .36%B .46%C .56%D .66%5.设{a n }是递增等差数列,前三项的和是12,前三项的积为48,则它的首项是A .1B .2C .4D .66.设a> 0,a ≠ 1,若y = a x 的反函数的图象经过点1()24-,则a=A .16B .2CD .47.若函数f (x )的图象经过点 A 、(1,12) B 、(1,0), C 、(2,-1),则不能作为函数f (x )的解析式的是A .12()log f x x =B .227()333f x x x =-+C .22,1()1,1x x f x x x -≤⎧=⎨->⎩D .2()sin[(1)]3f x x π=-8.已知定义在R 上的奇函数f (x) 满足 f (x+2) = - f (x),则f (6) 的值为A .2B .1C .0D .-1 9.函数3log 3xy =的图象大致是10.对数函数log a y x =和log b y x =的图象如图所示,则a 、b 的取值范围是A .1a b >>B .1b a >>C .10a b >>>D .10b a >>>11.“a =(1,2)”是方程 “ x 2y + y -2ax = 0 的曲线关于原点对称”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件12.函数(1)xy a a =>及其反函数的图象与函数(1/)y x =的图象交于A 、B 两点,若AB =,则实数a 的值等于(精确到0.1 ,参考数据 lg2.414 ≈ 0.3827 lg 8.392 ≈ 0.9293 lg 8.41 ≈ 0.9247 )A .3.8B .4.8C .8.4D .9.2第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡相应位置上。
2018届四川省绵阳市高三第三次诊断性考试数学文试题Word版含答案

2018届四川省绵阳市高三第三次诊断性考试数学文试题(word 版)第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足1i i z i+=-(i 是虚数单位),则z =( ) A .1 B .-1 C .i D .i -2.已知集合{}2,0,2A =-,{}2230B x x x =-->,集合P A B =,则集合P 的子集个数是( )A .1B .2C .3D .43.为了解某高校高中学生的数学运算能力,从编号为0001,0002,…,2000的2000名学生中采用系统抽样的方法抽取一个容量为50的样本,并把样本编号从小到大排列,已知抽取的第一个样本编号为0003,则最后一个样本编号是( )A . 0047B . 1663C .1960D .19634.已知实数,x y 满足24240x y x y y -=⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是( )A .4B .5 C. 6 D .75.执行如图所示的程序框图,若输入[]1,3t ∈-,则输出s 的取值范围是( )A .2,1e -⎡⎤⎣⎦B .[]1,e C. []01, D .2,e e -⎡⎤⎣⎦6. 如图1,四棱锥P ABCD -中,PD ⊥底面ABCD ,底面ABCD 是直角梯形,该四棱锥的俯视图如图2所示,则AD 的长是( )A .3B .23 C.2 D .227. 在区间[]22ππ-,上随机取一个实数x ,则事件“12sin()262x π-≤+≤”发生的概率是( ) A .13 B .14 C.712 D .5128. 甲、乙、丙三人各买了一辆不同品牌的新汽车,汽车的品牌为奇瑞、传祺、吉利.甲、乙、丙让丁猜他们三人各买的什么品牌的车,丁说:“甲买的是奇瑞,乙买的不是奇瑞,丙买的不是吉利.”若丁的猜测只对了一个,则甲、乙所买汽车的品牌分别是( )A .吉利,奇瑞B .吉利,传祺 C. 奇瑞,吉利 D .奇瑞,传祺9. 双曲线2222:1x y E a b-=(00a b >>,)的离心率是5,过右焦点F 作渐近线l 的垂线,垂足为M ,若OFM ∆的面积是1,则双曲线E 的实轴长是( )A .1B .2 C. 2 D .2210.若曲线ln 1y x =+的一条切线是y ax b =+,则4b a e +的最小值是( )A .2B .22 C.4 D .4211. 已知圆2221:C x y r +=,圆222:()()C x a y b -+-(0)r >交于不同的11(,)A x y ,22(,)B x y 两点,给出以下列结论:①1212()()0a x x b y y -+-=;②221122ax by a b +=+;③12x x a +=,12y y b +=,其中正确结论的个数是( )A .0B . 1 C. 2 D .312. ABC ∆中,5AB =,10AC =,25AB AC ⋅=,点P 是ABC ∆内(包括边界)的一动点,且3255AP AB AC λ=-R λ∈(),则AP 的最大值是( ) A .332B .37 C. 39 D .41第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.抛物线22y x =的焦点坐标是 .14.奇函数()f x 的图象关于点(1,0)对称,(3)2f =,则(1)f = .15.已知圆锥的高为3,侧面积为20π,若此圆锥内有一个体积为V 的球,则V 的最大值为 .16.四边形ABCD 中,2AB =,1BC CD DA ===,设ABD ∆、BCD ∆的面积分别为1S 、2S ,则当2212S S +取最大值时,BD = . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知正项数列{}n a 的前n 项和n S 满足:11n n a a S S =+.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)令2log 32n n a b =,求数列{}n b 的前n 项和n T . 18. 十九大提出,坚决打赢脱贫攻坚战,某帮扶单位为帮助定点扶贫村真脱贫,坚持扶贫同扶智相结合,帮助贫困村种植蜜柚,并利用电商进行销售,为了更好地销售,现从该村的蜜柚树上随机摘下了100个蜜柚进行测重,其质量分别在[)15001750,,[)17502000,,[)20002250,,[)22502500,,[)25002750,,[)27503000,(单位:克)中,其频率分布直方图如图所示.(Ⅰ)按分层抽样的方法从质量落在[)17502000,,[)20002250,的蜜柚中抽取5个,再从这5个蜜柚中随机抽取2个,求这2个蜜柚质量均小于2000克的概率;(Ⅱ)以各组数据的中间数代表这组数据的平均水平,以频率代表概率,已知该贫困村的蜜柚树上大约还有5000个蜜柚等待出售,某电商提出两种收购方案:A.所有蜜柚均以40元/千克收购;B .低于2250克的蜜柚以60元/个收购,高于或等于2250克的以80元/个收购.请你通过计算为该村选择收益最好的方案.19. 如图,在四棱锥P ABCD -中,侧棱PA ⊥底面ABCD ,底面ABCD 是菱形,且23BAD π∠=,点M 是侧棱PC 的中点.(Ⅰ)求证:直线PA ∥平面MDB ;(Ⅱ)若PB PD ⊥,三棱锥P ABD -的体积是63,求PA 的值. 20. 在直角坐标系xOy 中,椭圆2222:1x y C a b+=(0)a b >>的左、右焦点分别为12F F 、,点M 在椭圆C 上且2MF x ⊥轴,直线1MF 交y 轴于H 点,24OH =,Q 为椭圆C 的上顶点,12F F Q ∆的面积为1. (Ⅰ)求椭圆C 的方程; (Ⅱ)过1F 的直线l 交椭圆C 于A ,B ,且满足|2|||OA OB BA OB +=-,求ABO ∆的面积.21. 已知函数()4ln a f x ax x x=--的两个极值点1x ,2x 满足12x x <,且21x e <<,其中e 是自然对数的底数.(Ⅰ)1a =时,求2212x x +的值; (Ⅱ)求21()()f x f x -的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程以直角坐标系的原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,且在两种坐标系中取相同的长度单位.曲线C 的极坐标方程是221613cos ρθ=+. (Ⅰ)求曲线C 的直角坐标方程;(Ⅱ)设曲线C 与x 轴正半轴及y 轴正半轴交于点,M N ,在第一象限内曲线C 上任取一点P ,求四边形OMPN 面积的最大值.23.选修4-5: 设函数()3f x x a x a =++-.(Ⅰ)若()f x 的最小值是4,求a 的值;(Ⅱ)若对于任意的实数x R ∈,总存在[]2,3a ∈-,使得24()0m m f x --≤成立,求实数m 的取值范围.试卷答案一、选择题1-5:ABDCC 6-10:ADABC 11、12:DB二、填空题 13.1(0,)8- 14.2 15.25681π 16.102三、解答题17. 解:(Ⅰ)由已知11n n a a S S =+,可得当1n =时,2111a a a =+,可解得10a =,或12a =,由{}n a 是正项数列,故12a =.当2n ≥时,由已知可得22n n a S =+,1122n n a S --=+,两式相减得,12()n n n a a a --=.化简得12n n a a -=,∴数列{}n a 是以2为首项,2为公比的等比数列,故2n n a =. ∴数列{}n a 的通项公式为2nn a =. (Ⅱ)∵2log 32n n a b =,代入2n n a =化简得5n b n =-,显然{}n b 是等比数列, ∴其前n 项和2(45)922n n n n n T -+--==. 18.解:(Ⅰ)由题得蜜柚质量在[)17502000,和[)20002250,的比例为2:3, ∴应分别在质量为[)17502000,,[)20002250,的蜜柚中各抽取2个和3个. 记抽取质量在[)17502000,的蜜柚为1A ,2A ,质量在[)20002250,的蜜柚为1B ,2B ,3B , 则从这5个蜜柚中随机抽取2个的情况共有以下10种:12A A ,11A B ,12A B ,13A B ,21A B ,22A B ,23A B ,12B B ,13B B ,23B B ,其中质量均小于2000克的仅有12A A 这1种情况,故所求概率为110. (Ⅱ)方案A 好,理由如下: 由频率分布直方图可知,蜜柚质量在[)15001750,的频率为2500.00040.1⨯=,同理,蜜柚质量在[)17502000,,[)20002250,,[)25002750,,[)27503000,的频率依次为0.1,0.15,0.4,0.2,0.05. 若按A 方案收购:根据题意各段蜜柚个数依次为500,500,750,2000,1000,250, 于是总收益为1500175017502000(50050022++⨯+⨯2000225022502500750200022+++⨯+⨯ 2500275027503000100025022+++⨯+⨯)401000⨯÷ 250250[(67)2=⨯⨯+2(78)2(89)3⨯++⨯++⨯91081011++⨯++⨯()()4(1112)1]401000++⨯⨯÷ 2550[2630511528423]=⨯+++++457500=(元)若按B 方案收购:∵蜜柚质量低于2250克的个数为(0.10.10.3)50001750++⨯=,蜜柚质量低于2250克的个数为500017503250-=,∴收益为175060325080⨯+=25020[73134]365000⨯⨯⨯+⨯=元.∴方案A 的收益比方案B 的收益高,应该选择方案A .19.解:(Ⅰ)证明:连接AC ,与BD 交于点N ,连接MN .由ABCD 是菱形,知点N 是AC 的中点.又∵点M 是PC 的中点,∴MN PA ∥, 而MN MDB ⊂面,PA MDB ⊄面,∴PA MDB ∥面.(Ⅱ)∵PA ABCD ⊥面,∴PA AB ⊥,PA AD ⊥.又∵AB AD =,∴Rt PAD Rt PAB ∆∆≌,于是PB PD =.由已知PB PD ⊥,得222PB BD =.令菱形ABCD 的边长为a ,则由23BAD π∠=,可得3BD a =, ∴62PB a =,22PA a =. ∴13P ABD ABD V S PA -∆=⋅211323222a a =⨯⋅⋅366243a ==, 解得2a =,于是222PA a ==.20. 解:(Ⅰ)设2(,0)F c ,由题意可得22221c y a b +=,即2M b y a=. ∵OH 是12F F M ∆的中位线,且24OH =,∴22||2MF =,即222b a =,整理得242a b =.① 又由题知,Q 为椭圆C 的上顶点,∴12F F Q ∆的面积1212c b =⨯⨯=,整理得1bc =,即222()1b a b -=,②联立①②可得6421b b -=,变形得242(1)(21)0b b b -++=,解得21b =,进而22a =.∴椭圆C 的方程为2212x y +=. (Ⅱ)由|2|||OA OB BA OB +=-可得|2||2|OA OB OA OB +=-,两边平方整理得0OA OB ⋅=. 直线l 斜率不存在时,2(1,)2A -,2(1,)2B --,不满足0OA OB ⋅=. 直线l 斜率存在时,设直线l 的方程为1x my =-,11(,)A x y ,22(,)B x y , 联立22112x my x y =-⎧⎪⎨+=⎪⎩,消去x ,得22(2)210m y my +--=, ∴12222mt y y m -+=+,12212y y m -=+,(*) 由0OA OB ⋅=得12120x x y y +=.将111x my =-,221x my =-代入整理得1212(1)(1)0my my y y --+=,展开得2121212()10m y y m y y y y -+++=, 将(*)式代入整理得222102m m -+=+,解得22m =±, ∴12225y y +=±,1225y y =-, ABO ∆的面积为1121||||2S OF y y =⨯⨯-21212()4y y y y =+-, 代入计算得235S =,即ABO 的面积为235. 21. 解:(Ⅰ)当1a =时,214()1f x x x '=+-2241x x x-+=, 由题意知1x 、2x 为方程2410x x -+=的两个根.根据韦达定理得124x x +=,121x x ⋅=.于是222121212()214x x x x x x +=+-=.。
高三数学试题-四川省绵阳市高中2018届高三第一次诊断性考试数学文试题 最新

四川省绵阳市高中2018届高三第一次诊断性考试数学文试题本试卷分为试题卷和答题卷两部分,其中试题卷由第I 卷(选择题)和第Ⅱ卷(非选择题) 组成,共4页;答题卷共4页.全卷满分150分.考试结束后将答题卡和答题卷一并交回.第Ⅰ卷(选择题,共60分) 注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其他答案,不能答在试题卷上.参考公式:如果事件A 、B 互斥,那么P (A + B )= P (A )+ P (B ); 如果事件A 、B 相互独立,那么P (A ·B )= P (A )·P (B );如果事件A 在一次试验中发生的概率为P ,那么在n 次独立重复试验中恰好发生k 次的概率:k n k k n n P P C k P --⋅⋅=)1()(.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求.1.已知集合M ={x ∈Z|-2<x <1},N ={-1,0,1},则集合M 与N 的关系是A .M ∈NB .M ⊆NC .M ⊇ND .M =N2.)(x f '是函数f (x )=x 3-x +1的导数,则)1()1(f f '的值是 A .0B .1C .2D .33.下列函数中,与函数11-=x y 有相同定义域的是A .1-=x yB .11-=x y C .()1ln -=x y D .1-=x e y 4.数列{a n }中,a n =2n -12,S n 是其前n 项和,则当S n 取最小值时,n =A .5或6B .6或7C .11或12D .12或13 5.如果命题“p 且q ”与“非p ”都是假命题,则A .命题p 不一定是真命题B .命题q 不一定是假命题C .命题q 一定是真命题D .命题q 一定是假命题 6.函数f (x )=x 4-x 2+1在点x=1处的切线方程为A .y =x +1B .y =x -1C .y =2x +1D .y =2x -17.集合A ={-1,1},集合B ={-2,2},从A 到B 的映射f 满足f (1)+f (-1)=0,则此映射表示的函数是A .奇函数B .偶函数C .非奇非偶函数D .既是奇函数又是偶函数 8.函数y =lg|x -1|的图象大致为xyO 1 2 x yO 1 2 x yO 1 xyO -1 -2 2A .B .C .D .9.函数⎩⎨⎧<+≥=-,,,,)0()1()0(2)(1x x f x x f x 则)2(-f 的值为A .21B .1C .2D .0 10.已知{a n }是公比q >1的等比数列,a 1和a 7是方程2x 2-7x +4=0的两根,则log 2a 3-log 2a 4+log 2a 5=A .2B .2C .21D .011.已知2b 是1-a 和1+a 的等比中项,则a +4b 的取值范围是A .(-∞,45)B .⎥⎦⎤ ⎝⎛∞-45,C .(-1,45)D .⎥⎦⎤ ⎝⎛-451,12.已知定义在R 上的偶函数f (x )的图象关于直线x =1对称,且当0≤x ≤1时,f (x )=x 2,若直线y =x +a与曲线y =f (x )恰有三个交点,则a 的取值范围为 A .)041(,- B .)2412(k k ,-(k ∈Z ) C .)021(,-D .)21(k k ,-(k ∈Z )第Ⅱ卷 (非选择题 共90分)注意事项:答第Ⅱ卷前,考生务必将自己的姓名、准考证号用钢笔或圆珠笔(蓝、黑色)写在答题卷密封线内相应的位置.答案写在答题卷上,不能答在试题卷上. 二、填空题:本大题共4小题,每小题4分,共16分. 13.在等差数列{a n }中,如果a n =a n +2,那么公差d = .14.为庆祝祖国母亲60华诞,教育局举行“我的祖国”歌咏比赛,某中学师生踊跃报名参加.据统计,报名的学生和教师的人数之比为5∶1,学校决定按分层抽样的方法从报名的师生中抽取60人组队参加比赛,已知教师甲被抽到的概率为101,则报名的学生人数是 . 15.写出“函数f (x )=x 2+2ax +1(a ∈R)在区间(1,+∞)上是增函数”成立的一个..充分不必要条件:_________. 16.已知二次函数f (x )=x 2-mx +m (x ∈R )同时满足:(1)不等式f (x )≤0的解集有且只有一个元素;(2)在定义域内存在0<x 1<x 2,使得不等式f (x 1)>f (x 2)成立.设数列{a n }的前n 项和S n =f (n ),nn a mb -=1.我们把所有满足b i ·b i +1<0的正整数i 的个数叫做数列{b n }的异号数.给出下列五个命题:① m =0; ② m =4;③ 数列{a n }的通项公式为a n =2n -5;④ 数列{b n }的异号数为2; ⑤ 数列{b n }的异号数为3.其中正确命题的序号为 .(写出所有正确命题的序号)三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤. 17.(本题满分12分)已知函数()23log 1)(2-=x x f 的定义域为集合A ,不等式x-21≥1的解集为B .(1)求(R A )∩B ;(2)记A ∪B =C ,若集合M ={x ∈R||x -a |<4}满足M ∩C =∅,求实数a 的取值范围.18.(本题满分12分)有关部门要了解甲型H1N1流感预防知识在学校的普及情况,命制了一份有10道题的问卷到各学校做问卷调查.某中学A ,B 两个班各被随机抽取5名学生接受问卷调查,A 班5名学生得分为:5、8、9、9、9;B 班5名学生得分为:6,7,8,9,10. (1)请你估计A ,B 两个班中哪个班的问卷得分要稳定一些;(2)如果把B 班5名学生的得分看成一个总体,并用简单随机抽样方法从中抽取样本容量为2的样本,求样本平均数与总体平均数之差的绝对值不小于1的概率.19.(本题满分12分)已知等差数列{a n }的前n 项和为S n ,且S 10=120,S 20=440.(1)求数列{a n }的通项公式; (2)记数列{nS 1}的前n 项和为T n ,求T n . 20.(本题满分12分)已知函数f (x )=a x +2-1(a >0,且a ≠1)的反函数为)(1x f -.(1)求)(1x f -;(2)若)(1x f -在[0,1]上的最大值比最小值大2,求a 的值; (3)设函数1log )(-=x a x g a,求不等式g (x )≤)(1x f -对任意的⎥⎦⎤⎢⎣⎡∈2131,a 恒成立的x 的取值范围.21.(本题满分12分)已知x 1,x 2是函数x a x b x a x f 22323(-+=)(a >0)的两个极值点. (1)若a =1时,x 1=21,求此时f (x )的单调递增区间; (2)若x 1,x 2满足|x 1-x 2|=2,请将b 表示为a 的函数g (a ),并求实数b 的取值范围.22.(本题满分14分)已知数列{a n }共有2k 项(k ∈N*,k ≥2),首项a 1=2.设{a n }的前n 项的和为S n ,且a n +1=(a -1)S n +2(n =1,2,3,…,2k -1),其中常数a >1.(1)求证{a n }是等比数列,并求{a n }的通项公式; (2)若数列{b n }满足)(log 1212n n a a a nb =(n =1,2,3,…,2k ),求{b n }的通项公式; (3)令a =1222-k ,对(2)中的{b n }满足不等式231-b +232-b +…+2312--k b +232-k b ≤4,求k 的值.绵阳市高中2018届高三第一次诊断性考试数学(文)参考解答及评分标准一、选择题:本大题共12小题,每小题5分,共60分.BCCAD DABAC DB二、填空题:本大题共4小题,每小题4分,共16分.13.0 14.500 15.a =-1(答案不唯一)16.②⑤三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.17.解:由⎩⎨⎧≠->-123023x x ,解得32>x 且x ≠1,即A ={x |32>x 且x ≠1},由x-21≥1解得1≤x <2,即B ={x |1≤x <2}. ………………………………4分 (1)于是R A ={x |x ≤32或x =1},所以(R A )∩B ={1}. ……………………7分(2)∵ A ∪B ={x |32>x },即C ={x |32>x }.由|x -a |<4得a -4<x <a +4,即M ={x |a -4<x <a +4}. ∵ M ∩C =∅,∴ a +4≤32,解得a ≤310-.…………………………………………………12分18.解:(1)∵ A 班的5名学生的平均得分为(5+9+9+9+9)÷5=8,方差4.2])89()89()89()88()58[(512222221=-+-+-+-+-=S ;B 班的5名学生的平均得分为(6+7+8+9+10)÷5=8,方差2])108()98()88()78()68[(512222222=-+-+-+-+-=S .∴ S 12>S 22,∴ B 班的预防知识的问卷得分要稳定一些.…………………………………8分(2)共有1025=C 种抽取样本的方法,其中样本6和7,6和8,8和10,9和10的平均数满足条件,故所求的概率为52104=.………………………………………………………12分 19.解:(1)设{a n }的公差为d ,由题设有⎪⎪⎩⎪⎪⎨⎧=⨯⨯+=⨯⨯+.440219202012029101011d a d a ,解得a 1=3,d =2.……………………………………5分 a n =a 1+(n -1)d =3+(n -1)×2=2n +1,即{a n }的通项公式为a n =2n +1. ………………………………………………6分(2)由)2(2)123(+=++=n n n n S n ,得)2(11+=n n S n , ……………………8分 ∴ T n )2(1531421311+++⨯+⨯+⨯=n n )21151314121311(21+-++-+-+-=n n)2111211(21+-+-+=n n , =)2(21)1(2143+-+-n n . …………………………………………………12分20.解:(1)令y =f (x )=a x +2-1,于是y +1=a x +2,∴ x +2=log a (y +1),即x =log a (y +1)-2,∴ )(1x f -=log a (x +1)-2(x >-1).………………………………………………3分 (2)当0<a <1时,)(1x f -max =log a (0+1)-2=-2,)(1x f -min =log a (1+1)-2=log a 2-2,∴ -2-(2log a -2)=2,解得22=a 或22-=a (舍). 当a >1时,)(1x f -max =log a 2-2,)(1x f -min =-2,∴ 2)2()22(log =---a ,解得2=a 或2-=a (舍).∴ 综上所述,22=a 或2=a .……………………………………………7分 (3)由已知有log a 1-x a≤log a (x +1)-2,即1log -x a a ≤21log a x a +对任意的]2131[,∈a 恒成立.∵ ]2131[,∈a ,∴ 21ax +≤1-x a .①由21ax +>0且1-x a >0知x +1>0且x -1>0,即x >1,于是①式可变形为x 2-1≤a 3,即等价于不等式x 2≤a 3+1对任意的]2131[,∈a 恒成立.∵ u =a 3+1在]2131[,∈a 上是增函数,∴ 2728≤a 3+1≤89,于是x 2≤2728,解得9212-≤x ≤9212. 结合x >1得1<x ≤9212. ∴ 满足条件的x 的取值范围为⎥⎥⎦⎤⎝⎛92121,.…………………………………12分 21.解:(1)∵ a =1时,x x b x x f -+=23231(), ∴ 1)(2-+='x b x x f .由题知21是方程012=-+x b x 的根,代入解得23=b , 于是123)(2-+='x x x f .由0)(>'x f 即01232>-+x x ,可解得x <-2,或x >21,∴ f (x )的单调递增区间是(-∞,-2),(21,+∞).…………………………4分(2)∵ 22)(a x b ax x f -+=',∴ 由题知x 1,x 2是方程ax 2+b x -a 2=0的两个根. ∴ abx x -=+21,x 1x 2=-a , ∴ |x 1-x 2|=244)(221221=+=-+a abx x x x . 整理得b =4a 2-4a 3.……………………………………………………………8分 ∵ b ≥0, ∴ 0<a ≤1.则b 关于a 的函数g (a )=4a 2-4a 3(0<a ≤1). 于是)32(4128)(2a a a a a g -=-=',∴ 当)320(,∈a 时,0)(>'a g ;当⎥⎦⎤⎝⎛∈132,a 时,.0)(<'a g∴ g(a )在)320(,上是增函数,在⎥⎦⎤⎝⎛132,上是减函数.∴ 2716)32()(max ==g a g ,0)1()(min ==g a g , ∴ 0≤b ≤2716. ………………………………………………………………12分 22.解:(1)n =1时2)1(12+-=S a a 2)1(1+-=a a a 2=,∴a aa a ==2212(常数). n ≥2时,由已知a n +1=(a -1)S n +2有a n =(a -1)S n -1+2, 两式相减得a n +1-a n =(a -1)a n ,整理得a n +1=a ·a n ,即a a ann =+1(常数)即对n =1,2,3,…,2k -1均有a a a nn =+1(常数) 故{a n }是以a 1=2,a 为公比的等比数列.∴ a n =2a n -1.……………………………………………………………………5分 (2))]2()2()2[(log 1)(log 11102212-⋅⋅⋅==n n n a a a n a a a n b )2(log 112102-++++⋅=n n a n]2[log 12)1(2-⋅=n n n a na n 2log 211-+=.……………………………………………………9分(3)由已知1222-=k a ,得12112log 2111222--+=-+=-k n n b k n , 由02112123121123>---=---+=-k n k n b n 知21+>k n ,∴ 当n =1,2,…,k 时n n b b -=-23|23|,当n =k +1,k +2,…,2k 时23|23|-=-n n b b ,∴ |23||23||23||23|21221-+-++-+--k k b b b b23232323232322121-++-+-+-++-+-=++k k k k b b b b b b =]122)12([]122)10([+-+++--++-k k k k k k k k k =122-k k , ∴ 原不等式变为122-k k ≤4,解得324-≤k ≤324+,∵ k ∈N*,且k ≥2,∴ k =2,3,4,5,6,7.……………………………………………………14分绵阳市高中2018届高三第一次诊断性考试数学(第Ⅱ卷) 答题卷(文史类)题号 二 三 第Ⅱ卷总 分总分人总分 复查人 17 18 19 20 21 22 分数得 分 评卷人 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13. . 14. . 15. .16. .三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤. 得 分 评卷人 17.(本题满分12分)得分评卷人18.(本题满分12分)得分评卷人19.(本题满分12分)得分评卷人20.(本题满分12分)得分评卷人21.(本题满分12分)得分评卷人22.(本题满分14分)。
2018年高考真题——文科数学(全国卷)+Word版含答案

甘肃、青海、西藏、黑龙江、吉林、辽宁、宁夏、新疆、内蒙古、陕西、重庆绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.()i 23i += A .32i -B .32i +C .32i --D .32i -+2.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB =A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数()2e e x xf x x--=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6B .0.5C .0.4D .0.36.双曲线22221(0,0)x y a b a b-=>>3A .2y x =±B .3y x =±C .2y x =D .3y =7.在ABC △中,cos 2C 1BC =,5AC =,则AB = A.BCD.8.为计算11111123499100S =-+-++-,设计了如图的程序框图,则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 A B C D 10.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为 A .1-B .2-CD 1-12.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(f ff++(50)f ++=A .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。
2018年11月1日绵阳市高中2016级第一次诊断性考试文科数学试题及参考答案

7 2 ≤2x- ≤ 即 ≤x≤ 时,函数 g ( x) 单调递减. 6 3 2 6 3
2 2 ∴ g ( x) 在 [ , ] 上的单调递减区间为 [ , ] . ……………………… 9 分 6 3 3 3 2 ∵ g ( x) 在 [ , ] 上单调递增,在 [ , ] 上单调递减, 3 3 6 3
1 2 即 g ( x ) 在 [ , ] 上的值域为 [− , 1] . 2 6 3
19 . 解 :(Ⅰ)∵ 2 c sin B =3 a tan A , ∴ 2 c sin B cos A =3 a sin A . 由正弦定理得 2 cb cos A =3 a 2 , 由余弦定理得 2 cb • ∴ ……………………………………………… 2 分 ……………………………… 12 分
3(1 − 3n ) 3(3n − 1) = . ……………………… 10 分 1− 3 2
由 S n >39 ,得
3(3n − 1) >39 ,化简得 3 n >27 . 2
3
Hale Waihona Puke 解得 n >3 , n ∈ N * . …………………………………………………………… 12 分 18 . 解: (Ⅰ) f ( x) = 3 sin(2 x −
2 是函数 f ( x) 的一个极值点, 3
2 4 2 4 4a ∴ f ( ) = 3 + 2a + b= + + b = 0 .② ……………………………… 5 分 3 9 3 3 3
联立①②得 a =2 , b = - 4 . ∴ a =2 , b = - 4 , c =5 . ………………………………………………………… 6 分 (Ⅱ)由(Ⅰ)得 f ( x )= x 3 +2 x 2 - 4 x +5 , 则 f ( x) = 3x 2 + 4 x − 4 =(3 x - 2)( x +2) . 当 f ( x) 0 时, x < - 2 或 x > 当 f ( x) 0 时, - 2< x <
四川省绵阳市2017-2018学年高三第一次诊断性考试文数试题 Word版含解析

四川省绵阳市2017-2018学年高三第一次诊断性考试文数试题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合}32|{<<-=x x A ,}05|{2<-∈=x x Z x B ,则=B A ( ) A .}2,1{ B .}3,2{ C .}3,2,1{ D .}4,3,2{ 【答案】A考点:集合运算 【方法点睛】1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合.2.求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.3.在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.2.已知命题p :01,2>+-∈∀x x R x ,则p ⌝为( )A .01,2>+-∉∀x x R x B .01,0200≤+-∉∃x x R x C .01,2≤+-∈∀x x R x D .01,0200≤+-∈∃x x R x 【答案】D 【解析】试题分析:p ⌝为01,0200≤+-∈∃x x R x ,选D.考点:命题的否定【方法点睛】(1)对全称(存在性)命题进行否定的两步操作:①找到命题所含的量词,没有量词的要结合命题的含义加上量词,再进行否定;②对原命题的结论进行否定.(2)判定全称命题“∀x ∈M ,p(x)”是真命题,需要对集合M 中的每个元素x ,证明p(x)成立;要判定一个全称命题是假命题,只要举出集合M 中的一个特殊值x 0,使p(x 0)不成立即可.要判断存在性命题是真命题,只要在限定集合内至少能找到一个x =x 0,使p(x 0)成立即可,否则就是假命题.3.《九章算术》是我国古代内容极为丰富的一部数学专著,书中有如下问题:今有女子善织,日增等尺,七日织二十八尺,第二日、第五日、第八日所织之和为十五尺,则第九日所织尺数为( )A .8B .9C .10D .11 【答案】B考点:等差数列4.若实数y x ,满足⎪⎩⎪⎨⎧≥≤+≥-010y y x y x ,则y x z +=2的最大值为( )A .0B .1C .2D .23 【答案】C 【解析】试题分析:可行域为一个三角形ABC 及其内部,其中11(0,0),(1,0),(,)22A B C ,所以直线y x z +=2过点B 时取最大值2,选C.考点:线性规划【易错点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.5.设命题p :22<x ,命题q :12<x ,则p 是q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】B 【解析】试题分析:命题p :221x x <⇒<,命题q :2111x x <⇒-<<,所以p 是q 成立的必要不充分条件,选B. 考点:充要关系【名师点睛】充分、必要条件的三种判断方法.1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.6.要得到函数)(2cos 32sin )(R x x x x f ∈+=的图象,可将x y 2sin 2=的图象向左平移( ) A .6π个单位 B .3π个单位 C .4π个单位 D .12π个单位【答案】A考点:三角函数图像变换【思路点睛】三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母x 而言. 函数y =Asin(ωx +φ),x∈R 是奇函数⇔φ=k π(k∈Z);函数y =Asin(ωx +φ),x∈R 是偶函数⇔φ=k π+π2(k∈Z);函数y =Acos(ωx +φ),x∈R 是奇函数⇔φ=k π+π2(k∈Z);函数y =Acos(ωx +φ),x∈R 是偶函数⇔φ=k π(k∈Z). 7.三次函数1223)(23++-=x x ax x f 的图象在点))1(,1(f 处的切线与x 轴平行,则)(x f 在区间)3,1(上的最小值是( ) A .38 B .611 C .311 D .35【答案】D 【解析】试题分析:2()332f x ax x '=-+,所以1(1)3103k f a a '==-=⇒=,所以2()32012f x x x x x '=-+=⇒==或,因此,)(x f 在区间(1,2)上单调减,)(x f 在区间(2,3)上单调增,所以最小值是135(2)84221=323f =⨯-⨯+⨯+,选D. 考点:利用导数求函数最值【方法点睛】利用导数解答函数最值的一般步骤:第一步:利用f′(x)>0或f′(x)<0求单调区间;第二步:解f′(x)=0得两个根x 1、x 2;第三步:比较两根同区间端点的大小;第四步:求极值;第五步:比较极值同端点值的大小.8.2016年国庆节期间,绵阳市某大型商场举行“购物送券”活动.一名顾客计划到该商场购物,他有三张商场的优惠券,商场规定每购买一件商品只能使用一张优惠券.根据购买商品的标价,三张优惠券的优惠方式不同,具体如下:优惠券A :若商品标价超过100元,则付款时减免标价的10%; 优惠券B :若商品标价超过200元,则付款时减免标价的30元; 优惠券C :若商品标价超过200元,则付款时减免超过200元部分的20%.若顾客想使用优惠券C ,并希望比使用优惠券A 或B 减免的钱款都多,则他购买的商品的标价应高于( )A .300元B .400元C .500元D .600元 【答案】B考点:不等式应用9.已知αθθsin 2cos sin =+,βθ2sin 22sin =,则( ) A .αβcos 2cos = B .αβ22cos 2cos = C .αβ2cos 22cos = D .02cos 22cos =+αβ 【答案】C 【解析】试题分析:2sin cos 2sin 1sin 24sin θθαθα+=⇒+=,所以2212sin 4sin ,11cos22(1cos2),cos22cos2βαβαβα+=+-=-=,选C.考点:三角恒等变换【思路点睛】 三角函数式的化简要遵循“三看”原则(1)一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”; (3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式要通分”等10.已知定义在),0[+∞上的函数)(x f 满足)(2)1(x f x f =+,当)1,0[∈x 时,x x x f +-=2)(,设)(x f 在),1[n n -上的最大值为)(*N n a n ∈,则=4a ( )A .2B .1C .161D .321【答案】A考点:函数性质【思路点睛】(1)运用函数性质解决问题时,先要正确理解和把握函数相关性质本身的含义及其应用方向.(2)在研究函数性质特别是奇偶性、周期、对称性、单调性、最值、零点时,要注意用好其与条件的相互关系,结合特征进行等价转化研究.如奇偶性可实现自变量正负转化,周期可实现自变量大小转化,单调性可实现去f “”,即将函数值的大小转化自变量大小关系11.在ABC ∆中,81cos =A ,4=AB ,2=AC ,则A ∠的角平分线D A 的长为( ) A .22 B .32 C .2 D .1 【答案】C 【解析】试题分析:由余弦定理得222142242188BC =+-⨯⨯⨯=,再由角平分线定理得422BD DC DC ==,最后根据余弦定理得2AD ==,选C.考点:余弦定理12.若函数144)(234+-++=x ax x x x f 的图象恒在x 轴上方,则实数a 的取值范围是( )A .)(2,+∞B .)(1,+∞C .),213(+∞-D .),212(+∞- 【答案】A 【解析】试题分析:4324410x x ax x ++-+>恒成立,当0x =时,a R ∈,当0x ≠时,432222244141(4)(t 42)(2)2x x x a x x t t x x x +-+>-=-+-+=-++=-++ ,其中1t x R x=-∈,因为2(2)22t -++≤,从而2a >,因此实数a 的取值范围是)(2,+∞,选A.考点:不等式恒成立【思路点睛】对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.但要注意分离参数法不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究,就不要使用分离参数法. 二、填空题(每题4分,满分20分,将答案填在答题纸上)13.若向量)0,1(=,)1,2(=,)1,(x =满足条件-3与垂直,则=x . 【答案】1考点:向量垂直【方法点睛】平面向量数量积的类型及求法(1)求平面向量数量积有三种方法:一是夹角公式a ·b =|a ||b |cos θ;二是坐标公式a ·b =x 1x 2+y 1y 2;三是利用数量积的几何意义.(2)求较复杂的平面向量数量积的运算时,可先利用平面向量数量积的运算律或相关公式进行化简.14.在公差不为0的等差数列}{n a 中,831=+a a ,且4a 为2a 和9a 的等比中项,则=5a .【答案】13 【解析】试题分析:22242911111(3)()(8)3,03a a a a d a d a d d a d d d a =⇒+=++⇒=≠⇒=,而1318228a a a d +=⇒+=,所以151,3,14313.a d a ===+⨯=考点:等差数列 15.函数41)(2+-+=b x a x x f (b a ,是正实数)只有一个零点,则ab 的最大值为 . 【答案】161考点:基本不等式求最值【易错点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.16.)(x f 是定义在R 上的偶函数,且0≥x 时,3)(x x f =.若对任意的]32,12[+-∈t t x ,不等式)(8)3(x f t x f ≥-恒成立,则实数t 的取值范围是 .【答案】3-≤t 或1≥t 或0t = 【解析】试题分析:由题意得0x <时,3()()f x f x x =-=-,即3()||f x x =,因此33(3)8()|3|8|||3|2||f x t f x x t x x t x -≥⇒-≥⇒-≥,当0t =时,x R ∈,满足条件;当0t >时,5t x t x ≥≤-或,要满足条件,需2123150t t t t t t ⎧-≥+≤-⎪⇒≥⎨⎪>⎩或;当0t <时,5tx x t ≥-≤或,要满足条件,需2123350t t t tt t ⎧-≥-+≤⎪⇒≤-⎨⎪<⎩或;综上实数t 的取值范围是3-≤t 或1≥t 或0t =考点:不等式恒成立【思路点睛】求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知函数)2||,0,0)(sin()(πϕωϕω<>>+=A x A x f 的图象(部分)如图所示.(1)求函数)(x f 的解析式; (2)求函数)(x f 在区间]21,21[-上的最大值与最小值.【答案】(1))6sin(2)(ππ+=x x f (2)最大值是2,最小值是3-.试题解析:(1)由图得:2=A . 由213165424=-==ωπT ,解得πω=.………………3分 由2)3sin(2)31(=+=ϕπf ,可得223ππϕπ+=+k ,解得62ππϕ+=k ,又2πϕ<,可得6πϕ=,∴)6sin(2)(ππ+=x x f .………………………………6分(2) ∵]2121[,-∈x ,∴]323[6ππππ,-∈+x ,∴3-≤)6sin(2ππ+x ≤2,即)(x f 的最大值是2,最小值是3-.………12分考点:求三角函数解析式,三角函数性质【方法点睛】已知函数sin()(A 0,0)y A x B ωϕω=++>>的图象求解析式(1)max min maxmin,22y y y y A B -+==. (2)由函数的周期T 求2,.T πωω=(3)利用“五点法”中相对应的特殊点求ϕ.18.设数列}{n a 的前n 项和为n S ,已知)(12*N n a S n n ∈-=, (1)求数列}{n a 的通项公式; (2)若12log +=n n a b ,求数列}1{1+n n b b 的前n 项和n T . 【答案】(1)12-=n n a (2)1n n +试题解析:(1)令111121a a S n =-==,,解得11=a .……………………………2分 由12-=n n a S ,有1211-=--n n a S ,两式相减得122--=n n n a a a ,化简得12-=n n a a (n ≥2), ∴ 数列}{n a 是以首项为1,公比为2 的等比数列,∴ 数列}{n a 的通项公式12-=n n a .……………………………………………6分 (2) n a b n n n ===+2log log 212, ∴111)1(111+-=+=+n n n n b b n n , ∴1111)111()4131()3121()211(+=+-=+-++-+-+-=n nn n n T n .……12分考点:由和项求通项,裂项相消求和【方法点睛】将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如⎩⎨⎧⎭⎬⎫c a n a n +1(其中{a n }是各项均不为零的等差数列,c 为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类隔一项的裂项求和,如1(n -1)(n +1)(n ≥2)或1n (n +2).19.已知ABC ∆的面积为S ,且S AC AB =⋅. (1)求A 2tan 的值; (2)若53cos =C ,且2||=-AB AC ,求ABC ∆的面积S . 【答案】(1)43-(2)85【解析】试题分析:(1)先根据向量数量积及三角形面积公式得1cos sin 2bc A bc A =,即tanA=2,再根据二倍角正切公式得22tan 4tan 21tan 3A A A ==--(2)由向量减法得2AC AB BC a -===,这样结合(1)就已知两角一边,利用正弦定理可求另一边,最后根据面积公式求三角形面积 试题解析:(1) 由已知AB AC S ⋅=有1cos sin 2bc A bc A =,可得tanA=2, …………2分 ∴22tan 4tan 21tan 3A A A ==--.……………………………………………………4分考点:向量数量积及三角形面积公式,二倍角公式【思路点睛】三角函数和平面向量是高中数学的两个重要分支,内容繁杂,且平面向量与三角函数交汇点较多,向量的平行、垂直、夹角、数量积等知识都可以与三角函数进行交汇.不论是哪类向量知识与三角函数的交汇试题,都会出现交汇问题中的难点,对于此类问题的解决方法就是利用向量的知识将条件转化为三角函数中的“数量关系”,再利用三角函数的相关知识进行求解.20.已知函数x x x x f cos sin )(+=.(1)若k x f >)(对任意的),0(π∈x 恒成立,求实数k 的取值范围;(2)判断在)(x f 区间)3,2(上的零点个数,并证明你的结论.(参考数据:4.12≈,4.26≈)【答案】(1)1-<k (2)有且只有1个零点(2)判定函数零点个数从两个方面,一是函数单调性,二是函数零点存在定理,先求函数导数()cos f x x x '=,确定函数在(2,3)上是减函数,即函数在(2,3)上至多一个零点.再研究区间端点函数值的符号:02sin )42sin(22sin 2cos 2sin 2cos 2sin 2)2(>++=++=+=πf ,03cos 3sin 3)3(<+=f ,由零点存在性定理,得函数在(2,3)上至少一个零点,综上可得函数在(2,3)上有且仅有一个零点试题解析:(1)x x x x x x x f cos sin cos sin )(=-+=', ∴0)()20(>'∈x f x ,,π,0)()2(<'∈x f x ,,ππ,即)(x f 在)20(π,递增,在)2(ππ,递减,故{})()0(min )(min πf f x f ,=.又1cos )(1)0(-===ππf f ,,(2)x x x x x x x f cos sin cos sin )(=-+=',∴)32(,∈x 时,0cos )(<='x x x f , ∴函数)(x f 在(2,3)上是减函数.………8分 又02sin )42sin(22sin 2cos 2sin 2cos 2sin 2)2(>++=++=+=πf ,……10分∵75.04263)43sin(312sin 31211sin33sin 3≈-⨯=-==<ππππ, 95.0426)43cos(12cos 1211cos 3cos ≈+-=--=-=<ππππ,∴03cos 3sin 3)3(<+=f ,由零点存在性定理,)(x f 在区间(2,3)上有且只有1个零点.…………12分 考点:函数零点,利用导数研究不等式恒成立【方法点睛】利用函数零点的情况求参数值或取值范围的方法 (1)利用零点存在的判定定理构建不等式求解. (2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.21.已知函数1ln )(2-+=x x x f ,e e x g x -=)(. (1)讨论)(x f 的单调性;(2)若对于任意的),1(+∞∈x ,)()(x f x mg >恒成立,求实数m 的取值范围. 【答案】(1)增函数(2)3m e≥试题解析:(1) 因为函数)(x f 的定义域为)0(∞+,,又xx x x x f 1221)(2+=+=', ∵x>0,2x2+1>0,∴0)(>'x f ,)(x f 在定义域)0(∞+,上是增函数. ………………………3分 (2)01ln )()()(2>+---⇔>x x e e m x f x mg x , 令=)(x h 1ln )(2+---x x e e m x ,则=')(x h x xme x 21--,令=')1(h 0,即03=-me ,可解得m=e 3.①当m ≤0时,显然=')(x h 021<--x xme x ,此时)(x h 在)1(∞+,上单调递减, ∴)(x h <h(1)= 0,不满足条件. ……………………………………………6分②当em 30<<时,令x x q x me x p x 2)(1)(=-=,.显然x me x p x 1)(-=在)1[∞+,上单调递增,∴2131)1()(min =-⨯<-==e e me p x p . 由x x q 2)(=在)1[∞+,单调递增,于是2)(min =x q .∴min min )()(x q x p <.于是函数xme x p x 1)(-=的图象与函数x x q 2)(=的图象只可能有两种情况: 若)(x p 的图象恒在)(x q 的图象的下方,此时)()(x q x p <,即0)(<'x h ,故)(x h 在)1(∞+,单调递减,又0)1(=h ,故0)(<x h ,不满足条件. 若)(x p 的图象与)(x q 的图象在x>1某点处的相交,设第一个交点横坐标为x0, 当)1(0x x ,∈时,)()(x q x p <,即0)(<'x h ,故)(x h 在)1(0x ,单调递减,又0)1(=h ,故当)1(0x x ,∈时,0)(<x h .∴)(x h 不可能恒大于0,不满足条件.……9分考点:利用导数求函数单调区间,利用导数求参数取值范围 【方法点睛】利用导数解决不等式恒成立问题的“两种”常用方法(1)分离参数法:将原不等式分离参数,转化为不含参数的函数的最值问题,利用导数求该函数的最值,根据要求得所求范围.一般地,f(x)≥a 恒成立,只需f(x)min≥a 即可;f(x)≤a 恒成立,只需f(x)max≤a 即可.(2)函数思想法:将不等式转化为某含待求参数的函数的最值问题,利用导数求该函数的极值(最值),然后构建不等式求解.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(本小题满分10分)选修4-4:坐标系与参数方程以直角坐标系的原点O 为极点,x 轴非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为θθρcos 4sin2=.(1)求曲线C 的直角坐标方程;(2)若直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 511521(t 为参数),设点)1,1(P ,直线l 与曲线C 相交于B A ,两点,求||||PB PA +的值.【答案】(1)24y x =(2)试题解析:(1)由曲线C 的原极坐标方程可得θρθρcos 4sin 22=,化成直角方程为24y x =.………………………………………………………4分 (2)联立直线线l 的参数方程与曲线C 方程可得)521(4)511(2t t +=+,整理得015562=--t t , ……………………………………………………7分 ∵01521<-=⋅t t ,于是点P 在AB 之间,∴1544)(2122121=-+=-=+t t t t t t PB PA .……………………………10分 考点:极坐标方程化为直角坐标方程,直线参数方程几何意义 23.(本小题满分10分)选修4-5:不等式选讲 已知函数)(|1||1|)(R a a x x x f ∈+--+=. (1)若1=a ,求不等式0)(≥x f 的解集;(2)若方程()f x x =有三个实数根,求实数a 的取值范围.【答案】(1))21[∞+-,(2)11a -<< 【解析】试题分析:(1)根据绝对值定义,将不等式转化为三个不等式组,最后求它们解集的并集得原不等式解集(2)将方程转化为对应函数11+--+=x x x a ,再根据绝对值定义将其转化为分段函数21111121x x a x x x x x x x +<-⎧⎪=+--+=--≤≤⎨⎪->⎩,,,,,,最后结合分段函数图像确定实数a 的取值范围.试题解析:(1)∵1=a 时,111)(+--+=x x x f , ∴当x ≤-1时,1)(-=x f ,不可能非负.当-1<x<1时,12)(+=x x f ,由)(x f ≥0可解得x ≥21-,于是21-≤x<1. 当x ≥1时,3)(=x f >0恒成立.∴不等式)(x f ≥0的解集)21[∞+-,.………………………………………5分考点:绝对值定义【名师点睛】含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绵阳市高中2015级第一次诊断性考试数学(文史类) 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合()(){}410A x x x =∈-+<Z ,{}2,3,4B =,则A B =I ( ) A .()2,4 B .{}2,4 C .{}3 D .{}2,3 2.若x y >,且2x y +=,则下列不等式成立的是( ) A .22x y < B .11x y< C .1x > D .0y < 3..已知向量()1,2a x =-r ,(),1b x =r ,若a b ∥r r,则x 的值是( )A .1-B .0C .1D .2 4.若tan 24πα⎛⎫-= ⎪⎝⎭,则tan 2α=( ) A .3- B .3 C .34-D .345.某单位为鼓励职工节约用水,作出如下规定:每位职工每月用水不超过10立方米的,按每立方米3元收费;用水超过10立方米的,超过的部分按每立方米5元收费.某职工某月缴水费55元,则该职工这个月实际用水为( )立方米. A .13 B .14 C .15 D .16 6.已知命题0:p x ∃∈R ,使得00x e≤;命题:,q a b ∈R ,若12a b -=-,则1a b -=-.下列命题为真命题的是( )A .pB .q ⌝C .p q ∨D .p q ∧7.函数()f x 满足()()2f x f x +=,且当11x -≤≤时,()f x x =.若函数()y f x =的图象与函数()log a g x x =(0a >,且1a ≠)的图象有且仅有4个交点,则a 的取值集合为( ) A .()4,5 B .()4,6 C .{}5 D .{}68.已知函数()()sin 0f x x x ωωω=>,若将()y f x =的图象向右平移16个单位得到()y g x =的图象,则函数()y g x =图象的一条对称轴方程是( ) A .56x =B .13x =C .12x = D .0x = 9.在ABC ∆中,“2C π=”是“sin cos A B =”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 10.已知01a b <<<,给出以下结论:①1123a b⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭;②1132a b >;③1123log log a b >. 则其中正确的结论个数是( )A .3个B .2个C .1个D .0个11.已知1x 是函数()()1ln 2f x x x =+-+的零点,2x 是函数()2244g x x ax a =-++的零点,且满足121x x -≤,则实数a 的最小值是( )A .1-B .2- C.2-.1-12.已知,,a b c ∈R ,且满足221b c +=,如果存在两条互相垂直的直线与函数()cos sin f x ax b x c x =++的图象都相切,则a 的取值范围是( )A .[]2,2- B.⎡⎣ C.⎡⎣ D.⎡-⎣第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知变量,x y 满足约束条件6,32,1,x y x y x +≤⎧⎪-≤-⎨⎪≥⎩,则2z x y =+的最小值是 .14.已知偶函数()f x 在[)0,+∞上单调递减,且()21f =,若()211f x +<,则x 的取值范围是 .15.在ABC ∆中,2AB =,4AC =,3A π∠=,且,M N 是边BC 的两个三等分点,则AM AN ⋅=u u u r u u u r.16.已知数列{}n a 的首项1a m =,且121n n a a n ++=+,如果{}n a 是单调递增数列,则实数m 的取值范围是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.若函数()()sin f x A x ωϕ=+0,0,22A ππωϕ⎛⎫>>-<<⎪⎝⎭的部分图象如下图所示.(1)求函数()f x 的解析式; (2)设0,3πα⎛⎫∈ ⎪⎝⎭,且()65f α=,求sin 2α的值. 18.设公差大于0的等差数列{}n a 的前n 项和为n S .已知315S =,且1413,,a a a 成等比数列,记数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T .(1)求n T ;(2)若对于任意的*n ∈N ,11n n tT a <+恒成立,求实数t 的取值范围. 19.在ABC ∆中,23B π∠=,D 是边BC上一点,且AD =2BD =. (1)求ADC ∠的大小;(2)若AC =ABC ∆的面积. 20.已知函数()()32f x x x x a a =+-+∈R .(1)求()f x 在区间[]1,2-上的最值;(2)若过点()1,4P 可作曲线()y f x =的3条切线,求实数a 的取值范围. 21.函数()()()21ln 122f x x ax a x a =-++--∈R .(1)求()f x 的单调区间; (2)若0a >,求证:()32f x a≥-. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线C 的参数方程是35cos ,45sin x y αα=+⎧⎨=+⎩(α为参数),以坐标原点O 为极点,x 轴正半轴为极轴,建立极坐标系. (1)求曲线C 的极坐标方程; (2)设1:6l πθ=,2:3l πθ=,若12,l l 与曲线C 分别交于异于原点的,A B 两点,求AOB ∆的面积.23.选修4-5:不等式选讲 已知函数()2123f x x x =-++. (1)解不等式()6f x ≥;(2)记()f x 的最小值是m ,正实数,a b 满足22ab a b m ++=,求2a b +的最小值.绵阳市高2015级第一次诊断性考试 数学(文史类)参考解答及评分标准一、选择题:本大题共12小题,每小题5分,共60分. DCADC BCBAB AB二、填空题:本大题共4小题,每小题5分,共20分.13.3 14.)21()23(∞+--∞,,15.32016.(21,23)三、解答题:本大题共6小题,共70分.17.解 :(Ⅰ)由图得,2=A . …………………………………………………1分43125343πππ=+=T ,解得π=T , 于是由T =πωπ=2,得2=ω.…………………………………………………3分 ∵ 2)32sin(2)3(=+=ϕππf ,即1)32sin(=+ϕπ, ∴2232ππϕπ+=+k ,k ∈Z ,即62ππϕ-=k ,k ∈Z , 又)22(ππϕ,-∈,所以6πϕ-=,即)62sin(2)(π-=x x f . …………………6分(Ⅱ) 由已知56)62sin(2=-πα,即53)62sin(=-πα, 因为)30(πα,∈,所以)26(62πππα,-∈-,∴ 54)62(sin 1)62cos(2=--=-παπα. …………………………………8分 ∴]6)62sin[(2sin ππαα+-=6sin )62cos(6cos )62sin(ππαππα-+-= =21542353⨯+⨯ 10334+=. ………………………………………………………12分 18.解:(Ⅰ)设{a n }的公差为d (d >0),由S 3=15有3a 1+d 223⨯=15,化简得a 1+d =5,① ………………………2分 又∵ a 1,a 4,a 13成等比数列,∴ a 42=a 1a 13,即(a 1+3d )2=a 1(a 1+12d ),化简3d =2a 1,② ………………4分 联立①②解得a 1=3,d =2,∴ a n =3+2(n -1)=2n +1. ……………………………………………………5分∴)321121(21)32)(12(111+-+=++=+n n n n a a n n , ∴ )32(3)32131(21)]321121()7151()5131[(21+=+-=+-+++-+-=n n n n n T n .……………………………………………………7分(Ⅱ) ∵ n n a tT <+11,即122)32(3+<+n n tn,∴ 90)9(12)36304(3)32)(122(32++=++=++<nn n n n n n n t ,………………9分又nn 9+≥6 ,当且仅当n =3时,等号成立, ∴ 90)9(12++nn ≥162, ……………………………………………………11分 ∴ 162<t .……………………………………………………………………12分 19.解:(Ⅰ)△ABD 中,由正弦定理BADBDB AD ∠=∠sin sin ,得21sin sin =∠⨯=∠AD B BD BAD , …………………………………………4分∴ 66326πππππ=--=∠=∠ADB BAD ,, ∴ 656πππ=-=∠ADC . ……………………………………………………6分 (Ⅱ)由(Ⅰ)知,∠BAD =∠BDA =6π,故AB =BD =2.在△ACD 中,由余弦定理:ADC CD AD CD AD AC ∠⋅⋅-+=cos 2222, 即)23(32212522-⋅⋅⨯-+=CD CD , ……………………………………8分 整理得CD 2+6CD -40=0,解得CD =-10(舍去),CD =4,………………10分 ∴ BC =BD +CD =4+2=6. ∴ S △ABC =33236221sin 21=⨯⨯⨯=∠⨯⨯⨯B BC AB . ……………………12分 20.解:(Ⅰ))1)(13(123)(2+-=-+='x x x x x f , ……………………………1分由0)(>'x f 解得31>x 或1-<x ;由0)(<'x f 解得311<<-x ,又]21[,-∈x ,于是)(x f 在]311[,-上单调递减,在]231[,上单调递增. …………………………………………………………………3分∵ a f a f a f +-=+=+=-275)31(10)2(1)1(,,,∴ )(x f 最大值是10+a ,最小值是a +-275.………………………………5分 (Ⅱ) 设切点)41()(23,,,P a x x x x Q +-+, 则14123)(232--+-+=-+='=x a x x x x x x f k PQ, 整理得0522223=-+--a x x x , ……………………………………………7分 由题知此方程应有3个解. 令a x x x x -+--=5222)(23μ, ∴ )1)(13(2246)(2-+=--='x x x x x μ,由0)(>'x μ解得1>x 或31-<x ,由0)(<'x μ解得131<<-x ,即函数)(x μ在)31(--∞,,)1(∞+,上单调递增,在)131(,-上单调递减. ……………………………………………………………………10分要使得0)(=x μ有3个根,则0)31(>-μ,且0)1(<μ,解得271453<<a , 即a 的取值范围为)271453(,. ………………………………………………12分 21.解:(Ⅰ)xx ax x x a ax a ax x x f )1)(1(1)1()1(1)(2+-=--+=-++-='. …1分 ① 当a ≤0时,0)(<'x f ,则)(x f 在)0(∞+,上单调递减;………………3分 ② 当0>a 时,由0)(>'x f 解得a x 1>,由0)(<'x f 解得ax 10<<. 即)(x f 在)10(a ,上单调递减;)(x f 在)1(∞+,a上单调递增; 综上,a ≤0时,)(x f 的单调递减区间是)0(∞+,;0>a 时,)(x f 的单调递减区间是)10(a ,,)(x f 的单调递增区间是)1(∞+,a . ……………………5分(Ⅱ) 由(Ⅰ)知)(x f 在)10(a ,上单调递减;)(x f 在)1(∞+,a上单调递增, 则121ln )1()(min --==aa a f x f . …………………………………………6分 要证)(x f ≥a 23-,即证121ln --a a ≥a 23-,即a ln +11-a≥0,即证a ln ≥a11-.………………………………………………………………8分 构造函数11ln )(-+=aa a μ,则22111)(a a a a a -=-='μ,由0)(>'a μ解得1>a ,由0)(<'a μ解得10<<a , 即)(a μ在)10(,上单调递减;)(a μ在)1(∞+,上单调递增; ∴ 01111ln )1()(min =-+==μμa ,即11ln -+aa ≥0成立. 从而)(x f ≥a23-成立.………………………………………………………12分 22.解:(Ⅰ)将C 的参数方程化为普通方程为(x -3)2+(y -4)2=25,即x 2+y 2-6x -8y =0. ……………………………………………………………2分 ∴ C 的极坐标方程为θθρsin 8cos 6+=. …………………………………4分 (Ⅱ)把6πθ=代入θθρsin 8cos 6+=,得3341+=ρ,∴ )6334(π,+A . ……………………………………………………………6分把3πθ=代入θθρsin 8cos 6+=,得3432+=ρ,∴ )3343(π,+B . ……………………………………………………………8分∴ S △AOB AOB ∠=sin 2121ρρ )63sin()343)(334(21ππ-++= 432512+=. ……………………………………………………10分 23.解:(Ⅰ)当x ≤23-时,f (x )=-2-4x , 由f (x )≥6解得x ≤-2,综合得x ≤-2,………………………………………2分当2123<<-x 时,f (x )=4,显然f (x )≥6不成立,……………………………3分当x ≥21时,f (x )=4x +2,由f (x )≥6解得x ≥1,综合得x ≥1,……………4分所以f (x )≥6的解集是)1[]2(∞+--∞,,.…………………………………5分 (Ⅱ))(x f =|2x -1|+|2x +3|≥4)32()12(=+--x x ,即)(x f 的最小值m =4. ………………………………………………………7分 ∵ b a 2⋅≤2)22(b a +, …………………………………………………………8分 由224ab a b ++=可得)2(4b a +-≤2)22(b a +, 解得b a 2+≥252-,∴ b a 2+的最小值为252-.………………………………………………10分。