A new adaptive flux weakening method of PMSM
基于最大转矩控制的异步电机直接转矩弱磁控制方法

基于最大转矩控制的异步电机直接转矩弱磁控制方法李迅;刘五陵;桂卫华;喻寿益【期刊名称】《中南大学学报(自然科学版)》【年(卷),期】2012(043)001【摘要】提出一种基于最大转矩控制的弱磁控制方法,用于异步电机直接转矩控制的弱磁运行,其基本思想是在弱磁阶段采用六边形磁链轨迹,使磁链给定值跟随转矩变化磁链自发削弱,转矩给定值限幅.该方法不需要精确的异步电机运行参数,能实现弱磁运行方式进入和退出的平滑过渡.在整个运行过程中将定子磁链给定值限制在设定区间,在不同的速度区段修改定子磁链给定值,不需要复杂计算.仿真结果表明:异步电机直接转矩控制系统在弱磁升速和降速过程中的运行性能得到改善;在弱磁运行到同一速度时,弱磁升速或降速过程中输出转矩小和过渡时间长的问题得到有效解决,六边形磁链和圆形磁链之间能够平滑过渡.%A new control scheme for flux-weakening operation of direct-torque-control induction motor drive was proposed. Its philosophy is to adapt hexagon flux track and make the flux reference respond to the change of the torque, thus weaken the spontaneous flux and limit the torque reference. The smooth transition into and out of the flux-weakening operation mode can he realized without any work parameters of the induction motor. The stator flux value is also restricted by a setting value in the whole process. It is easy to realize the control strategy by giving the flux reference in different speed stages without complicated calculation. Simulation verifies that the application of the control strategy improves the high speed performance of direct torquecontrol effectively. With the premise of accelerating to the same speed, the problems of small output torque and long time for speed-up or slow-down are solved remarkably, and the smoothly transition between hexagon flux track and circular flux track is also implemented.【总页数】7页(P177-183)【作者】李迅;刘五陵;桂卫华;喻寿益【作者单位】中南大学信息科学与工程学院,湖南长沙,410083;西南铝业(集团)有限责任公司,重庆,401326;中南大学信息科学与工程学院,湖南长沙,410083;中南大学信息科学与工程学院,湖南长沙,410083;中南大学信息科学与工程学院,湖南长沙,410083【正文语种】中文【中图分类】TM301.2【相关文献】1.基于离散空间矢量调制的三电平逆变器异步电机直接转矩控制方法 [J], 王展;邹云屏;林磊;金红元2.异步电机最大转矩电流比控制方法研究 [J], 俞荣凯;赵坤;游小杰;邵闻博3.电动汽车用异步电机弱磁运行的最大转矩控制 [J], 窦汝振;吴志新;赵春明4.基于Matlab/Simulink的异步电机直接转矩控制方法的研究 [J], 董凯;程鸣盛;李维亚5.异步电机直接转矩弱磁控制研究 [J], 刘五陵;桂卫华;喻寿益因版权原因,仅展示原文概要,查看原文内容请购买。
永磁同步电机单电流调节器弱磁控制策略优化

Feb. 2021Vdl.2& No.22021年2月 第28卷第2期控制工程Control Engineering of China文章编号:1671・7848(2021)02・0327・08DOI: 10.14107/j .cnki.kzgc.20190341永磁同步电机单电流调节器弱磁控制策略优化石讯1,易映萍 >,石伟2(1.上海理工大学机械工程学院,上海200093; 2.许继集团有限公司,河南许昌461000)摘要:针对电压角度法单电流调节器弱磁控制策略带来的内环稳定性下降问题,采用小 信号模型法推导了使用该控制策略时电机的传递函数,证明了控制系统本质上是一个非最 小相位系统。
针对使用该控制竟略时内置式电机参数特性导致的开环极点接近虚轴的问题,提出采用PD 控制器前馈补偿策略。
针对电机弱磁控制过程中极点改变导致传统PID 控制器参数整定不合理的问题,基于内模控制原理,提出采用变参数PID 控制器的弱磁控制罠略。
仿真与实验结果表明,所提出的方法可以有效提高使用电压角度法单电流调节器 弱磁控制罠略时电流内环的稳定性。
关键词:永磁同步电机;单电流调节器弱磁控制策略;电压角度法;非最小相位系统;变 参数PID 控制中图分类号:TP29文献标识码:AOptimization of Single Current Regulator Flux-weakening Control Strategy forPermanent Magnet Synchronous MotorSHIXun 1, YI Ying-ping 1, SHI Wei 2(1. School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;2. XJ Group Corporation, Xuchang 461000, China)Abstract: Aiming at the problem of decreased stability of the inner loop caused by the voltage angle methodsingle current regulator flux-weakening control strategy, the small signal model method is used to derive thetransfer function of the motor when the control strategy is used, which proves that the control system isessentially a non-minimum phase system. Aiming at the problem that the open-loop pole is close to the virtualaxis caused by the interior motor parameter characteristics when using this control strategy, a PD controllerfeedforward compensation strategy is proposed. Aiming at the problem that the parameter setting of thetraditional PID controller is unreasonable due to the pole change in the motor flux-weakening control process,based on the principle of internal model control, a flux-weakening control strategy using variable parameterPID controller is proposed. Simulation and experimental results show that the proposed method can efifectivelyimprove the stability of the current inner loop when the voltage angle method is used for single currentregulator flux-weakening control strategy.Key words: PMSM; single current regulator flux-weakening control strategy; voltage angle method;non-minimum phase system; variable parameter PID control1引言由于转子永磁体安装位置的不同,内置式永磁同步电机(interior permanent magnet synchronousmotor, EPMSM)相对于表贴式永磁同步电机具有更加稳定的转子机械结构。
意法半导体对外公开的最新版PMSM电机控制培训资料

9
PMSM FOC – 框图
Gate drivers
10
Power Bridge IPM/Discrete
Motor
va,b,c
BKIN
Current sensors: 3shunt/1shunt/ICS
DC V – TEMP
Speed sensors: Sensorless, Hall, Encoder
• Encoder
• 成本较高,一般适用于伺服控制
12
• Hall
• 成本较低,一般适用于马达静止或低速下也要求额定扭矩的应用
• Sensorless
• 高频注入算法 – HFI
• 适用于凸极马达(IPMSM,Ld<Lq) • 能实现马达转子位置的精确检测,即使在 静止或低速下 • 仅STM32F3和STM32F4系列支持
Φr
Te maximized if…
t
STM32 PMSM FOC SDK v3.2 29/10/2014
PMSM FOC 简介:坐标系转换
• clarke 变换: ia,ib,ic (120º) 转换为 iα,iβ(90º); (假设ia+ib+ic=0),交流->交流:
iα = ias iβ = − ias + 2ibs 3
27
• ST马达控制论坛: https:///public/STe2ecommunities/ motordriver_ics/default.aspx
STM32 PMSM FOC SDK V4.0 新特性
新特性
• 新的架构 • Workspaces and projects(IAR EWARM/KEIL) • 若干个软件库使用例程 • MC Applications(State machine, Tasks) • Light/Full LCD 界面 • 快速单向/双向串口通讯 • Workbench 新特性(无传感器起动,例子,帮助文档关联,PFC) • 高频注入无传感器算法
关于弱冠的英语作文

弱冠之年的挑战与机遇In the prime of life, the age of twenty, marked by the traditional ceremony of "weakening the crown," represents a critical juncture where youthful energy and aspirations intersect with the realities of adulthood. This period, often filled with both excitement and anxiety, ushers in a new era of responsibilities, opportunities, and self-discovery.The transition from adolescence to adulthood is not always smooth. It's a time of profound change, both internally and externally. Physically, the body undergoes significant development, transitioning from the lanky frame of youth to the more defined, muscular build of an adult. Internally, there's a shift in mindset as individuals begin to embrace a more mature, independent way of thinking.Socially, the weak crown years mark a time of increased social engagement. As young people move out of their parents' homes and into the world, they're introduced to a new set of relationships and responsibilities. Whether it's navigating the complexities of a romantic relationship, building professional networks, or taking on leadershiproles in community organizations, these experiences help shape one's identity and sense of purpose.Educationally, the weak crown years are a critical period for academic and vocational exploration. Many young people are in the process of completing their higher education or starting their careers. This is a time of intellectual growth and skill development, as individuals delve into subjects that align with their interests and aspirations. The knowledge and skills acquired during this period will serve as a foundation for future success.However, the weak crown years are not without their challenges. For many, this is a time of self-doubt and uncertainty. There may be pressure to conform to societal expectations, whether it's in terms of career choices, relationship status, or financial stability. Navigating these expectations can be difficult, especially when they conflict with one's own values and dreams.Additionally, the weak crown years can be a time of emotional flux. As individuals transition into adulthood, they may experience a sense of loss as they leave behind the familiarity of childhood and adolecence. At the sametime, they're grappling with newfound freedoms and responsibilities that can be overwhelming.Despite these challenges, the weak crown years are also a time of immense possibility. This is a period of exploration and discovery, where young people have the opportunity to shape their futures in ways that align with their values and aspirations. Whether it's pursuing a passion project, traveling to new places, or starting a family, the weak crown years are filled with potential and hope.Moreover, the weak crown years are a time for building meaningful relationships. As individuals transition into adulthood, they have the opportunity to form lasting friendships and partnerships with peers who share similar interests and goals. These relationships can provide support and encouragement during the ups and downs of adulthood.In conclusion, the weak crown years are a time of transition, growth, and discovery. While they may be filled with challenges and uncertainties, they are also filled with opportunities and possibilities. It is a time toembrace one's inner strength and courage, to step into the unknown with faith and hope, and to create a future that is both fulfilling and meaningful.**弱冠之年的挑战与机遇**弱冠之年,即二十岁的年纪,是生命中一个非常重要的转折点。
表贴式永磁同步电机磁极不对称化齿槽转矩削弱方法

第18卷第4期2020年8月水利与建筑工程学报JournalofWaterResourcesandArchitecturalEngineeringVol.18No.4Aug.,2020DOI:10.3969/j.issn.1672-1144.2020.04.041收稿日期:2020 04 25 修稿日期:2020 05 19作者简介: 剑虹(1979—),男,陕西西安人,硕士,高级工程师,主要从事电气、信息化方面的工作。
E mail:314285926@qq.com表贴式永磁同步电机磁极不对称化齿槽转矩削弱方法剑虹,娄幸媛,梁 爽(陕西省水利电力勘测设计研究院,陕西西安710001)摘 要:表贴式永磁同步电机的齿槽转矩可导致转矩脉动,引发振动与噪声的问题,为削弱永磁同步电机的齿槽转矩,提出一种通过磁极极弧宽度不对称化设计实现齿槽转矩削弱的方法。
首先对不对称磁极表贴式永磁同步电机的气隙磁密波形进行了计算和仿真,进而分析了不对称磁极对齿槽转矩的影响规律和削弱原理,推导出使齿槽转矩最小化的磁极不对称率表达式。
通过有限元仿真对最优设计及齿槽转矩进行了验证,仿真结果表明,最优磁极不对称率计算值与仿真值误差为3.1%,所提出的不对称磁极方法使齿槽转矩减小了91.3%。
关键词:齿槽转矩;永磁无刷直流电动机;磁极极弧优化中图分类号:P642.2 文献标识码:A 文章编号:1672—1144(2020)04—0247—05CoggingTorqueReducingMethodBasedonAsymmetricPoleDesignofPermanentMagnetSynchronousMotorsYUNJianhong,LOUXingyuan,LIANGShuang(ShaanxiProvinceInstituteofResourcesandElectricPowerInvestigationandDesign,Xi'an,Shaanxi710001,China)Abstract:Thecoggingtorqueofsurfacemountedpermanentmagnetsynchronousmotor(PMSM)cancausetorquerip ple,whichcanleadtovibrationandnoiseproblems.InordertoreducethecoggingtorqueofPMSM,amethodofre ducingcoggingtorquebyasymmetricdesignofpolearcwidthisproposedinthispaper.Firstly,theairgapfluxdensitywaveformofasymmetricpolesurfacemountedPMSMiscalculated,thentheinfluencelawandweakeningprincipleofasymmetricmagneticpoleoncoggingtorqueareanalyzed,andthecalculationequationofoptimalpoleasymmetryratiotominimizecoggingtorqueisderived.Theoptimaldesignandcoggingtorqueareverifiedbyfiniteelement(FE)simu lation.TheFEsimulationresultsshowthattheerrorbetweenthecalculatedvalueoftheoptimalpoleasymmetryratioandthesimulationvalueis3.1%,andthecoggingtorqueisreduced91.3%byusingthisoptimizationmethod.Keywords:coggingtorque;permanentmagnetsynchronousmotor;magneticpolewidthoptimization 永磁同步电机具有功率密度高、效率高、结构简单、可靠性高、功率因数高等优点,在工业、农业、水利、航空航天等领域具有广泛应用,可用作驱动电机、发电机、励磁机等[1-4]。
reactive flash sintering method

reactive flash sintering method Reactive Flash Sintering Method: Revolutionizing Material ProcessingIntroduction:In recent decades, there has been significant progress in materials science and engineering that has allowed us to develop new and improved materials for various applications. One such innovation is the reactive flash sintering method, which has emerged as a promising technique for fabricating advanced materials with enhanced properties. This article aims to provide a comprehensive understanding of the reactive flash sintering method by discussing its principle, process, advantages, and potential applications.I. Principle of Reactive Flash Sintering:Reactive flash sintering is a novel technique that combines the principles of conventional flash sintering and reactive sintering. In flash sintering, a high electric field is applied to a material powder, causing rapid and uniform heating due to Joule heating. On the other hand, reactive sintering involves the reaction between two or more materials during the sintering process, resulting in the formation of a new phase and improved properties. In the reactiveflash sintering method, these two processes are integrated, allowing for simultaneous densification and in-situ reaction to occur.II. Process of Reactive Flash Sintering:The reactive flash sintering process consists of several steps, which are as follows:1. Material Preparation:The starting materials, typically in powder form, are carefully selected and mixed to achieve the desired composition and properties. The mixture may contain reactive components that will undergo a chemical reaction during sintering.2. Loading:The prepared powder mixture is loaded into a specially designed graphite die, which acts as both the heating element and the electrical contact.3. Application of Pressure and Electric Field:Pressure is applied to ensure proper contact between the powder particles and enhance densification. Simultaneously, a high electricfield is applied to the die, generating a strong electric current through the powder bed.4. Electrothermal Heating:The electric current passing through the graphite die generates Joule heating within the powder bed, rapidly raising its temperature. The resistance of the graphite die provides uniform heating throughout the sample.5. Reaction and Densification:As the temperature of the powder mixture increases, chemical reactions between the reactive components take place. These reactions can result in the formation of new phases, crystal growth, and enhanced properties. Additionally, the high temperature and applied pressure promote particle rearrangement and densification.6. Cooling and Post-processing:Once the desired reaction and densification are achieved, the electric field and pressure are removed, and the sample is cooled. Further post-processing steps, such as shaping, polishing, or heat treatment, can be performed as needed.III. Advantages of Reactive Flash Sintering:The reactive flash sintering method offers several advantages over conventional sintering techniques:1. Rapid Processing:Reactive flash sintering allows for significantly shorter processing times compared to traditional methods. The application of a high electric field results in rapid heating, enabling faster reaction kinetics and densification.2. Enhanced Homogeneity:The uniform heating provided by the electric current passing through the graphite die ensures enhanced homogeneity within the sintered material. This leads to improved mechanical, electrical, and thermal properties.3. Energy Efficiency:The high heating rates achieved through the Joule heating effect reduce the overall energy consumption during the sintering process. This energy efficiency makes reactive flash sintering an environmentally friendly option.4. Unique Material Combinations:The ability to perform in-situ reactions during sintering opens up new possibilities for fabricating materials that were previously difficult or impossible to produce. Complex material combinations, such as metal-ceramic composites or multi-phase alloys, can be realized using this method.IV. Potential Applications:Reactive flash sintering has the potential to revolutionize material processing and find applications in various industries. Some potential applications include:1. Advanced Ceramics:Reactive flash sintering can be used to fabricate high-performance ceramic materials with improved mechanical strength, thermal stability, and electrical conductivity. These materials can find applications in the aerospace, electronics, and energy industries.2. Metal-Ceramic Composites:The ability to reactively sinter metal and ceramic powders enables the production of metal-ceramic composites with tailoredproperties. Such composites can be utilized in the automotive, aerospace, and defense sectors due to their unique combination of characteristics.3. Sustainable Materials:The energy efficiency and reduced processing times offered by reactive flash sintering make it an ideal technique for the fabrication of sustainable, environmentally friendly materials. This includes materials for renewable energy applications, such as solid oxide fuel cells or photovoltaic devices.Conclusion:The reactive flash sintering method presents a promising avenue for the fabrication of advanced materials with enhanced properties. Its unique combination of rapid heating, in-situ reaction, and uniform densification offers numerous advantages over conventional techniques. With its potential applications spanning across various sectors, reactive flash sintering could lead to significant advancements in material science and engineering, driving innovation and improving the performance of materials indiverse industries.。
A New Approach for Filtering Nonlinear Systems

computational overhead as the number of calculations demanded for the generation of the Jacobian and the predictions of state estimate and covariance are large. In this paper we describe a new approach to generalising the Kalman filter to systems with nonlinear state transition and observation models. In Section 2 we describe the basic filtering problem and the notation used in this paper. In Section 3 we describe the new filter. The fourth section presents a summary of the theoretical analysis of the performance of the new filter against that of the EKF. In Section 5 we demonstrate the new filter in a highly nonlinear application and we conclude with a discussion of the implications of this new filter1
Tቤተ መጻሕፍቲ ባይዱ
= = =
δij Q(i), δij R(i), 0, ∀i, j.
(3) (4) (5)
新的基于内置式永磁同步电机的弱磁控制策略

新的基于内置式永磁同步电机的弱磁控制策略黄守道;徐琼;祁宙;李建业;杜超;郭灯塔【摘要】By combining the field-weakening control principles of interior permanent magnet synchronous motor (IPMSM) with the space vector pulse width modulation (SVPWM), a novel field-weakening control strategy for IPMSM was proposed. The difference between the reference voltage updated by current regulator and the saturated voltage output by SVPWM is used for field-weakening control, which modifies the stator current phase angle. The d and q axis stator reference current component is redistributed, and finally, the speed operation range of IPMSM is extended. With this method, high-time speed field-weakening operation was realized, and the smooth transition of field-weakening stator current and fast response were also guaranteed. Moreover, since the proposed method utilizes the dclink voltage more efficiently, it makes the motor generate higher output torque and has better adaptability in field-weakening operation region than conventional field-weakening control methods under the same voltage and current limitation. The effectiveness of the proposed field-weakening control method was verified with simulation and experimental results.%将内置式永磁同步电机弱磁运行原理与电压空间矢量脉宽调制相结合,提出了一种新的弱磁控制策略.通过用电流调节器输出的参考电压与电压空间矢量脉宽调制后输出的极限电压两者之间的电压差值来改变定子电流相位角,从而重新分配d,q轴给定定子电流分量的大小,最终实现弱磁升速.该控制方法实现了电机高倍弱磁扩速运行,且弱磁电流过渡平滑、响应速度快.与传统弱磁控制方法相比,在弱磁区域能更有效地利用直流母线电压,从而在同样电压和电流限制条件下,电机能产生更高的电磁转矩,适应性更好.仿真和实验结果表明了本文所提弱磁控制策略的有效性和可行性.【期刊名称】《湖南大学学报(自然科学版)》【年(卷),期】2013(040)001【总页数】5页(P55-59)【关键词】空间矢量脉宽调制;内置式永磁同步电机;弱磁控制【作者】黄守道;徐琼;祁宙;李建业;杜超;郭灯塔【作者单位】海上风力发电技术与检测国家重点实验室,湖南湘潭411101【正文语种】中文【中图分类】TM301.2内置式永磁同步电机(Interior Permanent Magnet Synchronous Motor,IPMSM)以高效率、高功率密度和调速范围宽等优点,广泛应用于各种电机驱动系统中,如电动汽车、轨道机车、机器人等领域.在这些应用中,不仅要求较宽的弱磁调速范围,而且要求较强的弱磁性能[1-4].较强的弱磁性能可在逆变器容量不变情况下提高系统性能[1-8].基于弱磁扩速的基本思想,国内外研究者提出了许多用于改善永磁同步电机弱磁性能的控制策略.文献[1]提出了前馈弱磁控制方法,有较好的稳态性能,但易受电机参数及温度变化的影响,鲁棒性差.文献[2-3]提出了直流侧电压环反馈调节方法,鲁棒性好,但逆变器的直流母线电压没有被完全利用.为了最大程度利用母线电压,文献[4]采用六步电压过调制法,然而会产生很大电流谐波,且通过前馈查表法来调节电流,算法复杂.本文阐述了内置式永磁同步电机的弱磁运行原理,分析了传统弱磁控制算法中直流母线电压没有完全利用的不足之处,提出了一种新的弱磁控制策略,通过用SVPWM调制前后输出的电压差值来改变电流相位角从而调节交直轴电流.仿真和实验结果证明该改进算法实现了电机高倍基速以上的稳定运行、弱磁电流过渡平滑,对比传统弱磁算法,在同样条件下,电机在弱磁区域能输出更大电磁转矩.1 IPMSM的弱磁原理内置式永磁同步电机在两相同步旋转d,q坐标系下的稳态电压方程为:电机高速运行时,定子电阻压降较小,可忽略不计,式(1)可以表示为:式中:IPMSM最优控制运行的定子电流变化轨迹如图1所示.基速以下,采用最大转矩电流比(maximum torque per ampere,MTPA)控制可使永磁同步电机获得最大电磁转矩,如图1中OA段.随着转速继续上升,电机运行于A点时电机端电压达到逆变器所提供的极限电压,电机无法继续往高速运行.由式(2)可知,只有通过调节定子电流,即增加直轴电流分量,同时减小交轴电流分量来实现弱磁升速[5-6].为最大限度利用逆变器容量,在弱磁区控制电流矢量沿着电流极限圆逆时针向下旋转,如图1中AC段.图1 IPMSM运行过程定子电流轨迹Fig.1 Trajectory of stator current for IPMSM图2为传统直流侧电压环弱磁控制系统框图[2].当参考电压us*大于usmax时,弱磁控制器通过PI调节器来产生去磁电流进行弱磁升速.这种弱磁控制方法效果良好,在实际应用中比较常见.然而,若给定电压usmax设定为udc/,则此过程中实际输出最大电压矢量轨迹半径为udc/的内切圆,而逆变器所能输出给电机的极限电压为正六边形边界,如图3(a)所示,此时,正六边形与内切圆之间的部分电压没有进行电流控制,即逆变器直流侧母线电压没有完全被利用,弱磁区转矩性能没有最大程度输出.若usmax增加至2udc/π,给定电压超出了正六边形,而实际电压不可能达到超出正六边形的部分区域,此时系统中可能会产生大量谐波甚至系统不稳定[4,7].为此,本文提出一种新的弱磁算法在实现弱磁扩速的同时改善上述弱磁过程中的转矩性能.图2 传统直流侧电压环弱磁系统框图Fig.2 Conventional field-weakening control system for IPMSM2 弱磁控制策略2.1 SVPWM 调制SVPWM原理是逆变器通过6个基本电压矢量的组合,使输出的电压空间矢量轨迹接近电机的实际圆形旋转磁场.电机在基速以下运行时,参考电压u*s较小,处于正六边形内,调制前的参考电压u*s与调制后实际输出电压us相等,两者电压差为零.随着转速升高,电机端电压达到逆变器输出的饱和极限电压,此时参考电压u*s会超出正六边形边界,调制后输出的实际电压us会小于调制前的参考电压u*s,即两者出现差值Δus,如图3(b)所示 .同时采用最小幅值误差过调制[8]的方法来调整参考电压使其落在正六边形内来跟踪实际电压轨迹.基于以上原理可知,电机端电压是否达到逆变器所能输出的极限电压,即是否开始进入弱磁区域可通过SVPWM调制前后的电压差来确定.同时用此电压差值来调节定子电流进行弱磁扩速,其实际输出的最大电压矢量轨迹会落在正六边形上,直流母线电压能得到更有效的利用,使得电机在弱磁区输出更大的电磁转矩.图3 SVPWM电压极限与调制方法Fig.3 SVPWM limits and methods2.2 恒转矩MTPA运行分析IPMSM的电磁转矩方程为:为充分利用定子电流,在恒转矩区域采用MTPA控制,其电流轨迹方程如下[6]:2.3 弱磁运行分析高速时忽略定子电阻压降,电流调节器输出的参考电压与SVPWM调制后输出的实际电压之间的差值在d,q轴坐标系下可分别表示为[7]:定义电压差值的代价函数为:为了最有效地利用逆变器的直流母线电压,以参考电压与实际电压的差值F最小原则来分配弱磁区域内d,q轴给定电流分量的大小.运用梯度下降法原理[9]使得目标函数F的值最小,其表达式为:将式(7)等式两边积分可得:式中:i*d,i*q为恒转矩区域的参考电流;i*dm,i*qm为弱磁区域重新分配的参考电流;β为大于零的常数.从式(8)可以看出,若Δuq或Δud变为零,由于积分作用,i*dm,i*qm不能恢复为i*d,i*q,可用低通滤波器来代替这里的积分器.则表达式为:式中:ωc为低通滤波器截止频率.电机在运行过程中定子电流矢量在d,q轴上的电流分量始终满足以下关系式:从图1中的定子电流矢量轨迹可知,弱磁运行过程中定子电流矢量在d,q轴平面上沿电流极限圆逆时针旋转角度Δθ,有式中:θ为电流相位角;Δθ为定子电流弱磁角.结合式(9)和式(10)可得:电机弱磁运行时工作于图1中第二或第三象限,Δθ在[-π/2,π/2]内变化,由式(12)可见,此时弱磁角Δθ与等式右边变量T成线性变化,又因控制系统具有自调节能力,故可通过控制变量T来直接控制弱磁角Δθ.于是,弱磁角的等效表达式为:式中:ρ=Lq/Ld.当电机处于电动运行状态时,工作于图1中第二象限,α为大于零的常数;当电机处于发电运行状态时,工作于第三象限,α为小于零的常数.本文以电机工作于第二象限为例来讨论其弱磁运行过程,后文对此不再另作说明. 弱磁控制算法框图如图4所示.基速以下,电机端电压未达到逆变器输出的最大电压,SVPWM调制前后的输出电压相等,弱磁角Δθ输出为零,此过程采用MTPA控制获得最大电磁转矩.随着转速继续上升,实际输出电压达到饱和时,参考电压与实际电压之间出现电压差值,弱磁控制器输出弱磁角来改变参考电流i*d与i*q.转速进一步上升至给定转速,系统稳定运行.图4 弱磁控制算法框图Fig.4 Proposed field-weakening control strategy for IPMSM3 仿真与实验结果3.1 仿真结果及分析运用Matlab/Simulink工具箱建立仿真模型,验证本文所述弱磁控制算法的正确性.IPMSM电机参数为:PN=6kW;nN=2 000r/min;rs=0.031 8Ω;Ld=0.612mH;Lq=1.29mH;Ψf=0.063 3Wb;np=6.一阶低通滤波器的截止频率设置为200Hz,参数α设置为5.图5为电机带10N·m负载启动弱磁扩速至6 000r/min的系统仿真变化曲线.从图5可以看出,在0.1s前,弱磁环输出为零,定子矢量角θ恒定,id和iq基本保持恒定,电机运行于 MTPA曲线上.电机进入弱磁区域时,弱磁角Δθ开始输出正值,电流矢量沿图1中曲线AB逆时针旋转,θ逐渐增大,从而id逐渐减小,iq逐渐增大.图5(c)可知,系统稳定前,定子电流幅值i*s保持最大输出70A,额定转速以下,电机保持最大转矩运行,弱磁运行时转矩随电流变化而逐渐下降.整个过渡过程,电流变化快速而平稳,达到稳定时系统各变量无超调地跟随负载变化.3.2 实验结果及分析建立实验系统对本文所提算法进行实验验证.系统采用TI公司的DSP芯片TMS320F2812作为主控器件,PWM载波周期为7.5kHz,直流母线电压为150V,实验电机参数与仿真模型参数相同.图5 弱磁控制过程仿真波形Fig.5 Simulation results operating on the proposed field-weakening control method图6为整个弱磁控制过程各变量实验变化波形.在图6(a)和图6(b)中,d,q轴电流在恒转矩区域保持恒定,电流矢量角θ输出恒定值约为113°,弱磁角无输出.电机转速上升超过额定转速后,弱磁角逐渐增大,高速时弱磁角变化较为缓慢,达到6 000 r/min时约为165°,电机还可以弱磁运行于更高的转速.d,q轴电流在弱磁区域根据电流矢量角的变化而重新分配,可以看出id与iq运行轨迹平整无振荡且快速恢复至稳态值 .由图6(c)可知,电机在转速达到2 200r/min后,电磁转矩才开始明显下降,电磁转矩从恒转矩到弱磁过程过渡平滑.电机带载启动到稳定于6 000r/min约为2.5s,响应速度快.图7为使用本文方法与图2中传统直流侧电压环弱磁方法的实验对比图,包括电磁转矩与转速关系曲线以及电流相位角与转速关系曲线.从图7(a)可以看出,在弱磁区域电机运行于相同的转速,采用本文控制方法所产生的电磁转矩比采用传统弱磁方法要大.例如,在转速到达6 000r/min时,本文方法产生的转矩约为16N·m,传统弱磁方法产生的转矩约为14N·m,转矩幅度提高了约14%.由图7(b)可知,弱磁过程中达到同样的转速,相比于传统方法,本文提出弱磁方法电流相位角更小,因而进行重新分配的电流id,iq也相对更大 .这进一步说明本文提出的改进算法产生更高的转矩,更好地利用了直流母线电压.图6 弱磁控制过程实验波形Fig.6 Experimental results operating on the proposed field-weakening control method图7 本文方法与传统方法控制性能对比曲线Fig.7 Control performance comparison of proposed method and conventional method4 结论本文提出了一种新的基于内置式永磁同步电机的弱磁控制策略.基于内置式永磁同步电机弱磁原理,分析了当系统进入弱磁区域时,SVPWM调制前输出的参考电压与调制后输出的极限电压两者之间会出现电压差,并将此差值作为弱磁控制器的输入量来改变定子电流相位角,从而重新分配交直轴电流的大小来实现弱磁扩速.仿真分析和实验结果表明,本文提出的弱磁控制算法实现了电机高倍扩速运行,弱磁过渡平滑、响应速度快,且由于在弱磁区域能更有效地利用直流母线电压,相比于传统弱磁算法,电机输出更大的电磁转矩,对于改善系统的弱磁性能具有一定的实际意义和应用价值.参考文献[1] VERL A,BODSON M.Torque maximization for permanent magnet synchronous motors[J].IEEE Transactions on Control System Technology,1998,6(6):740-745.[2] KIM J M,SUL S K.Speed control of interior permanent magnet synchronous motor drive for the flux weakening operation[J].IEEE Transactions on Industry Applications,1997,33(1):43-48.[3] BAE B H,SUL S K.New field weakening technique for high saliency interior permanent magnet motor[C]//Proceedings of the Thirty-eighth IAS Annual Meeting on Industry Applications.New York:IEEE,2003:898-905.[4] 吴芳,万山明.一种过调制算法及其在永磁同步电动机弱磁控制中的应用[J].电工技术学报,2010,25(1):58-63.WU Fang,WANG Shan-ming.An overmodulation algorithm and its application in PMSM drive with flux-weakening control[J].Transactions of China Electrotechnical Society,2010,25(1):58-63.(In Chinese)[5] 赵云,李叶松.永磁同步电机宽范围最大转矩控制[J].电工技术学报,2010,25(7):45-50.ZHAO Yun,LI Ye-song.Maximum torque control of surface mounted permanent magnet synchronous motors in wide speed range[J].Transactions of China Electrotechnical Society,2010,25(7):45-50.(In Chinese)[6] 唐任远.现代永磁电机理论与设计[M].北京:机械工业出版社,2006:259.TANG Ren-yuan.Modern permanent magnet machines theory and design[M].Beijing:Machines Press,2006:259.(In Chinese)[7] KWON T S,SUL S K.Novel antiwindup of a current regulator of a surface-mounted permanent-magnet motor for fluxweakeningcontrol[J].IEEE Transactions on Industry Applications,2006,42(5):1293-1300.[8] BRIZ F,DIEZ A,DEGNER M W,etal.Current and flux regulation in field -weakening operation[J].IEEE Transactions on Industry Applications,2001,37(1):42-50.[9] IOANNOU P A,SUN J.Robust adaptive control[M].Upper Saddle River,NJ USA:Prentice-Hall,1996:785-786.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Permanent magnet synchronous motors (PMSM) are more and more used because of their high power density, high power factors and high torque to current ratio. The PMSM are suitable for the application of electrical vehicle and traction systems on the purpose of reducing system volume and weight. In electrical vehicles, usually battery is used as the energy storage and power source whose output voltage is limited. To reduce energy loss, the gear box is replaced by a direct drive system. So the PMSM motors are usually needed to run in high speed and flux weakening region, especially in traction system.
Abstract — In this paper, an adaptive flux weakening method for PMSM is proposed. The demagnetization current can be obtained by an adaptive PI regulator according to the reference voltage output by the current loop controller and the voltage limitation of the inverter. This method can reduce the dependency on motor parameters and improve the robust and precision of flux weakening control. To avoid the damage on rotor permanent magnet by the flux-weakening current, a rotor flux observer based on extended Kalman filter is proposed to realize the real-time flux monitoring. Some simulation and experiments are implemented to verify the performance of the proposed method. Keywords: PMSM, adaptive flux weakening, flux observer, extended Kalman filter
(5b)
Байду номын сангаас
The voltage limitation Umax is determined by the inverter
and the power sources of the system. Taking d and q-axes
q-axe currents in (2) increase the difficulty of real-time control.
The real-time calculation of the optimal d-axe and q-axe
currents to realize MTPA by (2) is very difficult. So even if in
uq = ω Ld id + ωψ d
(4b)
In PMSM control, the voltages limitation is:
u = ud 2 + uq2 ≤ U max
(5a)
That is to say:
( ) ( ) Lqiq
2+
Ld id +ψ d
2
≤
⎛ ⎜⎝
U max ω
⎞2 ⎟⎠
The electromagnetic torque of the PMSM is:
( ) Tem = pnψ diq + pn Ld − Lq idiq
(2)
Where pn is the number of poles pairs.
In salient PMSM, there is Ld < Lq . According to (2), the
salient motor with Ld = Lq , (2) becomes:
Tem = pnψ diq
(3)
So in non-salient motor the MTPA control is the same as
zero d-axe current control.
In salient motor, the crossing-coupling between d-axe and
axe current because of the current limitation in PMSM. So the
maximum torque per ampere (MTPA) is proposed to search the optimal d-axe and q-axe current selection [6-7]. In non-
flux weakening control of PMSM is usually needed. From (1),
if ignoring the effects of the stator resistances and inductances,
there are:
ud = −ω Lqiq
(4a)
+
Ld
did dt
− ω Lqiq
(1a)
uq
=
Riq
+
Lq
diq dt
+ ω Ld id
+ ωψ d
(1b)
Here ud , uq and id , iq are the stator voltages and currents on d
and q axes. R is stator resistance. Ld and Lq are stator inductances on d and q axes respectively. ω is rotor electrical angular speed. ψ d is the d-axe flux produced by the rotor permanent magnet.
of rotor magnet. Some simulation and experiments are implemented to verify the performance of the proposed adaptive flux-weakening control method and flux observer based on EKF.
electromagnetic torque will be increased if id < 0 which is a
very good character in flux weakening region. But the
increasing of the d-axe current will limit the amplitude of q-
the control of salient PMSM, the d-axe current is usually
controlled to be zero to simplify the control system.
In some of the applications, such as traction system, the
A New Adaptive Flux Weakening Method of PMSM
Zedong Zheng, Yongdong Li, Kui Wang, Lin Qiu
Dept. Electrical Engineering, Tsinghua University, Beijing, China E-mail: zzd@
II. PRINCIPLE OF THE FLUX WEAKENING METHOD
In rotor flux oriented coordinate (d-q axes), the stator voltage equations of the PMSM are as follows:
ud
=
Rid
In this paper, a simple adaptive flux weakening method is proposed. The demagnetization current can be calculated by an adaptive PI regulator according to the voltage and current limitation which is also adopted in [5]. In flux weakening control of PMSM, the demagnetization current will be carefully controlled to avoid damage to the rotor permanent magnet. So a rotor flux observer based on extended Kalman filter (EKF) is proposed also in this paper to monitor the state