27.2.4相似三角形的判定

合集下载

27.2相似三角形(教案)

27.2相似三角形(教案)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与相似三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示相似三角形的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
5.培养学生的创新意识:鼓励学生在解决相似三角形问题时,敢于尝试新方法,勇于突破传统思维,培养创新意识。
本节课旨在使学生在学习相似三角形的过程中,全面提升学科核心素养,为未来的学习和生活打下坚实基础。
三、教学难点与重点
1.教学重点
(1)相似三角形的定义及判定方法:理解并掌握相似三角形的定义,以及SSS、SAS、ASA、AAS等判定方法,这是本节课的核心内容。
此外,在小组讨论环节,虽然学生们都能够积极参与,但在成果分享时,部分学生表达能力较弱,不能很好地将讨论成果展示出来。针对这个问题,我计划在接下来的课程中,多给予学生一些表达机会,培养他们的语言组织和表达能力。
还有一个值得注意的地方是,在课堂总结时,我发现部分学生对相似三角形在实际生活中的应用仍然感到困惑。为了让学生更好地理解这一点,我打算在下一节课引入更多生活中的实例,让学生们感受到数学知识在实际生活中的重要性。
在教学方法上,我认识到传统的讲授式教学并不能满足所有学生的需求。今后,我需要尝试更多元化的教学方法,如翻转课堂、小组合作学习等,以提高学生的学习兴趣和参与度。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解相似三角形的基本概念。相似三角形是指具有相同形状但大小不同的三角形。它们在几何学中具有重要地位,广泛应用于实际问题中。
2.案例分析:接下来,我们来看一个具体的案例。通过分析案例,展示相似三角形在实际中的应用,以及如何帮助我们解决问题。

27.2相似三角形的判定(三边法、两边及其夹角法)

27.2相似三角形的判定(三边法、两边及其夹角法)
根据下列条件,判断△ABC与△A'B'C'是否 相似,并说明理由:
(1)AB=4,BC=6,AC=8.
A'B'=12,B'C'=18,A'C'=24
(2)∠A=120°,AB=7cm,AC=14cm, ∠A'=120°,A'B'=3cm,A'C'=6cm
2. 图中的两个三角形是否相似?为什么?
(2)
古勒巴格镇中学 再吐南木.买买提
导入新课
相似三角形已经学过哪些判定方法?
1. 学习目标:
掌握判定两个三角形相似的方法: (1)如果两个三角形的三边成比例,那么这两个三角形相似。 (2)如果两个三角形的两边成比例并且夹角相等,那么这 两个三角形相似。
2.自主学习指导(11分钟)
请同学们在一张方格纸上任意画一个三角形,再画一个三角形,使它 的各边长都是原来三角形各边长的2倍,度量这两个三角形的对应角, 它们相等吗?这两个三角形相似吗?与邻座交流一下,看看是否有同 样的结论.
5.达标检测 (5分钟)
练习
1.根据下列条件,判断△ABC与△A'B'C'是否相似,并说明理由: (1)∠A=40°,AB=8,AC=15 ∠A' =40°,A'B' =16,A'C' =30 (2)AB=10cm,BC=8cm,AC=16cm A'B' =16cm,B'C' =12.8cm,A'C' =25.6cm
这节课我们学
到了什么?
全等判定:
(对应)边角都相等 (6组量)
课堂小结
判定方法

27.2相似三角形的判定综合

27.2相似三角形的判定综合

A、6米 C、18米
B、8米 D、24米
2、如图,P是RtΔABC的斜边BC上异 于B、C的一点,过点P做直线截ΔABC, 使截得的三角形与ΔABC相似,满足这 样条件的直线共有( ) A、 1条 B、 2条 C、3条 D、 4条
9、如图,四边形ABCD、CDEF、 EFGH都是正方形. (1)⊿ACF与⊿ACG相似吗?说说 你的理由. (2)求∠1+∠2的度数.
9.如图:已知∠ABC=∠CDB=90°,AC=a, BC=b,当BD与a、b之间满足怎样的关系式时,两 三角形相似 解:⑴∵ ∠1=∠D=90°
b2 △ABC∽ △CDB,∴BD a ⑵∵ ∠1=∠D=90°
AC AB a ∴当 时,即当 BC BD b
AC BC a b ∴当 BC BD 时,即当 b BD 时,
0
B
C
18
则AC=
BD=
4 √2 12√2
BC=
随堂训练
1.如图是小明设计用手电来测量某古城墙高度的示意图, 点P处放一水平的平面镜,光线从点A出发经平面镜反 射后刚好射到古城墙CD的顶端C处,已知AB⊥BD, CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米, 那么该古城墙的高度是(B )
定理1 两角对应相等的两个三角形相似.
定理2 定理3 定理4
三边对应成比例的两个三角形相似. 两边对应成比例,且夹角相等的两个三角形相似; 斜边直角边对应成比例的两个直角三角形相似.
3.如图,P是AB上一点,补充下列条件: (1) ∠ACP=∠B; A (2)∠APC=∠ACB; AP PC P 3 ; AC BC AP AC C B 4 . AC AB 其中一定能使△ ACP∽ △ABC的是( D )

27.2.1_相似三角形的判定(复习)

27.2.1_相似三角形的判定(复习)

b 1 B
D
四、中考透视
1、如图正方形边长是2,BE=CE,MN=1。线段MN 的两端在CD、AD上滑动,当DM为多长时,△ABE 与以D、M、N为顶点的三角形相似。
A
N
D
M
A
N
D
M
B
E
C
B
E
C
2、已知在△ABC中,∠C=90o ,AC=8cm,BC=6cm, 点P从点A出发,沿AC以3厘米/秒的速度向点C移动, 点Q从点B出发,沿BA以4厘米/秒的速度向点A移动。 如果P、Q分别从A、B 同时出发,移动时间为t秒 (0<t<2.5)。 当t为何值时,以Q、A、P为顶点的三角 形与△ ABC相似?
1、已知如图,DC∥AB,AC、BD相交于点 O,AO=BO,DF=FB 求证:DE2=EC· EO 证明: ∵OA=OB ∴∠3=∠2 ∵DF=FB ∴∠1=∠2 ∵DC∥AB ∴∠3=∠4 ∴∠1=∠4 又∵∠DEO=∠DEC ∴△DEO∽ △CED ∴ DE/CE = EO/DE ∴DE2=EC· EO
B
E F C
O D
明理由。
A
巩固提高:
2.如图,在□ABCD中,已知E是 AB的中点,在AD上截取AF=FD, AG EF交AC于G,求 的值.
AC
A E B G
F
D
C
1 、 在△ ABC 与△ AB C 中,有下列条 件: BC AC AB BC ① AB B C ;② ; B C ③∠ AC A=∠ C ④∠ A C =∠ 。如果从中任取两个条件 组 成 一 组 , 那 么 能 判 断 △ ABC∽△ AB C 的共有( )组。 A、1 B 、2 C、3 D、4

相似三角形的判定角角

相似三角形的判定角角

CD⊥AB于D.若 BC=5 ,BD=3
则CD=
. AB=
.
H
8
2. AD⊥BC于点D, CE⊥AB于点 E , 且交AD于F,你能从中找出几对相似三角形?
A
E F
B
C
D
H
9
1、已知如图,∠ABD=∠C ,AD=2 , AC=8, (1)求证:ΔABD∽ΔACB. (2)求AB. A
D
B
C
H
10
对于任意的两个三角形,如果一个三角形 的两个角与另一个三角形的两个角对应相等, 那么这两个三角形相似.
简述:两角分别相等的两个三角形相似.
几何语言:在△ABC和△ A1B1C1中
A
B
C
A1
∵∠A =∠A1,∠B =∠B1 .
∴△ABC∽△A1B1C1.
B1
C1 H
5
例1:已知:DE∥BC,EF∥AB. 求证:△ADE∽△EFC.
A
D
E
B
C F
H
6
找出图中所有的相似三角形.
C
有三对相似三角形:
△ACD∽ △CBD
△CBD∽ △ABC
△ACD∽ △ABC
A
D
B
△ACD ∽ △ CBD∽ △ ABC
总结:如果两个直角三角形满足一个
锐角相等,则这两个直角三角形相似;
H
7
C
A
D
B
1、如图:在Rt △ ABC中,∠ACB=900,
H
C
13
H
3
已知,如图,在△ABC和△A B C 中,
∠A=∠A,∠B=∠B,
A`
求证:△ABC∽△ABC

相似三角形的判定口诀

相似三角形的判定口诀

相似三角形的判定口诀
两角对应相等,两个三角形相似。

两边对应成比例且夹角相等,两个三角形相似。

三边对应成比例,两个三角形相似。

三边对应平行,两个三角形相似。

斜边与直角边对应成比例,两个直角三角形相似。

1.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

(简叙为:两角对应相等,两个三角形相似。

)
2.如果两个三角形的两组对应边成比例,并且对应的夹角相等,那么这两个三角形相似。

(简叙为:两边对应成比例且夹角相等,两个三角形相似。

)
3.如果两个三角形的三组对应边成比例,那么这两个三角形相似。

(简叙为:三边对应成比例,两个三角形相似。

)
4.两三角形三边对应平行,则两三角形相似。

(简叙为:三边对应平行,两个三角形相似。

)
5.如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

(简叙为:斜边与直角边对应成比例,两个直角三角形相似。

)
6.如果两个三角形全等,那么这两个三角形相似(相似比为1:1)。

(简叙为:全等三角形相似)。

27.2相似三角形1相似三角形的判定用三边比例关系判定三角形相似(教案)

27.2相似三角形1相似三角形的判定用三边比例关系判定三角形相似(教案)
然而,我也注意到在小组讨论中,有些学生过于依赖同伴,自己思考不足。在今后的教学中,我需要更加关注这部分学生,鼓励他们独立思考,提高问题解决能力。此外,对于教学难点,我可能需要设计更多有针对性的练习和解释,以帮助学生克服困难。
在总结回顾环节,学生们对今天所学的知识有了整体的认识,但仍有个别学生表示对某些部分理解不够透彻。这提醒我,在后续的教学中,要关注学生的个体差异,尽量让每个学生都能跟上教学进度。
3.重点难点解析:在讲授过程中,我会特别强调三边比例关系判定相似的两个重点:三组对应边的比例相等和两组对应边的比例相等且夹角相等。对于难点部分,我会通过具体的图形和例子来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与相似三角形判定相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何通过测量边长和角度来判断两个三角形是否相似。
b.如果两个三角形中有两组对应边的比例相等,并且夹角相等,即a/ b = c/ d,且∠A = ∠C或∠B = ∠D,则这两个三角形相似。
二、核心素养标
本节课的核心素养目标旨在培养学生的以下能力:
1.空间观念:通过探究相似三角形的判定,使学生能够理解和运用空间图形的性质,发展空间想象力和直觉思维能力。
2.抽象概括能力:引导学生从具体实例中抽象出相似三角形的判定方法,提高他们的逻辑推理和概括能力。
3.数据分析观念:培养学生通过观察、分析三角形边长数据,运用三边比例关系解决问题的能力,增强数据分析观念。
4.数学应用意识:将相似三角形的判定应用于解决实际问题,让学生体会数学与现实生活的联系,提高数学应用意识。
-重点知识点举例:
a.如果两个三角形的三组对应边的比例相等,即a/ b = c/ d = e/ f,则这两个三角形相似。

相似三角形的判定与性质

相似三角形的判定与性质

相似三角形的判定与性质相似三角形是指具有相同形状但不一定相同大小的两个三角形。

在几何学中,相似三角形是一种重要的概念,它帮助我们理解和解决很多与三角形相关的问题。

本文将介绍相似三角形的判定方法以及它们的性质。

一、相似三角形的判定方法1. AAA判定法:如果两个三角形的对应角度相等,则这两个三角形相似。

即如果两个三角形的各个内角对应相等(即对应角相等),那么它们是相似的。

2. AA判定法:如果两个三角形的两个内角分别相等,并且它们的对应边成比例,则这两个三角形相似。

即如果两个三角形的两个角对应相等,并且对应边成比例,那么它们是相似的。

3. SAS判定法:如果两个三角形的一组对边成比例,并且其中一组对边夹角相等,则这两个三角形相似。

即如果两个三角形的两组对边成比例,并且夹角对应相等,那么它们是相似的。

二、相似三角形的性质1. 边长比:在相似三角形中,任意两对对应边的比值相等。

换句话说,如果两个三角形相似,那么它们的三条边的比值是相等的。

2. 高度比:在相似三角形中,任意两对对应高度的比值相等。

两个相似三角形的高度比等于对应边长比的倒数。

3. 面积比:在相似三角形中,任意两对对应面积的比值等于边长比的平方。

4. 角度比:在相似三角形中,任意一对对应角的比值相等。

换句话说,如果两个三角形相似,那么它们的三个角的比值是相等的。

5. 相似三角形的角平分线三等分:在相似三角形中,若一个角的两边与另一个角的两边成比例,则这两个角的角平分线相互平行。

6. 重心的性质:在相似三角形中,两个相似三角形的重心在同一直线上。

7. 相似三角形的垂心:在相似三角形中,两个相似三角形的垂心在同一直线上。

8. 相似三角形的外心:在相似三角形中,两个相似三角形的外心在同一直线上。

三、应用举例1. 比例问题:利用相似三角形的性质可以解决很多比例问题。

例如,已知一座塔的阴影与杆子的阴影的比值等于塔的高度与杆子高度的比值,通过相似三角形的比例关系可以求解塔的高度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

即: 如果一个三角形的三个角分别与另一个三角 相似 形的三个角对应相等,那么这两个三角形_______.
一定需三个角吗?
相似三角形的识别方法: 如果一个三角形的两角分别与另一个三角形的两 角对应相等,那么这两个三角形相似. 思考 如果两个三角形仅有一对角是对应相等的,那么它 们是否一定相似?
相似三角形的识别
(这可是今天新学的,要牢记噢!)
A
1 2
A O
C
B
A
C
C
D E
B D
D O
A D E
B
B
C
A
B
C


A D D B 图 3 C B 图 4 D

(或者∠ B=∠ ADE)
A
E
C
如图,在Rt△ABC的一边 AB上有一点P(点P与点A, B不重合),过点P作直线 截得的三角形与△ABC相 似,想一想满足条件的直 线共有多少条?试画出图 形并简要说明理由. 思考:若三角形为任意三角形,点P为三角 形任意一边上的点,则这样的直线有几条?
5、如图:在Rt △ ABC中, ∠ABC=90 , BD⊥AC于D
0
问:若E是BC中点,ED的延 长线交BA的延长线于F, 求证:AB : AC=DF : BF
A
F
D
B
E
C
泰勒斯测量金字塔高度的示意图:
A′
A′
A
A B C B′ C′ B
C
B′
C′
如果人体高度AC=1.7米,人影长BC=2.2米,而B′C′ =176米,你能求出金字塔的高度并说明其中的道理吗?
若∠A=35°, ∠C=85°,∠AED=60 °则AD· AB=
AE· AC
A D E B C
找一找
(1)图1中DE∥FG∥BC,找出图中所有的相似三角形。 答:相似三角形有 △ADE∽△AFG∽△ABC。 (2)图2中AB∥CD∥EF,找出图中所有的相似三角形。 答:相似三角形有 A △AOB∽△FOE∽△DOC。
我们来试一试…
A D
A
D C B C
E
B
3.已知如图, ∠ABD=∠C AD=2 AC=8,求AB 解: ∵ ∠ A= ∠ A ∠ABD=∠C ∴ △ABD ∽ △ACB ∴ AB : AC=AD : AB ∴ AB2 = AD · AC ∵ AD=2 AC=8 ∴ AB =4
A
D
B
Байду номын сангаас
C
5、如图:在Rt △ ABC中, ∠ABC=900,BD⊥AC于D 18 若 AB=6 AD=2 则AC= BD= BC= 4 √2 12√2
人教版九年级下册
大城县教育局教研室
相 似 三 角 形 的 判 定
观察你与老师的直角三角尺(30 与60 ) ,会相似吗?
O O
这两个三角形的三个内角的 大小有什么关系?
相 似
三个内角对应相等。
三个内角对应相等的两个三角 形一定相似吗?
画△ ,使三个角分别为60°,45°, 75° 。 ①同桌分别量出两个三角形三边的长度; ②同桌这两个三角形相似吗? 观察
例3.弦AB和CD相交于⊙o内一点P,求证:PA· PB=PC· PD 证明:连接AC、BD
⌒ ∵∠A、∠D都是CB所对的圆周角
∴ ∠A=∠D 同理: ∠C=∠B ∴△PAC∽△PDB
C
A
D
O
P B

PA PD

PC PB
即PA· PB=PC· PD
例4.已知D、E分别是△ABC的边AB,AC上的点,
A B D F B 图 1
E
G E C
O F D 图 2
C
(3)在△ABC和△A′B′C′中,如果∠A=80°,∠C=60°, ∠A′=80°,∠B′=40°,那么这两个三角形是否相似?为什么? ∠B=180 °-(∠A+∠C)=180 °-(80 °+60 °)=40 °
填一填
(1)如图3,点D在AB上,当∠ ACD =∠ B 时, ∠ ∠ △ACD∽△ABC。 (或者∠ ACB=∠ ADB) (2)如图4,已知点E在AC上,若点D在AB上,则满足 条件 DE//BC ,就可以使△ADE与原△ABC相似。 (或者∠ C=∠ ADE)
用数学符号表示:
A A'
∵ ∠A=∠A', ∠B=∠B' ∴ ΔABC ∽ ΔA'B'C'
B (两个角分别对应相等的两个三角形相似)
C B' C'
例题欣赏 例1 如图所示,在两个直角三角形 △ ABC 和 △ A′B′C′ 中 , ∠ B=∠B′ =90°,∠A=∠A′, 判 断 这 两 个 三角形是否相似.
可证△ABC∽△A’B’C’ 即
AC BC A'C' B'C'
所以A’ C’=1.7x176÷2.2=136m
课堂小结
相似三角形的识别方法有那些?
方法1:通过定义

三个角对应相等 三边对应成比例
方法2:平行于三角形一边的直线。 方法3:三边对应成比例。 方法4:两边对应成比例且夹角。 方法5:通过两角对应相等。
A
A'
解:∵ ∠B=∠B′=90°(已知), ∠A=∠A′(已知), ∴ △ABC∽△A′B′C′(两个角分别对应 相等的两个三角形相似.)
B
B'
C'
C
例题分析
例2. 如图,△ABC中, DE∥BC,EF∥AB, 试说明△ADE∽△EFC.
B D
A
E
F
C
解: ∵ DE∥BC,EF∥AB(已知),
∴ ∠ADE=∠B=∠EFC (两直线平行,同位角相等) ∠AED=∠C. (两直线平行,同位角相等) ∴ △ADE∽△EFC. (两个角分别对应相等的 两个三角形相似.)
相关文档
最新文档