2007年上海中考数学试卷及答案
07年中考数学答案

2007年上海市初中毕业生统一学业考试数学试卷答案要点与评分标准说明:1.解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分.2.第一大题只要求直接写出结果,每个空格填对得3分,否则得零分;第二大题每题选对得4分,不选、错选或者多选得零分;17题至25题中右端所注的分数,表示考生正确做对这一步应得分数,评分时,给分或扣分均以1分为单位. 答案要点与评分标准一、填空题(本大题共12题,满分36分) 1.3 2.2()a a b - 3.1(1)x x + 4.1 5.2x ≥ 6.2 7.3x =-8.3y x = 9.AFD EFC △∽△(或EFC EAB △∽△,或EAB AFD △∽△) 10.1 11.2- 12.答案见图1二、选择题(本大题共4题,满分16分) 13. C 14.B 15.D 16.B 三、(本大题共5题,满分48分) 17.解:由30x ->,解得3x <. ····················································································· 3分由43326x x+>-,解得1x >-. ·························································································· 3分 ∴不等式组的解集是13x -<<.························································································· 1分 解集在数轴上表示正确. ······································································································· 2分 18.解:去分母,得23(21)(1)0x x x x -+-+=, ···························································· 3分 整理,得23210x x --=, ··································································································· 2分 解方程,得12113x x ==-,. ······························································································ 2分经检验,11x =是增根,213x =-是原方程的根,∴原方程的根是13x =-. ·················· 2分 19.解:(1)如图2,作BH OA ⊥,垂足为H , ······························································ 1分在Rt OHB △中,5BO = ,3sin 5BOA ∠=,3BH ∴=. ··························································································································· 2分图14OH ∴=.……………………………… 1分∴点B 的坐标为(43),.……………………2分 (2) 10OA =,4OH =,6AH ∴=.………………1分 在Rt AHB △中,3BH =,AB ∴= 1分cos AH BAO AB ∴∠==2分 20.(1)小杰;1.2. ··································································································· 2分,2分(2)直方图正确. ················································································································· 3分 (3)0~1. ······························································································································ 3分 21.解:[解法一]设2003年和2007年的药品降价金额分别为x 亿元、y 亿元. ············· 1分 根据题意,得226543540269y x x y =⎧⎨++++=⎩………………………………………………………………分………………………………………………分解方程组,得2220120x y =⎧⎨=⎩………………………………………………………………………分………………………………………………………………………分答:2003年和2007年的药品降价金额分别为20亿元和120亿元. ·································· 1分 [解法二]设2003年的药品降价金额为x 亿元, ···································································· 1分 则2007年的药品降价金额为6x 亿元. ················································································ 2分 根据题意,得5435406269x x ++++=. ······································································· 2分 解方程,得20x =,6120x ∴=. ······················································································ 4分 答:2003年和2007年的药品降价金额分别为20亿元和120亿元. ·································· 1分 四、(本大题共4题,满分50分) 22.解:(1)设二次函数解析式为2(1)4y a x =--, ······················································· 2分二次函数图象过点(30)B ,,044a ∴=-,得1a =. ···················································· 3分 ∴二次函数解析式为2(1)4y x =--,即223y x x =--. ·············································· 1分 (2)令0y =,得2230x x --=,解方程,得13x =,21x =-. ································· 2分∴二次函数图象与x 轴的两个交点坐标分别为(30),和(10)-,. ∴二次函数图象向右平移1个单位后经过坐标原点. ························································· 2分 平移后所得图象与x 轴的另一个交点坐标为(40),. ··························································· 2分23.(1)证明:DE AC ∥, BCA E ∴∠=∠. ·················································································································· 1分 CA 平分BCD ∠, 2BCD BCA ∴∠=∠, ·········································································································· 1分 2BCD E ∴∠=∠, ··············································································································· 1分x又2B E ∠=∠ , B BCD ∴∠=∠. ·················································································································· 1分∴梯形ABCD 是等腰梯形,即AB DC =. ········································································ 2分 (2)解:如图3,作AF BC ⊥,DG BC ⊥, 垂足分别为F G ,,则AF DG ∥.在Rt AFB △中,tg 2B =,2AF BF ∴=.…………1分又AB 222AB AF BF =+,2254BF BF ∴=+,得1BF =.……………………1分同理可知,在Rt DGC △中,1CG =.……………1分 AD BC ∥,DAC ACB ∴∠=∠.又ACB ACD ∠=∠ ,DAC ACD ∴∠=∠,AD DC ∴=.DC AB ==AD ∴······················································································ 1分 AD BC ∥,AF DG ∥,∴四边形AFGD是平行四边形,FG AD ∴= ······ 1分2BC BF FG GC ∴=++=. ···················································································· 1分 24.(1)解: 函数(0my x x=>,m 是常数)图象经过(14)A ,,4m ∴=. ··············· 1分 设BD AC ,交于点E ,据题意,可得B 点的坐标为4a a ⎛⎫ ⎪⎝⎭,,D 点的坐标为40a ⎛⎫ ⎪⎝⎭,,E 点的坐标为41a ⎛⎫⎪⎝⎭,, ·········································································································· 1分1a > ,DB a ∴=,44AE a=-. 由ABD △的面积为4,即14442a a ⎛⎫-= ⎪⎝⎭, ······································································ 1分 得3a =,∴点B 的坐标为433⎛⎫ ⎪⎝⎭,. ···················································································· 1分(2)证明:据题意,点C 的坐标为(10),,1DE =, 1a > ,易得4EC a=,1BE a =-, 111BE a a DE -∴==-,4414AE a a CEa-==-. ···································································· 2分图3BE AEDE CE ∴=. ······················································································································· 1分 DC AB ∴∥. ······················································································································· 1分 (3)解:DC AB ∥,∴当AD BC =时,有两种情况: ①当AD BC ∥时,四边形ADCB 是平行四边形,由(2)得,1BE AEa DE CE==-,11a ∴-=,得2a =. ∴点B 的坐标是(2,2). ···································································································· 1分 设直线AB 的函数解析式为y kx b =+,把点A B ,的坐标代入,得422k b k b =+⎧⎨=+⎩,解得26.k b =-⎧⎨=⎩,∴直线AB 的函数解析式是26y x =-+. ··········································································· 1分 ②当AD 与BC 所在直线不平行时,四边形ADCB 是等腰梯形,则BD AC =,4a ∴=,∴点B 的坐标是(4,1). ························································· 1分 设直线AB 的函数解析式为y kx b =+,把点A B ,的坐标代入,得414.k b k b =+⎧⎨=+⎩,解得15k b =-⎧⎨=⎩,∴直线AB 的函数解析式是5y x =-+. ············································································· 1分 综上所述,所求直线AB 的函数解析式是26y x =-+或5y x =-+. 25.(1)证明:如图4,连结OB OP ,,O 是等边三角形BPQ 的外心,OB OP ∴=, ································································ 1分圆心角3601203BOP ∠==. 当OB 不垂直于AM 时,作OH AM ⊥,OT AN ⊥,垂足分别为H T ,. 由360HOT A AHO ATO ∠+∠+∠+∠=,且60A ∠=,90AHO ATO ∠=∠= ,120HOT ∴∠= .BOH POT ∴∠=∠. ··········································································································· 1分 Rt Rt BOH POT ∴△≌△. ······························································································· 1分 OH OT ∴=.∴点O 在MAN ∠的平分线上. ·································································· 1分当OB AM ⊥时,36090APO A BOP OBA ∠=-∠-∠-∠=.即OP AN ⊥,∴点O 在MAN ∠的平分线上.综上所述,当点P 在射线AN 上运动时,点O 在MAN ∠的平分线上.(2)解:如图5,AO 平分MAN ∠,且60MAN ∠= ,30BAO PAO ∴∠=∠= . ··································································································· 1分由(1)知,OB OP =,120BOP ∠=,30CBO ∴∠= ,CBO PAC ∴∠=∠.BCO PCA ∠=∠ ,AOB APC ∴∠=∠. ········································································ 1分 ABO ACP ∴△∽△. AB AO AC AP∴=.AC AO AB AP ∴= .4y x ∴=. ·························································· 1分 定义域为:0x >. ················································································································ 1分(3)解:①如图6,当BP 与圆I相切时,AO = ·················································· 2分 ②如图7,当BP 与圆I相切时,AO =; ································································· 1分 ③如图8,当BQ 与圆I 相切时,0AO =. ······································································· 2分图6()P A图7M图8图4图5。
上海、重庆两市2007年中考数学试题综合难度比较

上海、重庆两市2007年中考数学试题综合难度比较作者:贾安贡宋娜黄翔来源:《数学教学通讯(教师阅读)》2008年第03期新课程标准实施以来,数学教育评价的目标和内容也相应的做出了调整,由单一的注重基础知识与基本技能的评价转向注重知识与技能、过程与方法和情感态度相结合的评价.下面我们通过采用量化与质性评价相结合的方式分析重庆上海两地的中考试题.由于通常我们计算试题的平均难度实际上是被测试者的水平,而不是试题本身的难度;平均难度只是一个单一的量值,既不能告诉我们试题的难度特征,也不能反映学生在解题中需要做出什么样的努力,同时也掩盖了题目本身所包含的丰富的信息,如探究的水平、与实际生活的联系程度等〔1〕.因此我们需要寻找一种新的方式来评价数学试题的难度.本文以鲍建生在[1]中设计的数学课程的综合难度模型为工具对2007年的上海、重庆两市的中考数学试题的综合难度进行研究.Nohara在一份提交给美国国家教育统计中心的工作报告中,首次提出了总体难度(Over all difficulty)的概念,其中涉及了四个难度因素:(1) 包含“扩展性问题”的百分比;(2) 包含“实际背景”的题目的百分比;(3) 包含“运算”的题目的百分比,其中不包括属于“数量”部分的题目;(4) 包含“多步推理”的题目的百分比.根据我国数学课程的具体情况,鲍建生在文[1]中对Nohara的总体难度作如下的调整:一是参照模型中的“背景”、“运算”和“推理”三个因素,但在每个因素的水平划分上进一步加细;二是取消上述模型中的“题型”因素,而代之以两个新的因素:其一是“知识含量”,用以考察每个题目中知识点的综合程度;其二是“探究”,用以反映数学题的开放和探究程度.建立了如图1的难度综合模型:上述模型不仅能够较好地反映出数学题的综合难度水平,同时也概括了完整的数学活动过程:首先是“具体材料的经验组织化”,也即从现实“背景”中的问题情境出发,经过数学化的“探究”过程,提炼出数学的问题或者模型;其次是通过“数学材料的逻辑组织化”产生各种数学“知识”,其中包括数学概念和思想方法,而在这个过程中主要的数学活动是“运算”与“推理”,当然也含有拓展性的“探究”;最后是“数学的应用”,又回到了现实的“背景”.此外,在五个难度因素中,“运算”、“推理”与“知识含量”在一定程度上代表了我国传统的“双基”,而“探究”与“背景”则多少反映了新课程改革的一种趋向.1 探究水平统计表明,重庆上海两地的试题中,属于“识记”水平的习题分别占46% 和48% ;属于“理解”水平的习题分别为50.5%和48% ;属于“探究”水平的习题分别是3.5%和4%.从图2中可以看到,两地的试题中属于各个水平的题目的百分比没有较大的差异.但是我们注意到的是两份试题中“探究”的水平都较低,这与我国的课程比较重视“理解”而较少关注过程有一定的关系.2 背景水平统计表明,重庆上海两市试题中不涉及实验背景的习题分别占67%和88% ;与“个人生活”有关的习题分别占15%与8% ;属于“职业与公共常识”的题目分别占18%和4% ;属于“科学情境”的习题都为0.从图3中可以看到,重庆的数学题在实际背景上的变化还是比较丰富的,其中特别是与学生“个人生活”和“职业与公共常识”有关的背景,占了全部习题的33% .相比之下,上海的数学题在背景的设置上比较欠缺,基本上属于“纯粹”的数学题.但值得注意地是二者在背景的选择上都比较注重联系地区社会生活实际.如重庆24题是以2006年重庆异常的高温天气作为背景,题目如下:如图4是我市去年夏季连续60天日最高气温统计图的一部分.根据上图提供的信息,回答下列问题:(1)若日最高气温为40℃及其以上的天数是日最高气温为30℃~35 ℃的天数的两倍,那么日最高气温为℃~35 ℃的天数有_________天,日最高气温为40℃及其以上的天数有_________天;(2)补全该条形统计图;(3)《重庆市高温天气劳动保护办法》规定,从今年6月1日起,劳动者在37℃及其以上的高温天气下工作,除用人单位全额支付工资外,还应享受高温补贴.具体补贴标准如下表:日最高气温37℃~40 ℃40 ℃~每人每天补贴(元)5~1010~20某建筑企业现有职工1000人,根据去年我市高温天气情况,在今年夏季同期的连续60天里,预计该企业最少要发放高温补贴共______元.这道试题以人们关注的天气问题为切入点,让学生在这种情境中经历一种数学化的过程.上海的试题也出现了背景问题,如21题、22题,它们关注学生的上网时间,药品降价等问题,以这些背景为切入点,分析背景,让学生体验一个数学与生活的联系,排除了一些伪情境化的可能.此外,还有一个值得注意的现象是,虽然目前都在提倡“科学探究”、“研究性学习、“跨学科综合活动”,但是在两地的试题中都没有出现以科技素材为背景的的问题.这与学生的知识背景有关,但是如何在数学考题中设置有意义的“科学情境”需要进一步研究.3 运算水平统计表明,重庆上海两地试题中不含有运算的题目的百分比分别为18%和20% ;包含“数值计算”的题目的百分比分别为39%和28% ;包含“简单符号运算”的题目的百分比分别是21%和28% ;包含“复杂符号运算”的题目的百分比分别是 22%和24%,如图5.虽然二者的差距不是很大,但是通过分析可以看出,重庆侧重于数值计算,而上海试题侧重于符号运算.从绝对比较的观点来看,两地对于运算的水平要求都比较高,这同我国注重双基的教学和考察的传统是一致的.4 推理水平统计表明,重庆上海两地的试题中不含推理成分的试题分别占到39%和36%;含有“简单推理”的习题分别占到36%和40%;含有“复杂推理”的习题分别占到25%和24%,如图6.从分析可以看出,二者题目的难度大致相同,简单推理和复杂推理的题目所占比例基本相同,没有较大差异.5 知识的综合程度统计表明,重庆上海两地的试题中只含有“一个知识点”的习题分别占39%和40% ;含有“两个知识点”的习题的百分比分别为36% 和44% ;含有“三个以上知识点”的习题的百分比分别是25% 和16% ,如图7.二者在试题上的知识综合程度上有显著差异,重庆试题的知识的综合程度比较高.对照具体的题目可以看到,两地在“知识的联系”上各有所侧重,重庆强调的是数学知识与实际背景的联系,而上海更注重数学知识本身的关联.通过比较分析,我们得出了如下的结论:(1)二者在推理、运算水平和知识含量上无较大差异,并且保持了我国注重双基考察的传统.(2)两地都注重了知识背景的考察,关注了试题与社会及生活的联系,让学生感受社会发展的变化.但值得注意的是两者在探究水平上要求都较低,对于过程性的评价较少.对于探究水平的考察应该加强.参考文献1 鲍建生.中英两国初中数学期望课程综合难度的比较[J].全球教育展望,2002(09)2 全日制义务教育数学课程标准(实验稿)[M].北京师范大学出版社,20013 马云鹏,张春莉.数学教育评价[M].高等教育出版社,2006(10)。
2007中考试题(参考答案)

[参考答案]一、选择题(每小题3分,共24分)二、填空题(每小题3分,共24分)9.2x≠10.xy1-=等11.4(填空2分,画图1分)12.25%13.2014.29215.n)2(16.如图三、(每题8分,共16分)17.解:=原式······················6分2=2=·······························8分18.解:设原来每天加固x米,根据题意,得·················1分926004800600=-+xx.·························3分去分母,得 1200+4200=18x(或18x=5400)················5分解得300x=.··············6分检验:当300x=时,20x≠(或分母不等于0).∴300x=是原方程的解.··············7分答:该地驻军原来每天加固300米.··············8分四、(每题10分,共20分)19.解:(1)1600wt=··························4分(2)160016004t t--····························8分16001600(4)(4)t tt t--=-64006400()(4)4t t t t--=.或··························9分答:每天多做)4(6400-t t(或tt464002-)件夏凉小衫才能完成任务.········ 10分20.解:在Rt△AEF和Rt△DEC中,∵EF⊥CE,∴∠FEC=90°,∴∠AEF+∠DEC=90°,而∠ECD+∠DEC=90°,∴∠AEF=∠ECD.·····················3分又∠FAE=∠EDC=90°.EF=EC∴Rt△AEF≌Rt△DCE.····················5分AE=CD.····················6分AD=AE+4.∵矩形ABCD的周长为32 cm,∴2(AE+AE+4)=32.····················8分解得,AE=6 (cm).···················· 10分五、(每题10分,共20分)21.(1)300;···················2分(2)1060;···················5分(3)15;···················8分(4)合理.理由中体现用样本估计总体即可.(只答“合理”得1分)···· 10分′AB CABC′′O第11题图t(时)第16题图2236223622362236223622.解:(1)法一:过O 作OE ⊥AB 于E ,则AE =21AB =23. ················ 1分 在Rt △AEO 中,∠BAC =30°,cos30°=OAAE. ∴OA =︒30cos AE =2332=4. …………………………3分又∵OA =OB ,∴∠ABO =30°.∴∠BOC =60°. ∵AC ⊥BD ,∴BC CD =.∴∠COD =∠BOC =60°.∴∠BOD =120°. ················· 5分∴S 阴影=2π360n OA ⋅=212016π4π3603=. ···················· 6分法二:连结AD . ······················ 1分∵AC ⊥BD ,AC 是直径,∴AC 垂直平分BD . ……………………2分 ∴AB =AD ,BF =FD ,BC CD =. ∴∠BAD =2∠BAC =60°,∴∠BOD =120°. ……………………3分 ∵BF =21AB =23,sin60°=AB AF ,AF =AB ·sin60°=43×23=6. ∴OB 2=BF 2+OF 2.即222(6)OB OB +-=.∴OB =4. ······················· 5分∴S 阴影=31S 圆=16π3. ······················ 6分法三:连结BC .………………………………………………………………………………1分∵AC 为⊙O 的直径, ∴∠ABC =90°.∵AB =43,∴8cos30AB AC ==︒. ……………………3分∵∠A =30°, AC ⊥BD , ∴∠BOC =60°,∴∠BOD =120°.∴S 阴影=360120π·OA 2=31×42·π=16π3.……………………6分以下同法一.(2)设圆锥的底面圆的半径为r ,则周长为2πr , ∴1202ππ4180r =. ∴43r =. ·························· 10分 23.解:(1)P (抽到2)=142=.…………………………………………………………3分 (2)根据题意可列表第一次抽第二次抽····················· 5分从表(或树状图)中可以看出所有可能结果共有16种,符合条件的有10种, ∴P (两位数不超过32)=851610=. ·················· 7分 ∴游戏不公平. ·················· 8分调整规则:法一:将游戏规则中的32换成26~31(包括26和31)之间的任何一个数都能使游戏公平.································ 10分法二:游戏规则改为:抽到的两位数不超过32的得3分,抽到的两位数不超过32的得5分;能使游戏公平. ················· 10分 法三:游戏规则改为:组成的两位数中,若个位数字是2,小贝胜,反之小晶胜.(只要游戏规则调整正确即得2分)六、(每题10分,共20分)24. 解:(1)设按优惠方法①购买需用1y 元,按优惠方法②购买需用2y 元 ··· 1分 ,6054205)4(1+=⨯+⨯-=x x y725.49.0)4205(2+=⨯⨯+=x x y . ············· 3分 (2)设12y y >,即725.4605+>+x x ,∴24>x .当24>x 整数时,选择优惠方法②. ··········· 5分设12y y =,∴当24=x 时,选择优惠方法①,②均可.∴当424x <≤整数时,选择优惠方法①. ·········· 7分(3)因为需要购买4个书包和12支水性笔,而2412<,购买方案一:用优惠方法①购买,需12060125605=+⨯=+x 元; ···· 8分购买方案二:采用两种购买方式,用优惠方法①购买4个书包,需要204⨯=80元,同时获赠4支水性笔;用优惠方法②购买8支水性笔,需要8590%36⨯⨯=元.共需80+36=116元.显然116<120. ············ 9分 ∴最佳购买方案是:用优惠方法①购买4个书包,获赠4支水性笔;再用优惠方法②购买8支水性笔.··············· 10分七、(12分) 25.(1)判断:EN 与MF 相等 (或EN=MF ),点F 在直线NE 上, ······· 3分 (说明:答对一个给2分) (2)成立. ······························ 4分 证明:法一:连结DE ,DF . ·························· 5分∵△ABC 是等边三角形, ∴AB =AC =BC . 又∵D ,E ,F 是三边的中点,∴DE ,DF ,EF 为三角形的中位线.∴DE =DF =EF ,∠FDE =60°.又∠MDF +∠FDN =60°, ∠NDE +∠FDN =60°, ∴∠MDF =∠NDE . ··························· 7分 在△DMF 和△DNE 中,DF =DE ,DM =DN , ∠MDF =∠NDE ,∴△DMF ≌△DNE . ··························8分 ∴MF =NE . ··························9分法二:延长EN ,则EN 过点F . ······················· 5分∵△ABC 是等边三角形, ∴AB =AC =BC . 又∵D ,E ,F 是三边的中点, ∴EF =DF =BF . ∵∠BDM +∠MDF =60°, ∠FDN +∠MDF =60°, ∴∠BDM =∠FDN . ···························· 7分又∵DM =DN , ∠ABM =∠DFN =60°,∴△DBM ≌△DFN . ··························· 8分 ∴BM =FN .∵BF =EF , ∴MF =EN . ························· 9分 法三:连结DF ,NF . ···························· 5分 ∵△ABC 是等边三角形, ∴AC =BC =AC .又∵D ,E ,F 是三边的中点, ∴DF 为三角形的中位线,∴DF =21AC =21AB =DB . 又∠BDM +∠MDF =60°, ∠NDF +∠MDF =60°,∴∠BDM =∠FDN . ··························· 7分N C A B F M D E NC A B F MD EFBC在△DBM 和△DFN 中,DF =DB ,DM =DN , ∠BDM =∠NDF ,∴△DBM ≌△DFN .∴∠B =∠DFN =60°. ·························· 8分 又∵△DEF 是△ABC 各边中点所构成的三角形, ∴∠DFE =60°. ∴可得点N 在EF 上,∴MF =EN . ·························· 9分 (3)画出图形(连出线段NE ), ····················· 11分MF 与EN 相等的结论仍然成立(或MF =NE 成立). ·············· 12分八、(14分)26.(1) 利用中心对称性质,画出梯形OABC . ················ 1分∵A ,B ,C 三点与M ,N ,H 分别关于点O 中心对称,∴A (0,4),B (6,4),C (8,0) ·················· 3分(写错一个点的坐标扣1分)(2)设过A ,B ,C 三点的抛物线关系式为2y ax bx c =++, ∵抛物线过点A (0,4),∴4c =.则抛物线关系式为24y ax bx =++. ············· 4分 将B (6,4), C (8,0)两点坐标代入关系式,得3664464840a b a b ++=⎧⎨++=⎩,.·························· 5分 解得1432a b ⎧=-⎪⎪⎨⎪=⎪⎩,. ···························· 6分所求抛物线关系式为:213442y x x =-++. ·············· 7分 (3)∵OA =4,OC =8,∴AF =4-m ,OE =8-m . ··············· 8分∴AGF EOF BEC EFGB ABCO S S S S S =---△△△四边形梯形 21=OA (AB +OC )12-AF ·AG 12-OE ·OF 12-CE ·OAm m m m m 421)8(21)4(2186421⨯-----+⨯⨯=)( 2882+-=m m ( 0<m <4) ············· 10分∵2(4)12S m =-+. ∴当4m =时,S 的取最小值.又∵0<m <4,∴不存在m 值,使S 的取得最小值. ············ 12分 (4)当2m =-+GB =GF ,当2m =时,BE =BG . ·········· 14分OMN HA C E F DB↑ → -8(-6,-4)xy。
2007年上海市数学中考

2007年上海市初中毕业生统一学业考试数学试卷考生注意:1.本卷含四大题,共25题;2.除第一、二大题外,其余各题如无特别说明,都必须写出证明或计算的主要步骤. 一、填空题:(本大题共12题,满分36分)[只要求直接写出结果,每个空格填对得3分,否则得零分]1.计算:2= .2.分解因式:222a ab -= .3.化简:111x x -=+ . 4.已知函数3()2f x x =+,则(1)f = .5.函数y =的定义域是 .6.若方程2210x x --=的两个实数根为1x ,2x ,则12x x += .72=的根是 .8.如图1,正比例函数图象经过点A ,该函数解析式是 .9.如图2,E 为平行四边形ABCD 的边BC 延长线上一点,连结AE ,交边CD 于点F .在不添加辅助线的情况下,请写出图中一对相似三角形: .10.如果两个圆的一条外公切线长等于5,另一条外公切线长等于23a +,那么a = . 11.如图3,在直角坐标平面内,线段AB 垂直于y 轴,垂足为B ,且2AB =,如果将线段AB 沿y 轴翻折,点A 落在点C 处,那么点C 的横坐标是 .图1图2图3图412.图4是44⨯正方形网格,请在其中选取一个白色的单位正方形并涂黑,使图4中黑色部分是一个中心对称图形. 二、选择题:(本大题共4题,满分16分)【下列各题的四个结论中,有且只有一个结论是正确的,把正确结论的代号写在题后的圆括号内,选对得4分;不选、错选或者多选得零分】 13.在下列二次根式中,与a 是同类二次根式的是( ) A .2aB .23aC .3aD .4a14.如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么( ) A .0k >,0b >B .0k >,0b <C .0k <,0b >D .0k <,0b <15.已知四边形ABCD 中,90A B C ===o∠∠∠,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是( ) A .90D =o∠B .AB CD =C .AD BC =D .BC CD =16.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图5所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是( ) A .第①块 B .第②块 C .第③块 D .第④块 三、(本大题共5题,满分48分) 17.(本题满分9分) 解不等式组:3043326x x x ->⎧⎪⎨+>-⎪⎩,,并把解集在数轴上表示出来.18.(本题满分9分)解方程:22321011x x x x x --+=--.19.(本题满分10分,第(1)小题满分6分,第(2)小题满分4分)如图6,在直角坐标平面内,O 为原点,点A 的坐标为(100),,点B 在第一象限内,5BO =,3sin 5BOA =∠.求:(1)点B 的坐标;(2)cos BAO ∠的值.20.(本题满分10分,第(1)小题满分4分,第(2),(3)小题满分各3分)5- 1- 4- 3- 2- 0 1 2 3 4 5图6x O By图5初三学生小丽、小杰为了解本校初二学生每周上网的时间,各自在本校进行了抽样调查.小丽调查了初二电脑爱好者中40名学生每周上网的时间,算得这些学生平均每周上网时间为2.5小时;小杰从全体初二学生名单中随机抽取了40名学生,调查了他们每周上网的时间,算得这些学生平均每周上网时间为1.2小时.小丽与小杰整理各自样数据,如表一所示.请根据上述信息,回答下列问题:(1)你认为哪位学生抽取的样本具有代表性?答: ; 估计该校全体初二学生平均每周上网时间为 小时;(2)根据具体代表性的样本,把图7中的频数分布直方图补画完整; (3)在具有代表性的样本中,中位数所在的时间段是 小时/周.(每组可含最低值,不含最高值) 表一 21.(本题满分10分)2001年以来,我国曾五次实施药品降价,累计降价的总金额为269亿元,五次药品降价的年份与相应降价金额如表二所示,表中缺失了2003年、2007年相关数据.已知2007年药品降价金额是2003年药品降价金额的6倍,结合表中信息,求2003年和2007年的药品降四、(本大题共4题,满分50分) 22.(本题满分12分,每小题满分各6分)在直角坐标平面内,二次函数图象的顶点为(14)A ,,且过点(30)B ,. (1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x 轴的另一个交点的坐标.图7 (每组可含最低值,不含最高值) 小时/周23.(本题满分12分,每小题满分各6分)如图8,在梯形ABCD 中,AD BC ∥,CA 平分BCD ∠,DE AC ∥,交BC 的延长线于点E ,2B E =∠∠. (1)求证:AB DC =; (2)若tg 2B =,AB =BC 的长. 24.(本题满分12分,每小题满分各4分) 如图9,在直角坐标平面内,函数my x=(0x >,m 是常数)的图象经过(14)A ,,()B a b ,,其中1a >.过点A 作x 轴垂线,垂足为C ,过点B 作y 轴垂线,垂足为D ,连结AD ,DC ,CB .(1)若ABD △的面积为4,求点B 的坐标; (2)求证:DC AB ∥;(3)当AD BC =时,求直线AB 的函数解析式.25.(本题满分14分,第(1)小题满分4分,第(2),(3)小题满分各5分)已知:60MAN =o∠,点B 在射线AM 上,4AB =(如图10).P 为直线AN 上一动点,以BP 为边作等边三角形BPQ (点B P Q ,,按顺时针排列),O 是BPQ △的外心. (1)当点P 在射线AN 上运动时,求证:点O 在MAN ∠的平分线上; (2)当点P 在射线AN 上运动(点P 与点A 不重合)时,AO 与BP 交于点C ,设AP x =,AC AO y =g ,求y 关于x 的函数解析式,并写出函数的定义域;(3)若点D 在射线AN 上,2AD =,圆I 为ABD △的内切圆.当BPQ △的边BP 或BQ 与圆I 相切时,请直接写出点A 与点O 的距离.图8图9图10备用图2007年上海市初中毕业生统一学业考试数学试卷答案要点与评分标准说明:1.解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分.2.第一大题只要求直接写出结果,每个空格填对得3分,否则得零分;第二大题每题选对得4分,不选、错选或者多选得零分;17题至25题中右端所注的分数,表示考生正确做对这一步应得分数,评分时,给分或扣分均以1分为单位. 答案要点与评分标准一、填空题(本大题共12题,满分36分) 1.3 2.2()a a b - 3.1(1)x x + 4.1 5.2x ≥ 6.2 7.3x =-8.3y x = 9.AFD EFC △∽△(或EFC EAB △∽△,或EAB AFD △∽△) 10.1 11.2- 12.答案见图1二、选择题(本大题共4题,满分16分) 13. C 14.B 15.D 16.B 三、(本大题共5题,满分48分) 17.解:由30x ->,解得3x <. ··································································· 3分由43326x x+>-,解得1x >-. ······································································· 3分 ∴不等式组的解集是13x -<<. ······································································ 1分解集在数轴上表示正确. ················································································· 2分 18.解:去分母,得23(21)(1)0x x x x -+-+=, ··············································· 3分 整理,得23210x x --=, ·············································································· 2分解方程,得12113x x ==-,. ·········································································· 2分 经检验,11x =是增根,213x =-是原方程的根,∴原方程的根是13x =-. ·············· 2分 19.解:(1)如图2,作BH OA ⊥,垂足为H , ················································· 1分在Rt OHB △中,5BO =Q ,3sin 5BOA ∠=,3BH ∴=.·································································································· 2分图14OH ∴=.……………………………… 1分∴点B 的坐标为(43),.……………………2分(2)Q 10OA =,4OH =,6AH ∴=.………………1分 在Rt AHB △中,3BH =Q,AB ∴= 1分cos 5AH BAO AB ∴∠==.………………………………2分 20.(1)小杰;1.2. ·············································································· 2分,2分(2)直方图正确. ························································································· 3分 (3)0~1. ··································································································· 3分 21.解:[解法一]设2003年和2007年的药品降价金额分别为x 亿元、y 亿元. ·········· 1分 根据题意,得226543540269y x x y =⎧⎨++++=⎩………………………………………………………………分………………………………………………分解方程组,得2220120x y =⎧⎨=⎩………………………………………………………………………分………………………………………………………………………分答:2003年和2007年的药品降价金额分别为20亿元和120亿元. ·························· 1分 [解法二]设2003年的药品降价金额为x 亿元, ······················································ 1分 则2007年的药品降价金额为6x 亿元. ······························································· 2分 根据题意,得5435406269x x ++++=. ························································ 2分 解方程,得20x =,6120x ∴=. ···································································· 4分 答:2003年和2007年的药品降价金额分别为20亿元和120亿元. ·························· 1分 四、(本大题共4题,满分50分) 22.解:(1)设二次函数解析式为2(1)4y a x =--, ··········································· 2分Q 二次函数图象过点(30)B ,,044a ∴=-,得1a =. ········································· 3分 ∴二次函数解析式为2(1)4y x =--,即223y x x =--. ···································· 1分(2)令0y =,得2230x x --=,解方程,得13x =,21x =-. ·························· 2分∴二次函数图象与x 轴的两个交点坐标分别为(30),和(10)-,.∴二次函数图象向右平移1个单位后经过坐标原点. ············································· 2分平移后所得图象与x 轴的另一个交点坐标为(40),. ··············································· 2分23.(1)证明:DE AC Q ∥,BCA E ∴∠=∠. ·························································································· 1分 CA Q 平分BCD ∠,2BCD BCA ∴∠=∠, ···················································································· 1分 2BCD E ∴∠=∠, ························································································ 1分x又2B E ∠=∠Q ,B BCD ∴∠=∠. ·························································································· 1分 ∴梯形ABCD 是等腰梯形,即AB DC =. ························································· 2分 (2)解:如图3,作AF BC ⊥,DG BC ⊥, 垂足分别为F G ,,则AF DG ∥.在Rt AFB △中,tg 2B =,2AF BF ∴=.…………1分又AB =Q 222AB AF BF =+,2254BF BF ∴=+,得1BF =.……………………1分同理可知,在Rt DGC △中,1CG =.……………1分 AD BC Q ∥,DAC ACB ∴∠=∠.又ACB ACD ∠=∠Q ,DAC ACD ∴∠=∠,AD DC ∴=.DC AB ==QAD ∴=. ···································································· 1分AD BC Q ∥,AF DG ∥,∴四边形AFGD是平行四边形,FG AD ∴==. ···· 1分2BC BF FG GC ∴=++=+.··································································· 1分24.(1)解:Q 函数(0my x x=>,m 是常数)图象经过(14)A ,,4m ∴=. ··········· 1分 设BD AC ,交于点E ,据题意,可得B 点的坐标为4a a ⎛⎫ ⎪⎝⎭,,D 点的坐标为40a ⎛⎫ ⎪⎝⎭,,E 点的坐标为41a ⎛⎫⎪⎝⎭,, ···················································································· 1分 1a >Q ,DB a ∴=,44AE a=-. 由ABD △的面积为4,即14442a a ⎛⎫-= ⎪⎝⎭, ······················································· 1分 得3a =,∴点B 的坐标为433⎛⎫ ⎪⎝⎭,. ··································································· 1分 (2)证明:据题意,点C 的坐标为(10),,1DE =,1a >Q ,易得4EC a=,1BE a =-, 111BE a a DE -∴==-,4414AE a a CEa-==-. ····················································· 2分FE图3BE AEDE CE∴=. ······························································································ 1分 DC AB ∴∥. ······························································································ 1分 (3)解:DC AB Q ∥,∴当AD BC =时,有两种情况: ①当AD BC ∥时,四边形ADCB 是平行四边形,由(2)得,1BE AEa DE CE==-,11a ∴-=,得2a =.∴点B 的坐标是(2,2). ··············································································· 1分设直线AB 的函数解析式为y kx b =+,把点A B ,的坐标代入,得422k b k b =+⎧⎨=+⎩,解得26.k b =-⎧⎨=⎩,∴直线AB 的函数解析式是26y x =-+. ··························································· 1分②当AD 与BC 所在直线不平行时,四边形ADCB 是等腰梯形,则BD AC =,4a ∴=,∴点B 的坐标是(4,1). ············································· 1分 设直线AB 的函数解析式为y kx b =+,把点A B ,的坐标代入,得414.k b k b =+⎧⎨=+⎩,解得15k b =-⎧⎨=⎩,∴直线AB 的函数解析式是5y x =-+. ····························································· 1分综上所述,所求直线AB 的函数解析式是26y x =-+或5y x =-+. 25.(1)证明:如图4,连结OB OP ,,O Q 是等边三角形BPQ 的外心,OB OP ∴=, ··················································· 1分 圆心角3601203BOP ∠==oo . 当OB 不垂直于AM 时,作OH AM ⊥,OT AN ⊥,垂足分别为H T ,. 由360HOT A AHO ATO ∠+∠+∠+∠=o,且60A ∠=o,90AHO ATO ∠=∠=o ,120HOT ∴∠=o .BOH POT ∴∠=∠. ····················································································· 1分 Rt Rt BOH POT ∴△≌△. ··········································································· 1分 OH OT ∴=.∴点O 在MAN ∠的平分线上. ···················································· 1分 当OB AM ⊥时,36090APO A BOP OBA ∠=-∠-∠-∠=oo. 即OP AN ⊥,∴点O 在MAN ∠的平分线上.综上所述,当点P 在射线AN 上运动时,点O 在MAN ∠的平分线上.(2)解:如图5,AO Q 平分MAN ∠,且60MAN ∠=o ,30BAO PAO ∴∠=∠=o . ·············································································· 1分 由(1)知,OB OP =,120BOP ∠=o,30CBO ∴∠=o ,CBO PAC ∴∠=∠.BCO PCA ∠=∠Q ,AOB APC ∴∠=∠. ························································· 1分 ABO ACP ∴△∽△. AB AOAC AP∴=.AC AO AB AP ∴=g g .4y x ∴=. ·············································· 1分 定义域为:0x >.························································································· 1分 (3)解:①如图6,当BP 与圆I相切时,AO = ······································· 2分 ②如图7,当BP 与圆I相切时,AO =; ··················································· 1分 ③如图8,当BQ 与圆I 相切时,0AO =. ························································ 2分图6图7M图8图4图5。
2007年全国各地中考试题130多份标题汇总

2007年全国各地中考试题130多份标题汇总2007年安徽省初中毕业学业考试数学试卷及答案2007年安徽省芜湖市初中毕业学业考试数学试卷及参考答案2007年北京市高级中等学校招生统一考试数学试卷及参考答案2007年福建省福州市毕业会考、高级中等学校招生考试卷及答案(扫描)2007年福建省福州市初中毕业会考、高级中等学校招生考试数学试卷及答案2007年福建省龙岩市初中毕业、升学考试数学试题及参考答案2007年福建省宁德市初中毕业、升学考试数学试题及参考答案2007年福建省泉州市初中毕业、升学考试数学试题2007年福建省三明市初中毕业生学业考试数学试题及参考答案2007年福建省厦门市初中毕业和高中阶段各类学校招生数学试题及答案2007年甘肃省白银等3市旧课程数学试题2007年甘肃省白银等7市新课程中考数学试题及参考答案2007年甘肃省兰州市初中毕业生学业考试数学试卷A卷及参考答案2007年甘肃省陇南市中考数学试题及参考答案2007年广东省初中毕业生学业考试数学试题2007年广东省佛山市高中阶段学校招生考试数学试卷2007年广东省广州市初中毕业生学业考试数学试卷2007年广东省茂名市初中学业与高中阶段学校招生考试试题及答案2007年广东省梅州市初中毕业生学业考试数学试题及参考答案2007年广东省韶关市初中毕业生学业考试数学试题及参考答案2007年广东省深圳市初中毕业生学业考试数学试卷及参考答案2007年广东省中山市初中毕业生学业考试数学试卷及参考答案2007年广西省河池市中等学校招生统一考试数学试题及参考答案(课改区)2007年广西省柳州市、北海市中考数学试卷(课改实验区用)2007年广西省南宁市中等学校招生考试(课改实验区)数学试题及参考答案2007年广西省玉林市、防城港市初中毕业升学考试数学试题及参考答案2007年广西省中等学校招生河池市统一考试数学试题及答案(非课改区)2007年贵州省安顺市初中毕业生学业课改实验区数学科试题2007年贵州省毕节地区高中、中专、中师招生统一考试2007年贵州省贵阳市初中毕业生学业考试数学试卷及参考答案2007年贵州省黔东南高中、中专、中师招生统一考试数学试题2007年贵州省遵义市初中学业统一考试数学试卷2007年海南省初中毕业升学考试数学试题2007年河北省初中毕业生升学考试数学试卷及参考答案2007年河北省课程改革实验区初中毕业生学业考试试题及参考答案2007年河南省高级中等学校招生学业考试试卷2007年河南省开封市高中阶段各类学校招生考试题2007年黑龙江省哈尔滨市初中升学考试数学试卷2007年黑龙江省牡丹江市课程改革实验区初中毕业学业考试数学试题2007年湖北省恩施自治州初中毕业、升学考试数学及答案2007年湖北省黄冈市普通高中和中等职业学校招生考试数学试题2007年湖北省荆门市初中毕业生学业考试数学试卷(含答案)(扫描版)2007年湖北省荆门市初中毕业生学业考试数学试题及参考答案2007年湖北省荆州市中考数学试题2007年湖北省潜江市、仙桃市、江汉油田初中毕业生学业考试试题及答案2007年湖北省十堰市初中毕业生学业考试数学试卷2007年湖北省武汉市新课程初中毕业生学业考试数学试卷2007年湖北省咸宁市初中毕业生学业考试数学试卷2007年湖北省襄樊市初中毕业、升学统一考试非课改区数学试题及参考答案2007年湖北省孝感市初中毕业生学业考试数学及答案2007年湖北省宜昌市初中毕业生学业考试数学试题及参考答案2007年湖南省长沙市初中毕业学业考试试卷及答案2007年湖南省常德市初中毕业学业考试数学试卷2007年湖南省郴州市基教试验区初中毕业学业考试数学试卷及答案2007年湖南省怀化市初中毕业学业考试数学试卷及参考答案2007年湖南省邵阳市初中毕业学业考试试题卷2007年湖南省湘潭市初中毕业学业考试数学试卷2007年湖南省永州市初中毕业学业考试数学试卷2007年湖南省岳阳市初中毕业学业考试试卷及参考答案2007年湖南省株洲市初中毕业学业考试数学试卷2007年吉林省长春市初中毕业生学业考试数学试题及答案2007年吉林省初中毕业生学业考试数学试题及参考答案2007年江苏省常州市初中毕业、升学统一考试数学试卷及参考答案2007年江苏省淮安市初中毕业暨中等学校招生文化统一考试数学试题2007年江苏省连云港市中考数学试题与参考答案2007年江苏省南京市初中毕业学业考试数学试题及参考答案2007年江苏省南通市初中毕业、升学考试数学试题2007年江苏省苏州市初中毕业暨升学考试试卷及参考答案2007年江苏省宿迁市中考数学试卷及参考答案2007年江苏省泰州市初中毕业、升学统一考试数学试题及答案2007年江苏省无锡市初中毕业高级中等学校招生考试数学试卷及参考答案2007年江苏省徐州市初中毕业、升学考试数学试题2007年江苏省盐城高中阶段招生统一考试数学试题(扫描版)2007年江苏省扬州市初中毕业、升学考试数学及参考答案(扫描版)2007年江苏省扬州市初中毕业、升学统一考试数学试题及参考答案2007年江苏省中考数学试卷及参考答案2007年江西省南昌市初中毕业暨中等学校招生考试数学试卷及参考答案2007年江西省中等学校招生考试数学试题及参考答案2007年辽宁省大连市初中毕业升学统一考试数学试题2007年辽宁省沈阳市中等学校招生统一考试数学试题及参考答案2007年辽宁省十二市初中毕业生学业考试数学试卷及参考答案2007年内蒙古自治区赤峰市初中毕业、升学统一考试数学试卷及参考答案2007年内蒙古自治区鄂尔多斯市初中毕业升学考试数学试题及参考答案2007年内蒙古自治区呼和浩特市中考数学试卷及参考答案2007年内蒙古自治区乌兰察布市初中升学考试数学试题及参考答案2007年宁夏回族自治区课改实验区初中毕业暨高中招生考试试题及答案2007年山东省滨州市中等学校招生统一考试数学试卷及参考答案2007年山东省德州市中等学校招生考试数学试题及参考答案2007年山东省东营市初中毕业暨高中阶段教育学校招生考试数学试题及答案2007年山东省济南市高中阶段学校招生考试数学试题及答案2007年山东省济宁市中等学校招生考试数学试题及参考答案2007年山东省聊城市普通高中招生统一考试数学试卷及参考答案2007年山东省临沂市初中毕业与高中招生考试考数学试卷及答案(扫描版)2007年山东省临沂市初中毕业与高中招生考试数学试题(Word版含答案)2007年山东省青岛市中考数学试卷(含答案)2007年山东省日照市中等学校统一招生考试数学试题及参考答案2007年山东省泰安市年中等学校招生考试数学试卷(课改实验区用)2007年山东省泰安市中等学校招生考试数学试卷及参考答案(非课改区)2007年山东省威海市初中升学考试数学试题及参考答案2007年山东省潍坊市初中学业水平考试数学试卷及参考答案2007年山东省烟台市初中毕业、升学统一考试数学试卷2007年山东省枣庄市中等学校招生考试数学试题及答案2007年山东省中等学校招生考试数学试题2007年山东省淄博市中等学校招生考试数学试题2007年山西省临汾市初中毕业生学业数学考试试题及参考答案2007年陕西省基础教育课程改革实验区初中毕业学业考试数学试题2007年上海市初中毕业生统一学业考试试卷及答案2007年四川省巴中市高中阶段教育招生考试2007年四川省成都市高中阶段教育学校统一招生考试试卷及参考答案2007年四川省德阳市初中毕业生学业考试数学试卷及答案2007年四川省乐山市高中阶段教育学校招生统一考试数学试题及参考答案2007年四川省泸州市初中毕业暨高中阶段学校招生统一考试数学试题及答案2007年四川省眉山市高中阶段教育学校招生考试数学试卷及参考答案2007年四川省绵阳市高级中等教育学校招生统一考试数学试题(含答案)2007年四川省内江初中毕业会考暨高中阶段招生考试试卷2007年四川省内江市初中毕业会考暨高中阶段招生考试数学试卷及参考答案2007年四川省南充市高中阶段学校招生统一考试数学试卷及参考答案2007年四川省宜宾市高中阶段学校招生考试数学试卷2007年四川省资阳市高中阶段学校招生统一考试数学试题及参考答案2007年四川省自贡市初中毕业暨升学考试数学试题及参考答案2007年台湾地区中考数学第一次测验试题及参考答案2007年天津市中考数学试卷及答案2007年云南省高中(中专)招生统一考试(课改实验区)数学试题及答案2007年云南省昆明市高中(中专)招生统一考试数学试卷2007年云南省双柏县初中毕业考试数学试卷(含答案)2007年浙江省初中毕业生学业考试数学试题及参考答案2007年浙江省杭州市数学中考试题及参考答案2007年浙江省湖州市初中毕业生学业考试数学试卷及参考答案2007年浙江省嘉兴市初中毕业生学业考试数学参考答案2007年浙江省嘉兴市初中毕业生学业考试数学试卷2007年浙江省金华中考数学试题及参考答案2007年浙江省丽水市初中毕业生学业考试数学试卷及参考答案2007年浙江省宁波市中考数学试题及参考答案2007年浙江省衢州市初中毕业生学业水平考试数学试题及参考答案2007年浙江省绍兴市初中毕业生学业考试数学试卷2007年浙江省台州市初中毕业生学业考试数学试卷及参考答案2007年浙江省温州市初中毕业学业考试数学试卷2007年浙江省义乌市初中毕业生学业考试数学试题及参考答案2007年浙江省舟山市初中毕业生学业考试数学试题及参考答案2007年重庆市初中毕业生学业暨高中招生考试试卷及参考答案。
2007年普通高等学校招生全国统一考试数学卷(上海.文)含答案

1CCB1B1AA2007年全国普通高等学校招生统一考试(上海卷)数学试卷(文史类)考生注意:1.答卷前,考生务必将姓名、高考准考证号、校验码等填写清楚.2.本试卷共有21道试题,满分150分.考试时间120分钟.请考生用钢笔或圆珠笔将答案直接写在试卷上.一.填空题(本大题满分44分)本大题共有11题,只要求直接填写结果,每个空格填对得4分,否则一律得零分.1.方程9131=-x 的解是 . 2.函数11)(-=x x f 的反函数=-)(1x f .3.直线014=-+y x 的倾斜角=θ . 4.函数πsec cos 2y x x ⎛⎫=+⎪⎝⎭的最小正周期=T . 5.以双曲线15422=-y x 的中心为顶点,且以该双曲线的右焦点为焦点的抛物线方程是 .6.若向量a b ,的夹角为60,1==b a ,则()a ab -= . 7.如图,在直三棱柱111C B A ABC -中,90=∠ACB , 21=AA ,1==BC AC ,则异面直线B A 1与AC 所成角的 大小是 (结果用反三角函数值表示).8.某工程由A B C D ,,,四道工序组成,完成它们需用时间依次为254x ,,,天.四道工 序的先后顺序及相互关系是:A B ,可以同时开工;A 完成后,C 可以开工;B C , 完成后,D 可以开工.若该工程总时数为9天,则完成工序C 需要的天数x 最大是 . 9.在五个数字12345,,,,中,若随机取出三个数字,则剩下两个数字都是奇数的概率是 (结果用数值表示). 10.对于非零实数a b ,,以下四个命题都成立:A BlC① 01≠+aa ; ② 2222)(b ab a b a ++=+; ③ 若||||b a =,则b a ±=; ④ 若ab a =2,则b a =.那么,对于非零复数a b ,,仍然成立的命题的所有序号是 . 11.如图,A B ,是直线l 上的两点,且2=AB .两个半径相等的动圆分别与l 相切于A B ,点,C 是这两个圆的公共点,则圆弧AC ,CB 与线段AB 围成图形面积S 的取值范围是 .二.选择题(本大题满分16分)本大题共有4 题,每题都给出代号为A ,B ,C ,D 的四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得4分,不选、选错或者选出的代号超过一个(不论是否都写在圆括号内),一律得零分.12.已知a b ∈R ,,且i 3,i 2++b a (i 是虚数单位)是一个实系数一元二次方程的两个根,那么a b ,的值分别是( )A.32a b =-=, B.32a b ==-, C.32a b =-=-, D.32a b ==,13.圆01222=--+x y x 关于直线032=+-y x 对称的圆的方程是( ) A.21)2()3(22=-++y x B.21)2()3(22=++-y x C.2)2()3(22=-++y xD.2)2()3(22=++-y x14.数列{}n a 中,22211100010012n n n a n n n n⎧⎪⎪=⎨⎪⎪-⎩,≤≤,,≥, 则数列{}n a 的极限值( ) A.等于0 B.等于1C.等于0或1D.不存在15.设)(x f 是定义在正整数集上的函数,且)(x f 满足:“当2()f k k ≥成立时,总可推 出(1)f k +≥2)1(+k 成立”. 那么,下列命题总成立的是( ) A.若1)1(<f 成立,则100)10(<f 成立 B.若4)2(<f 成立,则(1)1f ≥成立C.若(3)9f ≥成立,则当1k ≥时,均有2()f k k ≥成立D.若(4)25f ≥成立,则当4k ≥时,均有2()f k k ≥成立三.解答题(本大题满分90分)本大题共有6题,解答下列各题必须写出必要的步骤.16.(本题满分12分)在正四棱锥ABCD P -中,2=PA ,直线PA 与平面ABCD 所成的角为60,求 正四棱锥ABCD P -的体积V .17.(本题满分14分)在ABC △中,a b c ,,分别是三个内角A B C ,,的对边.若4π,2==C a ,5522cos=B ,求ABC △的面积S .PBCA D18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.近年来,太阳能技术运用的步伐日益加快.2002年全球太阳电池的年生产量达到670兆瓦,年生产量的增长率为34%. 以后四年中,年生产量的增长率逐年递增2%(如,2003年的年生产量的增长率为36%).(1)求2006年全球太阳电池的年生产量(结果精确到0.1兆瓦);(2)目前太阳电池产业存在的主要问题是市场安装量远小于生产量,2006年的实际安装量为1420兆瓦.假设以后若干年内太阳电池的年生产量的增长率保持在42%,到2010年,要使年安装量与年生产量基本持平(即年安装量不少于年生产量的95%),这四年中太阳电池的年安装量的平均增长率至少应达到多少(结果精确到0.1%)?19.(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分.已知函数0()(2≠+=x xax x f ,常数)a ∈R .(1)当2=a 时,解不等式12)1()(->--x x f x f ; (2)讨论函数)(x f 的奇偶性,并说明理由.小题满分9分.如果有穷数列123ma a a a ,,,,(m 为正整数)满足条件m a a =1,12-=m a a ,…,1a a m =,即1+-=i m i a a (12i m =,,,),我们称其为“对称数列”. 例如,数列12521,,,,与数列842248,,,,,都是“对称数列”. (1)设{}n b 是7项的“对称数列”,其中1234b b b b ,,,是等差数列,且21=b ,114=b .依次写出{}n b 的每一项;(2)设{}n c 是49项的“对称数列”,其中252649c c c ,,,是首项为1,公比为2的等比数列,求{}n c 各项的和S ;(3)设{}n d 是100项的“对称数列”,其中5152100d d d ,,,是首项为2,公差为3的等差数列.求{}n d 前n 项的和n S (12100)n =,,,.y O 1A2B2A 1B. . . M1FF2Fx. 小题满分9分.我们把由半椭圆12222=+b y a x (0)x ≥与半椭圆12222=+cx b y (0)x ≤合成的曲线称作“果圆”,其中222c b a +=,0>a ,0>>c b .如图,设点0F ,1F ,2F 是相应椭圆的焦点,1A ,2A 和1B ,2B 是“果圆” 与x ,y轴的交点,M 是线段21A A 的中点.(1)若012F F F △是边长为1的等边三角形,求该 “果圆”的方程;(2)设P 是“果圆”的半椭圆12222=+cx b y(0)x ≤上任意一点.求证:当PM 取得最小值时,P 在点12B B ,或1A 处;(3)若P 是“果圆”上任意一点,求PM 取得最小值时点P 的横坐标.PBCADO2007年全国普通高等学校招生统一考试(上海卷)数学试卷(文史类)答案要点一、填空题(第1题至第11题) 1. 1-=x 2. )0(11≠+x x3. 4arctan π- 4. π 5. x y 122= 6.217. 66arccos8. 39. 3.010. ② ④11. π022⎛⎤- ⎥⎝⎦,二、选择题(第12题至第15题)题 号 1213 1415答 案ACB D三、解答题(第16题至第21题)16.解:作⊥PO 平面ABCD ,垂足为O .连接AO ,O 是 正方形ABCD 的中心,PAO ∠是直线PA 与平面 A B C D 所成的角.PAO ∠= 60,2=PA .∴ 3=PO .1=AO ,2=AB ,112332333ABCD V PO S ∴==⨯⨯=.17.解: 由题意,得3cos 5B B =,为锐角,54sin =B ,10274π3sin )πsin(sin =⎪⎭⎫ ⎝⎛-=--=B C B A , 由正弦定理得 710=c , ∴ 111048sin 222757S ac B ==⨯⨯⨯=.18.解:(1) 由已知得2003,2004,2005,2006年太阳电池的年生产量的增长率依次为%36,%38,%40,%42. 则2006年全球太阳电池的年生产量为8.249942.140.138.136.1670≈⨯⨯⨯⨯(兆瓦).(2)设太阳电池的年安装量的平均增长率为x ,则441420(1)95%2499.8(142%)x ++≥.解得0.615x ≥.因此,这四年中太阳电池的年安装量的平均增长率至少应达到%5.61.19.解: (1)1212)1(222->----+x x x x x , 0122>--x x ,0)1(<-x x . ∴ 原不等式的解为10<<x . (2)当0=a 时,2)(x x f =, 对任意(0)(0)x ∈-∞+∞,,,)()()(22x f x x x f ==-=-,)(x f ∴为偶函数.当0≠a 时,2()(00)af x x a x x=+≠≠,, 取1±=x ,得 (1)(1)20(1)(1)20f f f f a -+=≠--=-≠,, (1)(1)(1)f f ff ∴-≠--≠,,∴ 函数)(x f 既不是奇函数,也不是偶函数.20.解:(1)设数列{}n b 的公差为d ,则1132314=+=+=d d b b ,解得 3=d , ∴数列{}n b 为25811852,,,,,,.(2)4921c c c S +++= 25492625)(2c c c c -+++= ()122212242-++++= ()3211222625-=--==67108861.(3)51100223(501)149d d ==+⨯-=,.由题意得 1250d d d ,,,是首项为149,公差为3-的等差数列. 当50n ≤时,n n d d d S +++= 21 n n n n n 230123)3(2)1(1492+-=--+=.当51100n ≤≤时,n n d d d S +++= 21()n d d d S ++++= 525150 (50)(51)37752(50)32n n n --=+-+⨯75002299232+-=n n . 综上所述,22330115022329975005110022n n n n S n n n ⎧-+⎪⎪=⎨⎪-+⎪⎩,≤≤,,≤≤.21.解:(1) ()()2222012(0)00F c F b c F b c ---,,,,,, ()222220212121F F bc c b F F b c ∴=-+===-=,,于是22223744c a b c ==+=,,所求“果圆”方程为2241(0)7x y x +=≥,2241(0)3y x x +=≤.(2)设()P x y ,,则2222||y c a x PM +⎪⎭⎫ ⎝⎛--=22222()1()04b a c x a c x b c x c ⎛⎫-=---++- ⎪⎝⎭,≤≤, 0122<-cb ,∴ 2||PM 的最小值只能在0=x 或c x -=处取到.即当PM 取得最小值时,P 在点12B B ,或1A 处.(3)||||21MA M A = ,且1B 和2B 同时位于“果圆”的半椭圆22221(0)x y x a b +=≥和半椭圆22221(0)y x x b c +=≤上,所以,由(2)知,只需研究P 位于“果圆”的半椭圆22221(0)x y x a b +=≥上的情形即可. 2222||y c a x PM +⎪⎭⎫ ⎝⎛--=22222222224)(4)(2)(c c a a c a b c c a a x a c ---++⎥⎦⎤⎢⎣⎡--=.当22()2a a c x a c -=≤,即2a c≤时,2||PM 的最小值在222)(c c a a x -=时取到, 此时P 的横坐标是222)(cc a a -. 当a cc a a x >-=222)(,即c a 2>时,由于2||PM 在a x <时是递减的,2||PM 的最小值在a x =时取到,此时P 的横坐标是a .综上所述,若2a c ≤,当||PM 取得最小值时,点P 的横坐标是222)(cc a a -;若c a 2>,当||PM 取得最小值时,点P 的横坐标是a 或c -.。
2007年上海市初中毕业统一学业考试度试题及答案

2007年上海市初中毕业生统一学业考试数学试卷考生注意:1.本卷含四大题,共25题;2.除第一、二大题外,其余各题如无特别说明,都必须写出证明或计算的主要步骤.一、填空题:(本大题共12题,满分36分)[只要求直接写出结果,每个空格填对得3分,否则得零分]1.计算:2= .2.分解因式:222a ab -= .3.化简:111x x -=+ . 4.已知函数3()2f x x =+,则(1)f = .5.函数y =的定义域是 .6.若方程2210x x --=的两个实数根为1x ,2x ,则12x x += .72=的根是 .8.如图1,正比例函数图象经过点A ,该函数解析式是 .9.如图2,E 为平行四边形ABCD 的边BC 延长线上一点,连结AE ,交边CD 于点F .在不添加辅助线的情况下,请写出图中一对相似三角形: .10.如果两个圆的一条外公切线长等于5,另一条外公切线长等于23a +,那么a = . 11.如图3,在直角坐标平面内,线段AB 垂直于y 轴,垂足为B ,且2AB =,如果将线段AB 沿y 轴翻折,点A 落在点C 处,那么点C 的横坐标是 .图1图2图3图412.图4是44⨯正方形网格,请在其中选取一个白色的单位正方形并涂黑,使图4中黑色部分是一个中心对称图形.二、选择题:(本大题共4题,满分16分)【下列各题的四个结论中,有且只有一个结论是正确的,把正确结论的代号写在题后的圆括号内,选对得4分;不选、错选或者多选得零分】 13.在下列二次根式中,与a 是同类二次根式的是( ) A .2aB .23aC .3aD .4a14.如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么( ) A .0k >,0b >B .0k >,0b <C .0k <,0b >D .0k <,0b <15.已知四边形ABCD 中,90A B C ===o∠∠∠,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是( ) A .90D =o∠B .AB CD =C .AD BC =D .BC CD =16.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图5所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是( ) A .第①块 B .第②块 C .第③块 D .第④块三、(本大题共5题,满分48分) 17.(本题满分9分)解不等式组:3043326x x x ->⎧⎪⎨+>-⎪⎩,,并把解集在数轴上表示出来.18.(本题满分9分)解方程:22321011x x x x x --+=--.19.(本题满分10分,第(1)小题满分6分,第(2)小题满分4分)如图6,在直角坐标平面内,O 为原点,点A 的坐标为(100),,点B 在第一象限内,5BO =,3sin 5BOA =∠.求:(1)点B 的坐标;(2)cos BAO ∠的值.20.(本题满分10分,第(1)小题满分4分,第(2),(3)小题满分各3分)5- 1-4-3- 2-012 3 45图6x OBy图5初三学生小丽、小杰为了解本校初二学生每周上网的时间,各自在本校进行了抽样调查.小丽调查了初二电脑爱好者中40名学生每周上网的时间,算得这些学生平均每周上网时间为2.5小时;小杰从全体初二学生名单中随机抽取了40名学生,调查了他们每周上网的时间,算得这些学生平均每周上网时间为1.2小时.小丽与小杰整理各自样数据,如表一所示.请根据上述信息,回答下列问题:(1)你认为哪位学生抽取的样本具有代表性?答: ; 估计该校全体初二学生平均每周上网时间为 小时;(2)根据具体代表性的样本,把图7中的频数分布直方图补画完整; (3)在具有代表性的样本中,中位数所在的时间段是 小时/周.时间段 (小时/周) 小丽抽样 人数 小杰抽样 人数0~1 6 22 1~2 10 10 2~3 16 6 3~4 8 2 (每组可含最低值,不含最高值)表一21.(本题满分10分)2001年以来,我国曾五次实施药品降价,累计降价的总金额为269亿元,五次药品降价的年份与相应降价金额如表二所示,表中缺失了2003年、2007年相关数据.已知2007年药品降价金额是2003年药品降价金额的6倍,结合表中信息,求2003年和2007年的药品降价金额.年份 2001 2003 2004 2005 2007 降价金额(亿元) 54 35 40表二四、(本大题共4题,满分50分)22.(本题满分12分,每小题满分各6分)在直角坐标平面内,二次函数图象的顶点为(14)A ,,且过点(30)B ,.(1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x 轴的另一个交点的坐标.图7 (每组可含最低值,不含最高值) 小时/周23.(本题满分12分,每小题满分各6分)如图8,在梯形ABCD 中,AD BC ∥,CA 平分BCD ∠,DE AC ∥,交BC 的延长线于点E ,2B E =∠∠. (1)求证:AB DC =; (2)若tg 2B =,AB =BC 的长.24.(本题满分12分,每小题满分各4分) 如图9,在直角坐标平面内,函数my x=(0x >,m 是常数)的图象经过(14)A ,,()B a b ,,其中1a >.过点A 作x 轴垂线,垂足为C ,过点B 作y 轴垂线,垂足为D ,连结AD ,DC ,CB .(1)若ABD △的面积为4,求点B 的坐标; (2)求证:DC AB ∥;(3)当AD BC =时,求直线AB 的函数解析式.25.(本题满分14分,第(1)小题满分4分,第(2),(3)小题满分各5分) 已知:60MAN =o∠,点B 在射线AM 上,4AB =(如图10).P 为直线AN 上一动点,以BP 为边作等边三角形BPQ (点B P Q ,,按顺时针排列),O 是BPQ △的外心. (1)当点P 在射线AN 上运动时,求证:点O 在MAN ∠的平分线上; (2)当点P 在射线AN 上运动(点P 与点A 不重合)时,AO 与BP 交于点C ,设AP x =,AC AO y =g ,求y 关于x 的函数解析式,并写出函数的定义域;(3)若点D 在射线AN 上,2AD =,圆I 为ABD △的内切圆.当BPQ △的边BP 或BQ 与圆I 相切时,请直接写出点A 与点O 的距离.图8图9图10备用图2007年上海市初中毕业生统一学业考试数学试卷答案要点与评分标准说明:1.解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分.2.第一大题只要求直接写出结果,每个空格填对得3分,否则得零分;第二大题每题选对得4分,不选、错选或者多选得零分;17题至25题中右端所注的分数,表示考生正确做对这一步应得分数,评分时,给分或扣分均以1分为单位. 答案要点与评分标准一、填空题(本大题共12题,满分36分) 1.3 2.2()a a b - 3.1(1)x x + 4.1 5.2x ≥ 6.2 7.3x =-8.3y x = 9.AFD EFC △∽△(或EFC EAB △∽△,或EAB AFD △∽△) 10.1 11.2- 12.答案见图1二、选择题(本大题共4题,满分16分) 13. C 14.B 15.D 16.B 三、(本大题共5题,满分48分) 17.解:由30x ->,解得3x <. ··································································· 3分由43326x x+>-,解得1x >-. ······································································· 3分 ∴不等式组的解集是13x -<<. ······································································ 1分解集在数轴上表示正确. ················································································· 2分 18.解:去分母,得23(21)(1)0x x x x -+-+=, ··············································· 3分 整理,得23210x x --=, ·············································································· 2分解方程,得12113x x ==-,. ·········································································· 2分 经检验,11x =是增根,213x =-是原方程的根,∴原方程的根是13x =-. ·············· 2分 19.解:(1)如图2,作BH OA ⊥,垂足为H , ··············································· 1分在Rt OHB △中,5BO =Q ,3sin 5BOA ∠=,3BH ∴=.·································································································· 2分图14OH ∴=.……………………………… 1分∴点B 的坐标为(43),.……………………2分(2)Q 10OA =,4OH =,6AH ∴=.………………1分 在Rt AHB △中,3BH =Q,AB ∴= 1分cos 5AH BAO AB ∴∠==.………………………………2分 20.(1)小杰;1.2. ············································································ 2分,2分(2)直方图正确. ························································································· 3分 (3)0~1. ··································································································· 3分 21.解:[解法一]设2003年和2007年的药品降价金额分别为x 亿元、y 亿元. ·········· 1分 根据题意,得226543540269y x x y =⎧⎨++++=⎩………………………………………………………………分………………………………………………分解方程组,得2220120x y =⎧⎨=⎩………………………………………………………………………分………………………………………………………………………分答:2003年和2007年的药品降价金额分别为20亿元和120亿元. ·························· 1分 [解法二]设2003年的药品降价金额为x 亿元, ······················································ 1分 则2007年的药品降价金额为6x 亿元. ······························································· 2分 根据题意,得5435406269x x ++++=. ························································ 2分 解方程,得20x =,6120x ∴=. ···································································· 4分 答:2003年和2007年的药品降价金额分别为20亿元和120亿元. ·························· 1分 四、(本大题共4题,满分50分)22.解:(1)设二次函数解析式为2(1)4y a x =--, ·········································· 2分Q 二次函数图象过点(30)B ,,044a ∴=-,得1a =. ········································· 3分 ∴二次函数解析式为2(1)4y x =--,即223y x x =--. ···································· 1分(2)令0y =,得2230x x --=,解方程,得13x =,21x =-. ·························· 2分∴二次函数图象与x 轴的两个交点坐标分别为(30),和(10)-,.∴二次函数图象向右平移1个单位后经过坐标原点. ············································· 2分平移后所得图象与x 轴的另一个交点坐标为(40),. ··············································· 2分 23.(1)证明:DE AC Q ∥,BCA E ∴∠=∠. ·························································································· 1分 CA Q 平分BCD ∠,2BCD BCA ∴∠=∠, ···················································································· 1分 2BCD E ∴∠=∠, ························································································ 1分x又2B E ∠=∠Q ,B BCD ∴∠=∠. ·························································································· 1分 ∴梯形ABCD 是等腰梯形,即AB DC =. ························································· 2分 (2)解:如图3,作AF BC ⊥,DG BC ⊥, 垂足分别为F G ,,则AF DG ∥.在Rt AFB △中,tg 2B =,2AF BF ∴=.…………1分又AB =Q 222AB AF BF =+,2254BF BF ∴=+,得1BF =.……………………1分同理可知,在Rt DGC △中,1CG =.……………1分 AD BC Q ∥,DAC ACB ∴∠=∠.又ACB ACD ∠=∠Q ,DAC ACD ∴∠=∠,AD DC ∴=.DC AB ==QAD ∴=. ···································································· 1分AD BC Q ∥,AF DG ∥,∴四边形AFGD是平行四边形,FG AD ∴==. ···· 1分2BC BF FG GC ∴=++=+.··································································· 1分24.(1)解:Q 函数(0my x x=>,m 是常数)图象经过(14)A ,,4m ∴=. ·········· 1分 设BD AC ,交于点E ,据题意,可得B 点的坐标为4a a ⎛⎫ ⎪⎝⎭,,D 点的坐标为40a ⎛⎫ ⎪⎝⎭,,E 点的坐标为41a ⎛⎫⎪⎝⎭,, ···················································································· 1分 1a >Q ,DB a ∴=,44AE a=-. 由ABD △的面积为4,即14442a a ⎛⎫-= ⎪⎝⎭, ······················································· 1分 得3a =,∴点B 的坐标为433⎛⎫ ⎪⎝⎭,. ··································································· 1分 (2)证明:据题意,点C 的坐标为(10),,1DE =,1a >Q ,易得4EC a=,1BE a =-, 111BE a a DE -∴==-,4414AE a a CEa-==-. ····················································· 2分B FG E图3BE AEDE CE∴=. ······························································································ 1分 DC AB ∴∥. ······························································································ 1分 (3)解:DC AB Q ∥,∴当AD BC =时,有两种情况: ①当AD BC ∥时,四边形ADCB 是平行四边形,由(2)得,1BE AEa DE CE==-,11a ∴-=,得2a =.∴点B 的坐标是(2,2). ·············································································· 1分设直线AB 的函数解析式为y kx b =+,把点A B ,的坐标代入,得422k b k b =+⎧⎨=+⎩,解得26.k b =-⎧⎨=⎩,∴直线AB 的函数解析式是26y x =-+. ··························································· 1分②当AD 与BC 所在直线不平行时,四边形ADCB 是等腰梯形,则BD AC =,4a ∴=,∴点B 的坐标是(4,1). ············································ 1分 设直线AB 的函数解析式为y kx b =+,把点A B ,的坐标代入,得414.k b k b =+⎧⎨=+⎩,解得15k b =-⎧⎨=⎩,∴直线AB 的函数解析式是5y x =-+. ····························································· 1分综上所述,所求直线AB 的函数解析式是26y x =-+或5y x =-+. 25.(1)证明:如图4,连结OB OP ,,O Q 是等边三角形BPQ 的外心,OB OP ∴=, ··················································· 1分 圆心角3601203BOP ∠==oo . 当OB 不垂直于AM 时,作OH AM ⊥,OT AN ⊥,垂足分别为H T ,. 由360HOT A AHO ATO ∠+∠+∠+∠=o,且60A ∠=o,90AHO ATO ∠=∠=o ,120HOT ∴∠=o .BOH POT ∴∠=∠. ····················································································· 1分 Rt Rt BOH POT ∴△≌△. ··········································································· 1分 OH OT ∴=.∴点O 在MAN ∠的平分线上. ···················································· 1分 当OB AM ⊥时,36090APO A BOP OBA ∠=-∠-∠-∠=oo. 即OP AN ⊥,∴点O 在MAN ∠的平分线上.综上所述,当点P 在射线AN 上运动时,点O 在MAN ∠的平分线上.(2)解:如图5,AO Q 平分MAN ∠,且60MAN ∠=o ,30BAO PAO ∴∠=∠=o . ·············································································· 1分 由(1)知,OB OP =,120BOP ∠=o,30CBO ∴∠=o ,CBO PAC ∴∠=∠.BCO PCA ∠=∠Q ,AOB APC ∴∠=∠. ························································· 1分 ABO ACP ∴△∽△. AB AOAC AP∴=.AC AO AB AP ∴=g g .4y x ∴=. ·············································· 1分 定义域为:0x >.························································································· 1分 (3)解:①如图6,当BP 与圆I相切时,AO = ······································· 2分 ②如图7,当BP 与圆I相切时,AO =; ··················································· 1分 ③如图8,当BQ 与圆I 相切时,0AO =. ························································ 2分M图6M图7M图8M图4M图5。
2007年上海市初中毕业统一学业考试数学试卷及答案

2019年上海市初中毕业生统一学业考试数学试卷考生注意:1.本卷含四大题,共25题;2.除第一、二大题外,其余各题如无特别说明,都必须写出证明或计算的主要步骤.一、填空题:(本大题共12题,满分36分)[只要求直接写出结果,每个空格填对得3分,否则得零分]2(3)?.计算:.12?2ab2a?2.分解因式:.11??.3.化简:[来源学§科§网]1?xx3?)f(x?(1)f.,则4.已知函数2?x y?x?2的定义域是 5 .函数.2xx?x?x01?2xx??的两个实数根为6.若方程,,则.21121?x?2的根是.方程.7A,该函数解析式是8.如图1,正比例函数图象经过点.yAA3CDABCDBC FEAE D.在不添加辅助平行四边形9.如图2于点,的边,交边延长线上一点,连结为线的情况下,请写出图中一对相似三角形:.F [来源学*科*网Z*X*X*K]?a32a? 10.如果两个圆的一条外公切线长等于5,另一条外公切线长等于.,那么B x O1E C yyABAB?AB2B轴沿轴,垂足为11.如图3,在直角坐标平面内,线段,如果将线段垂直于,且2图1 图CC A落在点翻折,点处,那么点的横坐标是.4?4正方形网格,请在其中选取一个白色的单位正方形并涂黑,4是使图4中黑色部分是一个中心12.图y对称图形.二、选择题:(本大题共16分)4题,满分AB【下列各题的四个结论中,有且只有一个结论是正确的,把正确结论的代号写在题后的圆括号内,选对得O x4分;不选、错选或者多选得零分】图3a是同类二次根式的是()13.在下列二次根式中,与图4234a2a3aa D C.A..B.y?kx?b y轴负半轴相交,那么(的图象经过第一象限,且与14.如果一次函数)k?0b?0k?0b?0k?0b?0k?0b?0.,,C ..A ,.BD,ABCD∠A?∠B?∠C?90,如果添加一个条件,即可推出该四边形是正方形,.已知四边形15中,那么这个条件可以是()页 1 第AB?CDAD?BCBC?CD90∠D? C.D B..A.16.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图5所示,为配到与原来大小一样的圆形玻璃,)小明带到商店去的一块玻璃碎片应该是(.第②块BA.第①块.第④块DC.第③块分)5题,满分48三、(本大题共分).(本题满分9175图,0?x?3??并把解集在数轴上表示出来.解不等式组:x34x?,????236?533?5?204?42?1?19分)18.(本题满分21x??3xx20??解方程:.21?x?1x分)分,第(2)小题满分419.(本题满分10分,第(1)小题满分65?OBO0)(10,BA,为原点,点,点的坐标为如图6,在直角坐标平面内,在第一象限内,3yBOAsin∠.5BBAOcos∠B)求:(1)点的值.的坐标;(2 分)3)小题满分各3分,第(2),20.(本题满分10分,第(1)小题满分4(初三学生小丽、小杰为了解本校初二学生每周上网的时间,各自在本校进行了抽样调查.小丽调查了初二x O电脑爱好者中40名学生每周上网的时间,算得这些学生平均每周上网时间为2.5小时;小杰从全体初二学图6 生名单中随机抽取了40名学生,调查了他们每周上网的时间,算得这些学生平均每周上网时间为1.2小时.小丽与小杰整理各自样数据,如表一所示.请根据上述信息,回答下列问题:(1)你认为哪位学生抽取的样本具有代表性?答:;估计该校全体初二学生平均每周上网时间为小时;(2)根据具体代表性的样本,把图7中的频数分布直方图补画完整;(3)在具有代表性的样本中,中位数所在的时间段是小时/周.人数时间段小丽抽样小杰抽样22 (小时/周)人数人数206 22 0~1 1816 10 10 1~214 16 6 2~3128 2 3~4 10(每组可含最低值,不含最高值)86 表一421.(本题满分10分)22019年以来,我国曾五次实施药品降价,累计降价的总金额为269亿元,五次药品降价的年份与相应降价0 1 2 3 4 小时/周金额如表二所示,表中缺失了2019年、2019年相关数据.已知2019年药品降价金额是2019年药品降价(每组可含最低值,不含最高值)金额的6倍,结合表中信息,求2019年和2019年的药品降价金额.图72019 2019 2019 2019 2019 年份页 2 第5435 40 降价金额(亿元)表二四、(本大题共4题,满分50分)22.(本题满分12分,每小题满分各6分)0)B(3,4),?A(1,且过点在直角坐标平面内,二次函数图象的顶点为.(1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得x轴的另一个交点的坐标.图象与[来源学#科#网Z#X#X#K] 分)12分,每小题满分各623.(本题满分ABCDAD∥BCCA∠BCDDE∥ACBC E,如图8中,,平分,交,,在梯形的延长线于点∠B?2∠E.AB?DC;)求证:(1D ABC5AB?2?tgB(2)若,,求边的长.分)12分,每小题满分各424.(本题满分BE C mm1x?0?a?y(1A,4))ba,B(,.,过是常数)的图象经过其中9如图,在直角坐标平面内,函数,(8 图xx CBDCC ADDABy作,轴垂线,垂足为,过点,点作,连结轴垂线,垂足为.ABD△B的坐标;(1)若4,求点的面积为yAB∥DC(2)求证:;BC?AD AB时,求直线的函数解析式.(3)当分)3分,第(2)小题满分各5),(25.(本题满分14分,第(1)小题满分4AB AN∠MAN?60BAMPBPAB?4(如图,点为直线上一动点,以10为边作已知:在射线)上,.DOCO Q,,PBPQB△BPQ x是,的外心.等边三角形(点按顺时针排列)MANO∠AN P在上运动时,求证:点(1)当点在射线的平分线上;9图ANAOCAP?x ACAO?yBPPAP,)(2当点,在射线交于点上运动(点与点,不重合)时,设与x y的函数解析式,并写出函数的定义域;关于求AN△ABD BQBPQ△IAD?2IBPD相切或的内切圆.当,圆)若点的边在射线上,为与圆3(O A的距离.与点时,请直接写出点AA:]来源[PP年上海市初中毕业生统一学业考试2019BB OO数学试卷答案要点与评分标准QQ NN MM 说明:备用图图10 .解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评1 分.分,不选、32.第一大题只要求直接写出结果,每个空格填对得分,否则得零分;第二大题每题选对得4题中右端所注的分数,表示考生正确做对这一步应得分数,评分时,给25题至错选或者多选得零分;17页 3 第分或扣分均以1分为单位.答案要点与评分标准一、填空题(本大题共12题,满分36分)1x≥2x??3)b2a(a? 7.6.2 3.4.1 1.3 2.5.x(x?1)△AFD ∽△EFC△EFC∽△EAB△EAB∽△AFD x3y?),或98..(或?211.12.答案见图110.11图分)题,满分16二、选择题(本大题共4 B .1615.D C 14.B 13.分)题,满分48三、(本大题共53?0x3?x?分·3·························································17.解:由····,解得···.··xx341??x???由·分,解得.···············3·······················································6233??1?x?分··1··············································不等式组的解集是·····.················2分··················································解集在数轴上表示正确.·······························20?1)??(2x?1)(xx?3x·3分····························18.解:去分母,得·············,·····20?1x??2x32分······································,·································整理,得.......1??x?1,x.... (2)分························································解方程,得············213111x??x??x??是增根,····2原方程的根是分经检验,.·········是原方程的根,·1233OABH?H分·············1····························119.解:()如图2,作···,垂足为,····35△RtOHBBO??sin?BOA在,,中,53??BH·.2····················分············································································4??OH分.………………………………1y3)(4,B?.……………………点2的坐标为分B64?AH?OA?10OH?,,(2)分.………………1x OH A3?AHBRt△BH5?3?AB 中,1分.…………,在2图5AH2?BAO??cos? 2分.………………………………5AB 2分2分,········································120.()小杰;1.2. (3)分·············································)直方图正确.(2 ············································页 4 第分··3···························································································(3)0~1.······x y分··1····2019年和2019年的药品降价金额分别为·亿元、·亿元.··21.解:[解法一]设xy?6?分2………………………………………………………………根据题意,得?y?269?35?40?54?x 分………………………………………………2?20x??分2………………………………………………………………………解方程组,得? 120y?分2………………………………………………………………………?分··1················答:2019年和2019年的药品降价金额分别为20亿元和120亿元.········x分·1····································[解法二]设2019年的药品降价金额为·亿元,················x6分·2·································则2019年的药品降价金额为··亿元.···························269?6x?35?40?54?x 分·2·····················根据题意,得···········.·······················120?6xx?20?分·4·························································解方程,得···,····.···1分············120亿元.··············亿元和答:2019年和2019年的药品降价金额分别为20 50分)四、(本大题共4题,满分24?(x?1)y?a 分...2..............(1)设二次函数解析式为.........,.................22.解:1??4a?0?4a0)(3,B.........3分.,,得...........................二次函数图象过点....223x??1)2?4y?xy?(x??1分..............,即.................二次函数解析式为......21???3xx0?x?x3?20?y分..2...,得.........,解方程,得...,.......(2)令..21x0),(?1(3,0)?和二次函数图象与.轴的两个交点坐标分别为?分..2........................................二次函数图象向右平移1个单位后经过坐标原点....x0),(4.....2分..............................平移后所得图象与.轴的另一个交点坐标为...........AC∥DE.(1)证明:,23E?BCA???.... (1)分····················································································BCDCA?平分,BCA2???BCD?·,·1分··················································································E??2??BCD., (1)分...............................................................................E??2?B又,BCD????B (1)分.·······················································································DCAB?ABCD?分·2········································梯形·是等腰梯形,即··.············BCDG?AF?BC)解:如图(23,作,,DGAF∥F,G垂足分别为,则.D AFB△Rt2?tgBBFAF?2?中,1,分在.…………A2225AB?BFAB??AF,且又,C G B EF22BF??4BF?51BF?分.……………………,得13图1DGCCG?△Rt分.……………中,1同理可知,在DC??DAC?ACB??ACDADACD????,.,又页 5 第5??AD5?AB?DC 分·1·································.·································,AFGD∥DGAD∥BCAF5??AD?FG?····1分是平行四边形,,.,四边形5??2?FG?GC?BC?BF1分...................................................................mm4??m0y ??(x,A4)(1是常数)图象经过...........1分24.(1)解:函数,,.x44????ACBD,,,0a DEB,据题意,可得点的坐标为交于点点的坐标为设,,????aa????4??,1E.点的坐标为,. (1)分··············································································??a??41??ABD△4??a4分··1····································由·,即的面积为4·········,·······??a2??4??3?a,3B?分··1··································得···,·点·的坐标为·.························??3??C0),(11?DE的坐标为,(2)证明:据题意,点,41?BE?aa?1?EC,,,易得a4?4AE1?BEaa??1?a1????a,2分··························.···························41DE CE a AEBE??··1分····························································.·······························CEDE AB∥?DC·1分.·····························································································BC?∥ABADDC?,时,有两种情况:(3)解:当ADCBBCAD∥①当时,四边形是平行四边形,AEBE2?1a?a?1?1???a,得)得,,.由(2CEDEB?1分··································································2点的坐标是(2,).············B,A b??ykxAB的函数解析式为的坐标代入,设直线,把点,2k??4?k?b,??得解得??6.?bbk2?2???6?2xy??AB?分··1························直线·的函数解析式是·····.··························ADCBBC AD②当所在直线不平行时,四边形与是等腰梯形,4??aBD?AC B?1分·······················则.,14,点的坐标是(,)······················页 6 第A,B b?y?kxAB的坐标代入,的函数解析式为,把点设直线:1ZXXK][来源4?k?b,k??1,??解得得??1?4k?b.b?5??y??x?5AB?.······················································直线·的函数解析式是·····1分y??2x?6y??x?5AB.综上所述,所求直线的函数解析式是或OB,OP,4,连结25.(1)证明:如图O?OB?OP BPQ,1分的外心,是等边三角形··················································360??120?BOP.圆心角3OBOH?AMOT?ANH,T AM.,当,垂足分别为不垂直于时,作?HOT??A??AHO??ATO?360?A?60,,且由??BOH??POT..1分...................................................................................?Rt△BOH≌Rt△POT... (1)分······································································?OH?OT O?MAN?的平分线上.·1分.在点···················································OB?AM?APO?360??A??BOP ??OBA?90.时,当OP?ANO?MAN?的平分线上.即点在,ANO?MAN P的平分线上.上运动时,点综上所述,当点在在射线AAPP C H T BB OOQQ NN MM54图图,)解:如图5(2MANAO?60MAN??,,且平分30PAO?BAO????分··1············································.································OP?OB120??BOP,由(1)知,,APC???PCA??AOB?BCO?·分.,·················1······································AOAB AP?AB?ACAO??xy?4?1分·····················.·················.····.····APAC0?x 分·1·······································································定义域为:·.···············3?2AOIBP2分··················,当)解:①如图(36与圆·相切时,·;···················页 7 第43AO?IBP;·分····1·····································②如图7,当与圆··相切时,·······3AO?0BQI.······························③如图8,当与圆切时,相··························2分)(APA P)(DIP D I O Q)(A O B Q B O D I Q B N NMM 7图6图图8页 8 第。