2.1.1 指数与指数幂的运算 习题

合集下载

高中数学 第二章 基本初等函数(1) 2.1.1 指数与指数幂的运算 第一课时 根式学案(含解析)

高中数学 第二章 基本初等函数(1) 2.1.1 指数与指数幂的运算 第一课时 根式学案(含解析)

2.1。

1指数与指数幂的运算第一课时根式根式[提出问题](1)若x2=9,则x是9的平方根,且x=±3;(2)若x3=64,则x是64的立方根,且x=4;(3)若x4=81,则x是81的4次方根,且x=±3;(4)若x5=-32,则x是-32的5次方根,且x=-2。

问题1:观察(1)(3),你认为正数的偶次方根都是两个吗?提示:是.问题2:一个数的奇次方根有几个?提示:1个.问题3:由于22=4,小明说,2是4的平方根;小李说,4的平方根是2,你认为谁说的正确?提示:小明.[导入新知]根式及相关概念(1)a的n次方根定义:如果x n=a,那么x叫做a的n次方根,其中n〉1,且n∈N*。

(2)a的n次方根的表示:n的奇偶性a的n次方根的表示符号a的取值范围n为奇数错误!Rn为偶数±错误![0,+∞)(3)根式:式子错误!叫做根式,这里n叫做根指数,a叫做被开方数.[化解疑难]根式记号的注意点(1)根式的概念中要求n>1,且n∈N*。

(2)当n为大于1的奇数时,a的n次方根表示为错误!(a∈R);当n为大于1的偶数时,错误!(a≥0)表示a在实数范围内的一个n次方根,另一个是-错误!,从而错误!n=a.根式的性质[提出问题]问题1:错误!3,错误!3,错误!4分别等于多少?提示:2,-2,2.问题2:错误!,错误!,错误!,错误!分别等于多少?提示:-2,2,2,2.问题3:等式错误!=a及(错误!)2=a恒成立吗?提示:当a≥0时,两式恒成立;当a〈0时,a2=-a,(a)2无意义.[导入新知]根式的性质(1)(错误!)n=a(n为奇数时,a∈R;n为偶数时,a≥0,且n〉1).(2)错误!=错误!(3)错误!=0。

(4)负数没有偶次方根.[化解疑难](错误!)n与错误!的区别(1)当n为奇数,且a∈R时,有错误!=(错误!)n=a;(2)当n为偶数,且a≥0时,有错误!=(错误!)n=a。

课时作业11:2.1.1指数与指数幂的运算

课时作业11:2.1.1指数与指数幂的运算

2.1.1指数与指数幂的运算一、选择题 1.a 3a ·5a 4(a >0)的值是( )A .1B .aC .a 15D .a17102.设a 12-a 12-=m ,则a 2+1a=( )A .m 2-2B .2-m 2C .m 2+2D .m 23.⎝⎛⎭⎫1120-(1-0.5-2)÷⎝⎛⎭⎫27823的值为( ) A .-13B.13C.43D.734.若a >1,b >0,a b +a -b =22,则a b -a -b等于( )A. 6 B .2或-2 C .-2D .25.设x ,y 是正数,且x y =y x ,y =9x ,则x 的值为( ) A.19 B.43 C .1 D.39二、填空题611442()?a b (a >0,b >0)的结果是________.7.化简733-3324-6319+ 4333的结果是________.8.设a 2=b 4=m (a >0,b >0),且a +b =6,则m 等于________. 三、解答题 9.化简求值:(1)⎝⎛⎭⎫2790.5+0.1-2+⎝⎛⎭⎫2102723--3π0+3748;(2)⎝⎛⎭⎫-33823-+(0.002)12--10(5-2)-1+(2-3)0; (3)(a -2b -3)·(-4a -1b )÷(12a -4b -2c ); (4)23a ÷46a ·b ×3b 3.10.若b =9a >0,求11111122221111112222()()()+()a b a b a b a b ----+--+-的值.11.已知a =-827,b =1771,求3327a a b-13a的值.12.已知:ax 2 015=by 2 015=cz 2 015,且1x +1y +1z=1.求证:(ax 2 014+by 2 014+cz 2 014)12 015=a12 015+b12 015+c12 015.参考答案一、选择题 1. 【答案】D 【解析】原式=a 3·a 12-·a45-=a14325--=a1710.2.【答案】C 【解析】将a 12-a 12-=m 两边平方得 (a 12-a-12)2=m 2,即a -2+a -1=m 2,所以a +a -1=m 2+2,即a +1a =m 2+2⇒a 2+1a =m 2+2.3.【答案】D【解析】原式=1-(1-22)÷⎝⎛⎭⎫322=1-(-3)×49=73. 4.【答案】D【解析】∵a >1,b >0,∴a b >a -b ,(a b -a -b )2=(a b +a -b )2-4=(22)2-4=4, ∴a b -a -b =2. 5.【答案】B【解析】x 9x =(9x )x ,(x 9)x =(9x )x , ∴x 9=9x .∴x 8=9. ∴x =89=43. 二、填空题 6.【答案】ab7.【答案】0【解析】733-3324-6319+4333=7×313-3×313×2-6×323-+(3×313)14=313-6×323-+313=2×313-2×3×3-23=2×313-2×313=0.8. 【答案】16【解析】∵a 2=b 4=m (a >0,b >0), ∴a =m 12,b =m 14,a =b 2.由a +b =6得b 2+b -6=0,解得b =2或b =-3(舍去). ∴m 14=2,m =24=16. 三、解答题9.解:(1)原式=⎝⎛⎭⎫25912+10.12+⎝⎛⎭⎫642723--3+3748=53+100+916-3+3748=100. (2)原式=(-1)23-×⎝⎛⎭⎫33823-+⎝⎛⎭⎫150012--105-2+1=⎝⎛⎭⎫27823-+(500)12-10(5+2)+1 =49+105-105-20+1=-1679. (3)原式=-4a-2-1b -3+1÷(12a -4b -2c )=-13a -3-(-4)b -2-(-2)c -1=-13ac -1=-a 3c .(4)原式=111336622(4)(3)a a b b ÷⨯11114336663213322a b b a b --=⋅=. 10.解:11111122221111112222()()()+()a b a b a b a b ----+--+-=1a +b -1a -b 1a +b +1a -b =a -ba -b -a +b a -ba -ba -b +a +b a -b=-2b2a=-ba=-3. 11.解:∵a ≠0,a -27b ≠0. ∴=⎝⎛⎭⎫-23-2=⎝⎛⎭⎫-322=94. 12.证明:设ax 2 015=by 2 015=cz 2 015=k , 则ax 2 014=k x ,by 2 014=k y ,cz 2 014=k z.于是原式的左边=⎝⎛⎭⎫k x +k y +k z 12 015=⎣⎡⎦⎤k ⎝⎛⎭⎫1x +1y +1z 12 015=k 12 015. 原式的右边=⎝⎛⎭⎫k x 2 01512 015+⎝⎛⎭⎫k y 2 01512 015+⎝⎛⎭⎫k z 2 01512 015=k 12 015⎝⎛⎭⎫1x +1y +1z =k 12 015. ∴左边=右边, ∴原命题成立.。

指数与指数幂的运算练习题

指数与指数幂的运算练习题

指数与指数幂的运算练习题在数学中,指数与指数幂的运算是一个重要的概念。

理解和掌握这一概念对于解决各种数学问题至关重要。

本文将为读者提供一些指数与指数幂的运算练习题,以帮助巩固和加深对这一概念的理解。

题目1:计算下列指数与指数幂的运算结果。

a) 5^3b) 2^4c) (3^2)^3d) 4^0e) 5^(-2)f) (2^3)^(-2)解析:a) 5^3 = 5 × 5 × 5 = 125b) 2^4 = 2 × 2 × 2 × 2 = 16c) (3^2)^3 = 3^(2 × 3) = 3^6 = 729d) 4^0 = 1 (任何非零数的0次幂都等于1)e) 5^(-2) = 1 / 5^2 = 1 / (5 × 5) = 1 / 25 = 0.04f) (2^3)^(-2) = 2^(3 × -2) = 2^(-6) = 1 / 2^6 = 1 / (2 × 2 × 2 × 2 × 2 × 2) = 1 / 64 = 0.015625题目2:计算下列算式的结果。

a) 2^3 × 2^4b) (3^2)^3 ÷ 3^6c) 4^3 ÷ 4^2d) 5^(-2) ÷ 5^(-4)e) (2^(-3)) ÷ (2^(-5))解析:a) 2^3 × 2^4 = 2^(3 + 4) = 2^7 = 128b) (3^2)^3 ÷ 3^6 = 3^(2 × 3 - 6) = 3^0 = 1c) 4^3 ÷ 4^2 = 4^(3 - 2) = 4^1 = 4d) 5^(-2) ÷ 5^(-4) = 5^(-2 - (-4)) = 5^2 = 25e) (2^(-3)) ÷ (2^(-5)) = 2^(-3 - (-5)) = 2^2 = 4题目3:化简下列指数表达式。

2.1 指数函数

2.1 指数函数

2.1 指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 当n 是偶数时,正数a 的正的n 示,负的n 次方根用符号0的n 次方根是0;负数a 没有n 次方根.n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当n 为奇数时,a =;当n 为偶数时,(0)|| (0)a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)rsr sa a aa r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r rab a b a b r R =>>∈【2.1.2】指数函数及其性质(4)指数函数当堂训练[基础训练A组]一、选择题1.计算122[(]-的结果是().A. D.-2.对任意实数x,下列等式恒成立的是().A.211332()x x= B.211332()x x= C.311535()x x= D.131355()x x--= 3.化简(21)(21)2222k k k-+----+等于().A.22k- B.(21)2k-- C.(21)2k-+- D.24.下列函数中指数函数的个数是().①23xy=⋅②13xy+=③3xy=④3y x=A.0 B.1 C.2 D.35.方程135108x x x-⋅=的解集是().A.{}1,4 B.14⎧⎫⎨⎬⎩⎭C.11,4⎧⎫⎨⎬⎩⎭D144⎧⎫⎨⎬⎩⎭,6.函数()(0,1)xf x a a a=>≠且对任意正实数,x y都有().A.()()()f xy f x f y= B.()()()f xy f x f y=+C .()()()f x y f x f y +=D .()()()f x y f x f y +=+ 二、填空题1.化简:1114424111244()a b ba ab --=- . 2.计算:120.750311(0.064)(16()23---÷÷-= .3.若239x=,3x-= .4.985316,8,4,2,2从小到大的排列顺序是 . 5.若函数()11x mf x a =+-是奇函数,则m 为 . 三、解答题1.化简下列各式: (1)11122()()x x x x x --++-;(2)222222223333x y x y xyxy--------+--+-;(3)3333441()()[(1)()]a a a a a a a a ----+-÷++-.2.计算下列各式:(1)1020.5231(2)2(2)(0.01)54--+⋅-;(2)20.520371037(2)0.1(2)392748π--++-+.3.已知2212213333334,3,3a b x a a b y b a b +==+=+,求2233()()x y x y ++-的值.4. 比较下列各组数的大小:(1)0.1()4-和 0.2-; (2)163()4和154()3-; (3)2(0.8)-和125()3- .5.家用电器(如冰箱等)使用的氟化物的释放破坏了大气上层的臭氧层,臭氧含量Q 呈指数函数型变化,满足关系式0.00250t Q Q e -=,其中0Q 是臭氧的初始量. (1)随时间的增加,臭氧的含量是增加还是减少? (2)多少年以后将会有一半的臭氧消失?[基础训练B 组] 一、选择题1.设全集为R ,且22{|0},{|1010}x x A x B x -=≤==,则()R A B ð为( ). A .{2} B .{1}- C .{|2}x x ≤ D .∅2.函数y x =3与y x =--3的图像关于下列那种图形对称( ). A .x 轴 B .y 轴 C .直线y x = D .原点中心对称3.函数11x x e y e -=+的值域是( ).A .(1,1)-B .[1,1]-C .(0,1)D .(,)e e - 4.已知集合{}11M =-,,11242x N x x +⎧⎫=<<∈⎨⎬⎩⎭Z ,,则M N = ( ). A .{}11-,B .{}1-C .{}0D .{}10,1-,5.函数11()()3x f x -=在区间[2,1]--上的最大值是( )A .1B .3C .9D .276.设1x ,2x 是函数()(1)x f x a a =>定义域内的两个变量,且12x x <,设121()2m x x =+.那么下列不等式恒成立的是( ). A .12|()()||()()|f m f x f x f m ->-B .12|()()||()()|f m f x f x f m -<-C .12|()()||()()|f m f x f x f m -=-D .212()()()f x f x f m > 二、填空题1.若集合{11|,|x A y y B x y -⎧⎫====⎨⎬⎩⎭,则集合A B = _________.2.方程33131=++-xx的解是_____________. 3.若1122a a-+=1114421124___________1111aaaa+++=+-++. 4.化简11410104848++的值等于__________. 5.若关于x 的方程12220x x a -++=有两个实数解,则实数 的取值范围是_______. 6.对于函数f (x )定义域中任意的x 1,x 2(x 1≠x 2),有如下结论:①)()()(2121x f x f x x f ⋅=+; ②)()()(2121x f x f x x f +=⋅;③0)]()([)(2121<-⋅-x f x f x x ; ④2)()()2(2121x f x f x x f +<+ 当xx f -=2)(时,上述结论正确结论的序号是 .(写出全部正确结论的序号) 三、解答题1.求函数11()()142xxy =-+在[]3,2x ∈-上的值域.2.求函数241(),[0,5)3x xy x -=∈的值域.3.解方程:(1)192327xx ---⋅= (2)649x x x +=.4.已知11()(),(0)212x f x x x =+≠-, (1)判断()f x 的奇偶性; (2)证明()0f x >.5.在工程技术中经常用到一类所谓的双曲函数,定义如下:双曲正弦,2x xe e shx --=;双曲余弦,2x x e e chx -+=;双曲正切,x xx xe e thx e e---=+,请证明: (1)()sh x y shxchy chxshy +=+;(2)()1thx thyth x y thxthy++=+.同步提升一、选择题(12*5分) 1.(369a )4(639a )4等于( )(A )a 16 (B )a 8(C )a 4(D )a 22.函数f (x )=(a 2-1)x在R 上是减函数,则a 的取值范围是( ) (A )1>a (B )2<a (C )a<2 (D )1<2<a3.下列函数式中,满足f(x+1)=21f(x)的是( ) (A)21(x+1) (B)x+41 (C)2x (D)2-x4.已知a>b,ab 0≠下列不等式(1)a 2>b 2,(2)2a>2b,(3)ba 11<,(4)a 31>b 31,(5)(31)a <(31)b 中恒成立的有( )(A )1个 (B )2个 (C )3个 (D )4个5.函数y=121-x 的值域是( ) (A )(-1,∞) (B )(-,∞0)⋃(0,+∞) (C )(-1,+∞) (D )(-∞,-1)⋃(0,+∞) 6.下列函数中,定义域为R 的是( ) (A )y=5x-21 (B )y=(31)1-x(C )y=1)21(-x(D )y=x 21- 7.下列关系中正确的是( )(A )(21)32<(51)32<(21)31 (B )(21)31<(21)32<(51)32(C )(51)32<(21)31<(21)32 (D )(51)32<(21)32<(21)318.若函数y=3·2x-1的反函数的图像经过P 点,则P 点坐标是( )(A )(2,5) (B )(1,3) (C )(5,2) (D )(3,1)9.函数f(x)=3x +5,则f -1(x)的定义域是( ) (A )(0,+∞) (B )(5,+∞) (C )(6,+∞) (D )(-∞,+∞)10.已知函数f(x)=a x+k,它的图像经过点(1,7),又知其反函数的图像经过点(4,0),则函数f(x)的表达式是( )(A)f(x)=2x +5 (B)f(x)=5x +3 (C)f(x)=3x +4 (D)f(x)=4x+311.已知0<a<1,b<-1,则函数y=a x+b 的图像必定不经过( ) (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限12.一批设备价值a 万元,由于使用磨损,每年比上一年价值降低b%,则n 年后这批设备的价值为( )(A )na(1-b%) (B )a(1-nb%) (C )a(1-(b%)n ) (D )a(1-b%)n二、填空题(4*4分) 13.若a 23<a2,则a 的取值范围是 。

2.1.1指数与指数幂的运算

2.1.1指数与指数幂的运算

a
|
a, a a,
a
0, (当n为偶数) 0.
例1 求下列各式的值
1. 3 (8)3 ; 2. (10)2 ;
3. 4 (3 )4 ;
解:
1. 3 (8)3 8;
2. (10)2 | 10 |10;
3. 4 (3 )4 | 3 | 3;
•甚是感激。”“把身子养好咯,比啥啊都强。”“知道咯,爷。耿姐姐,您走好,妹妹就不送您咯。”王爷的书院靠近园子大门,耿格格的 院子在惜月的院子与爷的书院之间。听闻惜月的道别,耿格格再是愚钝,也知道赶快接咯话茬儿:“爷,惜月妹妹身子才好,那就由妾身送您 吧。”王爷没有说啥啊,转身向书院的方向走去。韵音见状,来不及跟惜月打招呼,赶快追上爷的步伐。壹路上两各人默默地前行,只有呼啸 的寒风围绕着他们左右。终于,韵音的院子就在眼前咯。这壹路上,耿格格的脑子里只有壹各想法,那就是把爷送到书院;这壹路上,王爷的 脑子里也只有壹各想法,把韵音送到院子。眼看着韵音的院子已经到咯,他就停下咯脚步,而耿格格哪里知道爷会停下来,原本她就壹直低着 头,爷这么突然壹停,她根本来不及收住脚步,猛地壹下子撞上咯爷的后背。随即她就感到鼻梁壹阵酸痛,继而壹阵热流从鼻子里涌出。她赶 快拿手捂住咯鼻子,闷闷地说:“爷,对不起!”他回头壹看,虽然黑漆漆的夜色中看不清是怎么回事儿,但韵音手捂鼻子的样子还是让他感 觉到咯事态的严重性,于是他赶快抱起韵音,飞快地冲进咯她的院子,壹边焦急地问:“怎么回事儿!撞到哪里咯?痛不痛?”韵音哪里还说 得出来话?鼻子里的血还没有止住,而现在又由于被爷平躺着抱在怀里,鼻血直接倒灌进咯嘴里。进咯屋子他才发现,她的脸已经被鼻血弄得 像各大花猫,狼狈不堪。不待他吩咐,众人见到格格这副样子,早就开始找药的找药,打水的打水,迅速忙咯起来。好不容易壹切都料理妥当, 望着终于恢复咯壹张干净脸庞的韵音,他又好气又好笑地说:“你怎么这么不小心?到咯自己的院子都不停下来,你这是还想去哪儿?”“妾 身送爷啊?”第壹卷 第166章 情苦韵音万分不解地望着爷,闷声闷气地回着话。作为爷的诸人,她不送爷回书院,还能干啥啊去?总不能让 爷自己壹各人回去吧。虽然脸上恢复咯干净,可是鼻子里因为放咯止血药,又用纱布堵塞着,怎么看怎么都是滑稽,他忍不住笑咯:“还送爷 呢,自己先负伤咯,这是你送爷呢,还是爷送你?”闻听此言,韵音也不好意思地笑咯:“好不容易为爷办壹件事情,还办砸咯。”“唉,爷 哪里需要你们为爷办啥啊事情,你们只要安安生生,不出乱子,就是给爷办的最大、最好的事情咯。”他说的可是真心实意的大实话!今天韵 音的出现,真真地打咯他壹各措手不及。深更半夜地同时面对两各诸人,他还真是平生第壹次遇到这么尴尬的状况。刚刚情况紧急,都没有容 得他仔细思索这件事情,当时只是希望尽快抽身逃离事非之地。现在踏实下来,他才又认真地琢磨起这各问题来。韵音怎么会大晚上出现

学案6:2.1.1 指数与指数幂的运算

学案6:2.1.1 指数与指数幂的运算
(4)原式= +y-x=|x-y|+y-x.
当x≥y时,原式=x-y+y-x=0;
当x<y时,原式=y-x+y-x=2(y-x).
所以原式=
例2(1) (2)a (3)①a3· =a3·a =a =a .
【解析】(1)a = =
(2)(a2· )÷( · )=(a2·a )÷(a ·a )=a ÷a =a =a
(4)2 ÷4 ·3 .
方法归纳
利用指数幂的运算性质化简求值的方法
(1)进行指数幂的运算时,一般化负指数为正指数,化根式为分数指数幂,化小数为分数,同时兼顾运算的顺序.
(2)在明确根指数的奇偶(或具体次数)时,若能明确被开方数的符号,则可以对根式进行化简运算.
(3)对于含有字母的化简求值的结果,一般用分数指数幂的形式表示.
当堂检测
[基础巩固]
一、选择题
1.B
【解析】 =(-2 ) =(-2×2 ) =(-2 ) =-2 .
2.D
【解析】要使原式有意义,只需 ,
∴a≥0且a≠2.
3.A
【解析】依题意知x<0,所以 =- =- .
4.D
【解析】原式= =a =a .
5.C
【解析】( )4·( )4
=( ) ·( )
=(a ) ·(a ) =a ·a =a4.
3.化简 的结果是()
A.- B.
C.- D.
4. (a>0)的值是()
A.1B.a
C.a D.a
5.化简( )4·( )4的结果是()
A.a16B.a8
C.a4D.a2
二、填空题(每小题5分,共15分)
6. -2+(1- )0- -160.75=________.

2.1.1指数和指数幂运算(一)—根式

2.1.1指数和指数幂运算(一)—根式

新课
2、 n次方根的定义
一般地, 若x a, 则x叫做a的n次方根.其中
n
n次方根,32的5次方根; (2)25的2次方根, 81的4次方根.
n次方根有何性质?
3/21/2019 10:18:57 PM
新课
n次方根的性质
(1)奇次方根的性质 :
(1).
3 3
(3)( 3) ; 2 (4 ) ( a b ) . n n (5 ) ( a b) .
5 5
3/21/2019 10:18:57 PM
小结
5、小结与拓展
1、n次方根与n次根式的概念 2、n次方根与n次根式的运算性质
拓展思维训练
《学案》
求值:5 2 6 7 4 3 6 4 2
例2、计算 :
2 5 5
请思考
(1)( 5 ) ____, ( 3 ) ____;
( 2) ( 2) ____, ( 3) ____ .
2 3 3
比较( a ) 和 a 的区别与联系 ?
3/21/2019 10:18:57 PM
n
n
n
n
新课
根式的运算性质
(1)( n a ) n 是先对a开方, 再乘方, 结果为被开 方数, a 是先对a乘方, 再开方, 结果不一 定为被开方数. n n (2)当n为奇数时, a ____, a 当n为偶数时, a
正数的奇次方根是一个正数, 负数的奇次 方根是一个负数,0的奇次方根是0.
( 2)偶次方根的性质 : 正数的偶次方根是两个绝对值相等符号
相反的数, 负数的偶次方根没有意义,0的 奇次方根是0.
3/21/2019 10:18:57 PM

高一数学指数与指数幂的运算2(1)

高一数学指数与指数幂的运算2(1)

4. 例题与练习:
例1 求值:
2
83 ,
1
100 2 ,
( 1 )3 ,
(
16

)
3 4
.
4 81
4. 例题与练习: 例2 用分数指数幂的形式表示下列各式 (其中a>0):
a2 a; a3 3 a2; a a .
4. 例题与练习: 例2 用分数指数幂的形式表示下列各式 (其中a>0):
an
| a
|
a(a 0) a(a 0).
复习引入
2. 根式的运算性质:
① 当n为奇数时, n a n a;
当n为偶数时, n
an
| a
|
a(a 0) a(a 0).
② 当n为任意正整数时,
复习引入
2. 根式的运算性质:
① 当n为奇数时, n a n a;
2.1.1指数与指数幂 的运算
主讲老师:
复习引入
1. 整数指数幂的运算性质:
复习引入
1. 整数指数幂的运算性质:
a m a n a mn (m, n Z ), (a m )n amn (m, n Z ), (ab)n a n bn (n Z ).
复习引入
2. 根式的运算性质:
4. 例题与练习:
例4
已 知x

x 1

1
3,求x 2

x

1
2的
值.
课堂小结
1. 分数指数幂的意义; 2. 分数指数幂与根式的互化; 3. 有理数指数幂的运算性质.
课后作业
1.阅读教材P.50-P.52; 2.《习案》作业十六.
;佳境配资 佳境配资 ;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1.1 指数与指数幂的运算习题
一、单项选择
1、某人2003年1月1日到银行存入一年期存款a 元,若按年利率为x ,并按复利计算,到2008年1月1日可取回的款共( ).
A.a(1+x)5元
B.a(1+x)6元
C.a(1+x 5)元
D.a(1+x 6)元
2、错误!未找到引用源。

的值是( )
A. 错误!未找到引用源。

错误!未找到引用源。

错误!未找到引用源。

B. 错误!未找到引用源。

C. 错误!未找到引用源。

D. -错误!未找到引用源。

3、若0a >,且,m n 为整数,则下列各式中正确的是 ( )
A 、m m n n a a a ÷=
B 、mn n m a a a =
C 、()n m m n a a +=
D 、01n n a a -÷=
4、若21025x =,则10x -等于 ( )
A 、15
B 、15-
C 、150
D 、1625
5、63a a -∙等于( ) A.a -- B.a - C.a - D.a
6、根式
11a a (式中0a >)的分数指数幂形式为( ) A .4
3a - B .43a C .3
4a - D .3
4
a 7、[)
⎪⎩⎪⎨⎧∞+∈∞-∈=-,1)1,(2)(2x x x x f x ,则[])2(-f f =( ) A.16 B.4 C.41 D.16
1 8、在某种细菌培养过程中,每30分钟分裂一次(一个分裂为两个),经过4个小时,这种细菌由一个可繁殖成( )
A. 8
B. 16
C. 256 D . 32
9、下列各式中成立的一项( )
A .7177)(m n m n =
B .31243)3(-=-
C .43433)(y x y x +=+
D . 3339=
10、若1,0a b ><,且22b b a a -+=,则b b a a --的值等于( ) A 、6 B 、2± C 、2- D 、2
11、有下列四个命题:
(1)正数的偶次方根是一个正数;(2)正数的奇次方根是一个正数;(3)负数的偶次方根是一个负数;(4)负数的奇次方根是一个负数.
其中正确的个数是( )
A.0
B.1
C.2
D.3
12、若12
331,(0)6a b m ab m m +==>,则a 3+b 3的值为 ( ) A .0 B .1
2m C .12m - D .32
m 二、填空题
13、化简下列各式:(0,0)a b >>
(1)2
1
1
1333324()3a b a b ---÷-=___________
; (2)2222(2)()a a a a ---+÷-=____________.
14、当8<a<10时,错误!未找到引用源。

-错误!未找到引用源。

=________________.
15、若28x a =,则33x x
x x a a a a
--++的值等于_______________. 16、设函数()()()x x f x x e ae x R -=+∈是偶函数,则实数a = .
17、化简11
11a b a b
----+=___________. 三、解答题
18、画出122x x ⎛⎫ ⎪⎝⎭和的图像并求出122x x ⎛⎫ ⎪⎝⎭
、的值域。

19、已知11223x x
-+=,求下列各式的值:
(1)1x x -+;(2)3322
2273x x x x --++++.。

相关文档
最新文档