指数与指数幂的运算备课教案
《指数与指数幂的运算》教学设计(精品)

指数与指数幂的运算(一)(一)教学目标1.知识与技能(1)理解n次方根与根式的概念;(2)正确运用根式运算性质化简、求值;(3)了解分类讨论思想在解题中的应用.2.过程与方法通过与初中所学的知识(平方根、立方根)进行类比,得出n次方根的概念,进而学习根式的性质.3.情感、态度与价值观(1)通过运算训练,养成学生严谨治学,一丝不苟的学习习惯;(2)培养学生认识、接受新事物的能力.(二)教学重点、难点1.教学重点:(1)根式概念的理解;(2)掌握并运用根式的运算性质.2.教学难点:根式概念的理解.(三)教学方法本节概念性较强,为突破根式概念的理解这一难点,使学生易于接受,故可以从初中已经熟悉的平方根、立方根的概念入手,由特殊逐渐地过渡到一般的n次方根的概念,在得出根式概念后,要引导学生注意它与n次方根的关系,并强调说明根式是n次方根的一种表示形式,加强学生对概念的理解,并引导学生主动参与了教学活动.故本节课可以采用类比发现,学生合作交流,自主探索的教学方法.(四)教学过程备选例题例1 计算下列各式的值. (1)33)(a ;(2) (1n >,且n N *∈) (3)(1n >,且n N *∈) 【解析】(1)a a =33)(.(2)当n =3π-; 当n =3π-. (3)=||x y -, 当x y ≥时,x y -; 当x y <时,y x -.【小结】(1)当n 为奇数时,a a n n =;当n 为偶数时,⎩⎨⎧<-≥==)0()0(||a a a a a a n n(2)不注意n 的奇偶性对式子n n a 值的影响,是导致错误出现的一个重要原因.故要在理解的基础上,记准、记熟、会用、活用.例2 求值:【分析】需把各项被开方数变为完全平方形式,然后再利用根式运算性质;【解析】==||2|2=+--=--2(2=【小结】开方后带上绝对值,然后根据正负去掉绝对值.2.1.1 指数与指数幂的运算(二)(一)教学目标1.知识与技能(1)理解分数指数幂的概念;(2)掌握分数指数幂和根式之间的互化;(3)掌握分数指数幂的运算性质;(4)培养学生观察分析、抽象等的能力.2.过程与方法通过与初中所学的知识进行类比,得出分数指数幂的概念,和指数幂的性质.3.情感、态度与价值观(1)培养学生观察分析,抽象的能力,渗透“转化”的数学思想;(2)通过运算训练,养成学生严谨治学,一丝不苟的学习习惯;(3)让学生体验数学的简洁美和统一美.(二)教学重点、难点1.教学重点:(1)分数指数幂的理解;(2)掌握并运用分数指数幂的运算性质;2.教学难点:分数指数幂概念的理解(三)教学方法发现教学法1.经历由利用根式的运算性质对根式的化简,注意发现并归纳其变形特点,进而由特殊情形归纳出一般规律.2.在学生掌握了有理指数幂的运算性质后,进一步推广到实数范围内.由此让学生体会发现规律,并由特殊推广到一般的研究方法.(四)教学过程例1计算(1).)01.0(41225325.02120-⎪⎭⎫ ⎝⎛⋅+⎪⎭⎫ ⎝⎛--(1)5.1213241)91()6449()27()0001.0(---+-+; 【解析】(1)原式1122141149100⎛⎫⎛⎫=+⨯- ⎪ ⎪⎝⎭⎝⎭11111.61015=+-=(2)原式=232212323414])21[(])87[()3()1.0(---+-+ =3121)31()87(31.0---+-+ =73142778910=+-+. 【小结】一般地,进行指数幂运算时,化负指数为正指数,化小数为分数进行运算,便于进行乘除、乘方、开方运算,可以达到化繁为简的目的.例2 化简下列各式: (1)313315383327----÷÷a a a a a a ;(2)33323323134)21(248a ab a abb ba a ⨯-÷++-.【解析】 (1)原式=321233153832327----÷÷a aa aa a=323732-÷÷a a a =312213732)()(-÷÷a a a=326732326732---÷=÷÷aa aa a=632a a =;(2)原式=313131313231313231224)8(a a b a a b a b b a a ⨯⋅-÷++-3131313132313132323131323131312424)42)(2(a b a a b a b b b a a b a a ⋅-⋅++++-=a a a a =⋅⋅=313131.【小结】(1)指数幂的一般运算步骤是:有括号先算括号里的;无括号先做指数运算. 负指数幂化为正指数幂的倒数. 底数是负数,先确定符号,底数是小数,先要化成分数,底数是带分数,先要化成假分数,然后要尽可能用幂的形式表示,便于用指数运算性质.(2)根据一般先转化成分数指数幂,然后再利用有理指数幂的运算性质进行运算. 在将根式化为分数指数幂的过程中,一般采用由内到外逐层变换为指数的方法,然后运用运算性质准确求解. 如8)2(])2[()2(2162166==-=-.(3)利用分数指数幂进行根式计算时,结果可化为根式形式或保留分数指数幂的形式,但不能既有根式又有分数指数幂.2.1.1 指数与指数幂的运算(三)(一)教学目标 1.知识与技能:能熟练地运用有理指数幂运算性质进行化简,求值. 2.过程与方法:通过训练点评,让学生更能熟练指数幂运算性质. 3.情感、态度、价值观(1)培养学生观察、分析问题的能力;(2)培养学生严谨的思维和科学正确的计算能力. (二)教学重点、难点1.重点:运用有理指数幂性质进行化简,求值.2.难点:有理指数幂性质的灵活应用.(三)教学方法1.启发学生认识根式与分数指数幂实质是相同的.并能熟练应用有理指数幂的运算性质对根式与分数指数幂进行互化.2.引导学生在化简求值的过程中,注意将根式转化为分数指数幂的形式和积累一些常用技巧.如凑完全平方、分解因式、化小数为分数等等.另外,在运用有理指数幂的运算性质化简变形时,应注意根据底数进行分类,以精简解题的过程.(四)教学过程备选例题 例1 已知32121=+-aa ,求下列各式的值.;+-1)1(a a;)2(22-+a a33221122(3).a a a a----【分析】从已知条件中解出a 的值,然后再代入求值,这种方法是不可取的,而应设法从整体寻求结果与条件32121=+-aa 的联系,进而整体代入求值.【解析】(1)将32121=+-a a 两边平方,得.921=++-a a 即.71=+-a a(2)将上式平方,有.49222=++-a a.4722=+∴-a a(3)由于3213212323)()(---=-a a aa∴33221122a a a a----1111122221122()()a a a a a a a a-----++⋅=-118.a a -=++=【小结】对“条件求值”问题一定要弄清已知与未知的联系,然后采取“整体代换”或“求值后代换”两种方法求值.例2 化简.111113131313132---+++++-x xx x x x x x【分析】根据本题的特点,须注意到)1()1(1)(13132313331++⋅-=-=-x x x x x ,=+1x 1121333333()1(1)(1),x x x x +=+-+1111112333333[()1](1)(1)x x x x x x x -=-=-+,应对原式进行因式分解. 【解析】原式111)(1)(1)(31313231313331312313331---+++++-=x x x x x x x x x1213332133(1)(1)()1x x x x x -++=++12133313(1)(1)1x x x x +-+++1)1)(1(31313131-+--x x x x121213333311x x x x x =-+-+-- 13.x =-【小结】解这类题,要注意运用下列公式:11112222,a b a b a b ⎛⎫⎛⎫+-=- ⎪⎪⎝⎭⎝⎭ 2111122222,a b a a b b ⎛⎫±=±+ ⎪⎝⎭112112333333.a b a a b b a b ⎛⎫⎛⎫±+=± ⎪⎪⎝⎭⎝⎭。
最新人教版高中数学必修1第二章《指数与指数幂的运算》教案4

最新人教版高中数学必修1第二章《指数与指数幂的运算》教案42.1 指数函数在初中的学习中,学生已经掌握了整数指数幂的概念及其运算性质.本节内容在组织学生回顾平方根、立方根的基础上,类比出一个正数的n 次方根定义,进而将指数推广到分数指数,从而完成了指数由整数指数到有理数指数的一次推广,在利用多媒体演示对无理数与无理数指数幂的近似推广,完成了指数由有理数指数到实数指数的二次推广,并将幂的运算性质由整数指数幂推广到实数指数幂,使学生对指数幂的概念以及运算性质有了一个比较完整的认识,同时也为研究指数函数作好了知识上的准备.根式的概念是教学中的难点,教材中通过复习平方根、立方根的定义,然后类比出n 次方根的定义.为了更好地分解这一难点,教学中应放慢速度,多举几个具体的例子,帮助学生理解,并在此基础上类比出n 次方根的一般定义与性质.方根的性质实际上是平方根、立方根性质的推广,教学时,可以以平方根、立方根、四次方根为基础来加以说明,加深对这一性质的理解.分数指数是指数概念的又一次推广,分数指数概念是教学中的又一个难点.教学中应多举实例让学生理解分数指数幂的意义,明确分数指数幂表示的是根式的一种新的写法,并通过根式和分数指数幂的互化来巩固、加深对这一概念的理解.由于学过负整数次幂,正分数次幂引入后,学生不难理解负分数次幂的意义,因此,教学中可以放手让学生自己得出.在掌握了有理数指数幂的基础上,利用多媒体演示对无理数与无理数指数幂的近似推广,从而直观形象地给出了有理数指数幂的运算性质也可以推广到无理数.有了把指数范围扩充到实数范围内的知识上的准备,又有前面所学的对函数概念和性质的系统学习,顺理成章地引出了指数函数概念、怎样作出指数函数图象、怎样研究指数函数的性质以及与其他函数结合的研究.教材是通过死亡后生物体内碳14含量与死亡年数的关系这样一个实际问题引入指数函数的,既说明指数函数的概念来自实践,认识到指数函数对实际生活的意义,也便于学生接受.但在教学中,学生往往容易忽略定义域,因此,在进行指数函数定义的教学时,既要明确其定义域,又要让学生去探索成立的条件,明确底数a 是一个大于零且不等于1的常数,这样既培养了学生掌握概念的能力,又锻炼了学生分析问题和处理问题的能力.在理解指数函数的定义的基础上掌握指数函数的图象和性质,是本节教学的重点,而理解底数a 的值对于函数值变化的影响(即对指数函数单调性的影响)是教学的一个难点.教学时为了帮助学生理解,可以充分利用图象.教学时可以先要学生在同一坐标系内画出函数y =2x 和y =(21)x 的图象,通过两个具体的例子,引导学生共同分析、归纳总结指数函数的性质.有条件的学校也可以利用《几何画板》等数学软件,定义变量a 作出函数y =a x 的图象,进而改变a 的值,使学生在动态变化的过程中理解指数函数的性质,认识规定底数a 是一个大于零且不等于1的常数的原因.2.1.1 指数与指数幂的运算(1)从容说课指数是学习指数函数的预备知识,初中学生已经学习了整数指数幂的概念及运算性质.为了讲解指数函数,需要把指数的概念扩充到有理数指数幂、实数指数幂;为了完成这个扩充,必须先学习分数指数幂的概念和运算性质,以及无理数指数幂的概念;为了学习分数指数幂的概念.首先要介绍根式的概念,本课主要学习根式的概念以及n次方根的性质.学生已经学习了数的平方根、立方根,根式的内容是这些内容的推广.因此,在引入根式的概念时要结合这些已学内容,列举多个具体例子以便学生理解.根式n a的讲解要分n是奇数和偶数两种情况来进行,每种情况中,都要分a>0,a=0,a<0三种情况介绍,并结合具体例子讲解,其中要强调n a(a>0,n是偶数)表示一个正数,抓住这一点,理解n次方根的性质就容易了.当n是偶数时,n n a=|a|(因为n n a总是一个非负数),这是本课的一个难点,讲解时可先复习2a=|a|这一性质,并结合具体例子加以讲解,有助于学生理解n n a=|a|这一性质.三维目标一、知识与技能理解根式的概念,掌握n次方根的性质.二、过程与方法1.通过师生之间、学生与学生之间互相交流,使学生逐步学会共同学习.2.引导学生认真体会数学知识发展的逻辑合理性、严谨性,做一个具备严谨科学态度的人.3.通过探究、思考,培养学生思维迁移能力和主动参与的能力.三、情感态度与价值观1.新知识的发现是因为面临的问题以原有的知识得不到解决所引发出来的思考,通过学习根式的概念,使学生认清基本概念的来龙去脉,加深对人类认识事物的一般规律的理解和认识,体会知识之间的有机联系,感受数学的整体性,激发学生的学习兴趣,培养学生严谨的科学精神.2.在教学过程中,通过学生的自主探索,来加深理解n次方根的性质,具有探索能力是学习数学、理解数学、解决数学问题的重要方面.教学重点1.根式的概念.2.n次方根的性质.教学难点1.根式概念的理解.2.n次方根性质的理解.教具准备多媒体课件、投影仪、打印好的作业.教学过程一、创设情景,引入新课师:你们知道考古学家是怎样来判断生物的发展与进化的吗?生:对生物体化石的研究.师:那么他们是怎样来判断该生物体所处的年代的?你们知道吗?(众生摇头)师:考古学家是按照这样一个规律来推测的.问题:当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据此规律,人们获得了生物体内碳14含量P 与死亡年数t 之间的关系,这个关系式应该怎样表示呢?我们可以先来考虑这样的问题:当生物死亡了5730,2×5730,3×5730,…年后,它体内碳14的含量P 分别为原来的多少? 生:21,(21)2,(21)3,…. 师:当生物体死亡了6000年,10000年,100000年后,它体内碳14的含量P 分别为原来的多少?生:(21)57306000,(21)573010000,(21)5730100000.师:由以上的实例来推断关系式应该是什么?生:P =(21)5830t . 师:考古学家根据上式可以知道,生物死亡t 年后,体内碳14含量P 的值.那么这些数(21)57306000,(21)573010000,(21)5730100000的意义究竟是什么呢?它和我们初中所学的指数有什么区别?生:这里的指数是分数的形式.师:指数可以取分数吗?除了分数还可以取其他的数吗?我们对于数的认识规律是怎样的?生:自然数——整数——分数(有理数)——实数.师:指数能否取分数(有理数)、无理数呢?如果能,那么在脱离开上面这个具体问题以后,关系式P =(21)5830t就会成为我们后面将要相继研究的一类基本初等函数——“指数函数”的一个具体模型.为了能水到渠成地研究指数函数,我们有必要认识一下指数概念的扩充和完善过程,这就是我们下面三节课将要研究的内容:分数指数幂(有理数指数幂)、无理数指数幂.(引入课题,书写课题——指数与指数幂的运算)二、讲解新课(一)探求n 次方根的概念师:32=9,那么,在这个等式中3对于9来说,扮演着什么角色?9对于3来说又扮演着什么角色呢?生:9叫做3的平方数,3叫做9的平方根.师:若53=125,那么125对于5来说,扮演着什么角色?5对于125来说又扮演着什么角色呢?生:125是5的立方数,5是125的立方根.师:如果x 2=a ,那么x 对于a 来说扮演着什么角色?生:x 是a 的平方根.师:能否用一句话描述你的结论?生:如果一个数的平方等于a ,那么这个数叫做a 的平方根.师:如果x3=a,那么x对于a来说又扮演着什么角色?生:x是a的立方根.师:能换一种说法表述你的结论吗?生:如果一个数的立方等于a,那么这个数叫做a的立方根.师:如果x4=a,x5=a,又有什么样的结论呢?生:如果一个数的四次方等于a,那么这个数叫做a的四次方根;如果一个数的五次方等于a,那么这个数叫做a的五次方根.师:①如果x2=a,那么x叫做a的平方根;②如果x3=a,那么x叫做a的立方根;③如果x4=a,那么x叫做a的4次方根.你能否据此得到一个一般性的结论?生:一般地,如果x n=a,那么x叫做a的n次方根.师:上述结论中的n的取值有没有什么限制呢?(生探索,完善n次方根的定义,并强调n的取值范围,师板书如下定义)一般地,如果x n=a,那么x叫做a的n次方根(n—th root),其中n>1,且n∈N*.(二)概念理解课堂训练:试根据n次方根的定义分别求出下列各数的n次方根.(多媒体显示,生完成)(1)25的平方根是________;(2)27的三次方根是________;(3)-32的五次方根是________;(4)16的四次方根是________;(5)a6的三次方根是________;(6)0的七次方根是________.(师组织学生紧扣n次方根的定义,完成以上各题)方法引导:在n次方根的概念中,关键的是数a的n次方根x满足x n=a,因此求一个数a的n次方根,就是求出哪个数的n次方等于a.(三)n次方根的性质合作探究:观察并分析以上各数的方根,你能发现什么?(学生交流,师及时捕捉与如下结论有关的信息,并简单板书)1.以上各数的对应方根都是有理数;2.第(1)、第(4)的答案有两个,第(2)、第(3)、第(5)、第(6)的答案只有一个;3.第(1)题的答案中的两个值互为相反数.师:请仔细分析以上各题,你能否得到一个一般性的结论?(提供一个比较发散的问题,给学生提供广阔的思维空间,培养学生理性思维能力和数学的分析问题、解决问题的能力)生甲:一个数的奇次方根只有一个.生乙:一个数的偶次方根有两个,且互为相反数.师:是否任何一个数都有偶次方根?0的n次方根如何规定更合理?生:因为任何一个数的偶次方都是非负数,所以负数没有偶次方根,0的n次实数方根等于0.师:你能否把你所得到的结论再叙述的具体一些呢?(组织学生交流,得出以下结论)n次方根的性质实际上是平方根和立方根性质的推广,因此跟立方根和平方根的情况一样,方根也有如下性质:(1)当n 是奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数.这时,a 的n 次方根用符号n a 表示.(2)当n 是偶数时,正数的n 次方根有两个,这两个数互为相反数.这时,正数a 的正的n 次方根用符号n a 表示,负的n 次方根用符号-n a 表示.正的n 次方根与负的n 次方根可以合并写成±n a (a >0).注:①负数没有偶次方根;②0的任何次方根都是0,记作n 0=0;③当a ≥0时,n a ≥0,所以类似416=±2的写法是错误的.(四)根式的概念式子n a 叫做根式,其中n 叫做根指数,a 叫做被开方数. 例如56叫做根式,其中5叫做根指数,6叫做被开方数.(五)n 次方根的运算性质求下列各式的值:(1)(5)2;(2)33)2(-;(3)44)2(-;(4)2)3(a -(a >3).(生板演,师组织学生评析)解:(1)(5)2=5;(2)33)2(-=-2;(3)44)2(-=|-2|=2;(4)2)3(a -= |3-a |=a -3.师:上面的例题中涉及了哪几类问题? 生:主要涉及了(n a )n 与n n a 的问题.合作探究:(1)(n a )n 的含义是什么?其化简结果是什么呢?(2)n n a 的含义是什么?其化简结果是什么呢?(组织学生结合例题及其解答,进行分析讨论、归纳出以下结论)(1)(n a )n =a .例如,(327)3=27,(532-)5=-32.(2)当n 是奇数时,n n a =a ;当n 是偶数时,n n a =|a |=<-≥.0,,0,a a a a 例如,33)2(-=-2,552=2;443=3,2)3(-=|-3|=3.(六)例题讲解(生板演,师组织学生进行课堂评价)【例1】求下列各式的值:(1)(38-)3;(2)2)10(-;(3)44)π3(-;(4)2)(b a -(a >b ).解:(1)(38-)3=-8;(2)2)10(-=10;(3)44)π3(-=π-3;(4)2)(b a -=|a -b |=a -b .【例2】化简下列各式:(1)681;(2)62)2(-;(3)1532-;(4)48x ;(5)642b a .解:(1)681=643=323=39;(2)62)2(-=622=32;(3)1532-=-1552=-32;(4)48x =442)(x =x 2;(5)642b a =622)|(|b a ?=32||b a ?.三、课堂练习1.若x ∈R ,y ∈R ,下列各式中正确的是A.44)(y x +=x +yB.33x -44y =x -yC.2)3(+x +2)3(-x =2xD.3-x +x -3=02.12--x x =12--x x 成立的条件是 A.12--x x ≥0 B.x ≠1 C.x <1 D.x ≥23.在①42)4(n -;②412)4(+-n ;③54a ;④45a (各式中n ∈N ,a ∈R )中,有意义的是A.①②B.①③C.①②③④D.①③④4.当8<x <10时,2)8(-x -2)10(-x =________.参考答案:1.D2.D3.B4.2x -18四、课堂小结师:请同学们互相交流一下你在本课学习中的收获.(生互相交流,而后由师多媒体显示如下内容)1.若x n =a (n >1,n ∈N *),则x 叫做a 的n 次方根.当n 是奇数时,实数a 的n 次方根用符号n a 表示;当n 是偶数时,正数a 的n 次方根用符号±n a 表示,负数的偶次方根无意义.式子n a 叫做根式,其中n 叫做根指数,a 叫做被开方数.2.在实数范围内,正数的奇次方根是一个正数;负数的奇次方根是一个负数.正数的偶次方根是两个绝对值相等符号相反的数;负数的偶次方根没有意义;0的任何次方根都是0.3.(1)(n a )n =a .(2)当n 为奇数时,n n a =a ;当n 为偶数时,n n a =|a |=<-≥.0,,0,a a a a五、布置作业(一)复习课本第57~58页内容,熟悉巩固有关概念和性质;(二)书面作业:课本P 69习题2.1A 组第1题.板书设计2.1.1 指数与指数幂的运算(1)一、基本概念和性质1.n 次方根的定义2.n 次方根的性质3.根式的定义4.n 次方根的运算性质二、例题解析即学生训练板演例1.求下列各式的值例2.化简下列各式目标检测评析布置作业。
指数与指数幂的运算教案

指数与指数幂的运算教案教案标题:指数与指数幂的运算教案概述:本教案旨在帮助学生理解指数与指数幂的概念,并掌握指数与指数幂的运算规则。
通过多种互动教学方法,学生将能够在实际问题中应用指数与指数幂的知识,提高他们的数学思维和解决问题的能力。
教学目标:1. 理解指数和指数幂的概念。
2. 掌握指数与指数幂的运算规则。
3. 能够在实际问题中应用指数与指数幂的知识。
教学重点:1. 指数的定义和性质。
2. 指数幂的定义和性质。
3. 指数与指数幂的运算规则。
教学准备:1. 教师准备:黑板、白板、彩色粉笔或白板笔、教学课件、实物或图片示例。
2. 学生准备:课本、笔记本、铅笔、计算器。
教学过程:步骤一:引入(5分钟)教师通过提问和展示实物或图片示例引入指数与指数幂的概念,激发学生的兴趣和思考。
步骤二:概念讲解(15分钟)教师通过教学课件或黑板白板讲解指数的定义和性质,以及指数幂的定义和性质,并与学生一起解决一些简单的例题。
步骤三:运算规则讲解(15分钟)教师详细讲解指数与指数幂的运算规则,包括同底数相乘、相除、幂的乘方等规则,并通过例题演示运用这些规则进行运算。
步骤四:练习与巩固(20分钟)教师提供一些练习题,让学生在课堂上进行个人或小组练习,并及时给予指导和反馈。
教师还可以设计一些应用题,让学生运用指数与指数幂的知识解决实际问题。
步骤五:总结与拓展(10分钟)教师与学生一起总结本节课的重点内容,并提供一些相关拓展问题,鼓励学生进一步思考和探索。
步骤六:作业布置(5分钟)教师布置相关的作业,要求学生独立完成,并在下节课前交给教师检查。
教学延伸:1. 学生可以通过自主学习,进一步了解指数与指数幂的应用领域,如科学计数法、指数函数等。
2. 教师可以组织学生进行小组讨论或展示,分享他们在实际生活中发现的指数与指数幂的应用案例。
教学评估:1. 教师通过课堂练习和作业的批改,评估学生对指数与指数幂的理解和运用能力。
2. 教师观察学生在课堂上的表现,评估他们的参与度和学习态度。
指数与指数幂的运算教案

指数与指数幂的运算教案一、知识点概述指数是数学中的一个重要概念,它表示一个数的幂次。
指数幂是指一个数的指数次幂,例如a b表示a的b次幂。
指数与指数幂的运算是数学中的基本运算之一,掌握这一知识点对于学习高中数学和大学数学都非常重要。
本教案将介绍指数与指数幂的基本概念、运算规律和解题方法,帮助学生掌握这一知识点。
二、基本概念1. 指数的定义指数是表示一个数的幂次的数,通常用字母a和n表示,a表示底数,n表示指数。
指数的一般形式为a n,读作“a的n次幂”。
2. 指数幂的定义指数幂是指一个数的指数次幂,例如a n表示a的n次幂。
指数幂的一般形式为a n,读作“a的n次幂”。
3. 底数和指数的关系底数和指数是指数幂的两个基本要素,它们之间的关系非常密切。
底数表示被乘数,指数表示乘数,指数越大,指数幂的值就越大。
三、运算规律1. 同底数幂的乘法同底数幂的乘法是指,当两个指数幂的底数相同时,它们的指数相加,底数不变。
即a m×a n=a m+n。
例如:23×24=23+4=27。
2. 同底数幂的除法同底数幂的除法是指,当两个指数幂的底数相同时,它们的指数相减,底数不变。
即a ma n=a m−n。
例如:2523=25−3=22。
3. 幂的乘方幂的乘方是指,当一个指数幂的底数是另一个指数幂的指数时,它们的值相乘,底数不变。
即 (a m )n =a mn 。
例如:(23)4=23×4=212。
4. 幂的除方幂的除方是指,当一个指数幂的底数是另一个指数幂的指数时,它们的值相除,底数不变。
即(a m )n a p =a mn−p 。
例如:(23)422=23×4−2=210。
5. 指数幂的乘方指数幂的乘方是指,当两个指数幂的指数相乘时,它们的底数不变,指数相乘。
即 (a m )n =a mn 。
例如:(23)4=23×4=212。
6. 指数幂的除方指数幂的除方是指,当两个指数幂的指数相除时,它们的底数不变,指数相除。
高中数学指数与指数幂的运算教案

高中数学指数与指数幂的运算教案一、教学目标•理解指数幂的基本概念,掌握指数幂运算法则。
•掌握指数幂运算中的乘方运算法则、除法运算法则、幂运算法则等基本准则。
•掌握如何进行数学题目的化简与计算。
二、教学重点•理解指数幂的概念,掌握乘方运算、除法运算和幂运算的基本法则。
•熟练掌握指数幂的运算方法,能够灵活运用到数学题目计算及求解中。
三、教学内容1. 指数幂的基本概念•定义:指数是乘积的简写,指数幂就是一个数自乘的多次运算。
例如 aⁿ,其中 a 是底数,n 是指数。
•概念:底数与指数是幂的构成要素。
•特征:指数幂的幂次表示底数连续乘法的次数,指数为 0 的指数幂表示为 1。
•记忆技巧:底数 a 和指数 n 都可以从“按次数”这个概念入手去记。
2. 指数幂运算法则2.1 乘法运算法则指数相加,底数不变。
aⁿ × aⁿʸ = aⁿ⁺ʸ。
例如:2² × 2³ = 2⁵2.2 除法运算法则指数相减,底数不变。
aⁿ ÷ aⁿʸ = aⁿ⁻ʸ,其中 n 〉y。
例如:5⁴ ÷ 5² = 5²2.3 幂运算法则底数相同,指数相加。
aⁿ⁺ʸ = (aⁿ)ⁿʸ。
例如:2³⁺² = (2³)² = 8² = 643. 题目解析题目1$0.5^6 \\times 0.5^3 = 0.5^{6+3} = 0.5^9$题目2$4^3 \\div 4^2 = 4^{3-2} = 4^1 = 4$题目3$(3^4)^3 = (3^{4\\times3}) = 3^{12}$四、教学方法1.以练习为主,通过大量的例题和训练来加深学生对指数幂的认识。
2.实践与归纳相结合,提高学生思维水平与解题能力。
五、教学过程1.复习知识点和概念。
2.讲解指数幂运算法则,通过例题讲解并学生操作,带领学生掌握基本的指数幂运算方法。
指数与指数幂的运算教案

指数与指数幂的运算教案一、教学目标:知识与技能目标:1. 理解指数与指数幂的概念。
2. 掌握指数幂的运算性质和运算法则。
3. 能够运用指数幂的运算性质解决实际问题。
过程与方法目标:1. 通过观察、分析和归纳,培养学生发现和提出问题的能力。
2. 利用同底数幂的乘法、除法、乘方和积的乘方等运算法则,提高学生的逻辑思维能力。
情感态度与价值观目标:1. 培养学生对数学的兴趣和好奇心。
2. 培养学生勇于探索、合作的科学精神。
二、教学重点与难点:重点:1. 指数与指数幂的概念。
2. 指数幂的运算性质和运算法则。
难点:1. 理解指数幂的运算性质和运算法则。
2. 运用指数幂的运算性质解决实际问题。
三、教学准备:教师准备:1. 指数与指数幂的相关教学素材。
2. 教学课件或板书设计。
学生准备:1. 预习指数与指数幂的相关知识。
2. 准备好笔记本,用于记录重点知识和练习。
四、教学过程:1. 导入:教师通过引入日常生活中的实际问题,如“银行的复利计算”,引导学生思考指数与指数幂的概念。
2. 新课讲解:教师讲解指数与指数幂的概念,通过示例和图示,帮助学生理解指数幂的运算性质和运算法则。
3. 课堂练习:教师给出一些指数幂的运算题目,要求学生独立完成,并及时给予指导和反馈。
4. 应用拓展:教师提出一些实际问题,引导学生运用指数幂的运算性质解决,培养学生的应用能力。
五、课后作业:教师布置一些有关指数与指数幂的练习题目,要求学生在课后完成,巩固所学知识。
教学反思:教师在课后对自己的教学进行反思,了解学生的学习情况,针对存在的问题,调整教学方法和策略,以提高教学效果。
六、教学评估1. 课堂提问:教师通过提问了解学生对指数与指数幂概念的理解程度,以及学生对指数幂运算性质和运算法则的掌握情况。
2. 课堂练习:教师观察学生在练习过程中的表现,评估学生对指数幂运算的熟练程度。
3. 课后作业:教师批改课后作业,了解学生对课堂所学知识的掌握情况,发现问题及时给予反馈。
高中数学指数与指数幂教案

高中数学指数与指数幂教案主题:指数与指数幂一、教学目标1. 了解指数及其性质,掌握指数的计算方法。
2. 掌握指数幂的概念及运算规则,并能灵活运用。
3. 能够应用指数与指数幂解决实际问题。
二、教学重点1. 指数的概念和性质。
2. 指数的计算方法。
3. 指数幂的概念及运算规则。
三、教学难点1. 指数幂的混合运算。
2. 实际问题的应用。
四、教学方法1. 导入新知识:通过生活中的例子引入指数的概念。
2. 讲解详细:结合具体例题,逐步讲解指数和指数幂的相关内容。
3. 练习巩固:提供大量练习题,巩固学生对知识点的掌握。
4. 演示实例:通过实际问题的案例演示,让学生理解知识在实际中的应用。
五、教学过程1. 指数的概念和性质- 通过例子介绍指数的概念,引导学生理解指数的作用。
- 讲解指数的性质,如指数运算规则、指数与幂的关系等。
2. 指数的计算方法- 讲解指数的乘法规则、除法规则、幂的运算规则等,举例说明。
- 练习题:计算一些简单的指数计算题,让学生掌握计算方法。
3. 指数幂的概念及运算规则- 通过具体例子引入指数幂的概念,讲解指数幂的运算规则。
- 练习题:让学生进行相关的练习,加深理解。
4. 实际问题的应用- 通过实际问题的案例演示,让学生了解指数与指数幂在实际中的应用。
- 练习题:让学生解决一些实际问题,培养他们的分析和解决问题的能力。
六、教学反馈1. 授课结束前,进行知识总结,梳理重点。
2. 布置作业,巩固学生对知识点的掌握。
3. 随堂检测,检查学生对知识的理解情况。
七、教学资源1. 教材:教科书相关章节。
2. 影音资料:多媒体课件、相关视频等。
3. 习题集:相关习题集,作业册。
八、教学总结通过本节课的学习,学生应该掌握了指数的概念与性质,以及指数幂的计算规则。
并能够运用所学知识进行求解实际问题。
以上为本节课的教学大纲,希望能够帮助学生掌握指数与指数幂的相关知识,提高数学学习的效果。
如有任何问题,请随时与我联系。
《指数与指数幂的运算》教案新部编本

精选教课教课设计设计| Excellent teaching plan教师学科教课设计[ 20–20学年度第__学期]任教课科: _____________任教年级: _____________任教老师: _____________xx市实验学校精选教课教课设计设计| Excellent teaching plan《指数与指数幂的运算》教课设计一、教材剖析本节是高中数学新人教版必修 1 的第二章 2.1 指数函数的内容二、三维目标1.知识与技术(1)理解 n 次方根与根式的观点;(2)正确运用根式运算性质化简、求值;(3)认识分类议论思想在解题中的应用.2.过程与方法经过与初中所学的知识(平方根、立方根)进行类比,得出n 次方根的观点,从而学习根式的性质 .3.感情、态度与价值观(1)经过运算训练,养成学生谨慎治学,谨小慎微的学习习惯;(2)培育学生认识、接受新事物的能力三、教课要点教课要点:( 1)根式观点的理解;( 2)掌握并运用根式的运算性质四、教课难点教课难点:根式观点的理解五、教课策略发现教课法1.经历由利用根式的运算性质对根式的化简,注意发现并概括其变形特色,从而由特殊情况概括出一般规律.2.在学生掌握了有理指数幂的运算性质后,进一步推行到实数范围内.由此让学生领会发现规律,并由特别推行到一般的研究方法.六、教课准备回首初中时的整数指数幂及运算性质,a n a a a a, a0 1 (a0)七、教课环节教教课内容师生互动设计意学图环精选教课教课设计设计| Excellent teaching plan 节提回首初中时的整数指数幂及运算性质.出问a n a a a a, a0 1 ( a 0)题00无心义a n1( a 0)a na m a n a m n ; (a m )n a mn(a n )m a mn , (ab)n a n b n什么叫实数?有理数,无理数统称实数.复察看以下式子,并总结出规律: a >0习① 5 a10 5 (a2)5a210a 5引② a8(a4 ) 2a48入a2③ 4 a12 4 (a3)4a312 a 4④ 5 a105a210a 5 (a2 )5小结:当根式的被开方数的指数能被根指数整除时,根式能够写成分数作为指数的形式,(分数指数幂形式)根式的被开方数不可以被根指数整除时,根式能否也能够写成分数指数幂的形式.如:3 a22a 3(a0) 1b b2(b0)4 c55c4(c0)m即:n a m a n (a 0, n N * ,n 1)老师发问,学习学生回答 .新知前的简单复习,不单能唤起学生的记忆,并且为学习新课作好了知识上的准备 .老师指引学生“当根式的被开数学方数的指数能被根指数整除时,根中引进一式能够写成分数作为指数的形式,个新的概(分数指数幂形式)”联想“根式的念或法例被开方数不可以被根指数整除时,根时,总希式能否也能够写成分数指数幂的形望它与已式 .”从而推行到正数的分数指数幂有的观点的意义 .或法例是相容的 .形为此,我们规定正数的分数指数幂的意学生计算、结构、猜想,同意沟通让学成义为:议论,报告结论.教师巡视指导.生经历从概“特别一精选教课教课设计设计| Excellent teaching plan念mn a m (a 0, m, n N * )一般”,a n“概括一正数的定负分数指数幂的意义与负整猜想”,数幂的意义相同 .是培育学m1*即: a n生“合情m (a 0, m, n N )a n推理”能规定: 0 的正分数指数幂等于0,0 的负力的有效分数指数幂无心义 .方式,同说明:规定好分数指数幂后,根式与分时学生也数指数幂是能够交换的,分数指数幂不过根经历了指式的一种新的写法,而不是数幂的再n111发现过a m a m a m a m (a0)程,有益于培育学生的创建能力.深因为整数指数幂,分数指数幂都存心让学生议论、研究,教师指引.经过本化义,所以,有理数指数幂是存心义的,整数环节的教概指数幂的运算性质,能够推行到有理数指数学,进一念幂,即:步领会上( 1)a r a s a r s (a0, r , s Q )一环节的( 2)( a r)S a rs (a0, r , s Q )设计意图.(3)( a b)r a r b r (Q 0, b 0, r Q)若 a >0,P是一个无理数,则P该怎样理解?为认识决这个问题,指引学生先阅读课本 P57——P58.即: 2 的不足近似值,从由小于 2 的方向迫近 2 , 2 的剩余近似值从大于2的方向迫近 2 .所以,当 2 不足近似值从小于 2 的方向迫近时, 52的近似值从小于 52的方向精选教课教课设计设计 | Excellent teaching plan迫近5 2 .当2 的剩余似值从大于 2 的方向逼近2 时,5 2 的近似值从大于 5 2 的方向逼近 5 2 ,( 如课本图所示 )2所以, 5是一个确立的实数 .a p (a 0, p 是一个无理数 ) 是一个确定的实数,有理数指数幂的性质相同合用于无理数指数幂 .无理指数幂的意义, 是用有理指数幂的不足近似值和剩余近似值无穷地迫近以确立大小 .思虑: 2 3 的含义是什么?由以上剖析,可知道,有理数指数幂,无理数指数幂存心义,且它们运算性质相同,实数指数幂存心义,也有相同的运算性质,即:rsrsa aa (a 0, r R, s R)rsrs(a )a (a 0, r R, s R)rrr(a b) a b (a 0, r R)应例题用例 1( P 56 ,例 2)求值举211) 5;( 383;25 2;(16) 4. 例2 81例 2( P 56,例 3)用分数指数幂的形式表或以下各式( a > 0)a 3 . a ; a2 3a 2;a 3a .剖析:先把根式化为分数指数幂,再由运算性质来运算 .117解: a 3 . a a 3 a23a 2;a2学生思虑,口答,教师板演、评论.例 1解:22① 83(23)33 222 4 ;2311② 252 (52) 22 ( 1 )11 52 5;5③ (1)5(21)52经过这二个例题的解答,稳固所学的分数指数幂与根式的互化,以及分数指数幂的求值,提高运算能精选教课教课设计设计| Excellent teaching plan22 28 2 1 ( 5)32 ;a 2 3 a 2 a 2 a 3 a3a 3;3 3162 4( )④ () 4( )4144 12813a 3aa a 3 a 3 (a 3 ) 2 a 3 .2 327().讲堂练习: P 59 练习 第 1,2,3, 4 题38例 2 剖析:先把根式化为分数增补练习:(2n 1 )4 ( 1)2 n 1指数幂,再由运算性质来运算 .11. 计算:n2 的结果;解: a 3 . a a3a 224 817若 a 3 3,a10384,32. a 2a 2 ;12求 a 3 [(a 10) 7 ]n 3的值 .a 2 3 a 2a 2 a 3a 32 2 8a3a 3 ;a 314aa a 3a 341 2( a 3 ) 2 a 3 .练习答案:24 n 4 2 2n 11.解:原式 = 22 n2 6= 29 =512 ;1]n 32.解:原式 = 3 [(128) 7 = 32n 3.归1.分数指数是根式的另一种写法 .先让学生单独回想,而后师生纳2.无理数指数幂表示一个确立的实数.共同总结.总3.掌握好分数指数幂的运算性质,其结与整数指数幂的运算性质是一致的.课作业: 2.1 第二课时 习案 学生独立达成后力.稳固本节学习成就,使学生逐渐养成爱总结、会总结的习惯和能力.稳固新知精选教课教课设计设计| Excellent teaching plan作提高业能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1.1 指数与指数幂的运算(2课时)第一课时 根式教学目标:1.理解n 次方根、根式、分数指数幂的概念;2.正确运用根式运算性质和有理指数幂的运算性质;3.培养学生认识、接受新事物和用联系观点看问题的能力。
教学重点:根式的概念、分数指数幂的概念和运算性质教学难点:根式概念和分数指数幂概念的理解教学方法:学导式教学过程:(I )复习回顾引例:填空*)n aa a n N ⋅∈个(; m n a += (m,n ∈Z);_____=;(II )讲授新课1.引入:(1)填空(1),(2)复习了整数指数幂的概念和运算性质(其中:因为m na a ÷可看作m n a a -⋅,所以m n m n a a a -÷=可以归入性质m n m n a a a +⋅=;又因为nb a )(可看作mna a -⋅,所以n nn ba b a =)(可以归入性质()n n n ab a b =⋅(n ∈Z)),这是为下面学习分数指数幂的概念和性质做准备。
为了学习分数指数幂,先要学习n 次根式(*N n ∈)的概念。
(2)填空(3),(4)复习了平方根、立方根这两个概念。
如:分析:若22=4,则2叫4的平方根;若23=8,2叫做8的立方根;若25=32,则2叫做32的5次方根,类似地,若2n =a ,则2叫a 的n 次方根。
由此,可有:2.n 次方根的定义:(板书)问题1:n 次方根的定义给出了,x 如何用a 表示呢?n a x =是否正确?分析过程:解:因为33=27,所以3是27的3次方根;因为5)2(-=-32,所以-2是-32的5次方根;因为632a )a (=,所以a 2是a 6的3次方根。
结论1:当n 为奇数时(跟立方根一样),有下列性质:正数的n 次方根是正数,负数的n 次方根是负数,任何一个数的方根都是唯一的。
此时,a 的n 次方根可表示为n a x =。
从而有:3273=,2325-=-,236a a =解:因为4216=,16)2(4=-,所以2和-2是16的4次方根;因为任何实数的4次方都是非负数,不会等于-81,所以-81没有4次方根。
结论2:当n 为偶数时(跟平方根一样),有下列性质:正数的n 次方根有两个且互为相反数,负数没有n 次方根。
此时正数a 的n 次方根可表示为:)0a (a n >± 其中n a 表示a 的正的n 次方根,n a -表示a 的负的n 次方根。
解:因为不论n 为奇数,还是偶数,都有0n =0,所以0的3次方根,0的4次方根均为0。
结论3:0的n 次方根是0,记作n n a ,00即=当a=0时也有意义。
这样,可在实数范围内,得到n 次方根的性质:3 n 次方根的性质:(板书)*)(2,12,N k kn a k n a x n n ∈⎪⎩⎪⎨⎧=±+== 其中 叫根式,n 叫根指数,a 叫被开方数。
注意:根式是n 次方根的一种表示形式,并且,由n 次方根的定义,可得到根式的运算性质。
4.根式运算性质:(板书)n a①a a nn=)(,即一个数先开方,再乘方(同次),结果仍为被开方数。
问题2:若对一个数先乘方,再开方(同次),结果又是什么?由所得结果,可有:(板书)②⎩⎨⎧=为偶数为奇数;n a n a a nn|,|,性质的推导如下:注意:性质②有一定变化,大家应重点掌握。
(III)例题讲解注意:根指数n为奇数的题目较易处理,要侧重于根指数n为偶数的运算。
(III)课堂练习:求下列各式的值(IV)课时小结通过本节学习,大家要能在理解根式概念的基础上,正确运用根式的运算性质解题。
(V)课后作业1、书面作业:a.求下列各式的值b.书P82习题2.1 A组题第1题。
2、预习作业:a.预习内容:课本P59—P62。
b.预习提纲:(1)根式与分数指数幂有何关系?(2)整数指数幂运算性质推广后有何变化?第二课时分数指数幂教学目标:(一)教学知识点1.分数指数幂的概念.2.有理指数幂的运算性质.( 二)能力训练要求1.理解分数指数幂的概念.2.掌握有理指数幂的运算性质.3.会对根式、分数指数幂进行互化.(三)德育渗透目标培养学生用联系观点看问题.教学重点:1.分数指数幂的概念.2.分数指数幂的运算性质.教学难点:对分数指数幂概念的理解.1.在利用根式的运算性质对根式的化简过程,注意发现并归纳其变形特点,进而由特殊情形归纳出一般规律.2.在学生掌握了有理指数幂的运算性质后,进一步将其推广到实数范围内,但无须进行严格的推证,由此让学生体会发现规律,并由特殊推广到一般的研究方法.教学过程:(Ⅰ).复习回顾[师]上一节课,我们一起复习了整数指数幂的运算性质,并学习了根式的运算性质.整数指数幂运算性质(1)a m ·a n =a m +n (m ,n ∈Z ) 根式运算性质(2)(a m )n =a m ·n (m ,n ∈Z )⎩⎨⎧=为偶数为奇数n a n a a nn,,(3)(a ·b )n =a n ·b n (n ∈Z )[师]对于整数指数幂运算性质(2),当a >0,m ,n 是分数时也成立.(说明:对于这一点,课本采用了假设性质(2)对a >0,m ,n 是分数也成立这种方法,我认为不妨先推广了性质(2),为下一步利用根式运算性质推导正分数指数幂的意义作准备.)[师]对于根式的运算性质,大家要注意被开方数a n 的幂指数n 与根式的根指数n 的一致性.接下来,我们来看几个例子.例子:当a >0时[师]上述推导过程主要利用了根式的运算性质,例子③、④、⑤用到了推广的整数指数幂运算性质(2).因此,我们可以得出正分数指数幂的意义.(Ⅱ).讲授新课1.正数的正分数指数幂的意义n m nm a a= (a >0,m ,n ∈N *,且n >1)[师]大家要注意两点,一是分数指数幂是根式的另一种表示形式;二是根式与分数指数幂可以进行互化.另外,我们还要对正数的负分数指数幂和0的分数指数幂作如下规定.[师]规定了分数指数幂的意义以后,指数的概念就从整数推广到有理数指数.当a >0时,整数指数幂的运算性质,对于有理指数幂也同样适用.即对于任意有理数r,s,均有下面的运算性质.3.有理指数幂的运算性质(板书)[师]说明:若a >0,P 是一个无理数,则a P 表示一个确定的实数,上述有理指数幂的运算性质,对于无理数指数幂都适用,有关概念和证明在本书从略.这一说明是为下一小节学习指数函数作铺垫.接下来,大家通过例题来熟悉一下本节的内容.4.例题讲解分析:此题主要运用有理指数幂的运算性质.例2 求值: 4332132)8116(,)41(,100,8---. (1)a r ·a s =a r +s (a >0,r ,s ∈Q ) (2)(a r )s =a r ·s (a >0,r ,s ∈Q ) (3)(a ·b )r =a r ·b r (a >0,b >0,r ∈Q )解:422)2(8232332332====⨯827)32()32()8116(6422)2()41(1011010)10(1003)43(4436)3()2(3231)21(221221===========--⨯--⨯------⨯--a a a a a a ,,3232⋅⋅ (式中a >0)解:252122122a aa a a a ==⋅=⋅+4321232121311323323323)()(aa a a a a aaaa a a ==⋅===⋅=⋅+[师]为使大家进一步熟悉分数指数幂的意义与有理指数幂的运算性质,我们来做一下练习题.Ⅲ.课堂练习课本P 51练习1.用根式的形式表示下列各式(a >0)32534351,,,--aaa a解:551a a =323232535353434311a a aa a a a a =====----2.用分数指数幂表示下列各式:解:(1)3232x x =(2)4343)()(b a b a +=+(3)3232)()(n m n m -=-(4) 214)()(n m n m -=-=(m-n)2(5)2532526215656)()0(q p q p q p p q p ⋅==⋅=⋅ (6)252133m mm mm =⋅=-3.求下列各式的值:(1)2325 ;(2)3227;(3)23)4936( ;(4)23)425(-(5)423981⨯; (6)63125.132⨯⨯解:(1) 12555)5(25323223223====⨯(2) 933)3(27232332332====⨯(3)34321676)76()76(])76[()4936(33323223223=====⨯(4) 125852)25()25()25(])25[()425(3333)23(223223======--⨯-- (5)4324421232442132244233333])3[(3981⨯=⨯=⨯=⨯⨯⨯6614132414413243333)3()3()33(=⨯=⨯=⨯=(6)612313163)23()23(32125.132⨯⨯⨯⨯=⨯⨯ 63232)333()222(2323326131213131161312131313161313121=⨯=⨯=⨯⨯⨯⨯⨯=⨯⨯⨯⨯⨯=+++---要求:学生板演练习,做完后老师讲评.(Ⅳ).课时小结[师]通过本节学习,要求大家理解分数指数幂的意义,掌握分数指数幂与根式的互化,熟练运用有理指数幂的运算性质.(Ⅴ).课后作业(一)1.课本P 53练习题解:(1)1274131413143a aa a a a ==⋅=⋅+(2)87814121814121212121])([a aa a a a a a a a a ==⋅⋅=⋅⋅=++(3)3232)()(b a b a -=-(4)4343)()(b a b a +=+(5)3122322)(b a ab b a ab +=+(6)213342334233)()()(b a b a b a +=+=+解:(1)1111)11(221221221===⨯(2)87)78()78()78()4964(1)21(2212221===--⨯-- (3) 001.01010)10(100003)43(443443====--⨯--(4) 259)35()35(])35[()35()27125(2)32(3323323332=====--⨯---解:(1)315=1.710(2)32321=46.88(3)2173-=0.1170(4)5467=28.90(5)2138⋅=2.881(6)438-=0.08735板书设计分数指数幂1.正分数指数幂意义 3.有理指数幂性质n m nm a a=(a>0,m,n∈N *,n>1) (1)ar·as=ar+s(2)(ar)s=ars(a>0,r,s∈Q )(3)(a·b)r=ar·ar(a>0,b>0,r∈Q)2.规定 4.例题(1)nm nmaa1=-[例1](a>0,m,n∈N *,n>1), [例2](2)0的正分数指数幂等于0, 5.学生练习(3)0的负分数指数幂无意义.。