湖南省长沙市八年级上学期数学期中考试试卷

合集下载

湖南省长沙市2023-2024学年八年级上学期期中考试数学复习试卷(含答案)

湖南省长沙市2023-2024学年八年级上学期期中考试数学复习试卷(含答案)

湖南师范大学附属中学2023-2024学年度八年级上期期中考试数学试题一、选择题(共10小题,满分30分,每小题3分)1. 下列图形中,是轴对称图形的是()A. B. C. D.2. 下列计算正确的是()A. B.C. D.3. 下列能用完全平方公式进行因式分解的是()A. B. C. D.4. 如图,实线内图形的面积可以用来验证下列的某个等式成立,该等式是()A. B.C. D.5. 长方形的面积为,长为,则它的宽为()A. B. C. D.6. 若,则的值为()A. B. 6 C. D. 17. 下列式子,总能成立的是()A. B.C. D.8. 计算的结果是()A. B. C. D.9. 如图,A、B、C表示三个居民小区,为了居民生活的方便,现准备建一个生活超市,使它到这三个居民小区的距离相等,那么生活超市应建在()A. AB,AC两边中线的交点处B. AB,AC两边高线的交点处C. 与这两个角的角平分线的交点处D. AB,AC两边的垂直平分线的交点处10. 如图所示的“三等分角仪”能三等分任意一个角. 这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O点转动. C点固定,,点D,E可在槽中滑动,若,则的度数是()A. 65°B. 68°C. 66°D. 70°二、填空题(共6小题,满分18分,每小题3分)11. 分解因式:_________.12. 已知,,则的值为_________.13. 若,则代数式的值是_________.14. 等腰三角形有一个角是70°,则它的底角是_________.15. 如图,将一副三角尺按如图所示的方式叠放在一起,则图中的度数是_________.16. 如图,在中,,,,,AD是的平分线. 若P,Q分别是AD和AC上的动点,则的最小值是_________.三、解答题(共9小题,17,18,19每小题6分,20,21每小题8分,22,23每小题9分,24,25每小题10分. )17. 计算:.18. 先化简,再求值:,其中.19. 如图,在中,,AB的垂直平分线MN交AC于点D,交AB于点E.,求的度数.20. 如图,在平面直角坐标系中,的顶点,,均在正方形网格的格点上.(1)画出关于x轴的对称图形,点的坐标为__________.(2)将沿x轴方向向左平移3个单位,向下平移2个单位后得到,直接写出顶点,,的坐标:_________,_________,_________.21. 如图,是等腰三角形,,点D是AB上一点,过点D作交BC于点E,交CA延长线于点F.(1)证明:是等腰三角形;(2)若,,,求EC的长.22. 将边长为x的小正方形和边长为y的大正方形按如图所示放置,其中点D 在边CE上.(1)若,且,求的值;(2)连接AG,EG,若,,求阴影部分的面积.23. 在中,,,.(1)求a的取值范围;(2)若为等腰三角形,求a的值与的周长.24. 如图1,在平面直角坐标系中,点A在x轴负半轴上,点B在y轴正半轴上,设,且.(1)请写出a和b的数量关系;(2)如图2,点D为AB的中点,点P为y轴负半轴上一点,以AP为边作等边三角形,连接DQ并延长交x轴于点M,若,求点M的坐标;(3)如图3,点C与点A关于y轴对称,点E为OC的中点,连接BE,过点B作,且,连接AF交BC于点P,过点F作轴交CB的延长线于点M,①求证:P为AF的中点;②求的值.图1 图2 图325. 定义:a,b,c为正整数,若,则称c为“完美勾股数”,a,b为c的“伴侣勾股数”. 如,则13是“完美勾股数”,5,12是13的“伴侣勾股数”. (1)数10________“完美勾股数”(填“是”或“不是”);(2)已知的三边a,b,c满足. 求证:c是“完美勾股数”.(3)已知m,且,,,,c为“完美勾股数”,a,b为c的“伴侣勾股数”. 多项式有一个因式,求该多项式的另一个因式.八年级数学参考答案一、单项选择题(每小题3分,共30分)12345678910D D C C A A B D D B二、填空题(每小题3分,共18分)111213141516或三、解答题(本大题共9小题,第17、18、19题每小题6分,第20、21题每小题8分,第22、23题每小题9分,第24、25题每题10分,共72分)17.18. ,2解:当时,原式19.解:∵在中,,,的垂直平分线交于点,,,;20. (1)画图略,点的坐标为(2).21. (1)证明见下. (2)4.解:(1),,,,,而,,,是等腰三角形;(2),,,,,是等边三角形,,.22. (1)2. (2)11.解:(1);(2)阴影部分的面积为:,,.23. (1)(2)的周长为52.解:(1)由题意得:,故;(2)为等腰三角形,或,则或,,,的周长.24. (1)(2)(3)①证明见下②解:(1)∵点在轴负半轴上,,或,,,(2)连接,如图2所示:图2是等边三角形,,,,,为的中点,,,,,在和中,,,即,,为等边三角形,,;(3)①过点作轴交的延长线于点,如图3所示:图3则,,,在和中,,,由(1)可知,是等边三角形,∵点与点关于轴对称,又是的中点,,,在和中,为的中点.②又,,.25. (1)是;(2)证明如下;(3)(2)证明:是完美勾股数”(3)解:由题意得:又有一个因式为∴另一个因式为.。

湘教版八年级上册数学期中考试试卷含答案

湘教版八年级上册数学期中考试试卷含答案

湘教版八年级上册数学期中考试试题一、单选题1.口罩的熔喷布厚度约为0.000136米,将0.000136用科学记数法表示应为()A.0.136×10﹣3B.1.36×10﹣3C.1.36×10﹣4D.13.6×10﹣52.计算111a a a +--的结果是()A.11aa +-B.﹣1aa +C.﹣1D.1﹣a3.下列计算正确的是()A.a 2+a 3=a5B.a 6÷a 2=a 3C.(﹣2)﹣1=2D.(a 2)﹣3=a ﹣64.若分式241x x -+的值为0,则x 的值是()A.±2B.﹣2C.0D.25.可以用来说明命题“若m<n,则1m >1n ”是假命题的反例是()A.m=2,n=﹣3B.m=﹣2,n=3C.m=﹣2,n=﹣3D.m=2,n=36.如图,在△ABC 中,AB=AC,∠A=40°,AB 的垂直平分线交AB 于点D,交AC 于点E,连接BE,则∠CBE 的度数为()A.30°B.40°C.70°D.80°7.如图,在等腰三角形ABC 中,BD 为∠ABC 的平分线,∠A=36°,AB=AC=a,BC=b,则CD=()A.2a b+B.2a b-C.a-b D.b-a8.如图,若△ABD≌△EBC,且AB=3,BC=7,则DE 的长为()A.2B.4C.10D.39.若a=-0.32,b=-32,c=21()3--,d=01(3,则a、b、c、d 从大到小依次排列的是()A.a<b<c<dB.d<a<c<b C.b<a<d<c D.c<a<d<b10.张老师和李老师同时从学校出发,步行15千米去县城购买文具,张老师比李老师每小时多走1千米,结果比李老师早到30分钟,两位老师每小时各步行多少千米?设李老师每小时走x 千米,依题意,得到的方程是()A.151x +﹣15x =12B.1515112x x =++C.15151x x -+=30D.1515112x x -=-二、填空题11.命题“对顶角相等”的逆命题是一个__________命题(填“真”或“假”).12.分式2235,,346a b ab的最简公分母是_____________.13.如图,点P 是等边△ABC 的边BC 上一点,以A 点为圆心,以AP 的长为半径画弧,交AC 于D 点,连接PD,若∠APD=80°,则∠DPC 的度数为___.14.已知a,b,c 是△ABC 的三边长,a,b 满足|a﹣7|+(b﹣1)2=0,c 为奇数,则c=_____.15.若关于x 的方程22x a x ++=﹣1的解为正数,则实数a 的取值范围是___.16.若m 2=3,my=5,则m 6﹣2y 的值是___.17.如图,在△ABC 中,点D.E.F 分别是线段BC、AD、CE 的中点,且ABC S =28cm ,则BEF S =____2cm 18.如图,A B C D E F ∠+∠+∠+∠+∠+∠的度数是____________.三、解答题19.计算(1)021|2|(2)()3π--+-+-+(﹣1)2021(2)(﹣3m 2n ﹣2)﹣3÷(﹣2m ﹣2n 4)﹣2(3)2a a 1-﹣a﹣1(4)223424()()()a a b b ab÷20.解方程(1)21133x x x x =-++(2)2227361x x x x x x +=+--21.先化简,再求值:2112111x x x x +⎛⎫-÷-+-⎝⎭,然后从1-,0,1中选择适当的数代入求值.22.已知:如图点A、B、C 在同一直线上,且AM=AN,BM=BN,求证:CM=CN.23.若关于x 的方程1221(1)(2)x x ax x x x x ++-=+--+无解,求a 的值?24.在社会主义新农村建设中,某乡镇决定对一段公路进行改造,已知这项工程由甲工程队单独做需要40天完成;如果由乙工程先单独做10天,那么剩下的工程还需要两队合做20天才能完成.(1)求乙工程队单独完成这项工程所需的天数;(2)求两队合作完成这项工程所需的天数.25.(1)如图1,点O 是线段AD 的中点,分别以AO 和DO 为边在线段AD 的同侧作等边三角形OAB 和等边三角形OCD,连接AC 和BD,相交于点E,连接BC.求∠AEB 的大小;(2)如图2,△OAB 固定不动,保持△OCD 的形状和大小不变,将△OCD 绕点O 旋转(△OAB 和△OCD 不能重叠),求∠AEB 的大小.参考答案1.C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000136=1.36×10-4.故选:C.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.C【解析】【分析】通分将原式化简,即可求解.【详解】解:111 111a aa a a-+==----.故选:C【点睛】本题主要考查了分式的加减,熟练掌握利用分式的基本性质进行通分是解题的关键.3.D【解析】【分析】结合幂的乘方与积的乘方、负整数指数幂、同底数幂的除法进行求解即可.【详解】解:A、a2和a3不是同类项,不能合并,该选项不符合题意;B、a6÷a2=a4,原计算错误,该选项不符合题意;C、(﹣2)﹣1=-12,原计算错误,该选项不符合题意;D、(a 2)﹣3=a ﹣6,正确,该选项符合题意;故选:D.【点睛】本题考查了幂的乘方与积的乘方、负整数指数幂、同底数幂的除法,解答本题的关键在于熟练掌握各知识点的概念和运算法则.4.D【解析】【分析】根据分式的值为0的条件,可得240x -=,且10x +≠,解出即可.【详解】解:∵分式241x x -+的值为0,∴240x -=,且10x +≠,解得:2x =.故选:D【点睛】本题主要考查了分式的值为0的条件,熟练掌握当分式的分子为0,分母不等于0时,分式的值为0是解题的关键.5.B【解析】【分析】所选取的m、n 的值符合题设,则不满足结论即作为反例.【详解】解:A、当m=2,n=﹣3时,1123>-,故m=2,n=﹣3不是是命题“若m<n,则1m >1n”的反例;B、当m=−2,n=3时,−12<13,故m=−2,n=3是命题“若m<n,则1m >1n”的反例;C、当m=﹣2,n=﹣3时m n >不符合m<n,故m=﹣2,n=﹣3不是是命题“若m<n,则1m >1n”的反例;D当m=2,n=3时1123 ,故m=2,n=3不是是命题“若m<n,则1m>1n”的反例;故选:B.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.解题关键是掌握命题与定理.6.A【解析】【分析】由等腰△ABC中,AB=AC,∠A=40°,即可求得∠ABC的度数,又由线段AB的垂直平分线交AB于D,交AC于E,可得AE=BE,继而求得∠ABE的度数,则可求得答案.【详解】∵AB=AC,∠A=40°,∴∠ABC=∠C=(180°−∠A)÷2=70°,∵线段AB的垂直平分线交AB于D,交AC于E,∴AE=BE,∴∠ABE=∠A=40°,∴∠CBE=∠ABC-∠ABE=30°,故选:A.【点睛】本题考查了线段垂直平分线的性质以及等腰三角形的性质与判定,三角形内角和定理,熟练掌握相关性质,运用数形结合思想是解题的关键.7.C【解析】【分析】根据等腰三角形的性质和判定得出BD=BC=AD,进而解答即可.【详解】解:∵在等腰△ABC中,BD为∠ABC的平分线,∠A=36°,∴∠ABC=∠C=2∠ABD=72°,∴∠ABD=36°=∠A,∴BD=AD,∴∠BDC=∠A+∠ABD=72°=∠C,∴BD=BC,∵AB=AC=a,BC=b,∴CD=AC-AD=a-b,故选:C.【点睛】此题考查等腰三角形的性质,关键是根据等腰三角形的性质和判定得出BD=BC=AD解答.8.B【解析】【分析】根据△ABD≌△EBC,且AB=3,BC=7,可以得到BD和EB的长,然后即可得到DE的长,本题得以解决.【详解】解:∵△ABD≌△EBC,且AB=3,BC=7,∴AB=EB=3,BD=BC=7,∴DE=BD−EB=7−3=4,故选:B.【点睛】本题考查全等三角形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.9.C【解析】【详解】解:∵a=-0.09,b=-9,c=9,d=1,∴可得:b<a<d<c.故选C.10.B【分析】设李老师每小时走x 千米,则张老师每小时走()1x +千米,根据题意,即可列出方程.【详解】解:设李老师每小时走x 千米,则张老师每小时走()1x +千米,根据题意得:1515112x x =++.故选:B【点睛】本题主要考查了分式方程的应用,明确题意,准确得到等量关系是解题的关键.11.假【解析】【分析】先交换原命题的题设与结论得到逆命题,然后根据对顶角的定义进行判断.【详解】解:命题“对顶角相等”的逆命题是相等的角为对顶角,此逆命题为假命题.故答案为:假.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.12.212a b【解析】【分析】找分母各项的系数的最小公倍数,和相同字母的次数最高的项.【详解】解:根据题意:最简公分母为212a b .故答案为:212a b13.20°【解析】在△APD 中,求得∠PAD 的度数,进而求得∠APC 的度数,进而即可求解;【详解】在△APD 中,AP=AD,∴∠APD=∠ADP=80°∴∠PAD=180°−80°−80°=20°∴∠BAP=60°−20°=40°∴∠APC=∠B+∠BAP=60°+40°=100°∴∠DPC=∠APC −∠APD=100°−80°=20°.故答案为:20°.【点睛】本题主要考查了等腰三角形的性质和等边三角形的性质,题目比较简单,属于基础性题目.14.7【解析】【分析】根据非负数的性质列式求出a、b 的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c 的取值范围,再根据c 是奇数求出c 的值.【详解】∵a,b 满足|a﹣7|+(b﹣1)2=0,∴a﹣7=0,b﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴68c <<,又∵c 为奇数,∴c=7,故答案为:7.【点睛】本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系.15.a<−2【解析】首先解方程求得方程的解,根据方程的解是正数,即可得到一个关于a的不等式,从而求得a的范围.【详解】解:∵于x的方程22x ax++=−1有解,∴x+2≠0,去分母得:2x+a=−x−2即3x=−a−2解得x=−2 3 a+根据题意得:−23a+>0解得:a<−2故答案是:a<−2.【点睛】本题主要考查了分式方程的解的符号的确定,正确求解分式方程是解题的关键.16.27 25【解析】【分析】根据幂的运算公式即可求解.【详解】∵m2=3,my=5,∴m6﹣2y=(m2)3÷(my)2=33÷52=27 25.故答案为:27 25.【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算公式.17.2.【解析】【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答.解:∵点D 是BC 的中点,∴ABD S =ADC S △=12ABC S =4,∵点E 是AD 的中点,∴ABE S =12ABD S =2,ACE S =12ADC S △=2,∴ABE S +ACE S =4,∴BCE S =8-4=4,∵点F 是CE 的中点,∴BEF S =12BCE S =12×4=2.故答案为:2.【点睛】本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等(同)底等(同)高的三角形的面积相等.18.360【解析】【分析】先根据三角形外角的性质得出∠A+∠B=∠1,∠E+∠F=∠2,∠C+∠D=∠3,再根据三角形的外角和是360°进行解答.【详解】解:∵∠1是△ABG 的外角,∴∠1=∠A+∠B,∵∠2是△EFH 的外角,∴∠2=∠E+∠F,∵∠3是△CDI 的外角,∴∠3=∠C+∠D,∵∠1、∠2、∠3是△GIH 的外角,∴∠1+∠2+∠3=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案为:360°.【点睛】本题考查的是三角形外角的性质及三角形的外角和,熟知三角形的外角和是360度是解答此题的关键.19.(1)11;(2)1014427m n --;(3)11a -;(4)3256a 【解析】【分析】(1)分别根据绝对值的性质,零指数幂的定义,负整数指数幂的定义以及有理数的乘方的定义计算即可;(2)根据整式混合运算法则计算可求解;(3)根据分式的混合运算法则即可求出答案;(4)根据分式的混合运算法则即可求出答案.【详解】(1)021|2|(2)()3π--+-+-+(﹣1)2021=2+1+91-,11=;(2)(﹣3m 2n ﹣2)﹣3÷(﹣2m ﹣2n 4)﹣2664811274m n m n --⎛⎫⎛⎫=-÷ ⎪ ⎪⎝⎭⎝⎭,1014427m n -=-;(3)2a a 1-﹣a﹣1()()21111a a a a a +-=---,2211a a a -+=-,11a =-;(4)223424()()()a a b b ab ÷432644256a a b b a b=÷ ,462344256a b b a a b= ,3256a =.【点睛】本题主要考查有理数的混合运算,整式的混合运算,分式的混合运算,绝对值,负整数指数幂,乘方,掌握运算法则是解题的关键.20.(1)34x =;(2)37x =【解析】【分析】(1)把分式方程转化为整式方程,即可求解,再验根即可.(2)两边同乘以最简公分母(1)(1)x x x +-,即可把分式方程转化为整式方程,即可求解,再验根即可.【详解】解:(1)21133x x x x =-++,()()312131x x x x x +-=++,()()()3163131x x x x x +-=++,两边同时乘以()31x +得:633x x x =+-,43x =,34x =,经检验34x =是原方程的根.(2)2227361x x x x x x +=+--,()()()()73611+11x x x x x x x +=+--,两边同乘以(1)(1)x x x -+得:()()()()()()()()71316111111x x x x x x x x x x x x x -++=+-+-+-,7(1)3(1)6x x x x -++=,277336x x x x -++=,271030x x -+=,()()1730x x --=,10x -=或730x -=,解得:1231,7x x ==,∵220,10x x x -≠-≠,∴1x ≠,∴37x =,经检验37x =是原方程的根.【点睛】本题考查求解分式方程,一元二次方程.把分式方程转化为整式方程是解题关键,且需要注意验根.21.22x +,1【解析】【分析】根据分式的运算法则进行运算求解,最后代入0x =求值即可.【详解】解:原式112(1)(1)(1)(1)(1)(1)⎡⎤+-+=-÷⎢⎥-+-+-+⎣⎦x x x x x x x x x 11(1)(1)(1)(1)2⎡⎤+-+-+=⨯⎢⎥-++⎣⎦x x x x x x x 2(1)(1)(1)(1)2⎡⎤-+=⨯⎢⎥-++⎣⎦x x x x x 22x =+.∵x+1≠0且x-1≠0且x+2≠0,∴x≠-1且x≠1且x≠-2,当0x =时,分母不为0,代入:原式2=102=+.【点睛】本题考查分式的加减乘除混合运算,解题的关键是掌握运算顺序为:先算乘除,再算加减,有括号先算括号内的;另外本题选择合适的数时要注意选择的数不能使分母为0.22.见解析【解析】【分析】先证出MAB NAB ≅ 进而得到MAB NAB ∠=∠,再证出AMC ANC ≅ 即可得出结论.【详解】解:∵AM=AN,BM=BN,AB AB =,∴MAB NAB ≅ ,∴MAB NAB ∠=∠,∵AM=AN,AC AC =,∴AMC ANC ≅ ,∴CM=CN.【点睛】本题考查全等三角形的判定与性质,解题关键是掌握全等三角形的判定与性质.23.5a =-或12-或2-.【解析】【分析】方程1221(1)(2)x x ax x x x x ++-=+--+可化为方程122(1)(2)(1)(2)x ax x x x x --+=-+-+,利用方程1221(1)(2)x x ax x x x x ++-=+--+无解,求a 的值.【详解】解:方程1221(1)(2)x x ax x x x x ++-=+--+可化为方程122(1)(2)(1)(2)x ax x x x x --+=-+-+,∴−1−2x=ax+2,把1代入可得a=−5,2代入可得a=12-,此时方程无解;又a=−2时方程无解,∴a=−5或12-,或−2,【点睛】本题考查分式方程,解题的关键是熟练掌握分式方程的化简.24.(1)60(2)24【解析】【分析】本题主要考查分式方程的应用.等量关系为:工作时间=工作总量÷工作效率,根据题意可得出:甲队的总工作量+乙队的总工作量=1,由此可列出方程求解.【详解】解:(1)设乙工程队单独完成这项工程需要x 天,根据题意得:1011(20140x x ++⨯=解之得:x=60,经检验:x=60是原方程的解.所以乙工程队单独完成这项工程所需的天数为60天.(2)设两队合做完成这项工程所需的天数为y 天,根据题意得:(114060+)y=1,解之得:y=24,所以两队合做完成这项工程所需的天数为24天.25.(1)60°;(2)60°【解析】【详解】试题分析:(1),由△DOC和△ABO都是等边三角形,且点O是线段AD的中点,可得OD=OC=OB=OA,∠1=∠2=60°,∠4=∠5,从而利用外角的性质可得∠AEB=∠4+∠6=∠4+∠5=∠2=60°;(2)由△DOC和△ABO都是等边三角形,且点O是线段AD的中点,可得OD=OC=OB=OA,∠1=∠2=60°,∠4=∠5,∠6=∠7,根据三角形内角和可得∠5=∠6,从而利用外角的性质可得∠AEB=∠2+∠6﹣∠5=∠2+∠5﹣∠5=∠2.解:(1)如图3,∵△DOC和△ABO都是等边三角形,且点O是线段AD的中点,∴OD=OC=OB=OA,∠1=∠2=60°,∴∠4=∠5.又∵∠4+∠5=∠2=60°,∴∠4=30°.同理∠6=30°.∵∠AEB=∠4+∠6,∴∠AEB=60°.(2)如图4,∵△DOC和△ABO都是等边三角形,∴OD=OC,OB=OA,∠1=∠2=60°.∴OD=OB,OA=OC,∴∠4=∠5,∠6=∠7.∵∠DOB=∠1+∠3,∠AOC=∠2+∠3,∴∠DOB=∠AOC.∵∠4+∠5+∠DOB=180°,∠6+∠7+∠AOC=180°,∴2∠5=2∠6,∴∠5=∠6.又∵∠AEB=∠8﹣∠5,∠8=∠2+∠6,∴∠AEB=∠2+∠6﹣∠5=∠2+∠5﹣∠5=∠2,∴∠AEB=60°.。

湖南省长沙市2023-2024学年八年级上学期期中考试数学试卷(含答案)

湖南省长沙市2023-2024学年八年级上学期期中考试数学试卷(含答案)

八年级期中考试八年级数学试卷2023-2024学年第一学期时量:120分满分:120分一、选择题(在下列各题的四个选项中,只有一项是符合题意的,请在答题卡中填涂符合题意的选项.本大题共10个小题,每小题3分,共30分)1.下列四个手机APP图标中,是轴对称图形的是()A.B.C.D.2.下列条件中,不能得到等边三角形的是()A.有两个外角相等的等腰三角形B.三边都相等的三角形C.有一个角是60°的等腰三角形D.有两个内角是60°的三角形3.下列计算正确的是()A.B.C.D.4.下列各式中,可以用平方差公式进行计算的是()A.B.C.D.5.若,,则的值为()A.8B.11C.15D.456.如图,,点在上,与相交于点,.则的度数为()A.30°B.40°C.60°D.75°7.如图,在的正方形方格中,每个小正方形方格的边长都为1,则和的关系是()A.B.C.D.8.如图,中,,,且,则()A.10B.6C.4D.39.如图,在中,的垂直平分线分别交、于点,,连接.若,的周长为24,则的周长为()A.16B.18C.20D.2210.如图,是的角平分线,的面积为12,长为6,,分别是,上的动点,则的最小值是()A.6B.4C.3D.2二、填空题(本大题共6个小题,每小题3分,共18分)11.______.12.点关于轴对称的点的坐标是______.13.若,则的值为______.14.如图,在直角中,已知,边的垂直平分线交于点,交于点,且,,则的长为______.15.如图,将正方形放在平面直角坐标系中,为坐标原点,点的坐标为,则点的坐标为______.16.如图,是的角平分线,于点,的面积是,,,则______.三、解答题(本题共9个小题,第17、18、19题每题6分,第20、21题每题8分,第22、23每题9分,第24、25每题10分,共72分)17.计算:18.先化简,再求值:,其中.19.如图,点、、、在同一直线上,,,且,求证:(1);(2)20.如图在平面直角坐标系中,各顶点的坐标分别为,,.(1)在图中作,使和关于轴对称;(2)写出点,,的坐标;(3)求的面积.21.如图,点在的外部,点在边上,交于点,若,,.(1)求证:;(2)若,判断的形状,并说明理由.22.如图,等边三角形中,为边的中点,为的延长线上一点,过点作于点,并交于点,(1)求证:;(2)若,,求的长.23.如图,是等边三角形,点、分别在、的延长线上,且,连接并延长交于点,,交的延长线于点.(1)求证:;(2)求的度数;(3)当为等腰三角形时,求.24.完全平方公式:,适当的变形,可以解决很多的数学问题.例如:若,,求的值.解:因为,所以,即:,又因为,所以根据上面的解题思路与方法,解决下列问题:(1)若,,求的值;(2)若,求的值;(3)如图,是线段上的一点,以、为边向两边作正方形,设,两正方形的面积和,求图中阴影部分面积.25.如图,在平面直角坐标系中,已知、分别为轴和轴上一点,且,满足,过点作于点,延长至点,使得,连接、.图1 图2(1)点的坐标为______,的度数为______;(2)如图1,若点在第一象限,试判断与的数量关系与位置关系,并说明理由;(3)如图2,若点的坐标为,连接,平分,与交于点.①求点的坐标;②试判断与的数量关系,并说明理由.八年级期中考试八年级数学参考答案2023-2024学年第一学期一、选择题(在下列各题的四个选项中,只有一项是符合题意的,请在答题卡中填涂符合题意的选项,本题共10题,每小题3分,共30分)题号12345678910答案B A D B C D D C A B 二、填空题(本题共6小题,每小题3分,共18分)11.12.13.5 14.5 15.16.3三、解答题(共9个小题,第17,18,19题每小题6分,第20,21题每小题8分,第22,23题每小题9分,第24,25题每小题10分,共72分,解答应写出必要的文字说明或演算过程)17.(6分)解:原式.18.(6分)解:原式.当时,原式.19.(6分)解:(1)∵,∴.又∵,∴,,∴,在与中,,∴;(2)∵,∴.∴20.(8分)解:(1)如图,即为所求(2),,;(3).21.(8分)解:(1)∵,,,,∴,在和中,∴,∴.(2)是等边三角形.理由如下:∵,∴,∵,∴,,∴,∴∴,∴是等边三角形.22.(9分)解:(1)∵,是的中点,∴,∵,∴;(2)∵是等边三角形,边长为6,∴,,由(1)可知,,∴,,∴,∵,∴,又∵,∴,∴.23.(9分)解:(1)为等边三角形,∴,,∴,在和中,,∴;(2)∵,∴,∴;(3)当为等腰三角形时,∴,∴,∵,∴,∴,∴,∴,∴,∵,∴,∴.∵在中,,,∴,,.24.(10分)解:(1)∵,,∴,∴;(2)∵∴;(3)设,,∵,∴,又∵,∴,由完全平方公式可得,,∴,∴,∴,答:阴影部分的面积为6.25.(10分)解:(1)∵,∴,,∴点的坐标为,点,∴,∵,∴,故答案为:,45°;(2)设与轴交于点,与交于点,∵,∴,在和中,,,∴,在和中,,∴,∴,,∴,即∴∴,即,;(3)①作轴交轴于点,轴交轴于点,∵点的坐标为,∴,,由(2)知,,∵,,∴,∵,∴,∴,,∴;②延长交于点,∵,,,∴,∴,∵平分,∴,∵,,∴,∴,即.。

湘教版八年级上册数学期中考试试卷带答案

湘教版八年级上册数学期中考试试卷带答案

湘教版八年级上册数学期中考试试题一、单选题1.下列各组数中,能作为一个三角形三边边长的是()A .1,1,2B .1,2,4C .2,3,4D .2,3,52.不改变分式的值,下列各式变形正确的是()A .11x x y y +=+B .1x yx y-+=--C .22x y x y x y-=++D .22233()x x y y-=3.若102a a-=,则a 的值为()A .0B .1C .1-D .24.如图,在等边ABC 中,点O 是BC 上任意一点,OD ,OE 分别与AB ,AC 垂直,垂足为D 、E ,且等边三角形的高为2,则+OD OE 的值为()A .5B .4C .3D .25.已知两个分式:244A x =-,1122B x x=++-,其中x≠±2,则A 与B 的关系是()A .相等B .互为倒数C .互为相反数D .A 大于B6.如图,已知长方形ABCD ,将△DBC 沿BD 折叠得到△DBC′,BC′与AD 交于点E ,若长方形的周长为20cm ,则△ABE 的周长是()A .5cmB .10cmC .15cmD .20cm7.下列分式434y x a +,2411x x --,22x xy y x y -++,2222a abab b +-中,不能再化简的有()A .1个B .2个C .3个D .4个8.文文借了一本书共280页,要在两周借期内读完.当她读了一半时,发现平均每天要多读21页才能在借期内读完.她在读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下列方程中,正确的是()A .2802801421x x +=-B .2802801421x x +=+C .1401401421x x +=-D .1401401421x x +=+9.若等腰三角形的两边长为2和5,则该等腰三角形的周长为()A .9B .12C .9或12D .710.已知11xy-=3,则代数式232x xy yx xy y+---的值是()A .72-B .112-C .92D .3411.对于非零的两个实数a 、b ,规定11a b b a⊗=-,若1(1)1x ⊗+=,则x 的值为()A .32B .13C .12D .12-12.已知关于x 的分式方程329133x mxx x--+=---无解,则m 的值为()A .1m =B .4m =C .3m =D .1m =或4m =二、填空题13.为使一个四边形木架不变形我们会从中钉一根木条,这是利用了三角形的_______.14.如图所示,在△ABC 中,AB =AC ,∠B =50°,则∠A =________.15.甲、乙两个服装厂加工一批校服,甲厂每天加工的数量是乙厂每天加工数量的1.5倍,两厂各加工600套校服,甲厂比乙厂少用4天,则乙厂每天加工________套校服.16.在等腰△ABC 中,AB=AC ,一腰上的中线BD 将这个三角形的周长分为15和12两部分,则这个等腰三角形的底边长为__________17.若111(1)1n n n n =-++,则111112233499100+++⋅⋅⋅+=⨯⨯⨯⨯________.18.如图,ABC 中,14cm AB AC ==,AB 的垂直平分线MN 交AC 于点D ,且DBC △的周长是24cm ,则BC =________cm .三、解答题19.计算:(1)1530122( 3.142020)2π-⎛⎫--÷+-+ ⎪⎝⎭(2)22⎛⎫--÷+ ⎪⎝⎭x y y xy x x x 20.如图,已知ABC .(保留作图痕迹)(1)作BC 边上的高AD 交BC 于点D ;(2)作AC 边上的垂直平分线EF ,交AC 于点E ,交BC 于点F ;(3)作AB 边的中线CG ,交AB 于点G .21.解分式方程:(1)2133193x x x +=--(2)2134412142x x x x +=--+-22.先化简,再求值:2222-++xy y x xy y ÷(1﹣x y x y -+)•222-y x ,其中x 、y 满足方程组24210x y x y +=⎧⎨+=-⎩.23.如图,点D 在AB 上,点E 在AC 上,BE 、CD 相交于点O.(1)若∠A=50°,∠BOD=70°,∠C=30°,求∠B 的度数;(2)试猜想∠BOC 与∠A+∠B+∠C 之间的关系,并证明你猜想的正确性.24.如图,在等边△ABC 中,点D ,E 分别在边BC ,AB 上,且BD=AE ,AD 与CE 交于点F .(1)求证:△ABD ≌△CAE ;(2)求∠DFC 的度数.25.“六一”儿童节前夕,某文具店用4000元购进A 种滑板车若干台,用8400元购进B 种滑板车若干台,所购B 种滑板车比A 种滑板车多10台,且B 种滑板车每台进价是A 种滑板车每台进价的1.4倍.(1)A 、B 两种滑板车每台进价分别为多少元?(2)第一次所购滑板车全部售完后,第二次购进A 、B 两种滑板车共100台(进价不变),A 种滑板车的售价是每台300元,B 种滑板车的售价是每台400元.两种滑板车各售出一半后,六一假期已过,两种滑板车均打七折销售,全部售出后,第二次所购滑板车的利润为5800元(不考虑其他因素,求第二次购进A 、B 两种滑板车各多少台?26.(1)如图1,在ABC 中,BP 平分ABC ∠,CP 平分ACB ∠,求证:1902P A ∠=︒+∠;(2)如图2,在ABC 中,BP 平分ABC ∠,CP 平分外角ACE ∠,猜想P ∠和A ∠有何数量关系,并证明你的结论.参考答案1.C 【解析】【分析】根据三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【详解】A 、1+1=2,不满足三边关系,故错误;B 、1+2<4,不满足三边关系,故错误;C 、2+3>4,满足三边关系,故正确;D 、2+3=5,不满足三边关系,故错误.故选C .【点睛】本题主要考查了三角形三边关系的运用,判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.2.B 【解析】【分析】由分式的基本性质可判断,,,A B C 由分式的乘方运算可判断,D 从而可得答案.【详解】解:1,1x x y y +≠+故A 不符合题意;()1,x y x y x y x y---+==---故B 符合题意;()()22,x y x y x y x y x y x y-+-==-++故C 不符合题意;22239()x x y y-=,故D 不符合题意;故选:.B 【点睛】本题考查的是分式的基本性质,分式的乘方运算,掌握以上知识是解题的关键.3.B 【解析】【分析】根据102a a-=即可得到10a -=,由此即可得到答案.【详解】解:∵102a a-=,a≠0∴10a -=,∴1a =,故选B .【点睛】本题主要考查了分式值为零的条件,解题的关键在于能够熟练掌握分式值为零时的条件是分子为0,分母不等于0.4.D 【解析】【分析】连接AO ,作CF ⊥AB 于点F ,利用等边三角形性质分别表示出ABC S 和AOB AOC S S +△△,可得出OE 与OD 的和与三角形的高相等,进而求解即可.【详解】解:如图所示,连接AO ,作CF ⊥AB 于点F ,∵△ABC 是等边三角形,∴AB=AC ,∵等边三角形的高为2,∴CF=2,∵OD ⊥AB ,OE ⊥AC ,∴ABCAOB AOCS S S =+△△△∴111222AB CF AB OD AC OE ⨯⨯=⨯⨯+⨯⨯,∴()11222AB AB OD OE ⨯⨯=⨯⨯+,∴2OD OE +=.故选:D .【点睛】本题考查了等边三角形的性质,三角形面积,解题的关键是根据题意分别表示出ABC S 和AOB AOC S S +△△.5.C 【解析】【详解】∵B=1122x x ++-=1122x x ++-=()()()()2222x x x x --++-=2-44x -,又∵A=244x -,∴A+B=244x -+2-44x -=0,∴A 与B 的关系是互为相反数.故选:C .6.B 【解析】【分析】根据现有条件推出∠EDB=∠EBD ,得出BE=DE ,可知△ABE 的周长=AB+AD ,是长方形的周长的一半,即可得出答案.【详解】由折叠可知:∠CBD=∠C′BD ,∵四边形ABCD 为平行四边形,∴AD ∥BC ,∴∠ADB=∠CBD ,∴∠ADB=∠C′BD ,∴∠EDB=∠EBD ,∴BE=DE ,∴△ABE 的周长=AB+AD ,∵长方形的周长为20cm ,∴2(AB+AD )=20cm ,∴AB+AD=10cm ,∴△ABE 的周长为10cm ,故选:B .【点睛】本题考查了等腰三角形的性质,折叠的性质,推出BE=DE 是解题关键.7.C 【解析】【分析】根据最简分式的定义即可得出答案.24221(1)(1)1=1(1)(1)(1)1x x x x x x x x -+-=-++-+,能化简,其余均不能化简,故选:C .【点睛】本题考查的是最简分式,比较简单,注意约分前先进行因式分解.8.D 【解析】【详解】读前一半时,平均每天读x 页,即读140页时,用时表示为140x天,后一半平均每天要多读21页,得读后一半时平均每天读()21x +页,用时14021x +天,∴两周借期内读完列分式方程为:14014014.21x x +=+故选:D.9.B 【解析】【分析】题目给出等腰三角形有两条边长为2和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:①腰长为2,底边长为5,2+2=4<5,不能构成三角形,故舍去;②腰长为5,底边长为2,则周长=5+5+2=12.故其周长为12.故选B .【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.10.D 【解析】由113x y -=得出3y xxy -=,即3x y xy -=-,整体代入原式()()23x y xy x y xy-+=--,计算可得.【详解】113x y-=,∴3y xxy-=,∴3x y xy -=-,则原式()()236333344x y xyxy xy xy x y xyxy xy xy -+-+-====-----.故选:D .【点睛】本题主要考查分式的加减法,解题的关键是掌握分式加减运算法则和整体代入思想的运用.11.D 【解析】【分析】根据新运算的运算规则计算即可.【详解】因为规定11a b b a⊗=-,所以11(1)111x x ⊗+=-=+,所以x=12-,经检验x=12-是分式方程的解,故选D .【点睛】本题考查了新定义下的运算,分式方程的计算,解决此题的关键是要正确理解新定义运算的概念.12.D 【解析】【分析】分式方程去分母转化为整式方程,由分式方程无解得到x−3=0,确定出x 的值,代入整式方程计算即可求出m 的值.【详解】解:去分母得:3−2x−9+mx =−x +3,整理得:(m−1)x=9,当m−1=0,即m=1时,该整式方程无解;当m−1≠0,即m≠1时,由分式方程无解,得到x−3=0,即x=3,把x=3代入整式方程得:3m−3=9,解得:m=4,综上,m的值为1或4,故选D.【点睛】此题考查了分式方程的解,在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.13.稳定性【解析】【分析】题中给出四边形的不稳定性,即可判断是利用三角形的稳定性.【详解】为使四边形木架不变形,从中钉上一根木条,让四边形变成两个三角形,因为三角形不变形,故应该是利用三角形的稳定性.故答案为:稳定性【点睛】本题考查三角形稳定性的应用,关键在于熟悉三角形的基本性质.14.80°【解析】【详解】根据等腰三角形的性质,∠B=∠C=50°,然后根据三角形内角和定理就可推出∠A的度数.解:∵在△ABC中,AB=AC,∠B=50°∴∠C=50°∴∠A=180°﹣50°﹣50°=80°故答案为80°.15.50【解析】【分析】设乙工厂每天加工x套校服,则甲工厂每天加工1.5x套校服,然后根据两厂各加工600套校服,甲厂比乙厂少用4天,列出方程求解即可.【详解】解:设乙工厂每天加工x套校服,则甲工厂每天加工1.5x套校服,由题意得60060041.5x x-=,解得50x=,经检验50x=是原方程的解,∴乙工厂每天加工50套校服,故答案为:50.【点睛】本题主要考查了分式方程的应用,解题的关键在于能够准确找到等量关系列出方程求解.16.7或11【解析】【分析】分两种情况讨论,列出方程即可解决问题.【详解】①当15是腰长与腰长一半时,1152AC AC+=,解得10AC=,∴底边长1121072=-⨯=;三边长为:10,10,7;②当12是腰长与腰长一半时,1122AC AC+=,解得8AC=,∴底边长1158112=-⨯=,三边长为:8,8,11;经验证,这两种情况都是成立的.∴这个三角形的底边长等于7或11.故答案为:7或11.【点睛】本题主要考查了等腰三角形的性质及三角形三边关系;注意:求出的结果一定要检验是否符合三角形三边性质.分类讨论是正确解答本题的关键.17.99100##0.99【解析】【分析】根据题目给出的结论,把算式变形,然后计算即可.【详解】解:∵111 (1)1 n n n n=-++,∴1111 12233499100 +++⋅⋅⋅+⨯⨯⨯⨯=1111111 12233499100 -+-+-+⋅⋅⋅+-=1 1 100 -=99 100.故答案为:99 100.【点睛】本题考查了有理数的运算,解题关键是根据题目给出的结论对算式进行变形.18.10【解析】【分析】由边AB的垂直平分线与AC交于点D,故AD=BD,于是将△BCD的周长转化为BC与边长AC的和来解答.【详解】解:∵C △DBC =24cm ,∴BD +DC +BC =24cm ①,又∵MN 垂直平分AB ,∴AD =BD ②,将②代入①得:AD +DC +BC =24cm ,即AC +BC =24cm ,又∵AC =14cm ,∴BC =24−14=10cm .故答案为:10.19.(1)5-;(2)1x y-【分析】(1)本题需先根据零指数幂、负整数指数幂、正整数指数幂的运算法则分别进行计算,再把所得的结果合并即可.(2)先根据完全平方公式运算括号内的,再利用除法法则运算即可.【详解】解:(1)1530122( 3.142020)2π-⎛⎫--÷+-+ ⎪⎝⎭,2=221--+,=241--+,=5-;(2)22⎛⎫--÷+ ⎪⎝⎭x y y xy x x x ,222=x y x xy y x x ⎛⎫--+÷ ⎪⎝⎭,()2x y x y x x--=÷,()2x y x x x y -=⨯-,1x y=-.20.(1)见解析;(2)见解析;(3)见解析【分析】(1)以点A为圆心,AC长为半径画弧交BC于点E,再分别以点E和点C为圆心,大于二分之一CE的长度为半径画弧,最后连接弧的交点即可;(2)以点A和点C分别为圆心,大于二分之一AC的长为半径画弧,连接弧的交点即可;(3)以点A和点B分别为圆心,大于二分之一AB的长为半径画弧,连接弧的交点与AB 交于点G,连接CG即可.【详解】解:(1)如图所示,AD为所求.;(2)如图所示,EF为所求.;(3)如图所示,CG为所求..【点睛】本题考查了尺规作图,解题的关键是熟练掌握垂直平分线的画法.21.(1)无解;(2)x=6【解析】【分析】先去分母,将分式方程化为整式方程,解出整式方程,再检验,即可求解.【详解】解:(1)2133193x x x +=--方程两边同时乘以()93x -,得:()23131x x -+=,解得:13x =检验:当13x =时,1939303x -=⨯-=,∴13x =为增根,原方程无解.(2)2134412142x x x x +=--+-方程两边同时乘以,得:()()()213221421x x x +=⨯--+解得:6x =检验:当6x =时,()()2224124612860x -=⨯-=≠∴6x =是原方程的解.【点睛】本题主要考查了解分式方程,熟练掌握解分式方程的步骤,并注意验根是解题的关键.22.﹣21()+x y ,﹣14.【解析】【分析】先根据分式的混合运算顺序和运算法则化简原式,再将方程组中两个方程相加得到x+y 的值,继而整体代入计算可得.【详解】解:原式=2()()y x y x y -+÷22•()()y x y x y x y +-+-=﹣2()•()2y x y x y x y y -++2•()()x y x y +-=﹣21()+x y ,∵x 、y 满足方程组24210x y x y +=⎧⎨+=-⎩,∴3x+3y =﹣6,则x+y =﹣2,∴原式=﹣21(2)-=﹣14.【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.23.(1)30°;(2)∠BOC=∠A+∠B+∠C ,理由见解析.【解析】【分析】(1)利用三角形外角的性质和三角形内角和定理即可求得∠B 的度数;(2)用三角形外角和定理求出∠BOC ,∠BEC 的两角之和,最后得出结论.【详解】解:(1)∵∠A=50°,∠C=30°,∴∠BDO=80°;∵∠BOD=70°,∴∠B=30°;(2)∠BOC=∠A+∠B+∠C.理由:∵∠BOC=∠BEC +∠C ,∠BEC=∠A+∠B ,∴∠BOC=∠A+∠B+∠C.24.(1)见解析;(2)60度【解析】【分析】(1)利用等边三角形的性质,证明△ABD ≌△CAE ;(2)由△ABD ≌△CAE 得出角相等,∠ACE=∠BAD ,再利用角的等量代换求出结论.【详解】(1)∵△ABC 是等边三角形,∴∠BAC=∠B=60°,AB=AC ,在△AEC 和△BDA 中,AC AB EAC DBA AE BD ⎧⎪∠∠⎨⎪⎩===,又∵AE=BD ,∴△AEC ≌△BDA (SAS ).(2)∵△AEC ≌△BDA ,∴∠ACE=∠BAD ,∴∠DFC=∠FAC+∠ACE=∠FAC+∠BAD=60°.【点睛】本题考查了等边三角形的性质和全等三角形的性质与判定;解决本题的关键是利用全等求解角相等.25.(1)A 、B 两种滑板车每台进价分别为200元,280元;(2)第二次购进A 种滑板车40台、B 种滑板车60台【解析】【分析】(1)设A 种滑板车每台进价为x 元,则B 种滑板车每台进价为1.4x 元,根据用8400元购买的B 种滑板车比用4000元购买的A 种滑板车多10台,即可得出关于x 的分式方程,解之即可得出结论;(2)设第二次购进A 种滑板车y 台,则购进B 种滑板车(100−y )台,根据总利润=每台的利润×销售数量,即可得出关于y 的一元一次方程,解之即可得出结论.【详解】(1)解:设A 种滑板车每台进价为x 元.根据题意得:84004000101.4x x-=,解得:200x =,经检验200x =是原方程的根,且符合题意.B 种:1.4×200=280(元),答:A 、B 两种滑板车每台进价分别为200元,280元;(2)解:设第二次购进A 种滑板车y 台.()()()()10010030020030070%20040028040070%28058002222y y y y --⨯-+⨯⨯-+⨯-+⨯⨯-=,解得:40y =,B 种:100-40=60(台).答:第二次购进A 种滑板车40台、B 种滑板车60台.【点睛】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.26.(1)见解析;(2)12P A ∠=∠,证明见解析【解析】【分析】(1)根据三角形内角和定理以及角平分线的定义进行证明即可:(2)根据一个三角形的外角等于与它不相邻的两个内角和,可求出A ACE ABC ∠=∠-∠,P PCE PBC ∠=∠-∠,再由角平分线的定义得到12PBC ABC ∠=∠,12PCE ACE ∠=∠,则()11112222P ACE ABC ACE ABC A ∠=∠-∠=∠-∠=∠.【详解】(1)证明:()180P PBC PCB ∠=-∠+∠ ,∵BP 平分ABC ∠,CP 平分ACB ∠,∴12PBC ABC ∠=∠,12PCB ACB ∠=∠,∴()111222PBC PCB ABC ACB ABC ACB ∠+∠=∠+∠=∠+∠∴()11801802P PBC PCB ABC ACB ∠=--=-∠+∠o o ∠∠,∵=180ABC ACB A+-o ∠∠∠()11180180=9022P A A ∴∠=--+∠o o o ∠;(2)猜想:12P A ∠=∠,证明:ACE A ABC ∠=∠+∠ ,A ACE ABC ∴∠=∠-∠,∵PCE P PBC ∠=∠+∠,∴P PCE PBC ∠=∠-∠,又BP 平分ABC ∠,CP 平分ACE ∠,∴12PBC ABC ∠=∠,12PCE ACE ∠=∠,()11112222P ACE ABC ACE ABC A ∴∠=∠-∠=∠-∠=∠,12P A ∴∠=∠.【点睛】本题主要考查了三角形内角和定理,三角形外角的性质,角平分线的定义,解题的关键在于能够熟练掌握角平分线的定义.。

长沙市八年级上学期数学期中考试试卷

长沙市八年级上学期数学期中考试试卷

长沙市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分)如图所示的圆锥,它的主视图和俯视图分别是()A . 等边三角形、圆B . 等边三角形、等腰三角形C . 等腰三角形、圆D . 圆、等腰三角形2. (1分)若=2,则=()A .B .C .D . 23. (1分)(2019·新宾模拟) 如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△AB1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去……,若点A(,0),B(0,2).则点B2019的坐标是()A . (6052,0)B . (6054,2)C . (6058,0)D . (6060,2)4. (1分) (2020八上·金山期末) 下列四个命题:①有两边及其中一边的对角对应相等的两个三角形全等;②三角形的一条中线把三角形分成面积相等的两部分:③若 ,则>0:④点P(1,2)关于原点的对称点坐标为P(-1,-2);其中真命题的是()A . ①、②B . ②、④C . ③、④D . ①、③5. (1分)下列叙述中,正确的有()①如果,那么;②满足条件的n不存在;③任意一个三角形的三条高所在的直线相交于一点,且这点一定在三角形的内部;④ΔABC在平移过程中,对应线段一定相等.A . 4个B . 3个C . 2个D . 1个6. (1分)(2017·房山模拟) 下列四个命题中,属于真命题的共有()①相等的圆心角所对的弧相等② 若,则a、b都是非负实数③相似的两个图形一定是位似图形④ 三角形的内心到这个三角形三边的距离相等A . 1个B . 2个C . 3个D . 4个7. (1分)在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1 ,作正方形A1B1C1C;延长C1B1交x轴于点A2 ,作正方形A2B2C2C1 ,…,按这样的规律进行下去,第2013个正方形的面积为()A .B .C .D .8. (1分) (2020七下·廊坊期中) 下列命题:①两条直线相交,一角的两邻补角相等,则这两条直线垂直;②两条直线相交,一角与其邻补角相等,则这两条直线垂直;③如果一个数的立方根是这个数本身,那么这个数是1或0;④无限小数都是无理数;⑤如果点A与点B关于x轴对称,则它们的横坐标相同.其中正确的个数为().A . 4B . 3C . 2D . 19. (1分) (2017八上·陕西期末) 如图,在平面直角坐标系中,以原点为圆心的同心圆的半径由内向外依次为,,,,…,同心圆与直线和分别交于,,,,…,则的坐标是()A .B .C .D .10. (1分)(2019·滨州) 满足下列条件时,不是直角三角形的为().A .B .C .D .二、填空题、 (共8题;共8分)11. (1分) (2019七上·长春月考) 数轴上、两点的距离为2,点表示的数为-1,则点表示的数为________.12. (1分) (2019七上·萧山月考) 如果数轴上点A到原点的距离为3,点B到原点的距离为5,那么A、B两点的距离为________.13. (1分)(2019·湘潭) 《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式是:弧田面积(弦×矢+矢2).孤田是由圆弧和其所对的弦围成(如图中的阴影部分),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,运用垂径定理(当半径⊥弦时,平分)可以求解.现已知弦米,半径等于5米的弧田,按照上述公式计算出弧田的面积为________平方米.14. (1分)如图,在平面直角坐标系中,等腰直角三角形OA1A2的直角边OA1在y轴的正半轴上,且OA1= A1A2=1.以OA2为直角边作第二个等腰直角三角形OA2A3 ,以OA3为直角边作第三个等腰直角三角形OA3A4……依次规律得到等腰直角三角形OA2015A2016 ,则点A2015的坐标为 ________.15. (1分)如图是面积分别为1,2,3,4,5,6,7,8,9的正方形,其中边长是有理数的正方形有________个,边长是无理数的正方形有________个.16. (1分)一个四边形的边长依次为a,b,c,d,且a2+b2+c2+d2=2ac+2bd,则这个四边形是________。

湖南省长沙市八年级上学期期中数学试卷

湖南省长沙市八年级上学期期中数学试卷

湖南省长沙市八年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共9题;共18分)1. (2分)如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,﹣1),C(﹣2,﹣1),D(﹣1,1).y轴上一点P(0,2)绕点A旋转180°得点P1 ,点P1绕点B旋转180°得点P2 ,点P2绕点C旋转180°得点P3 ,点P3绕点D旋转180°得点P4 ,…,重复操作依次得到点P1 , P2 ,…,则点P2010的坐标是()A . (2010,2)B . (2012,﹣2 )C . (0,2)D . (2010,﹣2 )2. (2分) (2020八下·黄石期中) 下列各组数中能够作为直角三角形的三边长的是()A . 2,3,4B . 12,22,32C . 4,5,9D . ,2,3. (2分) (2019八下·江门期末) 下列各式是最简二次根式的是()A .B .C .D .4. (2分) (2020八下·哈尔滨月考) 下列图象不能表示y是x函数关系的是()A .B .C .D .5. (2分)当k>0,b<0时,一次函数y=kx+b的图象不经过()A . 第一象限B . 第二象限C . 第三象限D . 第四象限6. (2分) (2017九上·芜湖期末) 如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD=2 ,BD= ,则AB的长为()A . 2B . 3C . 4D . 57. (2分)(2019·孝感) 下列计算正确的是()A .B .C .D .8. (2分)某商户以每件8元的价格购进若干件“四季如春植绒窗花”到市场去销售,销售金额y(元)与销售量x(件)的函数关系的图象如图所示,则降价后每件商品销售的价格为()A . 5元B . 10元C . 12.5元D . 15元9. (2分)如图,点A的坐标为(2, 0),点B在直线y=-x上运动,当线段AB最短时,点B的坐标为()A . (0,0)B . (, -)C . (1,1)D . (, -)二、填空题 (共8题;共9分)10. (1分) (2016七上·绍兴期中) 如果x2=64,那么 =________.11. (2分)在一次函数中,随的增大而________(填“增大”或“减小”),当时,y的最小值为________.12. (1分) (2018七上·唐山期末) 若有理数a、b满足|a+2|+(b﹣3)2=0,则ab的值为________.13. (1分)直角三角形三边是连续偶数,则这三角形的各边分别为________.14. (1分)直线y=3x向上平移了5个单位长度,此时直线的函数关系式变为________.15. (1分)为了增强抗旱能力,保证今年夏粮丰收,某村新建了一个蓄水池,这个蓄水池安装了两个进水管和一个出水管(两个进水管的进水速度相同)一个进水管和一个出水管的进出水速度如图1所示,某天0点到6点(至少打开一个水管),该蓄水池的蓄水量如图2所示,并给出以下三个论断:①0点到1点不进水,只出水;②1点到4点不进水,不出水;③4点到6点只进水,不出水.则一定正确的论断是________ .16. (1分) (2019八下·乐清月考) 直角坐标系内有一点M(- ,)。

湖南省长沙市八年级上学期期中数学试卷

湖南省长沙市八年级上学期期中数学试卷

湖南省长沙市八年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分) (2019九上·宜阳期末) 在下列网格中,小正方形的边长为1,点A,B,O都在格点上,则∠A的正弦值是()A .B .C .D .2. (2分)(2016·怀化) (﹣2)2的平方根是()A . 2B . ﹣2C . ±2D .3. (2分) (2017七下·荔湾期末) 下列各点中,在第二象限的点是()A . (﹣1,4)B . (1,﹣4)C . (﹣1,﹣4)D . (1,4)4. (2分)如图,在平面直角坐标系中,以O(0,0),A(1,1),B(3,0)为顶点,构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是()A . (-3,1)B . (4,1)C . (-2,1)D . (2,-1)5. (2分)下列说法中正确的是()A . 是一个无理数B . 的平方根是±3C . 8的立方根是±2D . 一个数的算术平方根一定是正数6. (2分) (2015八下·临沂期中) 在△ABC中,∠C=90°,若AC=2,BC=4,则AB的长度等于()A . 3B .C .D . 以上都不对二、填空题 (共6题;共6分)7. (1分)=________。

8. (1分)课间,小聪拿着老师的等腰直角三角板玩,不小心掉到两墙之间(如图),∠ACB=90°,AC=BC,从三角板的刻度可知AB=20cm,小聪很快就知道了砌墙砖块的厚度的平方(每块砖的厚度相等)为________cm.9. (1分)已知点A(6a+3,4)与点B(2﹣a,b)关于y轴对称,则ab=________.10. (1分) (2018八上·平顶山期末) 数轴上与原点相距个单位长度的点,它所表示的数为________.11. (1分) (2019八下·师宗月考) 如图一个圆柱,底圆周长10cm,高4cm,一只蚂蚁沿外壁爬行,要从A 点爬到B点,则最少要爬行________cm .12. (1分)(2019·南陵模拟) 在矩形ABCD中,AB=4,AD=9,点E在BC上,CE=4,点F是AD上的一个动点,连接BF ,若将四边形ABEF沿EF折叠,点A、B分别落在点A′、B'处,则当点B恰好落在矩形ABCD的一边上时,AF的长为________.三、解答题 (共11题;共89分)13. (5分)计算:(1)4-7+2;(2).14. (5分) (2017七下·抚顺期中) 已知2a﹣3的平方根是±5,2a+b+4的立方根是3,求a+b的平方根.15. (5分)(2019·碑林模拟) 如图,已知矩形ABCD中,连接AC,请利用尺规作图法在对角线AC上求作一点E使得△ABC∽△CDE.(保留作图痕迹不写作法)16. (12分) (2018九上·朝阳期中) 在平面直角坐标系xOy中,点A的坐标为(0,m),且m≠0,点B的坐标为(n , 0),将线段AB绕点B顺时针旋转90°.得到线段BA1 ,称点A1为点A关于点B的“伴随点”,图1为点A关于点B的“伴随点”的示意图(1)已知点A(0,4),①当点B的坐标分别为(1,0),(﹣2,0)时,点A关于点B的“伴随点”的坐标分别为________,________;(2)②点(x,y)是点A关于点B的“伴随点”,直接写出y与x之间的关系式;(3)如图2,点C的坐标为(﹣3,0),以C为圆心,为半径作圆,若在⊙C上存在点A关于点B的“伴随点”,直接写出点A的纵坐标m的取值范围.17. (5分) (2019七下·恩施月考) 以直角三角形的三条边BC,AC,AB分别作正方形①、②、③,如何用①中各部分面积与②的面积,通过平移填满正方形③?你从中得到什么结论?18. (10分) (2017八下·重庆期中) 已知x= ﹣2,y= +2,求:(1) x2y+xy2;(2) + 的值.19. (5分)如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD,垂足为E.求证:BE=DE.20. (15分) (2016八上·嵊州期末) 已知:如图,△ABC中的顶点A、C分别在平面直角坐标系的x轴、y 轴上,且∠ACB=90°,AC=2,BC=1,当点A从原点出发朝x轴的正方向运动,点C也随之在y轴上运动,当点C运动到原点时点A停止运动,连结OB.(1)点A在原点时,求OB的长;(2)当OA=OC时,求OB的长;(3)在整个运动过程中,OB是否存在最大值?若存在,请你求出这个最大值;若不存在,请说明理由.21. (10分) (2017八下·海安期中) 如图,CD是△ABC的角平分线,AE⊥CD于E,F是AC的中点,(1)求证:EF∥BC;(2)猜想:∠B、∠DAE、∠EAC三个角之间的关系,并加以证明.22. (12分)在学习了二次根式后,小明同学发现有的二次根式可以写成另一个二次根式的平方的形式.比如: .善于动脑的小明继续探究:当为正整数时,若,则有,所以, .请模仿小明的方法探索并解决下列问题:(1)当为正整数时,若,请用含有的式子分别表示,得:________, ________;(2)(3)若,且为正整数,求的值.23. (5分) (2017八下·德惠期末) 问题原型:如图①,正方形ABCD的对角线交于点O,点E、F分别为边AB、AD中点,且∠EOF=90°,易得四边形AEOF的面积是正方形ABCD的面积的四分之一.(不用证明)探究发现:某数学兴趣小组,尝试改变点E、F的位置,点E、F分别为边AB、AD上任一点,且∠EOF=90°,如图②,探究:四边形AEOF的面积是否为正方形ABCD面积的四分之一?并说明理由.拓展提升:如图③,菱形ABCD中,∠BAD=120°,∠EAF=60°,且点E、F分别在边DC、BC上,四边形AECF 的面积是菱形ABCD面积的几分之一?(直接写出结果即可)参考答案一、选择题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共6题;共6分)7-1、8-1、9-1、10-1、11-1、12-1、三、解答题 (共11题;共89分)13-1、14-1、15-1、16-1、16-2、16-3、17-1、18-1、18-2、19-1、20-1、20-2、20-3、21-1、21-2、22-1、22-2、22-3、23-1、。

湖南省长沙市八年级上学期数学期中考试试卷

湖南省长沙市八年级上学期数学期中考试试卷

湖南省长沙市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列各图,不是轴对称图形的是()A .B .C .D .2. (2分) (2017八上·潜江期中) 下列线段能构成三角形的是()A . 3,3,5B . 2,2,5C . 1,2,3D . 2,3,63. (2分)(2020·广西模拟) 下列命题中假命题是()A . 位似图形上的任意一对对应点到位似中心的距离的比等于位似比B . 正五边形的每一个内角等于108°C . 一组数据的平均数、中位数和众数都只有一个D . 方程x2-6x+9=0有两个实数根4. (2分)如图,直线l1∥l2 ,以直线l1上的点A为圆心、适当长为半径画弧,分别交直线l1、l2于点B、C,连接AC、BC.若∠ABC=67º,则∠1=()A . 23ºB . 46ºC . 67ºD . 78º6. (2分)(2017·全椒模拟) 如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P 为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为()A . 78°B . 75°C . 60°D . 45°7. (2分)如图,点A的坐标为(-, 0),点B在直线y=x上运动,当线段AB最短时点B的坐为A . (-,-)B . (-,-)C . (, -)D . (0,0)8. (2分) (2019八上·香洲期末) 如图,在△ABC中,∠B=50°,∠A=30°,CD平分∠ACB ,CE⊥AB 于点E ,则∠DCE的度数是()A . 5°B . 8°C . 10°D . 15°9. (2分)如图,将半径为6的⊙O沿AB折叠,弧AB与AB垂直的半径OC交于点D且CD=2OD,则折痕AB 的长为()A .B .C . 6D .10. (2分)(2017·荆州) 《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹稍恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x尺,则可列方程为()A . x2﹣6=(10﹣x)2B . x2﹣62=(10﹣x)2C . x2+6=(10﹣x)2D . x2+62=(10﹣x)2二、填空题 (共7题;共7分)11. (1分)如图,在△ABC中,过点B作EB⊥AB,交AC于点E,BE平分∠CBD,90°+∠C=∠BDC,则∠A的度数为________.12. (1分) (2016八下·广饶开学考) 如图,网格中的小正方形边长均为1,△ABC的三个顶点在格点上,则△ABC中AB边上的高为________.13. (1分) (2015八下·萧山期中) 请把命题“有两个角相等的三角形是等腰三角形”改写成“如果…,那么…”的表述形式:________.14. (1分)(2017·徐州模拟) 在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,CD=4,AC=6,则CB=________.15. (1分)(2018·嘉兴模拟) 如图,直线l过正方形ABCD的顶点D,过A、C分别作直线l的垂线,垂足分别为E、F.若AE=4a,CF=a,则正方形ABCD的面积为________.16. (1分) (2016九上·瑞安期中) 如图,经过原点的⊙P与x轴,y轴分别交于A(3,0),B(0,4)两点,点C是上一点,且BC=2,则AC=________.17. (1分)如图:△ABC中,∠ACB=90°,E是AB的中点,如果AB=6,则CE=________.三、解答题 (共6题;共45分)18. (5分) (2019八上·长葛月考) 如图,∠B=42°,∠A+10°=∠1,∠ACD=64°,说明AB∥CD19. (5分)(2018·哈尔滨) 如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.①在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D均在小正方形的顶点上;②在图中画出以线段AB为一腰,底边长为2 的等腰三角形ABE,点E在小正方形的顶点上.连接CE,请直接写出线段CE的长.20. (5分)如图,D是等边△ABC的边AB上的一动点,以CD为一边向上作等边△EDC,连接AE,找出图中的一组全等三角形,并说明理由.22. (10分)(2019·梧州) 如图,已知⊙A的圆心为点(3,0),抛物线y=ax2﹣ x+c过点A,与⊙A 交于B、C两点,连接AB、AC,且AB⊥AC,B、C两点的纵坐标分别是2、1.(1)请直接写出点B的坐标,并求a、c的值;(2)直线y=kx+1经过点B,与x轴交于点D.点E(与点D不重合)在该直线上,且AD=AE,请判断点E是否在此抛物线上,并说明理由;(3)如果直线y=k1x﹣1与⊙A相切,请直接写出满足此条件的直线解析式.23. (15分)(2018·深圳) 如图:在中,BC=2,AB=AC,点D为AC上的动点,且 .(1)求AB的长度;(2)求AD·AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共7题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题 (共6题;共45分)18-1、19-1、20-1、22-1、22-2、22-3、23-1、23-2、23-3、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖南省长沙市八年级上学期数学期中考试试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共10题;共20分)
1. (2分) (2019八上·无锡期中) 下列美丽的图案中不是轴对称图形是()
A .
B .
C .
D .
2. (2分)下列实数中,为无理数的是()
A .
B .
C . ﹣2
D . 0.3
3. (2分)(2018·秀洲模拟) 如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠CDO+∠CFO= ,则∠C的度数为()
A . 40°
B . 41°
C . 42°
D . 43°
4. (2分) (2019八上·兰州月考) 下列各组线段中的三个长度:①9,12,15;②7,24,25;③32 , 42 ,52;④3a,4a,5a(a>0);⑤m2﹣n2 , 2mn,m2+n2(m,n为正整数,且m>n)其中可以构成直角三角形的有()
A . 5组
B . 4组
C . 3组
D . 2组
5. (2分)如图所示,△ABC≌△EDF,F、C在AE上,DF=BC,AB=ED, AE=20,FC=10,则AC的长为()
A . 10
B . 5
C . 15
D . 20
6. (2分) (2020八上·黄石期末) 角平分线的作法(尺规作图)
①以点O为圆心,任意长为半径画弧,交OA,OB于C,D两点;②分别以C,D为圆心,大于CD长为半径画弧,两弧交于点P;③过点P作射线OP,射线OP即为所求.
角平分线的作法依据的是()
A . SSS
B . SAS
C . AAS
D . ASA
7. (2分)如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=1.5,BC=2,则cosB的值是()
A .
B .
C .
D .
8. (2分) (2018八上·山东期中) 如图,在△A BC中,∠C=90°,BD平分∠ABC,交AC于点D;若DC=3,AB=8则△ABD的面积是()
A . 8
B . 12
C . 16
D . 24
9. (2分) (2019九上·孝感月考) 如图,等腰,点为斜边上,作与相切于点,交于点、点.已知,,则的长度为()
A .
B .
C .
D .
10. (2分)(2017·岱岳模拟) 如图,正方形ABCD的边长为8,点M在边DC上,且DM=2,点N是边AC上一动点,则线段DN+MN的最小值为()
A . 8
B . 8
C . 2
D . 10
二、填空题 (共8题;共9分)
11. (1分) (2019七下·武汉月考) 计算: =________; =________; =________.
12. (1分)用四舍五入法取近似数,1.895准确到百分位后是________.
13. (2分)若一个数的平方根是2a+1和4﹣a,则这个数是________.
14. (1分) (2019八上·景泰期中) 如图,正方形B的面积是________.
15. (1分)(2011·嘉兴) 如图,在△ABC中,AB=AC,∠A=40°,则△ABC的外角∠BCD=________度.
16. (1分) (2019八上·江岸期中) 如图,已知点I是△ABC的角平分线的交点.若AB+BI=AC,设∠BAC=α,则∠AIB=________(用含α的式子表示)
17. (1分)正方形ABCD的边长是4,点P是AD边的中点,点E是正方形边上的一点.若△PBE是等腰三角形,则腰长为________.
18. (1分) (2019八下·嘉陵期中) 如图,将n个边长都为1cm的正方形按如图所示摆放,点A1, A2,…,
An分别是正方形的中心,则n个正方形重叠形成的重叠部分的面积和为 ________
三、解答题 (共8题;共59分)
19. (2分)在实数范围内解下列方程
(1) x2﹣9=0
(2) 8(x﹣1)3﹣27=0.
20. (5分)综合题。

(1)计算:
(2)求x的值:5(x﹣1)2=20.
21. (10分)(2019·长春模拟) 问题:如果α,β都为锐角,且tanα=,tanβ=,求α+β的度数.
解决:(1)如图①,把α,β放在正方形网格中,使得∠ABD=α,∠CBE=β,连结AC,易证△ABC是等腰直角三角形,因此可求得α+β=∠ABC=.
【答案】解:45°
拓展:参考以上方法,解决下列问题:如果α,β都为锐角,当tanα=4,tanβ=时,
(1)在图②的正方形网格中,利用已作出的锐角α,画出∠MON=α﹣β;
(2)求出α﹣β=________°.
22. (2分) (2017七下·兴化期末) 如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:
(1)△AEF≌△CEB;
(2) AF=2CD.
23. (10分)(2016·海宁模拟) 如图,在平面直角坐标系中,四边形OABC是矩形,其中点A在x轴的正半轴上,点B的坐标为(4,2),点D为对角线OB上一个动点(不包括端点),∠BCD的平分线交OB于点E.
(1)
求线段OB所在直线的函数表达式,并写出CD的取值范围.
(2)
当∠BCD的平分线经过点A时,求点D的坐标.
(3)
点P是线段BC上的一个动点,求CD十DP的最小值.
24. (10分) (2018九上·沙洋期中) 如图,在ΔABC中,AB=AC,若将ΔABC绕点C顺时针180º得到ΔFEC。

(1)试猜想AE与BF有何关系,并说明理由;
(2)若ΔABC的面积为3cm2,求四边形ABFE的面积;
(3)当∠ACB为多少度时,四边形ABFE为矩形?说明理由。

25. (10分) (2019八上·临海期中) 如图,Rt△ACB中,∠ACB=90°,AC=BC,E点为射线CB上一动点,连接AE,作AF⊥AE且AF=AE.
(1)如图1,过F点作FD⊥AC交AC于D点,求证:EC+CD=DF;
(2)如图2,连接BF交AC于G点,若 =3,求证:E点为BC中点;
(3)当E点在射线CB上,连接BF与直线AC交于G点,若 ,则 =________;
26. (10分)(2018·齐齐哈尔) 综合与实践
折纸是一项有趣的活动,同学们小时候都玩过折纸,可能折过小动物、小花、飞机、小船等,折纸活动也伴随着我们初中数学的学习在折纸过程中,我们可以通过研究图形的性质和运动、确定图形位置等,进一步发展空间观念,在经历借助图形思考问题的过程中,我们会初步建立几何直观,折纸往往从矩形纸片开始,今天,就让我们带着数学的眼光来玩一玩折纸,看看折叠矩形的对角线之后能得到哪些数学结论.
【实践操作】
如图1,将矩形纸片ABCD沿对角线AC翻折,使点B′落在矩形ABCD所在平面内,B'C和AD相交于点E,连接B′D.
(1)【解决问题】在图1中,
①B′D和AC的位置关系为________;
②将△AEC剪下后展开,得到的图形是________;
(2)若图1中的矩形变为平行四边形时(AB≠BC),如图2所示,结论①和结论②是否成立,若成立,请挑选其中的一个结论加以证明,若不成立,请说明理由;
(3)小红沿对角线折叠一张矩形纸片,发现所得图形是轴对称图形,沿对称轴再次折叠后,得到的仍是轴对称图形,则小红折叠的矩形纸片的长宽之比为________;
(4)【拓展应用】在图2中,若∠B=30°,AB=4 ,当△AB′D恰好为直角三角形时,BC的长度为________.
参考答案一、单选题 (共10题;共20分)
1-1、
2-1、
3-1、
4-1、
5、答案:略
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共8题;共9分)
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
17-1、
18-1、
三、解答题 (共8题;共59分)
19-1、
19-2、
20-1、
20-2、
21、答案:略22-1、
22-2、23-1、
23-2、
23-3、
24-1、
24-2、
24-3、
25-1、
25-2、25-3、26-1、
26-2、26-3、26-4、。

相关文档
最新文档