【2019-2020年度】人教B版高中数学-选修4-4教学案-第一章圆的极坐标方程(Word)

合集下载

高中数学新人教版B版精品教案《人教版B高中数学选修4-4:坐标系与参数方程 1.2.1 平面上点的极坐标系》1

高中数学新人教版B版精品教案《人教版B高中数学选修4-4:坐标系与参数方程 1.2.1 平面上点的极坐标系》1
情感态度与价值观:培养学生的类比思想,培养探究,研讨,综合自学应用能力。
学情分析;通过前面对平面直角坐标系的学习,学生已经对坐标系有了一定的了解。极坐标的思想已经普遍存在于日常生活中,对于极坐标的学习容易接受。
学习
重点
能用极坐标刻画点的位置。
学习
难点
理解用极坐标刻画点的位置的基本思想;点与极坐标之间的对应关系的认识。




一.创设情境。
在没有障碍物的情况,拯救船到达走私船如何最快达到,引进了极坐标思想。
二.探究新知
(一)极坐标系的建立:
(1)
(2)
(3)
(4)
();关于 所在直线对称的点()。
例2、说出下列各点的极坐标
(1)
(2)
三点与极坐标的对应情况
◆给定 ,就可以在极坐标平面内确定。
◆给定平面上一点M,但却有与之对应。
(四)负极径
◆规定:若 ,此时极坐标 对应的点M的位置按下
[3]一点的极坐标有否统一的表达式?
四.课后研讨
讨论直角坐标系与极坐标系之间的联系:
将直角坐标系内点 与极坐标系内点 互换。
五.布置作业
报纸2版
学习
目标
知识与技能:理解极坐标系的概念;能在极坐标系中用极坐标刻画点的位置;体会在极坐标系和平面直角坐标系中刻画点位置的区别。
过程与方法:通过观察幻灯片,让学生直观感受引进极坐标系的重要性;运用类比方法,经历极坐标的建立过程;通过学生动手描点,得出极坐标的多值性。
变式训练1
在极坐标中,与点 关于极点对称的点();关于极轴所在直线对称的点
面规则规定:点M在与极轴成角 的反向延长线上,它到极点O的距离为

人教版高中数学 选修4-4 1.3.1圆的极坐标方程教案设计

人教版高中数学 选修4-4 1.3.1圆的极坐标方程教案设计
学生在教师的引导下,自主完成,并回答问题
通过例题学习,归纳圆的极坐标方程类型,提高学生学习的兴趣




类型二:圆心在极轴上且过极点的圆
例8:求圆心坐标为C(a,0)(a>0)、半径为a的圆的极坐标方程?
变式训练:课本p14页练习第2题
求圆心在A 、半径为3的圆的极坐标方程?
类型三:圆心在点 处且过极点的圆
世纪金榜p18教师引导学生什么知识解决归纳解题坐标方程设计逐步加深其中类型一二三是圆的极坐标方程的特例结合练习熟悉类坐标方程并能画出简单草图要求学生在教回答问题圆的极坐标方程的方法设出圆上动点m的极坐标再根据圆的几何特征利用已知的定理公式等得出满足的方程
课题
1.3.1圆的极坐标方程
课时
1
授课
时间
主备人:
师生共同
总结
掌握由圆心和半径写出圆的极坐标方程方法
布置
作业
课后思考:例9求圆心在A(2,0)、半径为1的圆的极坐标方程?
做在作业本上(课本p18页习题1-2第4题第(3)节,第11题第(1)节)
教师引导学生分析,讨论,根据圆的几何特征,发掘出用什么知识解决问题,归纳解题规律,图形与极坐标方程有什么规律。
要求学生在教师的引导下,自主发言,回答问题
设计逐步加深,其中类型一、二、三是圆的极坐标方程的特例,结合练习熟悉类型一、二、三圆的极坐标方程,并能画出简单草图




圆的极坐标方程的方法
设出圆上动点M的极坐标 ,再根据圆的几何特征,利用已知的定理、公式等,得出 满足的方程。
教学难点:如何寻找条件列出圆的极坐标方程
教师活动
学生活动
设计意图

北师大版数学选修4-4教案:1.4直线和圆的极坐标方程

北师大版数学选修4-4教案:1.4直线和圆的极坐标方程

第四课时 直线和圆的极坐标方程一、教学目的:知识目标:掌握极坐标方程的意义能力目标:能在极坐标中求直线和圆的极坐标方程德育目标:通过观察、探索、发现的创造性过程,培养创新意识。

二、重难点:教学重点:直线和圆的极坐标方程的求法教学难点:对不同位置的直线和圆的极坐标方程的理解三、教学模式:启发、诱导发现教学.四、教学过程:(一)、复习引入:问题情境1、直角坐标系建立可以描述点的位置;极坐标也有同样作用?2、直角坐标系的建立可以求曲线的方程; 极坐标系的建立是否可以求曲线方程?学生回顾1、直角坐标系和极坐标系中怎样描述点的位置?2、曲线的方程和方程的曲线(直角坐标系中)定义3、求曲线方程的步骤(二)、讲解新课:1、引例:以极点O 为圆心5为半径的圆上任意一点极径为5,反过来,极径为5的点都在这个圆上。

因此,以极点为圆心,5为半径的圆可以用方程5=ρ来表示。

2、提问:曲线上的点的坐标都满足这个方程吗?3、定义:一般地,如果一条曲线上任意一点都有一个极坐标适合方程0),(=θρf 的点在曲线上,那么这个方程称为这条曲线的极坐标方程,这条曲线称为这个极坐标方程的曲线。

4、求直线和圆的极坐标方程例1、【课本P13页例5】求经过点)0,3(A 且与极轴垂直的直线l 的极坐标方程。

教师分析:设动点的极坐标抓住几何图形特征建立关系式。

学生练习。

变式训练:已知点P 的极坐标为),1(π,那么过点P 且垂直于极轴的直线极坐标方程。

答案:cos 1ρθ=-例2、【课本P13页例6】求经过点A(2,0)、倾斜角为6π的直线的极坐标方程。

分析:设动点的极坐标,在三角形OAM 中利用正弦定理可解。

学生练习。

反思归纳:以上题目均为求直线的极坐标方程,方法是设动点的极坐标,抓住几何图形特征建立ρ与θ的关系式。

例3、【课本P14页例8】求圆心在(a,0)(a>0)、半径为a 的圆的极坐标方程学生练习,准对问题讲评。

变式训练:求圆心在)2,3(πA 且过极点的圆A 的极坐标方程。

高中数学人教B版选修4-4教学案第一章 1.2 极坐标系

高中数学人教B版选修4-4教学案第一章 1.2 极坐标系

极坐标系[对应学生用书][读教材·填要点].平面上点的极坐标()极坐标系的建立:在平面内取一个定点,由点出发的一条射线,一个长度单位及计算角度的正方向(通常取逆时针方向),合称为一个极坐标系.点称为极点,称为极轴.()点的极坐标:平面上任一点的位置可以由线段的长度ρ和从到的角度θ来,称为点的极坐标,ρ(刻画,这两个数组成的有序数对ρ)θ称为称为θ极,极径角..极坐标与直角坐标的关系()极坐标和直角坐标变换的前提条件:①极坐标系中的极点与直角坐标系中的原点重合;②极轴与轴的正半轴重合;③两种坐标系取相同的长度单位.()极坐标和直角坐标的变换公式:(\\(=ρ θ,=ρ θ;))或(\\(ρ=+,θ=()(≠(.))[小问题·大思维].平面上的点与这一点的极坐标是一一对应的吗?为什么?提示:不是.在极坐标系中,与给定的极坐标(ρ,θ)相对应的点是唯一确定的;反过来,同一个点的极坐标却可以有无穷多个.如一点的极坐标是(ρ,θ)(ρ≠),那么这一点也可以表示为(ρ,θ+π)或(-ρ,θ+(+)π)(其中∈)..若ρ>≤θ<π,则除极点外,点(ρ,θ)与平面内的点之间是否是一一对应的?提示:如果我们规定ρ>≤θ<π,那么除极点外,平面内的点可用唯一的极坐标(ρ,θ)来表示.这时,极坐标与平面内的点之间就是一一对应的关系..若点的极坐标为(ρ,θ),则点关于极点、极轴、过极点且垂直于极轴的直线的对称点的极坐标是什么?提示:设点的极坐标是(ρ,θ),则点关于极点的对称点的极坐标是(-ρ,θ)或(ρ,θ+π);点关于极轴的对称点的极坐标是(ρ,-θ);点关于过极点且垂直于极轴的直线的对称点的极坐标是(ρ,π-θ)或(-ρ,-θ).[对应学生用书][例]已知定点.()将极点移至′处,极轴方向不变,求点的新坐标;()极点不变,将极轴顺时针转动,求点的新坐标.[思路点拨]本题考查极坐标系的建立及极坐标的求法.解答本题需要根据题意要求建立正确的极坐标系,然后求相应的点的极坐标.[精解详析]()设点新坐标为(ρ,θ),如图所示,由题意可知′=,=,∠=,∠′=,∴∠′=.在△′中,ρ=+()-···=+-=,∴ρ=.即′=.∴=′+′,∠′=.∴∠′=.∴∠′=π--=.∴∠′=.∴∠′′=.∴点的新坐标为.()如图,设点新坐标为(ρ,θ),。

新人教版高中数学选修4-4《极坐标与参数方程》优质教案

新人教版高中数学选修4-4《极坐标与参数方程》优质教案

(3.5学案)第1讲 极坐标系与参数方程(大题)教学目标1.会将参数方程,极坐标方程化为普通方程2.理解极坐标方程中ρ,θ含义,参数方程中直线中的t 的含义,圆与椭圆中θ几何意义,及应用教学重点:ρ,θ应用及直线参数方程中t 应用椭圆中θ应用 教学难点:椭圆中θ的含义题型一:极坐标.参数方程与普通方程互化 1.直角坐标与极坐标的互化把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,且在两种坐标系中取相同的长度单位.如图,设M 是平面内的任意一点,它的直角坐标、极坐标分别为(x ,y)和(ρ,θ),则⎩⎨⎧x =ρcos θ,y =ρsin θ,⎩⎨⎧ρ2=x 2+y 2,tan θ=yx x ≠0.2.在与曲线的直角坐标方程进行互化时,一定要注意变量的范围,要注意转化的等价性.(1).直线的参数方程过定点M(x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎨⎧x =x 0+tcos α,y =y 0+tsin α(t为参数).(2).圆的参数方程圆心为点M(x 0,y 0),半径为r 的圆的参数方程为⎩⎨⎧x =x 0+rcos θ,y =y 0+rsin θ(θ为参数).(3).圆锥曲线的参数方程(1)椭圆x 2a 2+y 2b 2=1(a>b>0)的参数方程为⎩⎨⎧x =acos θ,y =bsin θ(θ为参数).(2)抛物线y 2=2px(p>0)的参数方程为⎩⎨⎧x =2pt 2,y =2pt(t 为参数).(4).(1)参数方程的实质是将曲线上每一点的横、纵坐标分别用同一个参数表示出来,所以有时处理曲线上与点的坐标有关的问题时,用参数方程求解非常方便;(2)充分利用直线、圆、椭圆等参数方程中参数的几何意义,在解题时能够事半功倍.例1、(1)方程表示的曲线是( )A. 双曲线B.双曲线的上支C.双曲线的下支D.圆 分析:把参数方程化为我们熟悉的普通方程,再去判断它表示的曲线类型是这类问题的破解策略.解析:注意到t与互为倒数,故将参数方程的两个等式两边分别平方,再相减,即可消去含的项,即有,又注意到,可见与以上参数方程等价的普通方程为.显然它表示焦点在轴上,以原点为中心的双曲线的上支,选B.点评:这是一类将参数方程化为普通方程的检验问题,转化的关键是要注意变量范围的一致性.(2)、设P 是椭圆上的一个动点,则的最大值是 ,最小值为 .分析:注意到变量的几何意义,故研究二元函数的最值时,可转化为几何问题.若设,则方程表示一组直线,(对于取不同的值,方程表示不同的直线),显然既满足,又满足,故点是方程组的公共解,依题意得直线与椭圆总有公共点,从而转化为研究消无后的一元二次方程的判别式问题.解析:令,对于既满足,又满足,故点是方程组的公共解,依题意得,由,解得:,所以的最大值为,最小值为.点评:对于以上的问题,有时由于研究二元函数有困难,也常采用消元,但由满足的方程来表示出或时会出现无理式,这对进一步求函数最值依然不够简洁,但若通过三角函数换元,则可实现这一途径.即,因此可通过转化为的一元函数.以上二个思路都叫“参数法”.(3)、极坐标方程表示的曲线是()A. 圆B. 椭圆C. 双曲线的一支D. 抛物线分析:这类问题需要将极坐标方程转化为普通方程进行判断.解析:由,化为直角坐标系方程为,化简得.显然该方程表示抛物线,故选D.点评:若直接由所给方程是很难断定它表示何种曲线,因此通常要把极坐标方程化为直角坐标方程,加以研究.(4)、极坐标方程转化成直角坐标方程为()A. B. C. D.分析:极坐标化为直解坐标只须结合转化公式进行化解.解析:,因此选C.点评:此题在转化过程中要注意不要失解,本题若成为填空题,则更要谨防漏解.通关练习一1. 已知点M的极坐标为,下列所给出的四个坐标中不能表示点M的坐标是()A. B. C. D.2.若直线的参数方程为,则直线的斜率为()A. B. C. D.3.下列在曲线上的点是()A. B. C. D.4.将参数方程化为普通方程为()A. B. C.D.5.参数方程为表示的曲线是()A.一条直线 B.两条直线 C.一条射线 D.两条射线6.直线和圆交于两点,则的中点坐标为() A. B. C. D.7.极坐标方程表示的曲线为()A.一条射线和一个圆 B.两条直线 C.一条直线和一个圆 D.一个圆8.直线的参数方程为,上的点对应的参数是,则点与之间的距离是()A. B. C. D.9. 圆心为C,半径为3的圆的极坐标方程为10 若A,B,则|AB|=__________,___________(其中O是极点)11. ,若A、B是C上关于坐标轴不对称的任意两点,AB 的垂直平分线交x轴于P(a,0),求a的取值范围.一、选择题:1.A 解析:能表示点M的坐标有3个,分别是B、C、D.2.D 解析:3.B 解析:转化为普通方程:,当时,4.C 解析:转化为普通方程:,但是5、D 解析:表示一条平行于轴的直线,而,所以表示两条射线6.D 解析:,得,因此中点为7.C 解析:,则或8、C 解析:距离为9、解析:如下图,设圆上任一点为P(),则10、解析:在极坐标系中画出点A、B,易得,11. 解析:,,,,题型二极坐标,参数方程综合应用例2 (2019·全国Ⅱ)在极坐标系中,O为极点,点M(ρ0,θ)(ρ>0)在曲线C:ρ=4sin θ上,直线l过点A(4,0)且与OM垂直,垂足为P.(1)当θ0=π3时,求ρ0及l 的极坐标方程; (2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程. 解 (1)因为M(ρ0,θ0)在C 上,当θ0=π3时,ρ0=4sin π3=2 3. 由已知得|OP|=|OA|cosπ3=2. 设Q(ρ,θ)为l 上除P 的任意一点,连接OQ ,在Rt △OPQ 中,ρcos ⎝ ⎛⎭⎪⎫θ-π3=|OP|=2.经检验,点P ⎝ ⎛⎭⎪⎫2,π3在曲线ρcos ⎝ ⎛⎭⎪⎫θ-π3=2上.所以,l 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ-π3=2.(2)设P(ρ,θ),在Rt △OAP 中,|OP|=|OA|cos θ=4cos θ,即ρ=4cos θ.因为P 在线段OM 上,且AP ⊥OM ,故θ的取值范围是⎣⎢⎡⎦⎥⎤π4,π2.所以,P 点轨迹的极坐标方程为ρ=4cos θ,θ∈⎣⎢⎡⎦⎥⎤π4,π2.跟踪演练1 在平面直角坐标系xOy 中,已知直线l :x +3y =53,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=4sin θ.射线OP :θ=π6(ρ≥0)与圆C 的交点为O ,A ,与直线l 的交点为B ,求线段AB 的长.解 由题意知ρA =4sinπ6=2, ρB =532sin ⎝ ⎛⎭⎪⎫π6+π6=5,所以|AB|=|ρA -ρB |=3.例 3 (2019·六安质检)在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎨⎧x =2+2cos α,y =2sin α(α为参数),过点P(-2,0)作斜率为k 的直线l 与圆C交于A ,B 两点.(1)若圆心C 到直线l 的距离为455,求k 的值;(2)求线段AB 中点E 的轨迹方程.解 (1)由题意知,圆C 的普通方程为(x -2)2+y 2=4, 即圆C 的圆心为C(2,0),半径r =2.依题意可得过点P(-2,0)的直线l 的方程为y =k(x +2),即kx -y +2k =0, 设圆心C(2,0)到直线l 的距离为d , 则d =|2k +2k|1+k 2=|4k|1+k2=455, 解得k =±12.(2)设直线l 的参数方程为⎩⎨⎧x =-2+tcos θ,y =tsin θ(t 为参数),θ∈⎝ ⎛⎭⎪⎫-π6,π6,代入圆C :(x -2)2+y 2=4,得t 2-8tcos θ+12=0. 设A ,B ,E 对应的参数分别为t A ,t B ,t E , 则t E =t A +t B2, 所以t A +t B =8cos θ,t E =4cos θ. 又点E 的坐标满足⎩⎨⎧x =-2+t E cos θ,y =t E sin θ,所以点E 的轨迹的参数方程为⎩⎨⎧x =-2+4cos 2θ,y =4sin θcos θ,即⎩⎨⎧x =2cos 2θ,y =2sin 2θ,θ∈⎝ ⎛⎭⎪⎫-π6,π6,化为普通方程为x 2+y 2=4(1<x ≤2).例4在平面直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρcos θ-2ρsin θ+1=0,曲线C 的参数方程为⎩⎨⎧x =2cos α,y =3sin α(α为参数).(1)求曲线C 上的点到直线l 的距离的最大值;(2)直线l 与曲线C 交于A ,B 两点,已知点M(1,1),求|MA|·|MB|的值. 解 (1)设曲线C 上任意一点N(2cos α,3sin α), 直线l :x -2y +1=0,则点N 到直线l 的距离d =|2cos α-23sin α+1|5=⎪⎪⎪⎪⎪⎪4cos ⎝⎛⎭⎪⎫α+π3+15≤5,∴曲线C 上的点到直线l 的距离的最大值为 5. (2)设直线l 的倾斜角为θ, 则由(1)知tan θ=12,∴cos θ=255,sin θ=55. ∴直线l 的参数方程为⎩⎪⎨⎪⎧x =1+255t ,y =1+55t (t 为参数),曲线C :x 24+y 23=1,联立方程组,消元得165t 2+45t -5=0, 设方程两根为t 1,t 2,则t 1t 2=-2516, 由t 的几何意义,得|MA|·|MB|=-t 1t 2=2516. 通关练习二1.(2019·东莞调研)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =34+3t ,y =a +3t(t 为参数),圆C 的标准方程为(x -3)2+(y -3)2=4.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (1)求直线l 和圆C 的极坐标方程; (2)若射线θ=π3与l 的交点为M ,与圆C 的交点为A ,B ,且点M 恰好为线段AB 的中点,求a 的值.解(1)∵直线l 的参数方程为⎩⎨⎧x =34+3t ,y =a +3t(t 为参数),∴在直线l 的参数方程中消去t 可得直线l 的普通方程为x -y -34+a =0,将x =ρcos θ,y =ρsin θ代入直线l 的普通方程中, 得到直线l 的极坐标方程为ρcos θ-ρsin θ-34+a =0.∵圆C 的标准方程为(x -3)2+(y -3)2=4,∴圆C 的极坐标方程为ρ2-6ρcos θ-6ρsin θ+14=0.(2)在极坐标系中,由已知可设M ⎝ ⎛⎭⎪⎫ρ1,π3,A ⎝ ⎛⎭⎪⎫ρ2,π3,B ⎝⎛⎭⎪⎫ρ3,π3,联立⎩⎨⎧θ=π3,ρ2-6ρcos θ-6ρsin θ+14=0,得ρ2-(3+33)ρ+14=0, ∴ρ2+ρ3=3+3 3. ∵点M 恰好为AB 的中点, ∴ρ1=3+332,即M ⎝⎛⎭⎪⎫3+332,π3. 把M ⎝ ⎛⎭⎪⎫3+332,π3代入ρcos θ-ρsin θ-34+a =0,得3()1+32×1-32-34+a =0,解得a =94.2.在平面直角坐标系xOy 中,曲线C 1过点P(m,2),其参数方程为⎩⎨⎧x =m +t ,y =2-t(t 为参数,m ∈R ),以O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρcos 2θ+8cos θ-ρ=0. (1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)若已知曲线C 1和曲线C 2交于A ,B 两点,且|PA|=2|PB|,求实数m 的值. 解 (1)C 1的参数方程⎩⎨⎧x =m +t ,y =2-t(t 为参数,m ∈R ),消参得普通方程为x +y -m -2=0.C 2的极坐标方程化为ρ(2cos 2θ-1)+8cos θ-ρ=0,两边同乘ρ得2ρ2cos 2θ+8ρcos θ-2ρ2=0,即y 2=4x. 即C 2的直角坐标方程为y 2=4x.(2)将曲线C 1的参数方程标准化为⎩⎪⎨⎪⎧x =m -22t ,y =2+22t (t 为参数,m ∈R ),代入曲线C 2:y 2=4x , 得12t 2+42t +4-4m =0, 由Δ=(42)2-4×12×(4-4m)>0,得m>-3,设A ,B 对应的参数为t 1,t 2,由题意得|t 1|=2|t 2|,即t 1=2t 2或t 1=-2t 2,当t 1=2t 2时,⎩⎨⎧t 1=2t 2,t 1+t 2=-82,t 1·t 2=24-4m,解得m =-239,满足m>-3; 当t 1=-2t 2时,⎩⎨⎧t 1=-2t 2,t 1+t 2=-82,t 1·t 2=24-4m解得m =33,满足m>-3. 综上,m =-239或33. 3.(2019·衡水中学调研)在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =2+2cos φ,y =2sin φ(φ为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=4sin θ. (1)求C 1的普通方程和C 2的直角坐标方程;(2)已知直线C 3的极坐标方程为θ=α(0<α<π,ρ∈R ),A 是C 3与C 1的交点,B 是C 3与C 2的交点,且A ,B 均异于原点O ,|AB|=42,求α的值. 解 (1)由⎩⎨⎧x =2+2cos φ,y =2sin φ消去参数φ,得C 1的普通方程为(x -2)2+y 2=4.由ρ=4sin θ,得ρ2=4ρsin θ,又y =ρsin θ,x 2+y 2=ρ2, 所以C 2的直角坐标方程为x 2+(y -2)2=4. (2)由(1)知曲线C 1的普通方程为(x -2)2+y 2=4, 所以其极坐标方程为ρ=4cos θ.设点A ,B 的极坐标分别为(ρA ,α),(ρB ,α), 则ρA =4cos α,ρB =4sin α,所以|AB|=|ρA -ρB |=4|cos α-sin α| =42⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫α-π4=42,所以sin ⎝ ⎛⎭⎪⎫α-π4=±1,即α-π4=k π+π2(k ∈Z ),解得α=k π+3π4(k ∈Z ),又0<α<π,所以α=3π4. 4.(2019·保山模拟)在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.⊙O 的极坐标方程为ρ=2,直线l 的参数方程为⎩⎨⎧x =tcos α,y =-2+tsin α(t 为参数),直线l 与⊙O 交于A ,B 两个不同的点.(1)求倾斜角α的取值范围;(2)求线段AB 中点P 的轨迹的参数方程. 解 (1)直线l 的倾斜角为α,当α=π2时,直线l(即y 轴)与⊙O 交于A ,B 两个不同的点,符合题目要求;当α≠π2时,记k =tan α,直线l 的参数方程⎩⎨⎧x =tcos α,y =-2+tsin α 化为普通方程为kx -y -2=0,圆心O 到直线l 的距离d =21+k 2.因为直线l 与⊙O 交于不同的两点, 所以21+k2<2, 解得k>1或k<-1.当k<-1时,直线l 的倾斜角α的取值范围是⎝ ⎛⎭⎪⎫π2,3π4;当k>1时,α的取值范围是⎝ ⎛⎭⎪⎫π4,π2,综上,直线l 的倾斜角α的取值范围是⎝ ⎛⎭⎪⎫π4,3π4.(2)⊙O 的极坐标方程为ρ=2,其直角坐标方程为x 2+y 2=2, 因直线l 的参数方程为⎩⎨⎧x =tcos α,y =-2+tsin α(t 为参数),代入x 2+y 2=2中得,t 2-4tsin α+2=0, 故可设A(t 1cos α,-2+t 1sin α),B(t 2cos α,-2+t 2sin α),注意到t 1 ,t 2为方程的根,故t 1+t 2=4sin α, 点P 的坐标为⎝⎛⎭⎪⎫t 1+t 22cos α,-2+t 1+t 22sin α, 即(sin 2α,-1-cos 2α), 所以点P 的轨迹的参数方程为 ⎩⎨⎧x =sin 2α,y =-1-cos 2α(α为参数).。

高中数学新人教版B版精品教案《人教版B高中数学选修4-4:坐标系与参数方程 本章小结》3

高中数学新人教版B版精品教案《人教版B高中数学选修4-4:坐标系与参数方程 本章小结》3



x' 1 x
2
复习伸缩变换 定义,认识伸缩 变换规律,通过 具体例题巩固 知识点。
2 将正弦曲线 y sin x 按伸缩变换
后得到曲线的
y' 3y
方程的周期为( )
A.
B .
C .2
D .3
2
设 M 是平面内任意一点,它的直角坐标是 (x, y) ,极坐标是 (, ).
㈢ 则极坐标和直角坐标的互化公式为:
总之,本节内容的教学还是比较成功的。作为一名年轻的数学教师,我更应该虚心学 习,不断提高自己的专业水平,争做一名合格的人民教师。
① ( 3,3); ② (1,1); ③ (3,0).
定义:一般地,在极坐标系中,如果平面曲线 C 上任意一点的极坐
标 中 至 少 有 一 个 满 足 方 程 f (, ) 0 , 并 且 坐 标 适 合 方 程
㈣ f (, ) 0 的点都在曲线 C 上,那么方程 f (, ) 0 叫做曲线 C
通过梳理反思,
理 反
让学生自己体
思 2 通过对本节课的学习,你感觉自己还有哪些方面的不足,如何弥 会 本 节 课 的 学
补?
习内容。
六、教学板书
课后作业:完成坐标系板演 2
学生 板演 3
高中数学人教B版2003课标版 选修4-4
第一章 坐标系小结
霸州市第四中学 郭海洁
教学设计方案
课题名称
第一章 坐标系小结
姓名
郭海洁
工作单位
霸州市第四中学
年级学科
高二数学
教材版本
人教 B 版 选修 4-4
一、教学内容分析
本节课是选自《普通高中课程标准实验教科书人教 B 版》数学选修 4-4《坐标系与参

高二数学 4-4第一章坐标系全部教案

高二数学  4-4第一章坐标系全部教案

表示方法?(3)、坐标不唯一是由谁引起的?(4)、不同的极坐标是否可以写出统一
表达式。约定:极点的极坐标是 =0, 可以取任意角。
变式训练 :在极坐标系里描出下列各点
A(3,0) B(6,2 )C(3, )D(5, 4 )E(3, 5 )F(4, )G(6, 5 )
2
3
6
3
例 2 在极坐标系中,
特别强调:由极径的意义可知 ≥0;当极角 的取值范围是[0,2 )时,平面上的 点(除去极点)就与极坐标(,)建立一一对应的关系 .们约定,极点的极坐标是极 径 =0,极角是任意角. 3、负极径的规定:在极坐标系中,极径 允许取负值,极角 也可以去任意的正角 或负角,当 <0 时,点 M (,)位于极角终边的反向延长线上,且 OM= 。
(1)如果图形有对称中心,可以选对称中心为坐标原点;
(2)如果图形有对称轴,可以选择对称轴为坐标轴;
(3)使图形上的特殊点尽可能多的在坐标轴上。
(二)、平面直角坐标轴中的伸缩变换
1、在平面直角坐标系中进行伸缩变换,即改变 x 轴或 y 轴的单位长度,将会对图形
产生影响。
2、探究:(1)在正弦曲线 y=sinx 上任取一点 P(x,y),保持纵坐标不变,将横坐标 x
π 3
<0,解得 k=-1,
= 3
-2 =- 5 , 点 A 的坐标为(5,- 5 ).
3
3
变式训练:1、若 ABC的的三个顶点为 A(5, 5 ), B(8, 5 ),C(3, 7 ),判断三角形的形状.
2
6
6
答案:正三角形。2、若 A、B 两点的极坐标为 (1,1), (2 ,2 ) 求 AB 的长以及 AOB 的 面积。(O 为极点)

【2019-2020年度】人教B版高中数学-选修4-4教学案-第一章球坐标系(Word)

【2019-2020年度】人教B版高中数学-选修4-4教学案-第一章球坐标系(Word)

【2019-2020年度】人教B 版高中数学-选修4-4教学案-第一章球坐标系(Word )[读教材·填要点]1.球坐标系设空间中一点M 的直角坐标为(x ,y ,z),点M 在xOy 坐标面上的投影点为M0,连接OM 和OM0,设z 轴的正向与向量的夹角为φ,x 轴的正向与0的夹角为θ,M 点到原点O 的距离为r ,则由三个数r ,θ,φ构成的有序数组(r ,θ,φ)称为空间中点M 的球坐标.在球坐标中限定r≥0,0≤θ<2π,0≤φ≤π.OM OM2.直角坐标与球坐标的转化空间点M 的直角坐标(x ,y ,z)与球坐标(r ,φ,θ)之间的变换关系为⎩⎨⎧x =rsin φ·cos θ,y =rsin φ·sin θ,z =rcos φ. [小问题·大思维]球坐标与平面上的极坐标之间有什么关系?提示:空间某点的球坐标中的第二个坐标θ就是该点在xOy 平面上投影点的极坐标中的第二个坐标θ.[例1][思路点拨] 本题考查球坐标与直角坐标的变换关系.解答本题需要先搞清球坐标中各个坐标的意义,然后代入相应的公式求解即可.[精解详析] ∵M 的球坐标为,∴r =5,φ=,θ=.由变换公式⎩⎨⎧ x =rsin φcos θ,y =rsin φsin θ,z =rcos φ,得⎩⎪⎨⎪⎧ x =5sin 5π6cos 4π3=-54,y =5sin 5π6sin 4π3=-534,z =5cos 5π6=-532.故它的直角坐标为. 已知球坐标求直角坐标,可根据变换公式直接求解,但要分清哪个角是φ,哪个角是θ.1.已知点P 的球坐标为,求它的直角坐标.解:由变换公式得x =rsin φcos θ=4sin cos =2,y =rsin φsin θ=4sin sin =2,z =rcos φ=4cos =-2.∴它的直角坐标为(2,2,-2).[例[思路点拨] 本题考查直角坐标与球坐标的变换关系.解答本题只需将已知条件代入变换公式求解即可,但应注意θ与φ的取值范围.[精解详析] 由坐标变换公式,可得r ===2.由rcos φ=z =,得cos φ==,φ=.又tan θ==1,θ=(x>0,y>0),所以知M点的球坐标为.由直角坐标化为球坐标时,我们可以先设点M的球坐标为(r,θ,φ),再利用变换公式求出r,θ,φ代入点的球坐标即可;也可以利用r2=x2+y2+z2,tan θ=,cos φ=求解.特别注意由直角坐标求球坐标时,θ和φ的取值应首先看清点所在的象限,准确取值,才能无误.2.设点M的直角坐标为,求它的球坐标.解:由变换公式得r===1.由rcos φ=z=-得cos φ=-,φ=.又tan θ==(r>0,y>0),得θ=,∴M的球坐标为.[例3] O为端点且与零子午线相交的射线Ox为极轴,建立坐标系.有A,B两个城市,它们的球坐标分别为AR,,,BR,,.飞机沿球的大圆圆弧飞行时,航线最短,求最短的路程.[思路点拨] 本题考查球坐标系的应用以及球面上的最短距离.解答本题需要搞清球的大圆的圆心角及求法.[精解详析] 如图所示,因为A,B,可知∠AOO1=∠O1OB=,∴∠O1AO=∠O1BO=.又∠EOC=,∠EOD=,∴∠COD=-=.∴∠AO1B=∠COD=.在Rt△OO1B中,∠O1BO=,OB=R,∴O1B=O1A=R.∵∠AO1B=,∴AB=R.在△AOB中,AB=OB=OA=R,∴∠AOB=.故飞机沿经过A,B两地的大圆飞行,航线最短,其路程为R.我们根据A,B两地的球坐标找到纬度和经度,当飞机沿着过A,B两地的大圆飞行时,飞行最快.求所飞行的路程实际上是要求我们求出过A,B两地的球面距离.3.用两平行面去截球,如图,在两个截面圆上有两个点,它们的球坐标分别为A,B8,θB,,求出这两个截面间的距离.解:由已知,OA=OB=8,∠AOO1=,∠BOO1=.∴在△AOO1中,OO1=4.在△BOO2中,∠BOO2=,OB=8,∴OO2=4,则O1O2=OO1+OO2=8.即两个截面间的距离O1O2为8.一、选择题1.已知一个点P的球坐标为,点P在xOy平面上的投影点为P0,则与的夹角为( )OPA.- B.3π4C.D.π3解析:选A ∵φ=,∴OP 与OP0之间的夹角为=. 2.点M 的球坐标为(r ,φ,θ)(φ,θ∈(0,π)),则其关于点(0,0,0)的对称点的坐标为( )A .(-r ,-φ,-θ)B .(r ,π-φ,π-θ)C .(r ,π+φ,θ)D .(r ,π-φ,π+θ)解析:选D 设点M 的直角坐标为(x ,y ,z),则点M 关于(0,0,0)的对称点M′的直角坐标为(-x ,-y ,-z),设M′的球坐标为(r′,φ′,θ′),因为⎩⎨⎧ x =rsin φcos θ,y =rsin φsin θ,z =rcos φ,所以⎩⎨⎧ r′sin φ′cos θ′=-rsin φcos θ,r′sin φ′sin θ′=-rsin φsin θ,r′cos φ′=-rcos φ,可得⎩⎨⎧ r′=r ,φ′=π-φ,θ′=π+θ,即M′的球坐标为(r ,π-φ,π+θ).3.点P 的球坐标为,则它的直角坐标为( )A .(1,0,0)B .(-1,-1,0)C .(0,-1,0)D .(-1,0,0)解析:选D x =rsin φcos θ=1·sin ·cos π=-1, y =rsin φsin θ=1·sinsin π=0,z =rcos φ=1·cos=0,∴它的直角坐标为(-1,0,0).4.已知点P 的柱坐标为,点B 的球坐标为,则这两个点在空间直角坐标系中的点的坐标为( )A .P(5,1,1),B ⎝⎛⎭⎪⎫364,324,62 B .P(1,1,5),B ⎝⎛⎭⎪⎫364,324,62 C .P ,B(1,1,5)D .P(1,1,5),B ⎝ ⎛⎭⎪⎫62,364,324 解析:选B 球坐标与直角坐标的互化公式为⎩⎨⎧ x =rsin φcos θ,y =rsin φsin θ,z =rcos φ,柱坐标与直角坐标的互化公式为⎩⎨⎧ x =ρcos θ,y =ρsin θ,z =z.设P 点的直角坐标为(x ,y ,z),则x =cos =×=1, y =sin =1,z =5.设B 点的直角坐标为(x′,y′,z′),则x′=sin cos =××=,y′=sin sin =××=,z′=cos =×=.所以点P 的直角坐标为(1,1,5),点B 的直角坐标为.二、填空题5.以地球中心为坐标原点,地球赤道平面为xOy 坐标面,由原点指向北极点的连线方向为z 轴正向,本初子午线所在平面为zOx坐标面,如图所示.若某地在西经60°,南纬45°,地球的半径为R ,则该地的球坐标可表示为________.解析:由球坐标的定义可知,该地的球坐标为R ,,.答案:⎝ ⎛⎭⎪⎫R ,5π3,3π4 6.已知点M 的球坐标为,则它的直角坐标为________,它的柱坐标是________.解析:由坐标变换公式直接得直角坐标和柱坐标.答案:(-2,2,2) ⎝ ⎛⎭⎪⎫22,3π4,22 7.设点M 的直角坐标为(-1,-1,),则它的球坐标为________. 解析:由坐标变换公式,得r ===2,cos φ==,∴φ=.∵tan θ===1,又∵x<0,y<0,∴θ=.∴M 的球坐标为.答案:⎝ ⎛⎭⎪⎫2,5π4,π4 8.在球坐标系中,方程r =1表示________,方程φ=表示空间的________.解析:数形结合,根据球坐标的定义判断形状.答案:球心在原点,半径为1的球面 顶点在原点,轴截面顶角为的圆锥面三、解答题9.如图,请你说出点M 的球坐标.解:由球坐标的定义,记|OM|=R ,OM 与z 轴正向所夹的角为φ.设M 在xOy 平面上的射影为Q ,Ox 轴按逆时针方向旋转到OQ 时所转过的最小正角为θ.这样点M 的位置就可以用有序数组(R ,θ,φ)表示.∴M 点的球坐标为M(R ,θ,φ).10.已知点P 的球坐标为,求它的直角坐标.解:根据坐标变换公式⎩⎨⎧ x =rsin φcos θ,y =rsin φsin θ,z =rcos φ,得⎩⎪⎨⎪⎧ x =2sin 3π4cos 7π6=2·22·⎝ ⎛⎭⎪⎫-32=-62,y =2sin 3π4sin 7π6=2·22·⎝ ⎛⎭⎪⎫-12=-22,z =2·cos 3π4=2·⎝ ⎛⎭⎪⎫-22=-2,∴点P 的直角坐标为. 11.如图,建立球坐标系,正四面体ABCD 的棱长为1,求A ,B ,C ,D 的球坐标.(其中O 是△BCD 的中心)解:O 是△BCD 的中心,则OC =OD =OB =,AO =.∴C ,D ,B,A.[对应学生用书P19][对应学生用书P19]1的对称性,尽量使图形的对称轴(对称中心)正好是坐标系中的x 轴,y 轴(坐标原点).2.坐标系的建立,要尽量使我们研究的曲线的方程简单.[例1] 线段AB 与CD 互相垂直且平分于点O ,|AB|=2a ,|CD|=2b ,动点P 满足|PA|·|PB|=|PC|·|PD|,求动点P 的轨迹方程.[解] 以AB 的中点O 为原点,直线AB 为x 轴建立直角坐标系,如图所示.设P(x ,y),则A(-a,0),B(a,0),C(0,-b),D(0,b),由题设,知|PA|·|PB|=|PC|·|PD|.∴ ·错误!= ·.化简得x2-y2=,∴动点P 的轨迹方程为x2-y2=.设点点P(X ,Y)对应点P′(x′,y′),称这种变换为平面直角坐标系中的坐标伸缩变换.[例2] 在同一平面直角坐标系中,经过伸缩变换后,曲线C 变为曲线(X -5)2+(Y +6)2=1,求曲线C 的方程,并判断其形状.[解] 将代入(X -5)2+(Y +6)2=1中,得(2x -5)2+(2y +6)2=1.化简,得⎝⎛⎭⎪⎫x -522+(y +3)2=. 该曲线是以为圆心,为半径的圆.1F(ρ,θ)=0.如果曲线C 是由极坐标(ρ,θ)满足方程的所有点组成的,则称此二元方程F(ρ,θ)=0为曲线C的极坐标方程.2.平面上点的极坐标的表示形式不唯一,因此曲线的极坐标方程和直角坐标方程也有不同之处.一条曲线上的点的极坐标有多组表示形式,有些表示形式可能不满足方程,这里要求至少有一组能满足极坐标方程.3.求轨迹方程的方法有直接法、定义法、相关点代入法,其在极坐标中仍然适用.注意求谁设谁,找出所设点的坐标ρ,θ的关系.[例3] △ABC的底边BC=10,∠A=∠B,以B为极点,BC为极轴,求顶点A的轨迹的极坐标方程.[解] 如图,令A(ρ,θ).△ABC内,设∠B=θ,∠A=,又|BC|=10,|AB|=ρ,所以由正弦定理,得=.化简,得A点轨迹的极坐标方程为ρ=10+20cos θ.1x轴的正半轴作为极轴并在两种坐标系下取相同的单位.2.互化公式为x=ρcos θ,y=ρsin θ3.直角坐标方程化极坐标方程可直接将x=ρcos θ,y=ρsin θ代入即可,而极坐标方程化为直角坐标方程通常将极坐标方程化为ρcos θ,ρsin θ的整体形式,然后用x,y代替较为方便,常常两端同乘以ρ即可达到目的,但要注意变形的等价性.[例4] 把下列极坐标方程化为直角坐标方程,并指出它们分别表示什么曲线.(1)ρ=2acos θ(a>0);(2)ρ=9(sin θ+cos θ);(3)ρ=4;(4)2ρcos θ-3ρsin θ=5.[解] (1)ρ=2acos θ,两边同时乘以ρ,得ρ2=2aρcos θ,即x2+y2=2ax.整理得x2+y2-2ax=0,即(x-a)2+y2=a2.它是以(a,0)为圆心,以a为半径的圆.(2)两边同时乘以ρ得ρ2=9ρ(sin θ+cos θ),即x2+y2=9x+9y,又可化为2+2=.它是以为圆心,以为半径的圆.(3)将ρ=4两边平方得ρ2=16,即x2+y2=16.它是以原点为圆心,以4为半径的圆.(4)2ρcos θ-3ρsin θ=5,即2x-3y=5.它是一条直线.1M0,用(ρ,θ)(ρ≥0,0≤θ<2π)来表示点M0在平面xOy上的极坐标.这时点M的位置可由有序数组(ρ,θ,z)表示,叫做点M的柱坐标.2.球坐标:建立空间直角坐标系O ­xyz,设M是空间任意一点,连接OM,记|OM|=r,OM与Oz轴正向所夹的角为φ,设M在xOy平面上的射影为M0.Ox轴按逆时针方向旋转到OM0时,所转过的最小正角为θ,则M(r,θ,φ)为M点的球坐标.[例5] 在柱坐标系中,求满足的动点M(ρ,θ,z)围成的几何体的体积.[解] 根据柱坐标系与点的柱坐标的意义可知,满足ρ=1,0≤θ<2π,0≤z≤2的动点M(ρ,θ,z)的轨迹是以直线Oz 为轴,轴截面为正方形的圆柱,如图所示,圆柱的底面半径r =1,h =2,∴V=Sh =πr2h =2π.[例6] 如图,长方体OABC —D′A′B′C′中,OA =OC =a ,BB′=OA ,对角线OB′与BD′相交于点P ,顶点O 为坐标原点,OA ,OC 分别在x 轴,y 轴的正半轴上.试写出点P 的球坐标.[解] r =|OP|,φ=∠D′OP,θ=∠AOB,而|OP|=a ,∠D′OP=∠OB′B,tan ∠OB′B==1,∴∠OB′B=,θ=∠AOB=.∴点P 的球坐标为.[对应学生用书P21]一、选择题1.点M 的直角坐标是(-1,),则点M 的极坐标为( )A.B.⎝ ⎛⎭⎪⎫2,-π3C.D.,k∈Z解析:选C ρ2=(-1)2+()2=4,∴ρ=2.又∴⎩⎪⎨⎪⎧ cos θ=-12,sin θ=32.∴θ=π+2k π,k ∈Z.即点M 的极坐标为,k∈Z.2.化极坐标方程ρ2cos θ-ρ=0为直角坐标方程为( )A.x2+y2=0或y=1 B.x=1C.x2+y2=0或x=1 D.y=1解析:选 C ρ(ρcos θ-1)=0,ρ==0,或ρcos θ=x =1.3.极坐标方程ρcos θ=2sin 2θ表示的曲线为( )A.一条射线和一个圆B.两条直线C.一条直线和一个圆D.一个圆解析:选C ρcos θ=4sin θcos θ,cos θ=0,或ρ=4sin θ(ρ2=4ρsin θ),则x=0,或x2+y2=4y.4.极坐标系内曲线ρ=2cos θ上的动点P与定点Q的最近距离等于( )A.-1B.-1C.1 D.2解析:选A 将曲线ρ=2cos θ化成直角坐标方程为(x-1)2+y2=1,点Q的直角坐标为(0,1),则P到Q的最短距离为点Q与圆心的距离减去半径,即-1.二、填空题5.极坐标方程5ρ2cos2θ+ρ2-24=0所表示的曲线焦点的极坐标为________________.解析:原方程化为直角坐标方程为-=1,∴c==,双曲线在直角坐标系下的焦点坐标为(,0),(-,0),故在极坐标系下,曲线的焦点坐标为(,0),(,π).答案:(,0),(,π)6.点M的球坐标为,则它的直角坐标为________.解析:x=6·sin·cos =3,y=6sinsin=3,z=6cos=0,∴它的直角坐标为(3,3,0).答案:(3,3,0)7.在极坐标系中,若过点(3,0)且与极轴垂直的直线交曲线ρ=4cos θ于A,B两点,则|AB|=________.解析:过点(3,0)且与极轴垂直的直线的直角坐标方程为x=3,曲线ρ=4cos θ化为直角坐标方程为x2+y2-4x=0,把x=3代入上式,得9+y2-12=0,解得,y1=,y2=-,所以|AB|=|y1-y2|=2.答案:238.在极坐标系中,过点A(6,π)作圆ρ=-4cos θ的切线,则切线长为________.解析:圆ρ=-4cos θ化为(x+2)2+y2=4,点(6,π)化为(-6,0),故切线长为==2.答案:23三、解答题9.求由曲线4x2+9y2=36变成曲线X2+Y2=1的伸缩变换.解:设变换为将其代入方程X2+Y2=1,得a2x2+b2y2=1.又∵4x2+9y2=36,即+=1,∴又∵a>0,b>0,∴a=,b=.∴将曲线4x2+9y2=36变成曲线X2+Y2=1的伸缩变换为⎩⎪⎨⎪⎧ X =13x ,Y =12y.10.已知A ,B 两点的极坐标分别是,,求A ,B 两点间的距离和△AOB 的面积.解:求两点间的距离可用如下公式:|AB|===2.S△AOB=|ρ1ρ2sin(θ1-θ2)|=2×4×sin=×2×4=4.11.在极坐标系中,已知圆C 的圆心C ,半径为1.Q 点在圆周上运动,O 为极点.(1)求圆C 的极坐标方程;(2)若P 在直线OQ 上运动,且满足=,求动点P 的轨迹方程.解:(1)如图所示,设M(ρ,θ)为圆C 上任意一点.在△OCM 中,可知|OC|=3,|OM|=ρ,|CM|=1,∠COM =.根据余弦定理,得1=ρ2+9-2·ρ·3·cos .化简整理,得ρ2-6·ρcos +8=0为圆C 的轨迹方程.(2)设Q(ρ1,θ1),则有ρ-6·ρ1cos +8=0.①设P(ρ,θ),则OQ∶QP=ρ1∶(ρ-ρ1)=2∶3⇒ρ1=ρ, 又θ1=θ,所以⎩⎨⎧ ρ1=25ρ,θ1=θ.代入①得ρ2-6·ρcos +8=0,整理得ρ2-15ρcos +50=0为P 点的轨迹方程.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【2019-2020年度】人教B版高中数学-选修4-4教学案-第一章圆的极坐标方程(Word)
[读教材·填要点]
圆的极坐标方程(1)圆心在极轴上的点(a,0)处,且圆过极点O,则圆的极坐标方
程为ρ=2acos θ,-≤θ≤.
(2)圆心在点处,且过极点的圆的极坐标方程为ρ=2asin_θ,
0≤θ≤π.
[小问题·大思维]
相等的圆在同一极坐标中,极坐标方程是否相同?
提示:不一定.相等的圆只要在极坐标系中圆心的位置不同,极
坐标方程就不一样.
[例1]
为直角坐标方程.
[思路点拨] 结合题意作出图形,设出动点M(ρ,θ),根据条件建立ρ,θ的关系式化简可求.
[精解详析] 如图,设M(ρ,θ)为圆上除O,
B外的任意一点,连接OM,MB,则有|OB|=4,|OM|
=ρ,∠MOB=θ-,∠BMO=,
从而△BOM为直角三角形,
所以有|OM|=|OB|cos∠MOB,
即ρ=4cos=-4sin θ,
故所求圆的极坐标方程为ρ=-4sin θ,
∴x2+y2=-4y,
即x2+(y+2)2=4为所求圆的直角坐标方程.
(1)圆的极坐标方程是曲线的极坐标方程的一种特殊情况,其求解过程同曲线的极坐标方程的求法相同.
(2)用代入法求极坐标方程,设出要求轨迹的点的极坐标和与之相关的点的坐标,用相关点的坐标表示要求点的坐标,然后代入相关点坐标所满足的关系式即可求得要求点的轨迹方程.
1.在极坐标系中,已知圆C的圆心为,半径为3,Q点在圆周上运动.
(1)求圆C的极坐标方程;
(2)若P是OQ的中点,求P的轨迹.
解:(1)如图,设Q(ρ,θ)为圆上任意一点,连接DQ,OQ,则|OD|=6,∠DOQ=-θ,
或∠DOQ=θ-,∠DQO=.
在Rt△ODQ中,|OQ|=|OD|cos,
即ρ=6cos.
(2)若P的极坐标为(ρ,θ),则Q点的极坐标为(2ρ,θ).
∴2ρ=6cos.所以ρ=3cos.
∴P的轨迹是圆.
[例和直线l:ρsin=.
(1)求圆O和直线l的直角坐标方程;
(2)当θ∈(0,π)时,求直线l与圆O公共点的一个极坐标.
[思路点拨] 本题考查极坐标与直角坐标的互化及直线极坐标方程的求法.解答本题需要先求出圆与直线的一般方程,然后化一般
方程为极坐标方程即可.
[精解详析] (1)圆O :ρ=cos θ+sin θ,
即ρ2=ρcos θ+ρsin θ,
圆O 的直角坐标方程为:x2+y2=x +y ,
即x2+y2-x -y =0.
直线l :ρsin =,即ρsin θ-ρcos θ=1,
则直线l 的直角坐标方程为:y -x =1,
即x -y +1=0.
(2)由得⎩⎨⎧ x =0,y =1,
故直线l 与圆O 公共点的一个极坐标为.
解答此类问题应先将已知条件中的极坐标方程化为直角坐标方程,然后在直角坐标系下研究所要求解的问题,最后将直角坐标方程转化为极坐标方程即可.
2.在极坐标系中,直线ρsin =2被圆ρ=4截得的弦长为( )
A .2
B .23
C .4
D .43
解析:选D 直线ρsin =2可化为x +y -2=0,圆ρ=4可化为x2+y2=16,由圆中的弦长公式得
2=2 =4.
[对应学生用书P12]
一、选择题
1.在极坐标系中,圆ρ=-2sin θ的圆心的极坐标是( )
A.
B.⎝ ⎛⎭
⎪⎫1,-π2 C .(1,0)
D .(1,π)
解析:选B 该圆的直角坐标方程为x2+y2=-2y,即x2+(y +1)2=1,故圆心的直角坐标为(0,-1),化为极坐标为,故选B.
2.极坐标方程ρ=cos所表示的曲线是( )
A.双曲线B.椭圆
C.抛物线D.圆
解析:选D ∵ρ=cos=cos θ+sin θ,
ρ2=ρcos θ+ρsin θ,
∴x2+y2=x+y,这个方程表示一个圆.
3.在极坐标方程中,曲线C的方程是ρ=4sin θ,过点作曲线C的切线,则切线长为( )
A.4 B.7
C.2 D.23
解析:选C ρ=4sin θ化为普通方程为x2+(y-2)2=4,点化为直角坐标为(2,2),切线长、圆心到定点的距离及半径构成直角三角形.由勾股定理:切线长为=2.
4.点M,N分别是曲线ρsin θ=2和ρ=2cos θ上的动点,则|MN|的最小值是( )
A.1 B.2
C.3 D.4
解析:选A ρsin θ=2化为普通方程为y=2,
ρ=2cos θ化为普通方程为x2+y2-2x=0,
即(x-1)2+y2=1,
圆(x-1)2+y2=1上的点到直线上点的距离的最小值为圆心(1,0)到直线y=2的距离减去半径,即为2-1=1,故选A.
二、填空题
5.极坐标方程ρ=sin θ+2cos θ能表示的曲线的直角坐标方程为________________.
解析:由ρ=sin θ+2cos θ,得ρ2=ρsin θ+2ρcos θ,∴x2+y2-2x-y=0.
答案:x2+y2-2x-y=0
6.在极坐标系中,圆C的极坐标方程为ρ=2sin θ过极点,一条直线l与圆相交于O,A两点,且∠AOx=45°,则OA=________.
解析:圆C的直角坐标方程为:x2+(y-1)2=1,
圆心(0,1)到直线OA:y=x的距离为,
则弦长OA=.
答案:2
7.在极坐标系中,已知圆C的圆心坐标为C,半径R=,则圆C 的极坐标方程为________.
解析:将圆心C(2,)化成直角坐标为(1,),
半径R=,故圆C的方程为(x-1)2+(y-)2=5.
再将圆C的方程化成极坐标方程,
得(ρcos θ-1)2+(ρsin θ-)2=5.
化简,得ρ2-4ρcos-1=0,即为所求的圆C的极坐标方程.答案:ρ2-4ρcos-1=0
8.若直线3x+4y+m=0与曲线ρ2-2ρcos θ+4ρsin θ+4=0没有公共点,则实数m的取值范围是_________________________________________________.解析:曲线ρ2-2ρcos θ+4ρsin θ+4=0的直角坐标方程是x2+y2-2x+4y+4=0,
即(x-1)2+(y+2)2=1.
要使直线3x+4y+m=0与该曲线没有公共点,
只要圆心(1,-2)到直线3x+4y+m=0的距离大于圆的半径即可,
即>1,|m-5|>5,
解得m<0或m>10.
答案:(-∞,0)∪(10,+∞)
三、解答题
9.如图,在圆心极坐标为A(4,0),半径为4的圆中,
求过极点O的弦的中点轨迹的极坐标方程,并将其化为
直角坐标方程.
解:设M(ρ,θ)是轨迹上任意一点,连接OM并延长交圆A于点P(ρ0,θ0),则有θ0=θ,ρ0=2ρ.
由圆心为(4,0),半径为4的圆的极坐标方程为ρ=8cos θ得
ρ0=8cos θ0,所以2ρ=8cos θ,即ρ=4cos θ.
故所求轨迹方程是ρ=4cos θ.
因为x=ρcos θ,y=ρsin θ,由ρ=4cos θ
得ρ2=4ρcos θ,所以x2+y2=4x,即x2+y2-4x=0为轨迹的直角坐标方程.
10.已知圆的极坐标方程为:ρ2-4ρcos+6=0.
(1)将极坐标方程化为普通方程;
(2)若点P(x,y)在该圆上,求x+y的最大值和最小值.
解:(1)原方程变形为:ρ2-4ρcos θ-4ρsin θ+6=0,化成普通方程为x2+y2-4x-4y+6=0.
(2)圆的参数方程为(α为参数),
所以x+y=4+2sin.
那么x +y 的最大值为6,最小值为2.
11.圆O1和圆O2的极坐标方程分别为ρ=4cos θ,ρ=-sin θ.
(1)把圆O1和圆O2的极坐标方程化为直角坐标方程;
(2)求经过圆O1,圆O2两个交点的直线的直角坐标方程. 解:(1)∵x=ρcos θ,y =ρsin θ,
由ρ=4cos θ得ρ2=4ρcos θ.
所以x2+y2=4x.
即x2+y2-4x =0为圆O1的直角坐标方程.
同理x2+y2+y =0为圆O2的直角坐标方程.
(2)由⎩⎨⎧ x2+y2-4x =0,x2+y2+y =0,
相减得过交点的直线的直角坐标方程为4x +y =0.。

相关文档
最新文档