人教B版高中数学必修一函数教案
人教B版必修一高中数学第二章第四节《函数的零点》教案

人教B版《必修一》第二章第四节《函数的零点》(第一课时)【教材分析与学情分析】1.本节课是人教B版《必修一》第二章第四节“函数与方程”的第一课时。
高一学生在学习本节内容之前,对三次函数的了解仅限于第二章的幂函数;而利用函数零点与方程根的关系作图也仅限于二次函数。
随着学习内容的加深与扩展,本节课的设计对学生来说,是一次思想方法上的突破和学习观念的提升。
2.任教班级学生数学基础良好。
【课型】新授课【教学目标】1.能说出函数零点的定义,会求简单函数的零点。
2.经历二次函数零点性质推广到一般连续函数的过程,体会“函数与方程”、“转化与化归”、、“数形结合”的数学精神。
3. 用数学的眼光发现问题,并用数学知识方法给予解决;在学习新知的过程中,体会数学的应用价值;树立正确的人生观、价值观以及爱国主义情怀。
【教学准备】1.多媒体技术;2.网络资源;3.三封信件4.图书文献资源和网络资源:对“我国女排发球技术研究”的查阅【教学方法】自主探究、合作探究【教学重点】函数零点的概念与求法,作三次函数图象【教学难点】作三次函数图象、解决简单应用问题【教学过程】(含时间分配)(先准备几封写好的信(其实为最后学习要点的引出埋下伏笔),鼓励课堂活动踊跃的学生)(一)新课引入(5分钟)1.情景引入(激发学生的好奇心)播放中国女排在2016年里约奥运会夺冠的视频,指出女排的夺冠与数学紧密相连。
2.问题引入(激发学生求知欲)(二)概念的形成与深化(5分钟)1.实例引入 ?062=--=y x x x y 取何值时,,当对于函数2.函数的零点3.概念深化 函数y=f(x)有零点方程f(x)=0有实数根函数y=f(x)的图象与x 轴有交点(三)实践与探究(14分钟)1.自主尝试求下列函数的零点:2.总结升华(学生把一般二次函数零点的判定以表格形式给出)3.深入探究(学生自主探究)当二次函数有零点时,请由图象探究:(1)在零点的两侧,函数值符号是否改变?(2)相邻两个零点之间函数值的符号是否相同?1.你能画出函数y=2x+7的图象吗?22.你能画出函数y=x -x-6的图象吗?323.你能画出函数y=x -2x -x+2的图象吗?(1)236(2)y x y x =-+=222(3)(4)21(5)23y x x y x x y x x =+=-+=-+()=0f x x 使得函数的实数的值,叫做这个函数的零点.(学生自主完成)对于二次函数而言: (1)当函数图象穿过零点时,函数值变号; 当函数图象遇到零点但不穿过零点时,函数值不变号. (2)相邻两个零点之间的所有函数值保持同号.(师总结)推广:对任意函数,只要函数图象是连续不断的,上述性质同样成立.(四)应用举例(18分钟)1.(学生亲自投影,面对同学讲解做法,教师适当补充)在这4个区间内,取x 的一些值,以及零点,列出这个函数的对应值表: X … -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 … Y … -4.38 0 1.88 2 1.13 0 -0.63 0 2.63 … 在坐标系内,描点连线,作出图象.x y 0 x 1x 1 x 2 0yx 321.例求函数y=x -2x -x+2的零点,并画出它的图象.322211x x x --+-解:因为 =(x-2)(x-1)(x+1)所以函数的零点为, , 2.x 4--1-11122,+∞∞3个零点把轴分成个区间:(,),(,),(,),()*学生总结方法求函数y=f(x)零点的方法:求方程f(x)=0的根.(常用:因式分解)画三次函数图象的步骤:(1)求函数的零点,用其将x 轴分成几个区间;(2)利用在区间内适当取的x 值及零点,得到图象上的一些点;(3)描点连线,得到图象.2.自主尝试(学生黑板板演)*课下研究课题3.(回扣课头)例 2 研究发现:排球发球的成功率y%与抛球角度x(单位:度)近似满足二次函数关系:216144,25y x x =-+-(3090)x << 在一场排球比赛中,每位发球队员的成功率只有大于80%,才有利于比赛胜出。
人教B版高中数学必修一教案3.3幂函数

人民教育出版高中数学B版必修一◆3.3《幂函数》教学设计一、教学目标学生已经学习了一次函数、二次函数、指数函数、对数函数等相关知识,初步掌握了研究函数的程序。
学生思维活跃,积极性高,已初步形成对数学问题的合作探究能力。
但学生间存在差异,特别是动手操作的能力,观察、类比、分析、归纳总结的能力个体差异还比较明显。
根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,制定如下三维教学目标:(一)知识与技能:理解幂函数的概念,掌握幂函数的图象与性质,学会利用幂函数的图象与性质来解决简单的问题。
(二)过程与方法:探究幂函数的图象与性质的过程,掌握由特殊到一般、类比、数形结合、分类讨论的数学思想方法。
(三)情感、态度与价值观:培养学生画图、识图、用图的思想意识,在问题面前要有勇于探索的精神品质。
二、教学重点、难点依据课程标准,在吃透教材基础上,确立如下的教学重点、难点。
(一)重点:幂函数的图象与性质,通过主题探究、例题设计、学生板演、课件展示等手段突出重点。
2.教学过程设计请学生根据观察出的图象特征,归纳出幂函数的性质。
学生小组合作完成下表,上台展示:函数)(R x y ∈=αα指数 1>α 10<<α 0<α图象过定点单调性函数值特点完善表格,形成知识脉络,突破难点.例1、 比较下列两个代数式值的大小 (1)5.15.1)1(a a +(2)21219.01.1--练习:比较下列两个代数式的大小:(1)119.08.0--(2)43434.23.2(3)22)43()32(-- (4)2121)31()21(学生思考,口头回答教师引导学生总结比较大小的方法。
幂函数概念的应用,加深幂函数性质的理解。
0<ααα>α=α 生成新知典例 剖 析六、板书设计§3.3 幂函数[设计意图]板书呈现整堂课的内容与方法,突出本节重难点,体现教学进程,启迪学生思维.设计理念:1.本节课以:“教什么”、“怎么教”,“为什么这样教”与学生的“学什么”、“怎么学”,“为什么这样学”的有机结合为教学设计出发点.2.在教学过程中,从实际问题入手,设置探究题,引导学生自主、合作学习,渗透数学思想方法为教学设计的落脚点.3.在问题解决过程中,以数学应用意识的培养,解决问题能力的提高为教学设计的最终目的.。
人教高中数学必修一B版《函数的应用》函数研讨复习说课教学课件

栏目导航
2.向高为 H 的水瓶中注水,注满为止.如果注水量 V 与水深 h 的函数关系的图像如图所示,那么水瓶的形状是( )
A
B
C
D
栏目导航
B [题图反映随着水深 h 的增加,注水量 V 增长速度越来越慢, 这反映水瓶中水上升的液面越来越小.]
栏目导航
3.某人从 A 地出发,开汽车以 80 千米/小时的速度经 2 小时到 达 B 地,在 B 地停留 2 小时,则汽车离开 A 地的距离 y(单位:千米) 是时间 t(单位:小时)的函数,该函数的解析式是________.
(2)每天的盈利额超过 1 000 元,则 x∈(200,300],由 15x-2 500>1
000 得,x>7300,故每天至少需要卖出 234 张门票.
60 [设涨价 x 元,销售的利润为 y 元, 则 y=(50+x-45)(50-2x)=-2x2+40x+250 =-2(x-10)2+450, 所以当 x=10,即销售价为 60 元时,y 取得最大值.]
栏目导航
合作探究 提素养
栏目导航
一次函数模型的应用
【例 1】 某厂日生产文具盒的总成本 y(元)与日产量 x(套)之间
2.数学建模的过程图示如下:
栏目导航
当堂达标 固双基
栏目导航
1.思考辨析 甲、乙两人在一次赛跑中,路程 s 与时间 t 的函数关系如图所示, 判断下列说法的对错.
栏目导航
(1)甲比乙先出发.( ) (2)乙比甲跑的路程多.( ) (3)甲、乙两人的速度相同.( ) (4)甲先到达终点.( )
[答案] (1)× (2)× (3)× (4)√
栏目导航
y=2×4×1.8+3×[(3x-4)+(5x-4)]=24x-9.6.
人教B版高中数学必修一函数的奇偶性教案(2)

函数的奇偶性教学目标:1.巩固和深化函数奇偶性的相关知识,增强运用函数与方程思想解题的意识。
2.熟悉奇偶函数图像的对称性,能综合应用函数的奇偶性解决一些问题。
一、例题讲解学点一:函数的奇偶性例1若2mmxf为偶函数,求)=xx+()(2+-)2f的单调区间及最大值(x学点二:函数奇偶性的运算例2:设奇函数),7[-f在区间]3-上(xf在区间]7,3[上是增函数,且,5)3(=f求)(x的最大值。
例3:设)(=f求不等式-)2,0(+∞上是增函数,又,0(xf是奇函数,且在区间)xf的解集。
-)1(<学点三:函数的奇偶性综合运用例4:设定义在]2,2[-奇函数)(x f ,在区间]2,0[是单调递减,且)12()(-<m f m f ,求实数m 的取值范围。
变题为设定义在]2,2[-偶函数)(x f ,在区间]2,0[是单调递减,且)()1(m f m f <-,求实数m 的取值范围。
二:针对训练1.下列函数中,既不是奇函数又不是偶函数,且在)0,(-∞上为增函数的是 。
(1)34)(+=x x f (2)1)(+=x x f(3)11)(-=xx f (4)2)(x x f = 2.函数]31,2[(4--∈+=x x x y 的最小值为 最大值为 3.已知)(x f 在区间],0[π上单调递增,且)(x f 的图像关于y 轴对称,试比较)2(),2(),3(πf f f -的大小为4.若偶函数)(x f 的定义域为R,且在),0[+∞上是减函数,试比较)43(-f 与)1(2+-a a f 的大小5.函数21)(x b ax x f ++=是定义在)1,1(-上的奇函数,且52)21(=f (1)确定函数)(x f 的解析式 (2)用定义证明)(x f 在)1,1(-上的单调性 (3)解不等式:0)()1(<+-t f t f。
高中数学 2.1.3 函数的单调性教学设计 新人教B版必修1

函数的单调性教学设计一、教材分析函数的单调性是函数的重要性质.从知识的网络结构上看,函数的单调性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用.函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示X作用。
二、学情分析根据上述教材结构与内容分析,立足学生的认知水平,制定如下教学目标和重、难点三、教学目标1.知识与技能:使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;2.过程与方法:引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.3.情感、态度与价值观:在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度.根据上述教学目标,本节课的教学重点是函数单调性的概念形成和初步运用.虽然高一学生已经有一定的抽象思维能力,但函数单调性概念对他们来说还是比较抽象的.因此,本节课的学习难点是函数单调性的概念形成.四、教学重点、难点教学重点:函数单调性的概念;判断、证明函数的单调性教学难点:归纳并抽象函数单调性定义;用定义判断单调性的基本步骤五、学法与教法学法:〔1〕合作学习:引导学生分组讨论,合作交流,共同探讨问题〔2〕自主学习:引导学生通过亲身经历,动口、动脑、动手参与数学活动〔3〕探究学习:引导学生发挥主观能动性,主动探索新知〔如例题的处理〕。
教学用具:电脑、多媒体。
教法:整堂课围绕“一切为了学生发展〞的教学原那么突出:①动——师生互动、共同探索;②导——教师指导、循序渐进。
〔1〕新课引入——提出问题, 激发学生的求知欲。
〔2〕理解导数的内涵——数形结合,动手计算,组织学生自主探索,获得函数单调性的定义。
《函数与方程、不等式之间的关系》第2课时示范课教学设计【高中数学人教B版必修第一册】

第三章函数《3.2函数与方程、不等式之间的关系》教学设计第2课时会用函数的性质判断对应方程是否有实根,理解函数零点存在定理,会利用“二分法”找到实根的近似值.教学重点:函数零点存在定理教学难点:用“二分法”求函数零点的近似值PPT课件.一、整体概览问题1:阅读课本第114~118,回答下列问题:(1)本节将要研究哪类问题?(2)本节研究的起点是什么?目标是什么?师生活动:学生带着问题阅读课本,在本节课的学习过程中回答问题预设的答案:(1)本节将要研究函数的零点存在定理及二分法求方程近似解.(2)起点是函数的零点,函数的零点与对应方程的根之间的关系,以及利用函数的图像求解对应不等式的解集.目标是理解函数零点存在定理,会用函数的性质判断对应方程是否有实根,会利用“二分法”找到实根的近似值等.重点是渗透数形结合的数学思想,二分法,提升学生直观想象、数学抽象、数据分析和逻辑推理等素养.设计意图:通过阅读课本,让学生明晰本节课的学习目标,初步搭建学习内容的框架.二、探索新知1.复习引入我们知道:一次函数、二次函数的零点是否存在,并不难判别,这是因为一元一次方程、一元二次方程实数解的情况,都可以根据它们的系数判别出来,而且有实数根的时候,都能够写出求根公式.问题1:关于x的一元一次方程k x+b=0(k≠0)的求根公式为________;一元二次方程的求根公式为________.师生活动:学生回答.预设的答案:bxk=-;242b b acxa-±-=(有实根时)问题2:对于次数大于或等于3的多项式函数(例如f(x)=ax3+bx2+cx+d,其中a≠0),以及其他表达式更复杂的函数来说,判断零点是否存在以及求零点,都不是容易的事(事实上,数学家们已经证明:次数大于4的多项式方程,不存在求根公式).那么,什么情况下一个函数一定存在零点呢?设计意图:通过问题引入新课,激发学生的求知欲.知识点1 零点的存在性问题3:如下图所示,已知A,B都是函数y=f(x)图像上的点,而且函数图像是连接A,B两点的连续不断的线,画出3种y=f(x)的可能的图像.判断f(x)是否一定存在零点,总结出一般规律.师生活动:让学生自己动手画,互相检查(如如下图是函数的图像吗?),教师与学生一起总结.可以看出,满足要求的函数f(x)在区间(a,b)中一定存在零点.零点存在定理:如果函数y=f(x)在区间[a,b]上的图像是连续不断的,并且f(a)f (b)<0(即在区间两个端点处的函数值异号),则函数y=f(x)在区间(a,b)中至少有一个零点,即∃x o∈(a,b),f(x o)=0.强调:一般地,解析式是多项式的函数的图像都是连续不断的.需要注意的是,反比例函数1yx=的图像不是连续不断的.设计意图:培养学生的抽象概括能力.知识点2 零点近似值的求法问题4:例1中的函数在区间(-2,0)中存在零点x o,但是不难看出,求出x o的精确值并不容易,那么,能不能想办法得到这个零点的近似值呢?比如,能否求出一个x1,使得|x1-x0|<18?【尝试与发现】如果在区间(一2,0)中任取一个数作为x o的近似值,那么误差小于多少?如果取区间(一2,0)的中点作为x o的近似值,那么误差小于多少?怎样才能不断缩小误差?师生活动:学生回答.预设的答案:如果在区间(一2,0)中任取一个数作为x o的近似值,误差小于2;如果取区间(一2,0)的中点作为x.的近似值,误差小于1.一般地,求x.的近似值,可以通过计算区间中点函数值,从而不断缩小零点所在的区间来实现,具体计算过程可用如下表格表示.其中第2行的区间是(-2,-1),这是因为f(-2)f(-1)<0,其他区间都是用类似方式得到的.最后一行的函数值没有计算,是因为不管15 (2,]8x∈--,还是157 [,)84x∈--,我们都可以将158-看成x o的近似值,而且误差小于18.当然,按照类似的方式继续算下去,可以得到精确度更高的近似值. 上述这种求函数零点近似值的方法称为二分法.教师总结:二分法的求解步骤:在函数零点存在定理的条件满足时(即f (x )在区间[a ,b ]上的图像是连续不断的,且f (a )f (b )<0),给定近似的精度ε,用二分法求零点x o 的近似值x 1,使得|x 1-x o |<ε的一般步骤如下:第一步 检查| b - a |<2ε是否成立,如果成立,取12a bx +=,计算结束;如果不成立,转到第二步.第二步 计算区间(a ,b )的中点2a b +对应的函数值,若()02a b f +=,取12a bx +=,计算结束;若()02a bf +≠,转到第三步. 第三步 若()()02a b f a f +<,将2a b +的值赋给b (用表示2a bb +→,下同),回到第一步;否则必有()()02a b f f b +<,将2a b+的值赋给a ,回到第一步. 这些步骤可用如图所示的框图表示三、初步应用例1 求证:函数f (x )=x 3-2x +2至少有一个零点. 师生活动:教师与学生一起分析,教师书写规范解答. 预设的答案:证明:因为f (0)=2>0,f (-2)=-8+4+2=-2<0,所以f (-2)f (0)<0,因此∃x o ∈(-2,0),f (x o )=0,即结论成立.设计意图:巩固函数的零点存在定理.例2 已知函数f (x )=x 2+ax +1有两个零点,在区间(-1,1)上是单调的,且在该区间中有且只有一个零点,求实数a 的取值范围.师生活动:教师与学生一起分析,教师书写规范解答.预设的答案:解:因为函数f (x )的图像是开口朝上的抛物线,因此满足条件的函数图像示意图如下图(1)(2)所示.不管哪种情况,都可以归结为f (-1)f (1)<0且||12a-≥,因此 (2-a )(a +2)<0且|a |≥2,解得a <-2或a >2.设计意图:进一步巩固函数的零点存在定理及二次函数的图像和性质.例3.用二分法求方程的近似解,求得f (x )=x 3+2x -9的部分函数值数据如表所示: x 121.51.625 1.75 1.875 1.812 5 f (x )-63 -2.625-1.459-0.141.341 80.579 3A .1.6B .1.7C .1.8D .1.9师生活动:学生思考后回答.预设的答案:解:由表格可得,函数f (x )=x 3+2x -9的零点在(1.75,1.875)之间, 结合选项可知,方程x 3+2x -9=0的近似解可取为1.8,故选C. 设计意图:巩固二分法求函数的零点. 例4已知函数321()13f x x x =-+. (1)证明方程f (x )=0在区间(0,2)内有实数解;(2)使用二分法,取区间的中点三次,指出方程f (x )=0(x ∈[0,2])的实数解x 0在哪个较小的区间内.师生活动:学生思考后回答,教师完善规范解题过程. 预设的答案:解: (1)证明:∵f (0)=1>0,1(2)3f =-,∴1 (0)(2)03f f=-<,由函数零点存在定理可得方程f(x)=0在区间(0,2)内有实数解.(2)取1021 2x+==,得1(1)3f=,由此可得1(1)(2)9f f=-,下一个有解区间为(1,2).再取2123 22x+==,得31()028f=-<,∴31(1)()0224f f=-<,下一个有解区间为3(1,)2.再取3135 (1) 224x=+=,得517()0 4192f=>,∴35()()024f f<,下一个有解区间为53(,)42.故f(x)=0的实数解x0在区间53 (,)42内.设计意图:巩固零点存在定理及二分法求函数的零点的解题步骤. 练习:教科书P119练习A 4~10四、归纳小结,布置作业1.板书设计:3.2函数与方程、不等式之间的关系1.函数的零点存在定理2.二分法及其求零点近似解例1 例2 例3 例42.总结概括:回顾本节课,你有什么收获?(1)函数的零点存在定理的内容是什么?有哪些注意点?(2)什么叫二分法?(3)二分法求函数零点近似解的求解步骤?师生活动:学生总结,老师适当补充.作业:教科书P120练习B 4~9,练习C1、3、4、5 【课外拓展】信息技术求函数零点。
高中数学人教B版必修1第三章第一节指数函数

《指数函数》教学设计教学内容高中数学人教B版必修1第三章第一节《指数函数》教材分析本节课是高中数学必修一第三章第一节《指数函数》,是在学生系统学习了函数的基础概念、表示方法、性质,掌握了实数指数幂及其运算的基础上引入的.指数函数是高中阶段接触的第一类重要的基本初等函数,本节课将从“折纸”“截取木锤”的实际问题引入,引出指数函数的概念,接着研究指数函数的图像及其性质,遵守由特殊到一般的研究规律,要求学生自己作出特殊的较为简单的指数函数的图象,然后推广到一般情况,类比地得到指数函数的图象,并观察图象,总结出指数函数的性质,而且是分与的两种情形.在此基础上启发学生根据指数函数的形式特点及指数函数的图象性质来解决同底数幂的大小及指数形式的函数问题,从而深化学生对指数函数的理解,并且了解较为全面的研究函数的方法,为以后再研究对数函数、幂函数等其他函数打下基础.学情分析学生对函数的图象、性质的关系已经构建了一定的认知结构,对正比例函数、反比例函数、一次函数、二次函数等最简单的函数概念和性质有了初步的认识,学会解决一些简单函数问题的方法.在一定程度上已经体会过由观察到抽象的数学活动,已经了解了数形结合的思想,有一些研究函数问题方法的基础,对解决一些数学问题有一定的能力.同时指数函数为基本初等函数的第一类函数,图象和性质的研究为后面对数函数、幂函数等做铺垫,启着承上启下的作用.教学目标知识与技能1.了解指数函数模型的实际背景;2.理解指数函数的概念和意义;3. 理解指数函数的单调性与特殊点,掌握指数函数单调性的简单应用.过程与方法1.能画出具体特殊指数函数的图象,类比得一般指数函数图象与性质;2. 合作探究,探索指数函数单调性的简单应用.情感态度价值观在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型,激发学生学习数学的兴趣,努力培养学生的创新意识,坚韧不拔的毅力!教学重点指数函数的概念和性质.教学难点指数函数的性质及应用.教学方法启发诱导与自主学习相结合教学过程教学环节教学内容师生互动设计意图一、情境引入提出问题:你认为一张纸最多能对折多少次?问题1:将一张纸对折后的层数y与对折次数x的函数关系式是什么?问题2:《庄子·天下篇》中写道:“一尺之棰,日取其半,万世不竭.”请你写出截取x次后,木棰剩余量y关于x的函数关系式?得出这两个函数问题3:以上两个函数有何共同特征?学生回答,并动手实践学生思考回答由实际问题引入,激发学生学习兴趣,培养学生解决实际问题能力二、新课讲解定义:问题4:为什么规定底数a >0且a≠1呢?学生站立,小组讨论培养学生自主解决问题能力教学过程二、新课讲解练一练:1.判断下列函数是不是指数函数,为什么?小结:指数函数的形式2.若函数是指数函数,求a的值.问题5:得到函数的图象一般用什么方法?列表、描点、连线在同一直角坐标系画出的图象,小组讨论,两个函数的图象有什么关系?指数函数图象与性质学生独立思考,教师提问学生观察并自我总结教师启发引导,学生列表、描点、作图教师动画演示学生小组讨论,观察、归纳、总结,教师诱导、点评培养学生的观察、归纳、概括的能力通过列表、计算使学生体会、感受指数函数图象的变化趋势,通过描点,作图培养学生的动手实践能力使学生体会从特殊到一般,从具体到抽象的思维过程.培养学生的归纳概括能力.三、例题讲解例1.利用指数函数的性质,比较下列各题中两个值的大小练一练:教师启发引导,学生独立解决,教师黑板板演学生思考、解答指数函数单调性应用,规范解题步骤巩固所学内容教学过程三、例题讲解小结:同底数幂比较大小①明确指数函数;②判断函数单调性;③利用单调性比较大小.想一想:比较下面两个数的大小:(分类讨论)学生自我总结学生独立解决,学生爬黑板教师启发引导,学生自主解决培养学生归纳、总结能力检验学生对本节课掌握情况四、当堂检测是指数函数的有 .2.比较大小(分类讨论)学生口答,PPT展示答案检测学生对本节课掌握情况五、课堂小结本节课你收获了什么?学生自我总结,师生共同回忆加强对知识的记忆,思维导图总结,使学生对本节课所学知识结构有一个整体的认识六、布置作业课本P92-93练习A练习B.七、数学世界学生思考,老师启发延伸指数函数与实际生活相结合,前后呼应,使同学们体会指数函数在生活中魅力所在指数函数 评测练习1.函数()()1012≠>+=-a a ax f x 且的图象一定经过( ).A.(1,2)B.(2,1) C .(2,2) D .(0,1) 2.若函数()()xa x f 21-=在实数集R 上是减函数,则实数a的取值范围是( ).)()()()(21,21.21,.21,0.,21.-∞-+∞D C B A3.指数函数xxb y a y ==与的图象如图所示,则( ). A.a <0,b <0 B.a <0,b >0 C.0<a <1,0<b <1 D.0<a <1,b >14. 函数()xa a y 22-=是指数函数,则( ).10.3.1.31.≠>====a a D a C a B a a A 且或 5.若913≥x,则实数x 的取值范围是 .。
人教B版高中高一数学幂函数教案设计

人教B版高中高一数学幂函数教案设计一、教学目标1.了解幂函数的定义及其性质;2.掌握幂函数的图像变换;3.能够通过图像和函数式子相互转换;4.能够应用幂函数解决实际问题。
二、教学重点1.幂函数的定义及其性质;2.幂函数的图像变换。
三、教学难点1.幂函数的图像解析;2.幂函数与实际问题的综合应用。
四、教学过程设计1. 导入环节教师通过展示一张幂函数的图像,让学生通过观察来了解幂函数的定义。
2. 概念讲解1.幂函数的定义及其性质•定义:设a>0且a eq1,则函数y=a x称为幂函数。
•性质:当a>1时,幂函数y=a x呈增长趋势;当0<a<1时,幂函数y=a x呈下降趋势。
2.幂函数的图像变换•左移/右移:$y=a^{x \\pm k}$ 的图像向左/右平移k个单位;•上移/下移:$y=a^x \\pm k$ 的图像向上/下平移k个单位;•拉伸/压缩:y=a kx的图像沿x轴缩短/拉长k倍,沿y 轴拉长/缩短k倍。
3. 综合练习1.求函数f(x)=2x在点(1,2)的切线方程;2.已知函数g(x)=2−x,求g(1)和g(−1)的值;3.某村庄的归化指数是每年按 $1.2\\%$ 的速度递增,已知该村庄在2010年的归化指数为k,问在2020年底该村庄的归化指数是多少?4. 结论总结幂函数是一种常见的函数类型,通过图像可直观了解函数的增减趋势,通过函数式子可推导出函数的性质、图像变换等。
五、教学反思通过本次课程,学生们掌握了幂函数的定义及其性质,掌握了幂函数的图像变换,学会了将图像和函数式子相互转换,能够应用幂函数解决实际问题。
但是在教学中,有些学生对幂函数的图像变换还不是很理解,需要更多的练习和巩固。
后面需要进行相关习题训练,帮助学生更加深入地理解幂函数的概念和应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1.1函数 教案(2)
教学目标:理解映射的概念;
用映射的观点建立函数的概念.
教学重点:用映射的观点建立函数的概念.
教学过程:
1.通过对教材上例4、例5、例6的研究,引入映射的概念.
注:1,补充例子:投掷飞标时,每一支飞标射到盘上时,是射到盘上的唯一点上。
于是,如果我们把A 看作是飞标组成的集合, B 看作是盘上的点组成的集合,那么,刚才的投飞标相当于集合A 到集合B 的对应,且A 中的元素对应B 中唯一的元素,是特殊的对应.
同样,如果我们把A 看作是实数组成的集合,B 看作是数轴上的点组成的集合,或把A 看作是坐标平面内的点组成的集合,B 看作是有序实数对组成的集合,那么,这两个对应也都是集合A 到集合B 的对应,并且和上述投飞标一样,也都是A 中元素对应B 中唯一元素的特殊对应.
一般地,设A ,B 是两个集合,如果按照某种对应法则f ,对于集合A 中的任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f)叫做集合A 到集合B 的映射,记作f:A →B.其中与A 中的元素a 对应的B 中的元素b 叫做a 的象,a 叫做b 的原象.
2,强调象、原象、定义域、值域、一一对应和一一映射等概念
3.映射观点下的函数概念
如果A ,B 都是非空的数集,那么A 到B 的映射f :A →B 就叫做A 到B 的函数,记作y=f(x),其中x ∈A ,y ∈B.原象的集合A 叫做函数y=f(x)的定义域,象的集合C (C ⊆B )叫做函数y=f(x)的值域.函数符号y=f(x)表示“y 是x 的函数”,有时简记作函数f(x).
这种用映射刻划的函数定义我们称之为函数的近代定义.
注:新定义更抽象更一般
如:(狄利克雷函数)是无理数)(是有理数)⎩
⎨⎧=x 0x (1)x (f 4.补充例子:
例1.已知下列集合A 到B 的对应,请判断哪些是A 到B 的映射?并说明理由:
⑴ A=N ,B=Z ,对应法则:“取相反数”;
⑵A={-1,0,2},B={-1,0,1/2},对应法则:“取倒数”;
⑶A={1,2,3,4,5},B=R ,对应法则:“求平方根”;
⑷A={α|00≤α≤900
},B={x|0≤x ≤1},对应法则:“取正弦”. 例2.(1)(x ,y )在影射f 下的象是(x+y,x-y),则(1,2)在f 下的原象是_________。
(2)已知:f :x →y=x 2是从集合A=R 到B=[0,+∞]的一个映射,则B 中的元素1在A 中的原象是_________。
(3)已知:A={a,b},B={c,d},则从A 到B 的映射有几个 。
【典例解析】
例⒈下列对应是不是从A到B的映射,为什么?
⑴A=(0,+∞),B=R,对应法则是"求平方根";
⑵A={x|-2≤x≤2},B={y|0≤y≤1},对应法则是f:x→y=4
2
x (其中x
∈A,y∈B )
⑶A={x|0≤x≤2},B={y|0≤y≤1},对应法则是f:x→y=(x -2)2(其中x ∈A,y ∈B)
⑷A={x|x∈N},B={-1,1},对应法则是f:x→y=(-1)x (其中x∈A,y∈B).
例⒉设A=B=R,f:x→y=3x+6,求⑴集合A中
21和-3的象;⑵集合B中21和
-3的原象.
参考答案:
例⒈解析:⑴不是从A到B的映射.因为任何正数的平方根都有两个,所以对A中的任何一个
元素,在B中都有两个元素与之对应.⑵是从A到B的映射.因为A中每个数平方除以4后,都在B中有唯一的数与之对应.⑶不是从A到B的映射.因为A中有的元素在B中无元素与之对应.如0∈A,而(0-2)2=4 B.⑷是从A到B的映射.因为-1的奇数次幂是-1,而偶数次幂是1.∴⑴⑶不是,⑵⑷是.
[点评]判断一个对应是否为映射,主要由其定义入手进行分析. 例⒉解:⑴将x=
21和x=-3分别代入y=3x+6,得21的象是2
15,-3的象是-3; ⑵将y=21和y=-3,分别代入y=3x+6,得21的原象-611,-3的原象是-3.
[点评]由映射中象与原象的定义以及两者的对应关系求解.
课堂练习:教材第36页 练习A 、B 。
小结:学习用映射观点理解函数,了解映射的性质。
课后作业:第53页 习题2-1A 第1、2题。