人教版七年级下册数学第六章 实数 (2).docx
人教版七年级下册第六章实数知识点

人教版七年级下册第六章实数知识点
实数是数学中最基本的概念之一,是指可以用数字表示的所有数。
实数由有理数和无理数两部分组成。
有理数是可以表示成两个整数之比的数,包括整数、分数、小数等,而无理数则不能表示成有理数的形式,如圆周率π、自然对数的底数e等。
在七年级数学下册第六章中,我们将学习实数的相关知识,包括实数的分类、实数的运算、实数的比较等。
一、实数的分类
1.有理数:有理数包括正整数、负整数、零、正分数、负分数和整数。
2.无理数:无理数是不能表示成有理数的形式的数,它们包括无限不循环小数和根号下无理数等。
二、实数的运算
1.加法:实数的加法满足交换律、结合律和分配律。
2.减法:实数的减法可以转化成加法,即a-b=a+(-b)。
3.乘法:实数的乘法满足交换律、结合律和分配律。
4.除法:实数的除法可以转化成乘法,即a÷b=a×(1/b),其中b≠0。
5.乘方:实数的乘方表示数的自我乘积,即a的n次幂表示为an。
三、实数的比较
1.正数比较大小:正数比较大小时,数值越大的数越大。
2.负数比较大小:负数比较大小时,数值越小的数越大。
3.正数和负数比较大小:正数比负数大。
4.零和正数、负数比较大小:零比负数大,比正数小。
5.一般实数比较大小:需要将实数转化成同一种形式再比较大小。
以上就是七年级数学下册第六章实数知识点的简单介绍,希望对大家有所帮助。
在学习实数时,我们需要多做练习,多思考,才能真正掌握实数的相关知识。
人教版七年级数学下册第六章第三节实数考试习题二(含答案) (95)

人教版七年级数学下册第六章第三节实数考试复习题二(含答案)6a,小数部分是b.(1)求a,b.(2)求3a﹣b2的值.【答案】(1)a=3,b=3(2)5.【解析】【分析】(1)先求出√5范围,再两边都乘以-1,再两边都加上6,即可求出a、b;(2)把a、b的值代入求出即可.【详解】(1)∵4<5<9,∴2<<3.∴﹣2>﹣>﹣3.∴6﹣2>6﹣>6﹣3,∴4>6﹣>3.∴a=3,b=3﹣.(2)3a﹣b 2=3×3﹣(3﹣)2=9﹣(9﹣6+5)=6﹣5.【点睛】本题考查了估算无理数的大小和有理数的混合运算的应用,主要考查学生的计算能力.)﹣1﹣2|42﹣(10+(1+3【解析】【分析】根据根式,指数,绝对值的定义即可得出答案.【详解】解:原式=2﹣1+2+2﹣ +3.【点睛】本题考查的知识点是根式,指数,绝对值,解题的关键是熟练的掌握根式,指数,绝对值.43.材料一:把一个自然数的个位数字截去,再用余下的数减去个位数的2倍,如果差是7的倍数,则原数能被7整除.如果差太大不易看出是否7的倍数,可重复上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止,例如,判断392是否7的倍数的过程如下:392235-⨯=,3575÷=,所以,392是7的倍数:又例如判断8638是否7的倍数的过程如下:86382847-⨯=,847270-⨯=,70710÷=,所以,8638是7的倍数.材料二:若一个四位自然数n 满足千位与个位相同,百位与十位相同,我们称这个数为“对称数”.将“对称数”n 的前两位与后两位交换位置得到一个新的“对称数”,记()n n'F n 99-=,例如n 3113=,n'1331=,()31131331F 31131899-== ()1请用材料一的方法判断6909与367能不能被7整除:()2若m 、p 是“对称数”,其中m abba =,p caac(l b a 9,l c a 9=≤<≤≤<≤且a ,b ,c 均为整数),若m 能被7整除,且()()F m F p 36-=,求p .【答案】(1)见解析;(2)58857997p =或【解析】【分析】(1)根据能被7整除的数的特征即可求解;(2)m 能被7整除,根据材料一可知:1001029811a b b a a b ++-=+能被7整除, 即可求出7b =,根据19b a ≤<≤,进而求出89a =或,表示出()()F m F p ,根据()()36F m F p -=,得到211a c -=,分类讨论即可.【详解】(1) 69092672-⨯=,672263-⨯=,6379÷=,所以,6909是7的倍数; 367222-⨯=,22731÷=,所以,367不是7的倍数; (2) m 能被7整除∴1001029811a b b a a b ++-=+能被7整除∴7b =,∴89a =或()()100010010100010010999a b b a b a a b F m a b +++----==- ()()100010010100010010999c a a c a c c a F p c a +++----==- ∴()()9936a b c a ---=211a c -= 当8a =时,5c =,58<,5885p = 当9a =时,7c =,79<,7997p = ∴58857997p =或【点睛】属于新定义问题,解题的关键是读懂题目中7的倍数的判断方法以及“对称数”的定义.44.阅读下面材料:小丁在研究数学问题时遇到一个定义:对于排好顺序的k个数:x1,x2,…,x k,称为数列A k:x1,x2,…,x k,其中k为整数且k≥3.定义V(A k)=|x1﹣x2|+|x2﹣x3|+…+|x k﹣2﹣x k﹣1|+|x k﹣1﹣x k|.例如,若数列A5:1,2,3,4,5,则V(A5)=|1﹣2|+|2﹣3|+|3﹣4|+|4﹣5|=4.根据以上材料,回答下列问题:(1)已知数列A3:3,5,﹣2,求V(A3).(2)已知数列A4:x1,x2,x3,x4,其中x1,x2,x3,x4为4个互不相等的整数,且x1=3,x4=7,V(A4)=4,直接写出满足条件的数列A4.(3)已知数列A5:x1,x2,x3,x4,x5中的5个数均为非负整数,且x1+x2+x3+x4+x5=25,请直接写出V(A5)的最大值和最小值及对应的数列.【答案】(1)9(2)数列A4为:3,4,5,7;3,4,6,7;3,5,4,7;3,5,6,7;3,6,4,7;3,6,5,7(3)5,5,5,5,5 【解析】【分析】(1)根据定义V(A k)=|x1﹣x2|+|x2﹣x3|+…+|x k﹣1﹣x k|,代入数据即可求出结论;(2)在数轴上标出x1、x4表示的点,利用数形结合可得出x2、x3在3到7之间,找出所有的搭配方式,即可求解;(3)由数列A5:x1,x2,x3,x4,x5中5个数均为非负数,结合绝对值即可得出0≤V(A5)≤25,由此即可求解.【详解】(1)V(A3)=|3﹣5|+|5﹣(﹣2)|=2+7=9;(2)V(A4)=|3﹣x2|+|x2﹣x3|+|x3﹣7|=4可看成3条线段的长度和,如图所示.∵7﹣3=4,∵x2、x3在3到7之间,∵x1,x2,x3,x4为4个互不相等的整数,∵数列A4为:3,4,5,7;3,4,6,7;3,5,4,7;3,5,6,7;3,6,4,7;3,6,5,7.(3)∵x1,x2,x3,x4,x5中5个数均为非负数,假设x1≥x2≥x3≥x4≥x5,∵x1≥|x1﹣x2|,x2≥|x2﹣x3|,x3≥|x3﹣x4|,x4≥|x4﹣x5|,x5≥0,∵0≤|x1﹣x2|+|x2﹣x3|+|x3﹣x4|+|x4﹣x5|≤x1+x2+x3+x4+x5,即0≤V(A5)≤25.∵V(A5)的最大值为25,对应的数列为:25,0,0,0,0或0,0,0,0,25或0,25,0,0,0或0,0,25,0,0或0,0,0,25,0,最小值为0,对应的数列为5,5,5,5,5.【点睛】本题是阅读型的数列问题,考查了有理数和绝对值,有一定的难度,读懂题意熟练掌握并运用新定义的运算法则是解题的关键.45.在数学的学习过程中,我们要善于观察、发现规律并总结、应用.下面给同学们展示了四种有理数的简便运算的方法:方法①:(﹣12)2×162=[(﹣12)×16]2=(﹣8)2=64,23×53=(2×5)3=103=1000规律:a2•b2=(a•b)2,a n•b n=(a•b)n(n为正整数)方法②:3.14×23+3.14×17+3.14×60=3.14×(23+17+60)=3.14×100=314规律:ma+mb+mc=m(a+b+c)方法③:(﹣1234)÷3=[(﹣12)+(﹣34)]×13=(﹣12)×13+(﹣34)×13=(﹣4)+(﹣14)=﹣414方法④:112⨯=1﹣12,123⨯=12﹣13,134⨯=13﹣14,145⨯=14﹣15,…规律:1n(n1)+=1n﹣11n+(n为正整数)利用以上方法,进行简便运算:①(﹣0.125)2014×82014;②47×(﹣523)﹣(﹣37)×(﹣523)﹣523×227;③(﹣20514)÷(﹣5);④112⨯+123⨯+134⨯+…+120142015⨯.【答案】(1)1 (2)-57(3)5714(4)20142015【解析】【分析】(1)、首先将底数进行相乘,然后进行幂的计算;(2)、利用乘法分配律的逆运算进行求值即可得出答案;(3)、首先将除法改成乘法,然后再利用乘法分配律进行计算;(4)、根据给出的例题进行裂项相消,从而得出答案.【详解】①原式=[(﹣0.125)×8]2014=(﹣1)2014=1;②原式=(﹣)×(++2)=(﹣)×=﹣;③原式=[(﹣20)+(﹣)]×(﹣)=(﹣20)×(﹣)+(﹣)×(﹣)=4+=;④原式=(1﹣)+(﹣)+(﹣)+…+﹣=1﹣+﹣+﹣+…+﹣=1﹣=2014.2015【点睛】本题主要考查的就是各种简便计算法则的应用,属于中等难度的题型.理解例题中每一个简便计算法则是解决这个问题的关键.46.定义一种新运算“⊗”:a⊗b=4a+b,试根据条件回答问题:(1)计算:2⊗(-3)=___________;(2)若x⊗(-6)=x⊗(3⊗x),求出x的值.【答案】(1)5;(2)x=-18.【解析】【分析】(1)原式利用题中新定义计算即可得到结果;(2)已知等式利用题中新定义化简,即可求出x的值.【详解】解:(1)5(2)根据题意,得x⊗(-6)=4x-6,3⊗x=4×3+x=12+x.所以x⊗(3⊗x)=4x+(12+x)=5x+12.所求的方程为4x-6=5x+12,解得x=-18.【点睛】本题主要考查整式的运算,掌握题中新定义是解题的关键. 47.计算:(1)(﹣2)2+(﹣3)0﹣(13)﹣2;(2)(﹣6)2×(12﹣13).【答案】(1)0;(2)6.【解析】【分析】(1)直接利用幂的乘方、开立方、零指数幂及负整数指数幂的性质进而化简得出答案;(2)先算乘方,再利用乘法分配律计算即可.【详解】(1)(﹣2)2+(﹣3)0﹣(13)﹣2=4﹣4+1﹣9=0;(2)(﹣6)2×(12﹣13)=36×12﹣36×13=18﹣12=6.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.48.计算:tan60°-cos45°•sin45°+sin30°.【解析】【分析】根据特殊角的三角函数值代入求解即可.【详解】原式2×2+12【点睛】本题考查了实数运算,解题的关键是熟练掌握实数的运算法则.49.定义一个非零常数的运算,规定:a*b=ax+by.例如2*3=2x+3y ,若1*1=8,4*3=27,求x 、y 的值。
七年级数学下册第六章实数:平方根第2课时平方根课件ppt新版新人教版

4.(2019·台州)若一个数的平方等于5,则这个数等于_____5___. 5.若-2 是m的一个平方根,则m+7的平方根是__±__3____.
知识点二 平方根与算术平方根的关系
8.若正方形的边长为a,面积为S,则(B )
A.S的平方根是a
B.a是S的算术平方根
C.a=± S
D.S= a
9.若一个数的算术平方根是5,则这个数的平方根为( D )
A.25
B.±25
C.-5
D.±5
10.若一个数的算术平方根是6,则比它大2的数的平方根是_____3_8__.
11.已知25x2-144=0,且x是正数,求5x+13的平方根.
解:由25x2-144=0,得x=± 12 .
5
∵x是正数,∴x= 12 ,∴5x+13=5× 12 +13=25,
5
解:∵2a-1的平方根为± 3 ,∴2a-1=3,解得a=2. ∵3a-2b+1的平方根为±3,∴3×2-2b+1=9,解得b=-1, ∴4a-b=4×2-(-1)=9,∴4a-b的平方根为±3.
17.若x2=9,y2=16,且x>y,求x-y的平方根. 解:依题意,得x=3,y=-4或x=-3,y=-4, ∴x-y=7或1,∴x-y的平方根为± 7 或±1.
18.已知a,b,c满足b= (a 3)2 +4,c的平方根等于它本身,求 a b c 的值. 解:由题意,得-(a-3)2≥0,∴a=3,∴ b (a 3)2 4 4. ∵c的平方根等于它本身,∴c=0,∴ a b c 3 4 0 5.
19.(1)一个非负数的平方根是2a-1和a-5,这个非负数是多少? 解:(1)根据题意,得(2a-1)+(a-5)=0,解得a=2, ∴这个非负数是(2a-1)2=(2×2-1)2=9.
第六章 实数(单元解读)七年级数学下册(人教版)

本章内容属于“数与代数”领域,主要包括算术平方根、平方根、立 方根、实数的有关概念、运算以及实数在数轴.上的表示等内容,
教材内容 ---地位与作用
关于数的内容,整个初中阶段有有理数和实数,它们是“数与代数”领 域的重要内容.整个初中教材安排了三章内容,分别在七年级上册第一章 “有理数”,七年级下册第六章“实数”和八年级下册第十六章“二次根 式”.本章是在学习了“有理数”的基础上认识实数.除本章外,还要在“二 次根式”一章中通过研究二次根式的运算进一步认识实数的运算.
教材内容 ---教学目标
★能用有理数估计一个无理数的大致范围. ★了解无理数和实数概念,知道实数与数轴上的点一一对应,能求实数的相 反数和绝对值. ★了解平方根、算术平方根、立方根的概念,会用根号,表示数的平方根、 算术平方根、立方根. ★了解开方与乘方互为逆运算,会用平方运算求百以内整数的平方根,会用 立方运算求百以内整数(对应的负整数)的立方根,会用计算器求平方根和立 方根.
教学建议 ---5.关注实数的文化价值
无理数的发现引发了数学史上的第一次危机,是数学发展史上的重要里程碑.引入 无理数经历了一个漫长而艰苦的过程,这个过程体现了人类为追求真理而不懈努力的精 神.因此,教学时可以结合无理数的发现和引入,挖掘数学知识的文化内涵,使学生感受 丰富的数学文化,开阔他们的眼界,增长他们的见识.
教学建议 算器进行比较复杂的运算,可以使学习的重点更好地集中到理解数学的本质 上来,估算是一种具有实际应用价值的运算能力.提倡使用计算器进行复杂运算,加强 估算,综合运用笔算计算器和估算等方式培养学生的运算能力,是本章的一个教学要求. 为了达到这个教学目的,本章专门安排了利用计算器求数的平方根和立方根以及利用有 理数估计无理数的大致范围等内容.因此,教学中应结合具体内容,综合利用各种途径 培养学生的运算能力.
人教版七年级数学下册第六章《实数》小结与复习说课稿

4.生活实践:让学生收集生活中的实数问题,进行分析和解决,培养学生的数学应用意识。
(四)总结反馈
在总结反馈阶段,我将采取以下措施引导学生自我评价,并提供有效的反馈和建议:
1.让学生总结本节课所学知识,分享自己的学习心得;
(2)掌握实数运算的顺序和法则;
(3)解决实数混合运算中的实际问题。
二、学情分析导
(一)学生特点
本节课面向的是七年级学生,这个年龄段的学生正处于青春期,好奇心强,求知欲旺盛,具备一定的独立思考能力。在认知水平上,他们已经掌握了基本的算术运算,具备了一定的数学逻辑思维能力。然而,由于年龄和经验的限制,他们对实数概念的理解可能还不够深入,对实数运算的掌握也可能不够熟练。
2.互动教学:设计课堂提问、小组讨论等活动,引导学生积极参与,提高他们的学习主动性;
3.激励评价:对学生在课堂上的表现给予积极的评价和鼓励,增强他们的自信心;
4.举一反三:通过典型例题的讲解,引导学生发现解题规律,提高他们解决问题的能力;
5.数学游戏:设计一些与实数相关的数学游戏,让学生在游戏中学习,提高他们的学习兴趣。
板书在教学过程中的作用是帮助学生构建知识框架,直观展示教学内容的逻辑关系。为确保板书清晰、简洁且有助于学生把握知识结构,我将采取以下措施:
1.提前规划板书内容,确保知识点完整、系统;
2.使用不同颜色的粉笔,区分重点、难点和关键点;
3.板书过程中,适时引导学生关注,解释板书中的逻辑关系;
4.在适当位置留下空白,用于记录学生的疑问和课堂生成性内容。
2.提高练习:设计一些综合性较强的实数题目,培养学生的解题能力和思维能力;
最新人教版七年级数学下册第六章实数2

22 1.732, 7 ,3.14,
3
0.49, 27;
3
快乐预习感知
核心知识概览
互动课堂理解
轻松尝试应用
6
快乐预习感知
核心知识概览
互动课堂理解
轻松尝试应用
2.实数的大小比较 【例 2】下列四个数中,其中最小的数是( ). A.0 B.-4 C.-π D. 2 解析:给出的四个数中,有两个负实数-4 与-π,其中-4 的绝对值大, 因而它最小. 答案:B
(2) 8,
1 2 ,2 2 1 3 1 3 , 216 2 1 3 2 , 216,2 2
1
1 , 2
3
216,- 2 . …}; …}; …}; …}.
2
关闭
(3)0.32, ,46, 8,
1 3
(4)-7,0.32, ,46,0, 8,
答案
12
D.( 3)2
3
关闭
C
答案
9
快乐预习感知
核心知识概览
1
互动课堂理解
2 3 4
轻松尝试应用
5
3.下列所给的数中,是无理数的是( A.2 B. 2
1 C. 2
). D.0.1
关闭
B
答案
10
快乐预习感知
核心知识概览
1
互动课堂理解
2 3 4
轻松尝试应用
5
4.无理数- 3的相反数是( A.- 3 B. 3
).
1 C. 3
1 D.- 3
关闭
B
答案
11
快乐预习感知
核心知识概览
1
互动课堂理解
2 3 4
轻松尝试应用
5
人教版七年级数学下册第六章第三节实数考试习题二(含答案) (88)

人教版七年级数学下册第六章第三节实数考试复习题二(含答案)我们已经学习过“乘方”和“开方”运算,下面给同学们介绍一种新的运算,即对数运算.定义:如果a b=N(a>0,a≠1,N>0),则b叫做以a为底N的对数,记作log a N=b.例如:因为53=125,所以log5125=3;因为112=121,所以log11121=2.(1)填空:log66= ,log381= .(2)如果log2(m﹣2)=3,求m的值.(3)对于“对数”运算,小明同学认为有“log a MN=log a M•log a N(a>0,a≠1,M>0,N>0)”,他的说法正确吗?如果正确,请给出证明过程;如果不正确,请说明理由,并加以改正.【答案】(1)1、4;(2)m=10;(3)不正确,理由见解析.【解析】【分析】(1)根据题目中所给对数的定义分别进行计算即可得解;(2)根据题目中所给对数的定义可得m﹣2=23,然后求解即可;(3)不正确,设a x=M,a y=N,根据对数的定义可得log a M=x,log a N=y(a>0,a≠1,M、N均为正数),又因a x•a y=a x+y,可得a x+y=M•N,所以log a MN=x+y,即log a MN=log a M+log a N.【详解】(1)∵61=6,34=81,∴log66=1,log381=4,故答案为:1、4;(2)∵log2(m﹣2)=3,∴m﹣2=23,解得:m=10;(3)不正确,设a x=M,a y=N,则log a M=x,log a N=y(a>0,a≠1,M、N均为正数),∵a x•a y=a x+y,∴a x+y=M•N,∴log a MN=x+y,即log a MN=log a M+log a N.【点睛】本题是阅读理解题,读懂题目信息,理解对数的定义是解题的关键.72.对于有理数a,b,定义运算:a⊕b=ab-2a-2b+1.(1)计算5⊕4的值;(2)计算[(-2)⊕6]⊕3的值;(3)定义的新运算“⊕”交换律是否还成立?请写出你的探究过程.【答案】(1)3;(2)-24;(3)成立.【解析】【分析】(1)按照给定的运算程序,一步一步计算即可;(2)先按新定义运算,先计算(-2)⊕6、再将所得结果-19与3计算规定运算可得;(3)成立,按新定义分别运算即可说明理由.【详解】(1)5⊕4=5×4-2×5-2×4+1=20-10-8+1=2+1=3.(2)原式=[-2×6-2×(-2)-2×6+1]⊕3=(-12+4-12+1)⊕3=-19⊕3=-19×3-2×(-19)-2×3+1=-24.(3)成立.∵a⊕b=ab-2a-2b+1,b⊕a=ab-2b-2a+1,∴a⊕b=b⊕a,∴定义的新运算“⊕”交换律还成立.【点睛】此题是定义新运算题型.直接把对应的数字代入所给的式子可求出所要的结果.73.问题:如何快速计算1+2+3+…+n 的值呢?(1)探究:令s=1+2+3+…+n①,则s=n+n-1+…+2+1①①+①得2s=(n+1)(n+1)+…+(n+1)=n⨯(n+1)因此s=_________________.(2)应用:①计算:123200++++=________;①如图1,一串连续的整数1,2,3,4,…,自上往下排列,最上面一行有一个数,以下各行均比上一行多一个数字,若共有15行数字,则最底下一行最左边的数是_______;①如图2,一串连续的整数-25,-24,-23,…,按图1方式排列,共有14行数字,求图2中所有数字的和.【答案】(1)()12n n +;(2)①20100;①106;①2835. 【解析】【分析】(1)两边同时除以2即可;(2)①直接运用1+2+3+…+n =()12n n +进行计算;②第15行的最底下一行最左边的数即前14行的数子中最后一个加1即可. ③分情况讨论,0左边和右边两种情况分析.【详解】解:(1)2s= n ⨯(n+1),所以s=()12n n +; (2)①123200++++=200(2001)2+ =20100; ①∵前14行的数子中,最后一个数为:1+2+3+……+14=14(141)1052⨯+=, 所以第15行第一个数为:105+1=106;①图2中共有()141411052⨯+=个数,其中有25个负数、一个0、79个正数,①图2中所有数字的和为:()()122501279----+++++ ()()252517979122⨯+⨯+=-+ 3253160=-+2835=【点睛】考查数字的变化规律及整式的运算、解方程的能力,弄清题干中求和的方法、并熟练运用是解题的关键.74.定义一种新的运算符号“*”,规定:2*a b a b b +=.例如:23583*5525+==,求[]2*(2)*(3)--的值. 【答案】13-. 【解析】【分析】理解规则即可.【详解】()()2*2*3⎡⎤--⎣⎦=()()222*32---=0*(-3)=()()2033+-- = - 13【点睛】正确理解题意是解题的关键.75.计算:2(2)- 【答案】【解析】【分析】根据有理数的乘方、绝对值的意义、立方根的定义化简,然后合并即可.【详解】 原式44=+=【点睛】本题考查了实数运算,熟练掌握实数的混合运算法则是解题的关键.76.已知实数x y m 、、30x y m ++=,且y 是负数,求m 取值范围.【答案】6m >【解析】【分析】根据非负数的性质列出方程求出x 、y 的值,然后根据y 是负数即可得到一个关于m 的不等式,从而求得m 的范围.【详解】解:根据题意得:20{30x x y m +=++=, 解得:x 2{6y m=-=-, 则6-m <0,解得:m >6.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.77123-;【答案】32+【解析】【分析】首先计算负指数次幂,去掉绝对值符号,化简平方根,立方根,然后计算即可.【详解】解123- =3-12-3=32+【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、绝对值、平方根、立方根等考点的运算.78.计算:12033⎛⎫÷- ⎪⎝⎭【答案】2.【解析】【分析】先根据平方根、立方根的定义进行化简,然后再进行乘除运算,最后进行加减运算即可得解.【详解】原式=()()2203335⨯--+⨯- =839+-=2【点睛】本题考查了实数的运算,熟悉平方根、立方根是解题的关键.79.(概念学习)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,一般地,把n a a a a÷÷÷⋯(a ≠0)记作a ⓝ,读作“a 的圈n 次方”.(初步探究)(1)直接写出计算结果:2③=_____,(﹣12)⑤=_____. (2)关于除方,下列说法准确的选项有_________(只需填入正确的序号) ①.任何非零数的圈2次方都等于1; ①.对于任何正整数n ,1ⓝ=1; ①.3④=4③ ①.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.(深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?例如: 2④=2÷2÷2÷2=2×12×12×12=( )2 (幂的形式)试一试:将下列除方运算直接写成幂的形式.5⑥=_____;(﹣12)⑩=_____;a ⓝ=_____(a ≠0). 算一算:14⎛⎫- ⎪⎝⎭④÷23+(﹣8)×2③. 【答案】【初步探究】(1)12,-8; (2)① ②④;【深入思考】(1)1()54,28 或8(2)-, 1()a(n-2);(2)-2. 【解析】【分析】初步探究:(1)分别按公式进行计算即可;(2)根据定义依次判定即可;深入思考:把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果,将第二问的规律代入计算即可.【详解】初步探究:(1) 2③=12222÷÷=; (﹣12)⑤=1111()()()2228-÷-÷-=-; 故答案是:11,28-; (2)①任何非零数的圈2次方就是两个相同数相除,所以都等于1; 所以选项①正确;②因为多少个1相除都是1,所以对于任何正整数n ,1ⓝ都等于1; 所以选项②正确;③3④=3÷3÷3÷3=19,4③=4÷4÷4=14,则3④≠4③;所以选项③错误; ④负数的圈奇数次方,相当于奇数个负数相除,则结果是负数,负数的圈偶数次方,相当于偶数个负数相除,则结果是正数.所以选项④正确;所以正确的选项有:① ②④;故答案是:① ①①;深入思考:(1) 15⎛⎫ ⎪⎝⎭4, 28 或(-2)8 1a ⎛⎫ ⎪⎝⎭(n-2), (2)1(4-)④÷23+(﹣8)×2③ =16÷8+(-8)×12=2-4=-2【点睛】考查了新运算以及实数的运算.解决问题的关键是掌握新运算的法则,理解新运算的意义.在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.80.把下列各数表示在数轴上,并比较它们的大小(用“<”连接).2-, 0, 3-, π-<<<-<【解析】【分析】先在数轴上描出各点,再根据数轴上右边的数大于左边的数即可得出结论.【详解】-<<<-<203π【点睛】本题考查了利用数轴比较实数的大小.关键是利用数形结合,把抽象的问题转化成直观的问题处理即可.。
人教版数学七年级下册第六章实数基础知识点讲解+典型例题讲解.doc

【本文档由书林工作坊整理发布,谢谢你的下载和关注!】平方根(基础)【学习目标】1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.【要点梳理】知识点一、平方根和算术平方根的概念 1.算术平方根的定义如果一个正数x 的平方等于a ,即2x a =,那么这个正数x 叫做a 的算术平方根(规定0的算术平方根还是0);a a a 的算术平方根”,a 叫做被开方数.要点诠释:a a a 0,a ≥0. 2.平方根的定义如果2x a =,那么x 叫做a 的平方根.求一个数a 的平方根的运算,叫做开平方.平方与开平方互为逆运算. a (a ≥0)的平方根的符号表达为(0)a a ≥a 是a 的算术平方根.知识点二、平方根和算术平方根的区别与联系 1.区别:(1)定义不同;(2)结果不同:a a2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根. (2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.知识点三、平方根的性质20||000a a a a a a a >⎧⎪===⎨⎪-<⎩()20a aa =≥知识点四、平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.62500250=62525= 6.25 2.5=0.06250.25=.【典型例题】类型一、平方根和算术平方根的概念1、下列说法错误的是( )A.5是25的算术平方根B.l 是l 的一个平方根C.()24-的平方根是-4 D.0的平方根与算术平方根都是0【答案】C ;【解析】利用平方根和算术平方根的定义判定得出正确选项.A.因为25=5,所以本说法正确;B.因为±1=±1,所以l 是l 的一个平方根说法正确;C.因为±()24-=±16=±4,所以本说法错误;D.因为0±=0,0=0,所以本说法正确;【总结升华】此题主要考查了平方根、算术平方根的定义,关键是明确运用好定义解决问题. 举一反三:【变式】判断下列各题正误,并将错误改正:(1)9-没有平方根.( )(2)164=±.( ) (3)21()10-的平方根是110±.( ) (4)25--是425的算术平方根.( ) 【答案】√ ;×; √; ×, 提示:(2)164=;(4)25是425的算术平方根. 2、 填空:(1)4-是 的负平方根. (2116表示 的算术平方根,116= . (3181的算术平方根为 . (43x =,则x = ,若23x =,则x = .【思路点拨】(3)181就是181的算术平方根=19,此题求的是19的算术平方根. 【答案与解析】(1)16;(2)11;164(3)13 (4) 9;±3【总结升华】要审清楚题意,不要被表面现象迷惑.注意数学语言与数学符号之间的转化.举一反三:【变式1】下列说法中正确的有( ):①3是9的平方根. ② 9的平方根是3.③4是8的正的平方根.④ 8-是64的负的平方根.A .1个B .2个C .3个D .4个 【答案】B ;提示:①④是正确的.【变式2】求下列各式的值:(1)325 (2)8136+(3)0.040.25- (4)40.36121⋅【答案】(1)15;(2)15;(3)-0.3;(4)6553、使代数式1x +有意义的x 的取值范围是______________. 【答案】x ≥1-;【解析】x +1≥0,解得x ≥1-.【总结升华】当式子a 有意义时,a 一定表示一个非负数,即a ≥0,a ≥0. 举一反三:【变式】(2015春•中江县期中)若+(3x+y ﹣1)2=0,求5x+y 2的平方根.【答案】解:∵+(3x+y ﹣1)2=0, ∴,解得,,∴5x+y 2=5×1+(﹣2)2=9,∴5x+y 2的平方根为±=±3.类型二、利用平方根解方程4、(2015春•鄂州校级期中)求下列各式中的x 值(1)169x2=144(2)(x﹣2)2﹣36=0.【思路点拨】(1)移项后,根据平方根定义求解;(2)先将(x﹣2)看成一个整体,移项后,根据平方根定义求解.【答案与解析】解:(1)169x2=144,两边同时除以169,得1442x=169开平方,得x=(2)(x﹣2)2﹣36=0,移项,得(x﹣2)2=36开平方,得x﹣2=±6,解得:x=8或x=﹣4.【总结升华】本题考查了平方根,根据是一个正数的平方根有两个.类型三、平方根的应用5、要在一块长方形的土地上做田间试验,其长是宽的3倍,面积是1323平方米.求长和宽各是多少米?【答案与解析】解:设宽为x,长为3x,由题意得,x·3x=132332x=1323x=±21x=-21(舍去)答:长为63米,宽为21米.【总结升华】根据面积由平方根的定义求出边长,注意实际问题中边长都是正数.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】立方根【学习目标】1. 了解立方根的含义;2. 会表示、计算一个数的立方根,会用计算器求立方根.【要点梳理】要点一、立方根的定义如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果3=,那么x叫做a的立方根.求一个数的立方根的运算,叫做开立方.x a要点诠释:一个数a3a a是被开方数,3是根指数. 开立方和立方互为逆运算.要点二、立方根的特征立方根的特征:正数的立方根是正数,负数的立方根是负数,0的立方根是0.要点诠释:任何数都有立方根,一个数的立方根有且只有一个,并且它的符号与这个非零数的符号相同. 两个互为相反数的数的立方根也互为相反数. 要点三、立方根的性质33a a -=-33a a =()33a a =要点诠释:第一个公式可以将求负数的立方根的问题转化为求正数的立方根的问题. 要点四、立方根小数点位数移动规律被开方数的小数点向右或者向左移动3位,它的立方根的小数点就相应地向右或者向左移动1位.例如,30.000 2160.06=,30. 2160.6=,3 2166=,3216000 60=. 【典型例题】 类型一、立方根的概念1、(2016春•吐鲁番市校级期中)下列语句正确的是( ) A .如果一个数的立方根是这个数本身,那么这个数一定是0 B .一个数的立方根不是正数就是负数 C .负数没有立方根D .一个不为零的数的立方根和这个数同号,0的立方根是0 【思路点拨】根据立方根的定义判断即可. 【答案】D ;【解析】A .如果一个数的立方根是这个数本身,那么这个数一定是0或1或-1,故错误;B .一个数的立方根不是正数就是负数,错误,还有0;C .负数有立方根,故错误;D .正确.【总结升华】本题考查了立方根,解决本题的关键是熟记立方根的定义. 举一反三:【变式】下列结论正确的是( )A .64的立方根是±4B .12-是16-的立方根 C .立方根等于本身的数只有0和1D .332727-=-【答案】D.类型二、立方根的计算2、求下列各式的值:(1)327102-- (2)3235411+⨯ (3)336418-⋅ (4)23327(3)1-+--- (5)10033)1(412)2(-+÷-- 【答案与解析】解:(1)310227-- (2)3321145⨯+ (3)331864⋅-3642743==33=116425=729=9⨯+ 1=241=2⎛⎫⨯- ⎪⎝⎭-(4)23327(3)1-+---=331=1-++(5)310031(2)2(1)4--÷+-3=21247=1=33÷++【总结升华】立方根的计算,注意符号和运算顺序,带分数要转化成假分数再开立方.举一反三:【变式】计算:(1)30.008-=______;(2)=364611______; (3)=--312719______.(4)=-33511)(______. 【答案】(1)-0.2;(2)54;(3)23;(4)45. 类型三、利用立方根解方程3、(2015春•北京校级期中)(x ﹣2)3=﹣125.【思路点拨】利用立方根的定义开立方解答即可. 【答案与解析】 解:(x ﹣2)3=﹣125, 可得:x ﹣2=﹣5, 解得:x=﹣3.【总结升华】此题考查立方根问题,关键是先将x ﹣2看成一个整体. 举一反三:【变式】求出下列各式中的a :(1)若3a =0.343,则a =______;(2)若3a -3=213,则a =______; (3)若3a +125=0,则a =______;(4)若()31a -=8,则a =______.【答案】(1)a =0.7;(2)a =6;(3)a =-5;(4)a =3. 类型四、立方根实际应用4、在做物理实验时,小明用一根细线将一个正方体铁块拴住,完全浸入盛满水的圆柱体烧杯中,并用一量筒量得铁块排出的水的体积为643cm ,小明又将铁块从水中提起,量得烧杯中的水位下降了169πcm .请问烧杯内部的底面半径和铁块的棱长各是多少?【思路点拨】铁块排出的643cm 水的体积,是铁块的体积,也是高为169πcm 烧杯的体积. 【答案与解析】解:铁块排出的643cm 的水的体积,是铁块的体积.设铁块的棱长为y cm ,可列方程364,y =解得4y =设烧杯内部的底面半径为x cm ,可列方程216649x ππ⨯=,解得x =6. 答:烧杯内部的底面半径为6cm ,铁块的棱长 4cm .【总结升华】应该熟悉体积公式,依题意建立相等关系(方程),解方程时,常常用到求平方根、立方根,要结合实际意义进行取舍.本题体现与物理学科的综合. 举一反三:【变式】将棱长分别为和的两个正方体铝块熔化,制成一个大正方体铝块,这个大正方体的棱长为____________.(不计损耗) 333a b +.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】实数(基础)【学习目标】1. 了解无理数和实数的意义;2. 了解有理数的概念、运算法则在实数范围内仍适用 . 【要点梳理】要点一、有理数与无理数有限小数和无限循环小数都称为有理数.无限不循环小数又叫无理数. 要点诠释:(1)无理数的特征:无理数的小数部分位数无限.无理数的小数部分不循环,不能表示成分数的形式.(2)常见的无理数有三种形式:①含π类.②看似循环而实质不循环的数,如:1.313113111…….③带有根号的数,但根号下的数字开方开不尽,如5.要点二、实数有理数和无理数统称为实数. 1.实数的分类 按定义分:实数⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数2.实数与数轴上的点一一对应.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.要点三、实数大小的比较对于数轴上的任意两个点,右边的点所表示的实数总是比左边的点表示的实数大. 正实数大于0,负实数小于0,两个负数,绝对值大的反而小. 要点四、实数的运算有理数关于相反数和绝对值的意义同样适合于实数.当数从有理数扩充到实数以后,实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开平方运算,任意一个实数可以进行开立方运算.在进行实数的运算时,有理数的运算法则及运算性质等同样适用. 【典型例题】类型一、实数概念1、指出下列各数中的有理数和无理数: 332222,,,9,8,9,0,,12,55,0.1010010001 (7)3π-【思路点拨】对实数进行分类时,应先对某些数进行计算或化简,然后根据它的最后结果进行分类,不能仅看到根号表示的数就认为是无理数.π是无理数,化简后含π的代数式也是无理数.【答案与解析】有理数有3222,9,8,0,,73--无理数有32,,9,12,55,0.1010010001π-……【总结升华】有限小数和无限循环小数都称为有理数.无限不循环小数又叫无理数. 常见的无理数有三种形式:①含π类.②看似循环而实质不循环的数,如:0.1010010001…….③带有根号的数,但根号下的数字开方开不尽,如55,39,2,12-.举一反三: 【变式】(2015春•聊城校级月考)在下列语句中: ①无理数的相反数是无理数; ②一个数的绝对值一定是非负数; ③有理数比无理数小;④无限小数不一定是无理数. 其中正确的是( )A .②③B .②③④C .①②④D .②④ 【答案】C ;解:①因为实数包括有理数和无理数,无理数的相反数 不可能式有理数,故本选项正确; ②一个数的绝对值一定≥0,故本选项正确;③数的大小,和它是有理数还是无理数无关,故本选项是错误的; ④无限循环小数是有理数,故本选项正确.类型二、实数大小的比较2、比较520.5的大小. 【答案与解析】解:作商,得5250.5=51>,即5210.5>50.5>. 【总结升华】根据若a ,b 均为正数,则由“1a b >,1a b =,1ab<”分别得到结论“a b >,a b =,a b <,”从而比较两个实数的大小.比较大小的方法有作差法和作商法等,根据具体情况选用适当的方法.举一反三:【变式】比较大小___ 3.14π-- 7___54__2323___32 32 9___0- 3___10-- |43|___(7)--- 【答案】<; >; <; <; <; >; <.3、(2015•枣庄)实数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是( )A .ac >bcB .|a ﹣b|=a ﹣bC .﹣a <﹣b <cD .﹣a ﹣c >﹣b ﹣c【答案】D ;【解析】解:∵由图可知,a <b <0<c , ∴A 、ac <bc ,故A 选项错误; B 、∵a <b , ∴a ﹣b <0,∴|a ﹣b|=b ﹣a ,故B 选项错误; C 、∵a <b <0,∴﹣a >﹣b ,故C 选项错误; D 、∵﹣a >﹣b ,c >0,∴﹣a ﹣c >﹣b ﹣c ,故D 选项正确. 故选:D .【总结升华】本题考查的是实数与数轴,熟知数轴上各点与实数是一一对应关系是解答此题的关键.类型三、实数的运算4、化简:(1)|2 1.4|- (2)|7|74||-- (3)|12|+|23|+|32|--- 【答案与解析】 解:|2 1.4|-2 1.4=-|7|74||-- =|74+7|- =274-|12|+|23|+|32|---2132231=-+-+-=.【总结升华】有理数关于相反数和绝对值的意义同样适合于实数.有理数的运算法则及运算性质等同样适用.5、若2|2|3(4)0a b c ---=,则a b c -+=________.【思路点拨】由有限个非负数之和为零,则每个数都应为零可得到方程中a ,b ,c 的值.【答案】3; 【解析】解:由非负数性质可知:203040a b c -=⎧⎪-=⎨⎪-=⎩,即234a b c =⎧⎪=⎨⎪=⎩,∴ 2343a b c -+=-+=.【总结升华】初中阶段所学的非负数有|a |,2,a a ,非负数的和为0,只能每个非负数分别为0 . 举一反三:【变式】已知2(16)|3|30x y z ++++-=,求xyz 的值.【答案】解:由已知得1603030x y z +=⎧⎪+=⎨⎪-=⎩,解得1633x y z =-⎧⎪=-⎨⎪=⎩.∴xyz =(16)(3)312-⨯-⨯=.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】实数全章复习与巩固(基础)【学习目标】1.了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根.2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.3.了解无理数和实数的概念,知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应;了解数的范围由有理数扩大为实数后,概念、运算等的一致性及其发展变化.4.能用有理数估计一个无理数的大致范围. 【知识网络】【要点梳理】类型项目平方根 立方根 被开方数 非负数任意实数符号表示a ±3a性质一个正数有两个平方根,且互为相反数;零的平方根为零; 负数没有平方根;一个正数有一个正的立方根; 一个负数有一个负的立方根; 零的立方根是零;重要结论⎩⎨⎧<-≥==≥=)0()0()0()(22a a a a a a a a a333333)(aa a a aa -=-==要点二:实数有理数和无理数统称为实数. 1.实数的分类 按定义分:实数⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数要点诠释:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.(2532等;②有特殊意义的数,如π;③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式.(4)实数和数轴上点是一一对应的.2.实数与数轴上的点一 一对应.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.3.实数的三个非负性及性质:在实数范围内,正数和零统称为非负数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章实数6.1 平方根第1课时算术平方根课前预习:要点感知1一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的__________,记作“__________”,读作“__________”,a叫做__________.预习练习1-1 2的算术平方根是( )A.±2B.2C.±4D.4要点感知2 规定:0的算术平方根为__________.预习练习2-1 若一个数的算术平方根等于它本身,则这个数是( )A.1B.-1C.0D.0或1要点感知3被开方数越大,对应的算术平方根也__________.预习练习3-1比较大小:6__________7,4__________15.当堂练习:知识点1 算术平方根1.若x是64的算术平方根,则x=( )A.8B.-8C.64D.-642. 0.49的算术平方根的相反数是( )A.0.7B.-0.7C.±0.7D.03.(-2)2的算术平方根是( )A.2B.±2C.-2D.24.下列各数没有算术平方根的是( )A.0B.-1C.10D.1025.求下列各数的算术平方根:(1)144; (2)1; (3)1625; (4)0.008 1; (5)0.6.求下列各数的算术平方根.(1)0.062 5; (2)(-3)2; (3)225121; (4)108.知识点2 估算算术平方根7.设n为正整数,且n<65<n+1,则n的值为( )A.5B.6C.7D.88.估计6+1的值在( )A.2到3之间B.3到4之间C.4到5之间D.5到6之间9.某公司要设计一块面积为10平方米的正方形广告牌,公司在设计广告时,必须知道这个正方形的边长.这个正方形的边长是多少?估计边长的值(结果精确到十分位).知识点3 用科学计算器求一个正数的算术平方根10.用计算器比较23+1与3.4的大小正确的是( )A.23+1=3.4B.23+1>3.4C.23+1<3.4D.不能确定11.我们可以利用计算器求一个正数a的平方根,其操作方法的顺序进行按键输入:.小明按键输入显示的结果为4,则他按键输入后显示的结果为__________.12.用计算器求下列各式的值(精确到0.001):(1)800; (2)0.58; (3)2401.课后作业:13.化简100得( )A.100B.10C.10D.±1014.下列整数中,与30最接近的是( )A.4B.5C.6D.715.16的算术平方根是( )A.±4B.4C.±2D.216.下列说法中:①一个数的算术平方根一定是正数;②100的算术平方根是10,记为±100=10;③(-6)2的算术平方根是6;④a2的算术平方根是a.正确的有( )A.1个B.2个C.3个D.4个17.已知a、b为两个连续的整数,且a<28<b,则a+b=__________.18.用计算器求值,填空:(1)8955≈__________(精确到十分位);(2)12345≈__________(精确到个位);(3)-130≈__________(精确到0.1);(4)0.2013≈__________(精确到0.001).19.观察:已知 5.217=2.284,521.7=22.84,填空:(1)0.05217=__________,52170=__________;(2)若x=0.022 84,则x=__________.20.计算下列各式:(1)719; (2)0.81-0.04; (3)224140-.21.比较下列各组数的大小:(1)12与14; (2)-5与-7; (3)5与24; (4)2412-与1.5.22.求下列各式中的正数x的值:(1)x2=(-3)2; (2)x2+122=132.23.中国的跳水队被冠以“梦之队”的称号,他们辉煌的战绩鼓舞了几代中国人.跳水运动员要在空中下落的短暂过程中完成一系列高难度的动作.如果不考虑空气阻力等其他因素影响,人体下落到水面所需要的时间t与下落的高度h之间应遵循下面的公式:h=12gt2(其中h的单位是米,t的单位是秒,g=9.8 m/s2).在一次3米板(跳板离地面的高度是3米)的训练中,运动员在跳板上跳起至高出跳板1.2米处下落,那么运动员在下落过程中最多有多长时间完成动作?(精确到0.01秒)挑战自我24.国际比赛的足球场长在100 m到110 m之间,宽在64 m到75 m之间,为了迎接某次奥运会,某地建设了一个长方形的足球场,其长是宽的1.5倍,面积是7 560 m2,请你判断这个足球场能用作国际比赛吗?并说明理由.参考答案课前预习要点感知1算术平方根a根号a 被开方数预习练习1-1 B要点感知2 0预习练习2-1 D要点感知3越大预习练习3-1<>当堂训练1.A2.B3.A4.B5.(1)12;(2)1;(3)45;(4)0.09;(5)0.6.(1)0.25;(2)3;(3)15 11;(4)104.7.D8.B9.设这个正方形的边长为x米,于是x2=10.∵x>0,∴x=10.∵32=9,42=16,∴3<10<4.又∵3.12=9.61,3.22=10.24,∴3.1<10<3.2.又∵3.152=9.922 5,∴10>3.15.∴10≈3.2.答:这个正方形的边长是10米,约为3.2米.10.B 11.4012.(1)28.284;(2)0.762;(3)49.000.课后作业13.B 14.B 15.D 16.A 17.1118.(1)94.6(2)111(3)-11.4(4)0.44919.(1)0.228 4228.4(2)0.000 521 720.(1)原式=43;(2)原式=0.9-0.2=0.7;(3)原式=81=9.21.(1)12<14;(2)-5>-7;(3)5>24;(4)2412->1.5.22.(1)x=3;(2)x=5.23.设运动员在下落过程中最多有t秒完成动作,根据题意,得3+1.2=12×9.8t2,整理,得t2=2 4.29.8⨯≈0.857 1,所以t≈0.93.因此运动员在下落过程中最多有0.93秒完成动作.24.这个足球场能用作国际比赛.理由如下:设足球场的宽为x m,则足球场的长为1.5x m,由题意,得1.5x2=7 560.∴x2=5 040.∵x>0,∴x=5040.又∵702=4 900,712=5 041,∴70<5040<71.∴70<x<71.∴105<1.5x<106.5.∴符合要求.∴这个足球场能用作国际比赛.第2课时平方根课前预习:要点感知1 一般地,如果一个数的平方等于a,那么这个数叫做a的__________或__________,这就是说,如果x2=a,那么x叫做a的__________.预习练习1-1 4的平方根是__________.1-2 36的平方根是__________,-4是__________的一个平方根.要点感知2 求一个数a的平方根的运算,叫做开平方,平方与开平方互为逆运算.正数有__________个平方根,它们__________;0的平方根是__________;负数__________.预习练习2-1 下列各数:0,(-2)2,-22,-(-5)中,没有平方根的是__________. 2-2下列各数是否有平方根?若有,求出它的平方根;若没有,请说明为什么?(1)(-3)2; (2)-42; (3)-(a2+1).要点感知3正数a的算术平方根可以用a表示;正数a的负的平方根可以用表示__________,正数a的平方根可以用表示__________,读作“__________”.预习练习3-1 计算:±425=__________,-425=__________,425=__________.当堂练习:知识点1 平方根1. 16的平方根是( )A.4B.±4C.8D.±82.下面说法中不正确的是( )A.6是36的平方根B.-6是36的平方根C.36的平方根是±6D.36的平方根是63.下列说法正确的是( )A.任何非负数都有两个平方根B.一个正数的平方根仍然是正数C.只有正数才有平方根D.负数没有平方根4.填表:a 2 -237a294981 225 5.求下列各数的平方根:(1)100; (2)0.008 1; (3)25 36.知识点2 平方根与算术平方根的关系6.下列说法不正确的是( )A.21的平方根是±21B.49的平方根是23C.0.01的算术平方根是0.1D.-5是25的一个平方根7.若正方形的边长为a,面积为S,则( )A.S的平方根是aB.a是S的算术平方根C.a=±SD.S=a8.求下列各数的平方根与算术平方根:(1)(-5)2; (2)0; (3)-2; (4)16.9.已知25x2-144=0,且x是正数,求2513x+的值.课后作业:10.下列说法正确的是( )A.因为3的平方等于9,所以9的平方根为3B.因为-3的平方等于9,所以9的平方根为-3C.因为(-3)2中有-3,所以(-3)2没有平方根D.因为-9是负数,所以-9没有平方根11.|-9|的平方根是( )A.81B.±3C.3D.-312.计算:()26-=__________,-()27-=__________,±25=__________.13.若8是m的一个平方根,则m的另一个平方根为__________.14.求下列各式的值:(1)225; (2)-3649; (3)±144121.15.求下列各式中的x:(1)9x2-25=0; (2)4(2x-1)2=36.16.全球气候变暖导致一些冰川融化并消失.在冰川消失12年后,一种低等植物苔藓就开始在岩石上生长.每一个苔藓都会长成近似圆形,苔藓的直径和其生长年限,近似地满足如下的关系式:d=7×12t (t≥12).其中d代表苔藓的直径,单位是厘米;t代表冰川消失的时间,单位是年.(1)计算冰川消失16年后苔藓的直径;(2)如果测得一些苔藓的直径是35厘米,问冰川约是在多少年前消失的?17.在物理学中,电流做功的功率P=I2R,试用含P,R的式子表示I,并求当P=25、R=4时,I的值.18.(1)一个非负数的平方根是2a-1和a-5,这个非负数是多少?(2)已知a-1和5-2a是m的平方根,求a与m的值.挑战自我19.已知2a-1的平方根是±3,3a+b-1的平方根是±4,求a+2b的平方根.参考答案课前预习要点感知1平方根二次方根平方根预习练习1-1±21-2 ±6 16要点感知2 两互为相反数 0 没有平方根预习练习2-1 -222-2 (1)±3;(2)没有平方根,因为-42是负数;(3)没有平方根,因为-(a 2+1)是负数.要点感知3 -a ±a 正、负根号a预习练习3-1 ±25 -25 25当堂训练1.B2.D3.D4.±37 ±9 ±15 4 4 9495.(1)±10;(2)±0.09;(3)±56. 6.B 7.B8.平方根分别是(1)±5;(2)0;(3)没有平方根;(4)±2. 算术平方根分别是(1)5;(2)0;(3)没有算术平方根;(4)2.9.由25x 2-144=0,得x=±125. ∵x 是正数,∴x=125. ∴2513x +=2125135⨯+=2×5=10. 课后作业10.D 11.B 12.6 -7 ±5 13.-814.(1)∵152=225,∴225=15.(2)∵(67)2=3649,∴-3649=-67. (3)∵(1211)2=144121,∴±144121=±1211. 15.(1)9x 2=25,x 2=259,x=±53; (2)(2x-1)2=9,2x-1=±3,2x-1=3或2x-1=-3,x=2或x=-1. 16.(1)当t=16时,d=7×12t -=7×2=14(cm).答:冰川消失16年后苔藓的直径为14 cm.(2)当d=35时,12t -=5,即t-12=25,解得t=37(年).答:冰川约是在37年前消失的.17.由P=I 2R 得I 2=P R ,所以I=P R. 当P=25、R=4时,I=P R =254=52. 18.(1)根据题意,得(2a-1)+(a-5)=0.解得a=2.所以这个非负数是(2a-1)2=(2×2-1)2=9.(2)根据题意,分以下两种情况:①当a-1与5-2a 是同一个平方根时,a-1=5-2a.解得a=2.此时,m=12=1; ②当a-1与5-2a 是两个平方根时,a-1+5-2a=0.解得a=4.此时,m=(4-1)2=9. 综上,当a=2时,m=1;当a=4时,m=9.19.依题意得:2a-1=9且3a+b-1=16,∴a=5,b=2.∴a+2b=5+4=9.∴a+2b 的平方根为±3. 即±2a b =±3.。