浙江大学微积分一公式大全
高等数学一(微积分)常用公式表

高等数学一(微积分)常用公式表-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN1、乘法公式(1)(a+b )²=a 2+2ab+b 2 (2)(a-b)²=a ²-2ab+b ²(3)(a+b)(a-b)=a ²-b ² (4)a ³+b ³=(a+b)(a ²-ab+b ²) (5)a ³-b ³=(a-b)(a ²+ab+b ²)2、指数公式:(1)a 0=1 (a ≠0)(2)a P -=P a 1(a ≠0)(3)amn=mna(4)a m a n =a n m +(5)a m ÷a n=n m aa =a nm -(6)(am)n =amn(7)(ab )n =a n b n(8)(b a)n =n n ba (9)(a )2=a (10)2a =|a|3、指数与对数关系: (1)若a b=N ,则N b a log = (2)若10b=N ,则b=lgN (3)若be =N ,则b=㏑N4、对数公式: (1)b a b a =log , ㏑eb=b (2)N aaN=log ,eNln =N(3)aN N a ln ln log =(4)a b be aln = (5)N M MN ln ln ln +=(6)N M NMln ln ln -= (7)Mn M n ln ln =(8)㏑nM =M nln 15、三角恒等式:(1)(Sin α)²+(Cos α)²=1 (2)1+(tan α)²=(sec α)²(3)1+(cot α)²=(csc α)²(4)αααtan cos sin =(5)αααcot sin cos =(6)ααtan 1cot =(7)ααcos 1csc =(8)ααcos 1sec =7.倍角公式: (1)αααcos sin 22sin = (2)ααα2tan 1tan 22tan -=(3)ααααα2222sin 211cos 2sin cos 2cos -=-=-=8.半角公式(降幂公式):(1)(2sin α)2=2cos 1a - (2)(2cosα)2=2cos 1a + (3)2tan α=a a sin cos 1+=a acos 1sin +常用公式表(二)1、求导法则:(1)(u+v )/=u /+v / (2)(u-v )/=u /-v /(3)(cu )/=cu / (4)(uv )/=uv /+u/v (5)2v v u v u v u '-'='⎪⎭⎫ ⎝⎛ 5、定积分公式:(1)⎰⎰=babadtt f dx x f )()( (2)⎰=aadx x f 0)((3)()()dx x f dx x f abba⎰⎰-= (4)⎰⎰⎰+=bac ab cdxx f dx x f dx x f )()()((5)若f (x )是[-a,a]的连续奇函数,则⎰-=aadx x f 0)((6)若f (x )是[-a,a]的连续偶函数,则6、积分定理:(1)()()x f dt t f xa ='⎥⎦⎤⎢⎣⎡⎰ ()()()()()[]()()[]()x a x a f x b x b f dt t f x b x a '-'='⎥⎦⎤⎢⎣⎡⎰2(3)若F (x )是f (x )的一个原函数,则)()()()(a F b F x F dx x f ba b a -==⎰7.积分表()C x x xdx ++=⎰tan sec ln sec 1 ()C x x xdx +-=⎰cot csc ln csc 2()C a xa dx x a +=+⎰arctan 11322 ()C a x dx x a +=-⎰arcsin 1422()C a x ax a dx ax ++-=-⎰ln 211522 8.积分方法()()bax x f +=1;设:t b ax =+()()222x a x f -=;设:t a x sin = ()22a x x f -=;设:t a x sec =()22x a x f +=;设:t a x tan =()3分部积分法:⎰⎰-=vdu uv udv。
微积分公式与运算法则

微积分公式与运算法则 Jenny was compiled in January 2021微积分公式与运算法则1.基本公式(1)导数公式(2)微分公式(xμ)ˊ=μxμ-1d(xμ)=μxμ-1dx(a x)ˊ=a x lnad(a x)=a x lnadx(loga x)ˊ=1/(xlna)d(loga x)=1/(xlna)dx(sinx)ˊ=cosxd(sinx)=cosxdx(conx)ˊ=-sinxd(conx)=-sinxdx(tanx)ˊ=sec2xd(tanx)=sec2xdx(cotx)ˊ=-csc2xd(cotx)=-csc2xdx(secx)ˊ=secx·tanxd(secx)=secx·tanxdx(cscx)ˊ=-cscx·cotxd(cscx)=-cscx·cotxdx(arcsinx)ˊ=1/(1-x2)1/2d(arcsinx)=1/(1-x2)1/2dx(arccosx)ˊ=-1/(1-x2)1/2d(arccosx)=-1/(1-x2)1/2dx(arctanx)ˊ=1/(1+x2)d(arctanx)=1/(1+x2)dx(arccotx)ˊ=-1/(1+x2)d(arccotx)=-1/(1+x2)dx(sinhx)ˊ=coshxd(sinhx)=coshxdx(coshx)ˊ=sinhxd(coshx)=sinhxdx2.运算法则(μ=μ(x),υ=υ(x),α、β∈R)(1)函数的线性组合积、商的求导法则(αμ+βυ)ˊ=αμˊ+βυˊ(μυ)ˊ=μˊυ+μυˊ(μ/υ)ˊ=(μˊυ-μυˊ)/υ2(2)函数和差积商的微分法则d(αμ+βυ)=αdμ+βdυd(μυ)=υdμ+μdυd(μ/υ)=(υdμ-μdυ)/υ23.复合函数的微分法则设y=f(μ),μ=ψ(x),则复合函数y=f[ψ(x)]的导数为dy/dx=fˊ[ψ(x)]·ψˊ(x)所以复合函数的微分为dy=fˊ[ψ(x)]·ψˊ(x)dx由于fˊ[ψ(x)]=fˊ(μ),ψˊ(x)dx=dμ,因此上式也可写成dy=fˊ(μ)dμ由此可见,无论μ是自变量,还是另一变量的可微函数,微分形式dy=fˊ(μ)dμ保持不变,这一性质称为微分形式不变性。
微积分基本公式16个

微积分基本公式16个1. 微分:微分是数学中最重要的概念之一,它指的是在一定时间内几何形状的变化率。
可以理解为小步长地移动拟合函数,接近曲线本身。
可以表示为\frac{dy}{dx} 或f'(x) 。
2. 泰勒公式:泰勒公式是一个重要的微积分工具,它可以在某一特定点附近对任意连续函数进行展开,也就是说任意设定一个位置x0,可以根据它附近的数值向量求出函数在该位置的平均值。
可以用公式表示为:f(x) = f(x_0) + f'(x_0)(x-x_0) + \frac{f''(x_0)(x-x_0)^2}{2!} + \frac{f^{n}(x_0)(x-x_0)^n}{n!} + ...3. 高斯积分公式:高斯积分是指将函数抽象为一次多项式曲线,采用指数型或线性型积分方法求解积分。
它可以用公式f(x)=\sum_{i=0}^n a_i x^i 表示,其中a_i为积分下限、上限和积分点x_i处函数值相乘所得到的系数。
4. 黎曼积分:黎曼积分是一种常用的积分方法,它通过对连续函数求和,来确定函数在给定区间上的定积分。
可以用公式表示为:\int_{a}^{b}f(x)dx=\sum_{i=1}^{n}f(x_i)\Delta x_i ,其中n为梯形的节点数。
5. Stokes公式:Stokes公式是一种将多变量函数投影到多方向进行积分的方法,可以用公式表示为:\int_{\Omega}\nabla\times{\bf F} dA =\int_{\partial\Omega}{\bf F}\cdot{\bf n}dS,其中\nabla\times{\bf F} 为梯度矢量场,\partial\Omega 为边界,{\bfn}dS 为单位向量与边界面积的乘积。
6. Γ函数:Γ函数是一种重要的数学函数,通常用来表示非负整数的排列组合,也可以表示实数的阶乘,可以用公式表示为:\Gamma(x)=\int_0^{\infty}t^{x-1}e^{-t}dt7. 方阵的行列式:方阵的行列式是指一个n阶矩阵的行列式,可以用公式表示为:D= |a_{i,j}| = \begin{vmatrix} a_{1,1} & a_{1,2} & ... & a_{1,n} \\ a_{2,1} & a_{2,2} & ... & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & ... & a_{n,n} \end{vmatrix} ,其中a_{i,j} 为矩阵中的元素。
浙江大学微积分一公式合集

λ lambda Τ
τ
tau
Δ
δ delta Μ
μ
mu
Υ
υ upsilon
欢迎阅读
Ε
ε epsilon Ν
Ζ
ζ zeta
Ξ
Η
η
eta
Ο
Θ
θ theta Π
ν
nu
Φ
ξ
xi
Χ
ο omicron Ψ
π
pi
Ω
φ
phi
χ
khi
ψ
psi
ω omega
倒数关系:sinθ cscθ =1;tanθ cotθ =1;cosθ secθ =1
欢迎阅读
Dxsinh-1(
x a
)=
1 a2 x2
cosh-1( x )= 1
a
x2 a2
tanh-1(
x a
)=
a a2 x2
coth-1( x )= a
sinh-1xdx=xsinh-1x- 1 x2 +C
cosh-1xdx=xcosh-1x- x2 1 +C tanh-1xdx=xtanh-1x+?ln|1-x2|+C coth-1xdx=xcoth-1x-?ln|1-x2|+C sech-1xdx=xsech-1x-sin-1x+C csch-1xdx=xcsch-1x+sinh-1x+C
i 1
6
n
i3 =[?n(n+1)]2
i 1
Γ
(x)=
t
x-1e-tdt=2
t
2x-1
e
t2
dt=
高等数学中所涉及到的微积分公式汇总

高等数学中所涉及到的微积分公式汇总微积分是高等数学中的一门重要学科,涉及到很多重要的公式和定理。
下面是一些微积分中常用的公式的汇总:1.导数公式:- 函数f(x)在点x处的导数:f'(x) = lim (f(x+h)-f(x))/h,其中h -> 0- 常见函数的导数公式:常数函数导数为0,幂函数导数为nx^(n-1),三角函数的导数等-乘法法则:(f*g)'(x)=f'(x)*g(x)+f(x)*g'(x)-商法则:(f/g)'(x)=(f'(x)g(x)-f(x)g'(x))/(g(x))^22.积分公式:- 不定积分和定积分的基本定理:若F'(x) = f(x),则∫f(x) dx = F(x) + C- 基本不定积分:∫x^n dx = (1/n+1)*x^(n+1) + C (其中n不等于-1)- 定积分的性质:∫(a to b) f(x) dx = -∫(b to a) f(x) dx,∫(a to b) [f(x) ± g(x)] dx = ∫(a to b) f(x) dx ± ∫(a to b)g(x) dx3.微分学的基本定理:- 导数的基本定理:如果F(x)是f(x)的一个原函数,那么∫(a to b) f(x) dx = F(b) - F(a)- 牛顿-莱布尼茨公式:若F(x)是f(x)的一个原函数,那么∫(a tob) f(x) dx = F(x),_(a to b) = F(b) - F(a)4.极限定理:- 极限的四则运算定理:设lim (x -> a) f(x) = L,lim (x -> a) g(x) = M,则lim (x -> a) [f(x)±g(x)] = L±M,lim (x -> a)[f(x)*g(x)] = L*M,lim (x -> a) [f(x)/g(x)] = L/M (其中M不等于0)- L'Hospital法则:设lim (x -> a) f(x) = 0,lim (x -> a) g(x) = 0,并且lim (x -> a) f'(x)/g'(x) 存在,则lim (x -> a) f(x)/g(x) = lim (x -> a) f'(x)/g'(x)- 夹逼定理:如果数列{a_n}、{b_n}、{c_n}满足a_n <= b_n <=c_n,并且lim (n -> ∞) a_n = lim (n -> ∞) c_n = L,则lim (n -> ∞) b_n = L5.泰勒级数:-函数f(x)的泰勒级数展开:f(x)=f(a)+f'(a)(x-a)+f''(a)*(x-a)^2/2!+...+f^n(a)*(x-a)^n/n!+...,其中f^n(a)表示函数f(x)在点a处的n阶导数以上仅是微积分中涉及到的一些公式,实际上微积分的公式和定理非常丰富,还有更多的公式可以在相关的教材和文献中找到。
微积分的全部公式

微积分的全部公式微积分是数学的一个重要分支,研究函数的变化规律和各种变化量之间的关系。
微积分的公式是研究微积分的基础,下面将介绍一些微积分的重要公式。
1. 导数的定义公式:导数可以理解为函数在某一点上的变化率,用数学符号表示为f'(x)或者dy/dx。
导数的定义公式为:f'(x) = lim(h->0) [f(x+h) - f(x)] / h其中,f(x)是函数,h是无穷小的增量。
2. 导数的基本公式:导数具有一些基本的运算规则,包括常数因子法则、求和法则、乘积法则和商法则。
这些公式可以简化对函数的导数计算。
- 常数因子法则:如果f(x)是一个函数,k是一个常数,则有(d/dx)(k*f(x)) = k*(d/dx)f(x)- 求和法则:如果f(x)和g(x)都是函数,则有(d/dx)(f(x)+g(x)) = (d/dx)f(x) + (d/dx)g(x)- 乘积法则:如果f(x)和g(x)都是函数,则有(d/dx)(f(x)*g(x)) = f(x)*(d/dx)g(x) + g(x)*(d/dx)f(x)- 商法则:如果f(x)和g(x)都是函数,则有(d/dx)(f(x)/g(x)) = [g(x)*(d/dx)f(x) - f(x)*(d/dx)g(x)] / [g(x)]^23. 积分的定义公式:积分可以理解为函数在区间上的累积和,用数学符号表示为∫f(x)dx。
积分的定义公式为:∫f(x)dx = F(x) + C其中,F(x)是函数f(x)的原函数,C是常数。
4. 积分的基本公式:积分也具有一些基本的运算规则,包括常数法则、线性法则、分部积分法和换元积分法。
这些公式可以简化对函数的积分计算。
- 常数法则:∫k*f(x)dx = k*∫f(x)dx,其中k是一个常数- 线性法则:∫[f(x) + g(x)]dx = ∫f(x)dx + ∫g(x)dx- 分部积分法:∫f(x)*g(x)dx = f(x)*∫g(x)dx - ∫[f'(x)*∫g(x)dx]dx- 换元积分法:如果u = g(x)是一个可导函数,则有∫f(g(x))g'(x)dx = ∫f(u)du5. 泰勒级数公式:泰勒级数是用一组多项式逼近函数的方法,可以将复杂的函数近似表示为多项式的形式。
常用微积分公式大全

以下是常用的微积分公式大全,包括导数、积分和极限的公式:导数公式:1. 常数函数导数:(c)' = 02. 幂函数导数:(x^n)' = nx^(n-1)3. 指数函数导数:(e^x)' = e^x4. 对数函数导数:(ln(x))' = 1/x5. 三角函数导数:(sin(x))' = cos(x), (cos(x))' = -sin(x), (tan(x))' = sec^2(x)6. 反三角函数导数:(arcsin(x))' = 1/√(1-x^2), (arccos(x))' = -1/√(1-x^2), (arctan(x))' = 1/(1+x^2)7. 链式法则:如果y = f(g(x)),则y' = f'(g(x)) * g'(x)积分公式:1. 幂函数积分:∫(x^n) dx = (x^(n+1))/(n+1) + C,其中C 是常数2. 指数函数积分:∫(e^x) dx = e^x + C3. 对数函数积分:∫(1/x) dx = ln|x| + C4. 三角函数积分:∫sin(x) dx = -cos(x) + C, ∫cos(x) dx = sin(x) + C, ∫sec^2(x) dx = tan(x) + C5. 反三角函数积分:∫(1/√(1-x^2)) dx = arcsin(x) + C, ∫(-1/√(1-x^2)) dx = arccos(x) + C, ∫(1/(1+x^2)) dx = arctan(x) + C极限公式:1. 极限定义:lim(x→a) f(x) = L,表示当x 趋近于a 时,f(x) 趋近于L2. 基本极限:lim(x→0) (sin(x)/x) = 1, lim(x→∞) (1/x) = 0, lim(x→0) (e^x - 1)/x = 1这只是一些常用的微积分公式,还有更多的公式和规则可用于不同的函数和问题。
大学数学微积分基本公式

大学数学微积分基本公式微积分是数学的一门基础学科,是研究变化率和积分的学科。
微积分理论的基础是一些基本公式,这些公式在微积分的各个领域中都有重要的应用。
本文将介绍一些大学数学微积分中常用的基本公式。
1. 导数公式导数是函数变化率的度量,表示函数在某一点上的斜率。
以下是几个常用的导数公式:1.1 常数函数的导数:对于常数c,其导数为0,即d(cx)/dx = 0。
1.2 幂函数的导数:对于函数f(x) = x^n,其中n是实数,其导数为d(x^n)/dx = nx^(n-1)。
1.3 指数函数的导数:对于函数f(x) = e^x,其中e是自然对数的底数,其导数为d(e^x)/dx = e^x。
1.4 对数函数的导数:对于函数f(x) = ln(x),其中ln表示自然对数,其导数为d(ln(x))/dx = 1/x。
1.5 三角函数的导数:对于函数f(x) = sin(x),其导数为d(sin(x))/dx= cos(x)。
类似地,d(cos(x))/dx = -sin(x),d(tan(x))/dx = sec^2(x)等。
2. 积分公式积分是导数的逆运算,表示函数的累积变化量。
以下是几个常用的积分公式:2.1 幂函数的积分:对于函数f(x) = x^n,其中n不等于-1,其积分为∫(x^n)dx = (1/(n+1))x^(n+1) + C,其中C是常数。
2.2 指数函数的积分:对于函数f(x) = e^x,其积分为∫(e^x)dx = e^x+ C。
2.3 对数函数的积分:对于函数f(x) = 1/x,其积分为∫(1/x)dx = ln|x|+ C。
2.4 三角函数的积分:对于函数f(x) = sin(x),其积分为∫sin(x)dx = -cos(x) + C。
类似地,∫cos(x)dx = sin(x) + C,∫sec^2(x)dx = tan(x) + C等。
3. 极限公式极限是微积分中一个重要概念,用于描述函数在某点趋近于某个值的行为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
sinhxdx=coshx+C
coshxdx=sinhx+C
tanhxdx=ln|coshx|+C
cothxdx=ln|sinhx|+C
sechxdx=-2tan-1(e-x)+C
1 ex
cschxdx=2ln|
|+C
1 e2x
sin-1(-x)=-sin-1x
cos-1(-x)=-cos-1x
tan-1(-x)=-tan-1x
順位高 順位低 ;顺位高 d 顺位低;
1 10
0*= *= =0* =
00 0 0 = e0( ) ; 0 = e 0 ;1 = e 0
顺位一:对数;反三角(反双曲) 顺位二:多项函数;幂函数 顺位三:指数;三角(双曲)
sigma tau
upsilon phi khi psi
omega
)|x|>1
a 2a x a
x 1 1 x2
sech-1( )=ln( +
ax
x 2 )0≦x≦1
x 1 1 x2
csch-1( )=ln( +
ax
x 2 )|x|>0
duv=udv+vdu
duv=uv=udv+vdu →udv=uv-vdu cos2θ-sin2θ=cos2θ
cos2θ+sin2θ=1
tan-1xdx=xtan-1x-?ln(1+x2)+C
cot-1xdx=xcot-1x+?ln(1+x2)+C
sec-1xdx=xsec-1x-ln|x+ x2 1 |+C csc-1xdx=xcsc-1x+ln|x+ x2 1 |+C
csc-1(x/a)= Dxsinhx=coshx coshx=sinhx tanhx=sech2x cothx=-csch2x sechx=-sechxtanhx cschx=-cschxcothx
cosh2θ-sinh2θ=1
cosh2θ+sinh2θ=cosh2θ
x
1
Dxsinh-1( )=
a a2 x2
x
1
cosh-1( )=
a x2 a2
x a tanh-1( a )= a 2 x2
sinh-1xdx=xsinh-1x- 1 x2 +C
cosh-1xdx=xcosh-1x- x2 1 +C
n i2 = 1 n(n+1)(2n+1)
i 1
6
n
i3 =[?n(n+1)]2
i 1
Γ(x)=
t x-1e-tdt=2
t
2x-1
et2
dt=
(ln 1) x-1dt
0
0
0t
r(r 1) r(r 1)(r 2)
β
(1+x)r=1+rx+
x2+
x3+…-1<x<1
2!
3!
(m,n)=
微积分公式
Dxsinx=cosx
cosx=-sinx
tanx=sec2x
cotx=-csc2x
secx=secxtanx
cscx=-cscxcotx
x
1
Dxsin-1( )=
a a2 x2
x
cos-1( )=
a
x a tan-1( a )= a2 x2
x
cot-1( )=
a
x
a
sec-1( )=
2
2
正弦定理: a = b = c =2R sin sin sin
余弦定理:a2=b2+c2-2bccosα
b2=a2+c2-2accosβ
c2=a2+b2-2abcosγ
sin(α±β)=sinαcosβ±cosαsinβ
sinα+sinβ=2sin?(α+β)cos?(α-β)
cos(α±β)=cosαcosβ sinαsinβ
cosx=1- + - +…+
+…
2! 4! 6!
(2n)!
x2 x3 x4
(1)n x n1
ln(1+x)=x- + - +…+
+…
2 34
(n 1)!
x3 x5 x7
(1)n x 2n1
tan-1x=x- + - +…+
+…
3 57
(2n 1)
n
1 =n
i 1
n
i =?n(n+1)
i 1
a x x2 a2
sinxdx=-cosx+C cosxdx=sinx+C tanxdx=ln|secx|+C cotxdx=ln|sinx|+C secxdx=ln|secx+tanx|+C cscxdx=ln|cscx–cotx|+C
sin-1xdx=xsin-1x+ 1 x2 +C cos-1xdx=xcos-1x- 1 x2 +C
cot-1(-x)=-cot-1x
sec-1(-x)=-sec-1x
csc-1(-x)=-csc-1x
x
sinh-1( )=ln(x+
a2 x2 )x R
a
x
cosh-1( )=ln(x+
x2 a2 )x≧1
a
x 1 ax
tanh-1( )= ln(
)|x|<1
a 2a a x
x 1 xa
coth-1( )= ln(
sinα-sinβ=2cos?(α+β)sin?(α-β)
2sinαcosβ=sin(α+β)+sin(α-β)
cosα+cosβ=2cos?(α+β)cos?(α-β)
2cosαsinβ=sin(α+β)-sin(α-β)
cosα-cosβ=-2sin?(α+β)sin?(α-β)
2cosαcosβ=cos(α-β)+cos(α+β) 2sinαsinβ=cos(α-β)-cos(α+β)
sinx=
cosx=
2j
2
x
coth-1( )=
a
sech-1xdx=xsech-1x-sin-1x+C csch-1xdx=xcsch-1x+sinh-1x+C
x
a
sech-1( )=
a x a2 x2
a
csch-1(x/a)=
x a2 x2
γ
a
R
b
α
β
c
ex ex
ex ex
sinhx=
coshx=
tanh-1xdx=xtanh-1x+?ln|1-x2|+C coth-1xdx=xcoth-1x-?ln|1-x2|+C
sin3θ=3sinθ-4sin3θ
cos3θ=4cos3θ-3cosθ
→sin3θ=?(3sinθ-sin3θ)
→cos3θ=?(3cosθ+cos3θ)
e jx e jx
e jx e jx
tan(α±β)= tan tan ,cot(α±β)= cot cot
tan tan
cot cot
x2 x3
xn
ex=1+x+ + +…+ +…
2! 3! n!
x3 x5 x7
(1)n x 2n1
sinx=x- + - +…+
+…
3! 5! 7!
(2n 1)!
x2 x4 x6
(1)n x2n
1
x m-1(1-x)n-1dx=2
2 sin 2m-1xcos2n-1xdx=
0
0
x
m1
0 (1 x)mn dx
希腊字母(GreekAlphabets)
大写
小写
读音
大写
小写
读音
大写
小写
读音
Α
α
alpha
Ι
ι
iota
Ρ
ρ
rho
Β
β
beta
Κκkappa源自Σσ,?Γ
γ gamma
Λ
λ
lambda
Τ
τ
Δ
δ
delta
Μ
μ
mu
Υ
υ
Ε
ε
epsilon
Ν
ν
nu
Φ
φ
Ζ
ζ
zeta
Ξ
ξ
xi
Χ
χ
Η
η
eta
Ο
ο
omicron
Ψ
ψ
Θ
θ
theta
Π
π
pi
Ω
ω
倒数关系:sinθcscθ=1;tanθcotθ=1;cosθsecθ=1
s in
c os
商数关系:tanθ=
;cotθ=
c os
s in
平方关系:cos2θ+sin2θ=1;tan2θ+1=sec2θ;1+cot2θ=csc2θ