数学人教版九年级下册中考复习课---几何中档题

合集下载

2022-2023学年九年级数学中考复习《几何图形变换综合压轴题》专题提升训练(附答案)

2022-2023学年九年级数学中考复习《几何图形变换综合压轴题》专题提升训练(附答案)

2022-2023学年九年级数学中考复习《几何图形变换综合压轴题》专题提升训练(附答案)1.如图,已知∠DAC=90°,△ABC是等边三角形,点P为射线AD上任意一点(点P与点A不重合),连接CP,将线段CP绕点C顺时针旋转60°得到线段CQ,连接QB并延长交直线AD于E.(1)如图1,猜想∠QEP=;(2)如图2,若当∠DAC是锐角时,其他条件不变,猜想∠QEP的度数,并证明;(3)如图3,若∠DAC=135°,∠ACP=15°,且AC=6,求BQ的长.2.如图1,在等腰△ABC中,AB=AC,AD为中线,将线段AC绕点A逆时针旋转90°,得到线段AE,连接BE交直线AD于点F,连接CF.(1)若∠BAC=30°,则∠FBC=°;(2)若∠BAC是钝角时,①请在图2中依题意补全图形,并标出对应字母;②探究图2中△BCF的形状,并说明理由;③若AB=5,BC=8,则EF=.3.在△ABC中,AB=AC,∠BAC=90°,点D在射线BC上(不与点B、点C重合),将线段AD绕A逆时针旋转90°得到线段AE,作射线BA与射线CE,两射线交于点F.(1)若点D在线段BC上,如图1,请直接写出CD与EF的关系.(2)若点D在线段BC的延长线上,如图2,(1)中的结论还成立吗?请说明理由.(3)在(2)的条件下,连接DE,G为DE的中点,连接GF,若tan∠AEC=,AB=,求GF的长.4.已知△ABC中,∠ABC=90°,将△ABC绕点B逆时针旋转90°后,点A的对应点为点D,点C的对应点为点E,直线DE与直线AC交于点F,连接FB.(1)如图1,当∠BAC<45°时,①求证:DF⊥AC;②求∠DFB的度数;(2)如图2,当∠BAC>45°时,①请依意补全图2;②用等式表示线段FC,FB,FE之间的数量关系,并证明.5.实验探究:如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,BD、CE延长线交于点P.【问题发现】(1)把△ABC绕点A旋转到图1,BD、CE的关系是(“相等”或“不相等”),请直接写出答案;【类比探究】(2)若AB=3,AD=5,把△ABC绕点A旋转,当∠EAC=90°时,在图中作出旋转后的图形,并求出此时PD的长;【拓展延伸】(3)在(2)的条件下,请直接写出旋转过程中线段PD的最小值为.6.如图,在平面直角坐标系中,点O为坐标原点,点A(0,3)与点B关于x轴对称,点C(n,0)为x轴的正半轴上一动点.以AC为边作等腰直角三角形ACD,∠ACD=90°,点D在第一象限内.连接BD,交x轴于点F.(1)如果∠OAC=38°,求∠DCF的度数;(2)用含n的式子表示点D的坐标;(3)在点C运动的过程中,判断OF的长是否发生变化?若不变求出其值,若变化请说明理由.7.[问题背景]如图1所示,在△ABC中,AB=BC,∠ABC=90°,点D为直线BC上的一个动点(不与B、C重合),连接AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连接EC.[问题初探]如果点D在线段BC上运动,通过观察、交流,小明形成了以下的解题思路:过点E作EF⊥BC交直线BC于F,如图2所示,通过证明△DEF≌△,可推证△CEF是三角形,从而求得∠DCE=°.[继续探究]如果点D在线段CB的延长线上运动,如图3所示,求出∠DCE的度数.[拓展延伸]连接BE,当点D在直线BC上运动时,若AB=,请直接写出BE的最小值.8.如图,在等边△ABC中,点D为BC的中点,点E为AD上一点,连EB、EC,将线段EB绕点E顺时针旋转至EF,使点F落在BA的延长线上.(1)在图1中画出图形:①求∠CEF的度数;②探究线段AB,AE,AF之间的数量关系,并加以证明;(2)如图2,若AB=4,点G为AC的中点,连DG,将△CDG绕点C顺时针旋转得到△CMN,直线BM、AN交于点P,连CP,在△CDG旋转一周过程中,请直接写出△BCP 的面积最大值为.9.在△ABC中,点P为BC边中点,直线a绕顶点A旋转,BM⊥直线a于点M.CN⊥直线a于点N,连接PM,PN.(1)如图1,若点B,P在直线a的异侧,延长MP交CN于点E.求证:PM=PE;(2)若直线a绕点A旋转到图2的位置时,点B,P在直线a的同侧,其它条件不变,此时S△BMP+S△CNP=7,BM=1,CN=3,求MN的长度.(3)若过P点作PG⊥直线a于点G,试探究线段PG、BM和CN的数量关系.10.在Rt△ABC中与Rt△DCE中,∠ACB=∠DCE=90°,∠BAC=∠DEC=30°,AC=DC=,将Rt△DCE绕点C顺时针旋转,连接BD,AE,点F,G分别是BD,AE的中点,连接CF,CG.(1)观察猜想如图1,当点D与点A重合时,CF与CG的数量关系是,位置关系是;(2)类比探究当点D与点A不重合时,(1)中的结论是否成立?如果成立,请仅就图2的情形给出证明;如果不成立,请说明理由.(3)问题解决在Rt△DCE旋转过程中,请直接写出△CFG的面积的最大值与最小值.11.如图1,Rt△ABC中,∠C=90°,点E是AB边上一点,且点E不与A、B重合,ED ⊥AC于点D.(1)当sin B=时,①求证:BE=2CD;②当△ADE绕点A旋转到如图2的位置时(60°<∠CAD<90°),BE=2CD是否成立?若成立,请给出证明;若不成立,请说明理由.(2)当sin B=时,将△ADE绕点A旋转到∠DEB=90°,若AC=10,AD=2,请直接写出线段CD的长.12.如图,已知点A(0,8),B(16,0),点P是x轴上的一个动点(不与原点O重合),连接AP,把△OAP沿着AP折叠后,点O落在点C处,连接PC,BC,设P(t,0).(1)如图1,当AP∥BC时,试判断△BCP的形状,并说明理由.(2)在点P的运动过程中,当∠PCB=90°时,求t的值.(3)如图2,过点B作BH⊥直线CP,垂足为点H,连接AH,在点P的运动过程中,是否存在AH=BC?若存在,求出t的值:若不存在,请说明理由.13.如图,点B,C,D在同一条直线上,△BCF和△ACD都是等腰直角三角形.连接AB,DF,延长DF交AB于点E.(1)如图1,若AD=BD,DE是△ABD的平分线,BC=1,求CD的长度;(2)如图2,连接CE,求证:DE=CE+AE;(3)如图3,改变△BCF的大小,始终保持点F在线段AC上(点F与点A,C不重合).将ED绕点E顺时针旋转90°得到EP.取AD的中点O,连接OP.当AC=2时,直接写出OP长度的最大值.14.综合与实践问题情境从“特殊到一般”是数学探究的常用方法之一,类比特殊图形中的数量关系和探究方法可以发现一般图形具有的普遍规律.如图1,在△ABC中,∠ACB=90°,AC=BC,AD为BC边上的中线,E为AD上一点,将△AEC以点C为旋转中心,逆时针旋转90°得到△BFC,AD的延长线交线段BF于点P.探究线段EP,FP,BP之间的数量关系.数学思考(1)请你在图1中证明AP⊥BF;特例探究(2)如图2,当CE垂直于AD时,求证:EP+FP=2BP;类比再探(3)请判断(2)的结论在图1中是否仍然成立?若成立,请证明;若不成立,请说明理由.15.在Rt△ABC中,AB=AC,OB=OC,∠A=90°,∠MON=α,分别交直线AB、AC于点M、N.(1)如图1,当α=90°时,求证:AM=CN;(2)如图2,当α=45°时,求证:BM=AN+MN;(3)当α=45°时,旋转∠MON至图3位置,请你直接写出线段BM、MN、AN之间的数量关系.16.教材呈现:如图是华师版八年级上册数学教材第94页的部分内容.2.线段垂直平分线我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴.如图,直线MN 是线段AB的垂直平分线,P是MN上任一点,连接P A、PB.将线段AB沿直线MN对折,我们发现P A与PB完全重合.由此即有:线段垂直平分线的性质定理线段:垂直平分线上的点到线段两端的距离相等.已知:如图,MN⊥AB,垂足为点C,AC=BC,点P是直线MN上的任意一点求证:P A=PB.分析:图中有两个直角三角形APC和BPC,只要证明这两个三角形全等,便可证得P A =PB.(1)请根据教材中的分析,结合图①,写出“线段垂直平分线的性质定理”完整的证明过程;(2)如图②,在△ABC中,直线l,m,n分别是边AB,BC,AC的垂直平分线.求证:直线l、m、n交于一点;(请将下面的证明过程补充完整)证明:设直线l,m相交于点O.(3)如图③,在△ABC中,AB=BC,边AB的垂直平分线交AC于点D,边BC的垂直平分线交AC于点E,若∠ABC=120°,AC=15,则DE的长为.17.如图,在平面直角坐标系中,点O为坐标原点,点A(x,y)中的横坐标x与纵坐标y 满足+|y﹣8|=0,过点A作x轴的垂线,垂足为点D,点E在x轴的负半轴上,且满足AD﹣OD=OE,线段AE与y轴相交于点F,将线段AD向右平移8个单位长度,得到线段BC.(1)直接写出点A和点E的坐标;(2)在线段BC上有一点G,连接DF,FG,DG,若点G的纵坐标为m,三角形DFG 的面积为S,请用含m的式子表示S(不要求写m的取值范围);(3)在(2)的条件下,当S=26时,动点P从D出发,以每秒1个单位的速度沿着线段DA向终点A运动,动点Q从A出发,以每秒2个单位的速度沿着折线AB→BC向终点C运动,P,Q两点同时出发,当三角形FGP的面积是三角形AGQ面积的2倍时,求出P点坐标18.如图1,在Rt△ACB中,AC=BC,过B点作BD⊥CD于D点,AB交CD于E.(1)如图1,若AC=6,tan∠ACD=2,求DE的长;(2)如图2,若CE=2BD,连接AD,在AD上找一点F,使CF=DF,在FD上取一点G,使∠EGF=∠CFG,求证:AF=EG;(3)如图3,D为线段BC上方一点,且∠BDC=90°,AC=6,连接AD,将AD绕A 点逆时针旋转90°,D点对应点为E点,H为DE中点,求当AH有最小值时,直接写出△ACH的面积.19.(1)问题发现:如图1,△ACB和△DCE均为等边三角形,当△DCE旋转至点A,D,E在同一直线上,连接BE.则:①∠AEB的度数为°;②线段AD、BE之间的数量关系是.(2)拓展研究:如图2,△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=90°,点A、D、E在同一直线上,若AD=a,AE=b,AB=c,求a、b、c之间的数量关系.(3)探究发现:图1中的△ACB和△DCE,在△DCE旋转过程中,当点A,D,E不在同一直线上时,设直线AD与BE相交于点O,试在备用图中探索∠AOE的度数,直接写出结果,不必说明理由.20.类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到.小明在数学学习中遇到了这样一个问题:“如图1,Rt△ABC中,∠ACB=90°,∠CAB=α,点P在AB边上,过点P作PQ⊥AC于点Q,△APQ绕点A逆时针方向旋转,如图2,连接CQ.O 为BC边的中点,连接PO并延长到点M,使OM=OP,连接CM.探究在△APQ的旋转过程中,线段CM,CQ之间的数量关系和位置关系”小明计划采用从特殊到一般的方法探究这个问题.特例探究:(1)填空:如图3,当α=30°时,=,直线CQ与CM所夹锐角的度数为;如图4,当α=45°时,=,直线CQ与CM所夹锐角的度数为;一般结论:(2)将△APQ绕点A逆时针方向旋转的过程中,线段CQ,CM之间的数量关系如何(用含α的式子表示)?直线CQ与CM所夹锐角的度数是多少?请仅就图2所示情况说明理由;问题解决(3)如图4,在Rt△ABC中,若AB=4,α=45°,AP=3,将△APQ由初始位置绕点A逆时针方向旋转β角(0°<β<180°),当点Q到直线AC的距离为2时,请直接写出线段CM的值.参考答案1.解:(1)∠QEP=60°;证明:如图1,QE与CP的交点记为M,∵PC=CQ,且∠PCQ=60°,∴∠PCQ=∠ACB=60°,∴∠BCQ=∠ACP,则△CQB和△CP A中,,∴△CQB≌△CP A(SAS),∴∠CQB=∠CP A,在△PEM和△CQM中,∠EMP=∠CMQ,∴∠QEP=∠QCP=60°.故答案为:60°;(2)∠QEP=60°.理由如下:如图2,∵△ABC是等边三角形,∴AC=BC,∠ACB=60°,∵线段CP绕点C顺时针旋转60°得到线段CQ,∴CP=CQ,∠PCQ=6O°,∴∠ACB+∠BCP=∠BCP+∠PCQ,即∠ACP=∠BCQ,在△ACP和△BCQ中,,∴△ACP≌△BCQ(SAS),∴∠APC=∠Q,∵∠BOP=∠COQ,∴∠QEP=∠PCQ=60°;(3)作CH⊥AD于H,如图3,与(2)一样可证明△ACP≌△BCQ,∴AP=BQ,∵∠DAC=135°,∠ACP=15°,∴∠APC=30°,∠PCB=45°,∴∠HAC=45°,∴△ACH为等腰直角三角形,∴AH=CH=AC=3,在Rt△PHC中,PH=CH=3,∴P A=PH﹣AH=3﹣3,∴BQ=3﹣3.2.解:(1)如图1中,∵AB=AC,∠BAC=30°,∴∠ABC=∠ACB=(180°﹣30°)=75°,∵AE⊥AC,∴∠EAC=90°,∴∠BAE=30°+90°=120°,∵AB=AE,∴∠ABE=∠E=(180°﹣120°)=30°,∴∠FBC=∠ABC﹣∠ABF=75°﹣30°=45°.故答案为:45.(2)①图形如图2所示.②结论:△BCF是等腰直角三角形理由如下:如图2中,∵AB=AC,BD=CD,∴AD⊥BC,∴AD是BC的垂直平分线,∴FB=FC,又AB=AC,AF=AF,∴△ABF≌△ACF(SSS),∴∠1=∠2,由旋转可知AE=AC,又AB=AC,∴AB=AE,∴∠1=∠3,∴∠2=∠3.又∠4=∠5,∴∠CFE=∠CAE=90°即∠CFB=90°,又FB=FC,∴△BCF为等腰直角三角形.③如图3中,作EH⊥DF交DF的延长线于H.∵AB=AC=5,BD=CD=4,∴AD⊥BC,∴∠ADB=90°,∴AD===3,∵∠ADC=∠EAC=∠H=90°,∴∠DAC+∠ACD=90°,∠DAC+∠HAE=90°,∴∠ACD=∠HAE,∵AE=AC,∴△ADC≌△EHA(AAS),∴EH=AD=3,∵△BDF是等腰直角三角形,FD⊥BC,∴∠DFB=∠BFC=45°,∴∠HEF=∠HFE=45°,∵∠H=90°,∴∠EHF=∠HFE=45°,∴EH=FH=3,∴EF=EH=,故答案为:3.3.解:(1)CD=EF,CD⊥EF,理由如下:∵AB=AC,∠BAC=90°,∴∠ABC∠ACB=45°,∵将线段AD绕A逆时针旋转90°得到线段AE,∴AD=AE,∠DAE=90°=∠BAC,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS)∴BD=CE,∠ABD=∠ACE=45°,∴∠BCF=∠ACB+∠ACE=90°,∴CD⊥EF,又∵∠ABC=45°,∴∠BFC=∠ABC,∴BC=CF,∴CD=EF;(2)结论仍然成立,理由如下:∵AB=AC,∠BAC=90°,∴∠ABC∠ACB=45°,∵将线段AD绕A逆时针旋转90°得到线段AE,∴AD=AE,∠DAE=90°=∠BAC,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS)∴BD=CE,∠ABD=∠ACE=45°,∴∠BCF=∠ACB+∠ACE=90°,∴CD⊥EF,又∵∠ABC=45°,∴∠BFC=∠ABC,∴BC=CF,∴CD=EF;(3)如图,过点A作AN⊥CE于点N,过点G作GH⊥CE于H,∵AB=AC=,∴BC=CF=2,∵AN⊥CE,∠ACF=45°,∴AN=CN=1,∵tan∠AEC==,∴EN=2,∴EC=CN+EN=3,∴EF=EC﹣CF=1=CD,∵GH⊥CE,∠ECD=90°,∴HG∥CD,∴==,且EG=DG,∴HG=,EH=,∴FH=EH﹣EF=∴GF===4.解(1)①由旋转知,∠ABD=∠ABC=90°,∠D=∠A,∴∠D+∠BED=90°,∴∠A+∠BED=90°,∵∠BED=∠AEF,∴∠A+∠AEF=90°,∴∠AFE=90°,∴DF⊥AC;②如图1,过点B作BG⊥BF交DF于G,∴∠FBG=90°,由旋转知,∠D=∠A,BD=AB,∠ABD=90°,∴∠FBG=∠ABD,∴∠DBG=∠ABF,∴△BDG≌△BAF(ASA),∴BG=BF,∵∠FBG=90°,∴∠BFD=45°;(2)①如图2所示,②CF﹣EF=BF.过点B作BG⊥BF交AC于G,∴∠FBG=90°,由旋转知,∠C=∠E,BC=BE,∵∠ABC=90°,∴∠FBG=∠ABC,∴∠CBG=∠EBF,∴△BCG≌△BEF(ASA),∴CG=EF,BG=BF,∵∠FBG=90°,∴∠BFD=45°,∴FG=BF,∵CF=FG+CG,∴FG=CF﹣CG=CF﹣EF=BF,即:CF﹣EF=BF.5.解:(1)BD、CE的关系是相等.理由:∵△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,∴AB=AC,∠BAD=∠CAE,DA=EA,∴△ABD≌△ACE(SAS)∴BD=CE.故答案为:相等.(2)如图2,3即为旋转后的图形.①如图2,当C在AD上时,由(1)知△ABD≌△ACE,∴∠ADB=∠AEC又∵∠PCD=∠ACE,∴△PCD∽△ACE,∴又∵CE===CD=AD﹣AC=5﹣3=2∴,解得;如图3,当C在AD反向延长线上时,同理△PEB∽△ABD=∵BD=BE=AE﹣AB=5﹣3=2∴=解得PB=∴PD=DB+PB=+=.答:此时PD的长为或.(3)如图4所示,以点A为圆心,AC长为半径画圆,当CE在圆A下方与圆A相切时,PD的值最小.在Rt△ACE中,CE===4在Rt△ADE中,DE===5∵四边形ABPC是正方形,∴PC=AB=3∴PE=PC+CE=3+4=7在Rt△DEP中,PD===1∴线段PD的最小值为1.故答案为:1.6.解:(1)∵∠AOC=90°,∴∠OAC+∠ACO=90°,∵∠ACD=90°,∴∠DCF+∠ACO=90°,∴∠DCF=∠OAC,∵∠OAC=38°,∴∠DCF=38°;(2)如图,过点D作DH⊥x轴于H,∴∠CHD=90°∴∠AOC=∠CHD=90°,∵等腰直角三角形ACD,∠ACD=90°∴AC=CD,由(1)知,∠DCF=∠OAC,∴△AOC≌△CHD(AAS),∴OC=DH=n,AO=CH=3,∴点D的坐标(n+3,n);(3)不会变化,理由:∵点A(0,3)与点B关于x轴对称,∴AO=BO,又∵OC⊥AB,∴x轴是AB垂直平分线,∴AC=BC,∴∠BAC=∠ABC,又∵AC=CD,∴BC=CD,∴∠CBD=∠CDB,∵∠ACD=90°,∴∠ACB+∠DCB=270°,∴∠BAC+∠ABC+∠CBD+∠CDB=90°,∴∠ABC+∠CBD=45°,∵∠BOF=90°,∴∠OFB=45°,∴∠OBF=∠OFB=45°,∴OB=OF=3,∴OF的长不会变化.7.解:[问题初探]如图2,过点E作EF⊥BC交直线BC于F,∴∠DFE=90°=∠ABD,∴∠EDF+∠DEF=90°,由旋转知,AD=DE,∠ADE=90°,∴∠ADB+∠EDF=90°,∴∠ADB=∠DEF,∴△ABD≌△DFE(AAS),∴BD=EF,DF=AB,∵AB=BC,∴BC=DF,∴BD=CF,∴EF=CF,∴△CEF是等腰直角三角形,∴∠ECF=45°,∴∠DCE=135°,故答案为:ADB,等腰直角,135;[继续探究]如图3,过点E作EF⊥BC于F,∴∠DFE=90°=∠ABD,∴∠EDF+∠DEF=90°,由旋转知,AD=DE,∠ADE=90°,∴∠ADB+∠EDF=90°,∴∠ADB=∠DEF,∴△ABD≌△DFE(AAS),∴BD=EF,DF=AB,∵AB=BC,∴BC=DF,∴BD=CF,∴EF=CF,∴△CEF是等腰直角三角形,∴∠ECF=45°,∴∠DCE=45°;[拓展延伸]如图4,在△ABC中,∠ABC=90°,AB=BC=,∴∠ACB=45°当点D在射线BC上时,由[问题初探]知,∠BCM=135°,∴∠ACM=∠BCM﹣∠ACB=90°,当点D在线段CB的延长线上时,由[继续探究]知,∠BCE=45°,∴∠ACN=∠ACB+∠BCM=90°,∴点E是过点C垂直于AC的直线上的点,∴当BE⊥MN时,BE最小,∵∠BCE=45°,∴∠CBE=45°=∠BCE,∴BE=CE,∴BE最小=BC=,即:BE的最小值为.8.解:(1)如图1所示:延长BE,①∵等边△ABC中,点D为BC的中点,∴AD是BC的垂直平分线,∠BAD=∠CAD=30°,∴BE=CE,∴∠EBC=∠ECB,∵将线段EB绕点E顺时针旋转至EF,∴BE=EF,∴∠EBF=∠EFB,∵∠CEF=∠FEH+∠HEC=∠EBF+∠BFE+∠EBC+∠ECB=2∠ABE+2∠EBC,∴∠CEF=2∠ABC=120°;②AB=AF+AE,理由如下:如图1﹣1,在AB上截取BM=AF,连接ME,过点E作EN⊥AB于N,∵BM=AF,∠AFE=∠EBM,BE=EF,∴△BME≌△F AE(SAS),∴AE=EM,又∵EN⊥AB,∴AN=MN=AM,∵∠BAD=30°,∴AE=2NE,AN=NE,∴AN=AE,∴AM=AE,∴AB=BM+AM=AF+AE;(3)如图2,∵△ABC是等边三角形,AB=4,点G为AC的中点,∴AC=BC,∠ACB=60°,CG=CD=2,∵将△CDG绕点C顺时针旋转得到△CMN,∴CM=CN=CG=CD=2,∠MCN=∠ACB=60°,∴∠ACN=∠BCM,∴△BCM≌△ACN(SAS),∴∠CAN=∠CBM,∴点A,点B,点C,点P四点共圆,∴∠BPC=∠BAC=60°,∵将△CDG绕点C顺时针旋转得到△CMN,∴点M在以点C为圆心,CM为半径的圆上,∴当BM与⊙C相切于点M时,△BCP的面积有最大值,如图所示,过点P作PH⊥BC 于H,∵BM是⊙C的切线,∴∠BMC=90°=∠PMC,又∵∠BPC=60°,∴∠PCM=30°,∴CM=PM=2,∴MP=,∵BM===2,∴BP=BM+MP=,∵sin∠PBC=,∴PH==,∴△BCP的面积最大值=×4×=,故答案为.9.(1)证明:如图1中,∵BM⊥直线a于点M,CN⊥直线a于点N,∴∠BMA=∠CNM=90°,∴BM∥CN,∴∠MBP=∠ECP,又∵P为BC边中点,∴BP=CP,又∵∠BPM=∠CPE,∴△BPM≌△CPE(ASA),∴PM=PE(2)解:延长MP与NC的延长线相交于点E.∵BM⊥直线a于点M,CN⊥直线a于点N,∴∠BMN=∠CNM=90°∴∠BMN+∠CNM=180°,∴BM∥CN∴∠MBP=∠ECP,又∵P为BC中点,∴BP=CP,又∵∠BPM=∠CPE,∴△BPM≌△CPE(ASA),∴PM=PE,S△PBM=S△PCE,∴AE=CN+CE=4,∵S△BMP+S△CNP=7,∴S△PNE=7,∴S△MNE=2S△PNE=14,∴×MN×4=14,∴MN=7.(3)解:如图1﹣1中,当点B,P在直线a的异侧时,∵PG⊥a,CN⊥a,∴PG∥CN,∵PM=PE,∴MG=GN,∴PG=EN=(CN﹣EC),∵EC=BM,∴PG=(CN﹣BM).如图2﹣2中,当点B,P在直线a的同侧时,延长MP交NC的延长线于Q.∵PG⊥a,CN⊥a,∴PG∥CN,∵BM∥CQ,∴∠BMP=∠Q,∵∠BPM=∠CPQ,BP=CP,∴△PMB≌△PQC(AAS),∴PM=PQ,BM=CQ,∴MG=GN,∴PG=AQ=(CN+BM).综上所述,PG=(CN﹣BM)或PG=(CN+BM).10.解:(1)观察猜想∵在Rt△ABC中与Rt△DCE中,∠ACB=∠DCE=90°,∠BAC=∠DEC=30°,AC =DC=,∴AE=2DC=2,AC=BC=,AB=2BC,∠CDE=60°,∴BC=1,AB=2,∵点F,G分别是BD,AE的中点,∴CG=AE=,CG=AG,CF=AB=1,CF=AF,∴CG=CF,∠GDC=∠GCD=60°,∠ACF=∠F AC=30°,∴∠FCG=90°,∴CF⊥CG,故答案为:CG=CF,CF⊥CG;(2)类比探究仍然成立,理由如下:∵∠ACB=∠DCE=90°,∠BAC=∠DEC=30°,AC=DC=,∴∠BCD=∠ACE,AC=BC,CE=CD,∴=,∴△BCD∽△ACE,∴,∠CAE=∠CBD,∵点F,G分别是BD,AE的中点,∴BF=BD,AG=AE,∴∴△ACG∽△BCF,∴,∠BCF=∠ACG,∴CG=CF,∠ACB=∠FCG=90°,∴CF⊥CG;(3)问题解决如图,延长BC至H,使BC=CH=1,连接DH,∵点F是BD中点,BC=CH=1,∴CF=DH,由(2)可知,CF⊥CG,∴△CFG的面积=×CF×CG=CF2,∴△CFG的面积=DH2,∴当DH取最大值时,△CFG的面积有最大值,当DH取最小值时,△CFG的面积有最小值,∵CD=,∴点D在以点C为圆心,为半径的圆上,∴当点D在射线HC的延长线上时,DH有最大值为+1,∴△CFG的面积最大值=(+1)2=,当点D在射线CH的延长线上时,DH有最小值为﹣1,∴△CFG的面积最小值=(﹣1)2=.11.解:(1)∵Rt△ABC中,∠C=90°,sin B=,∴∠B=30°,∴∠A=60°,①如图1,过点E作EH⊥BC于点H,∵ED⊥AC∴∠ADE=∠C=90°,∴四边形CDEH是矩形,即EH=CD,∴在Rt△BEH中,∠B=30°,∴BE=2EH∴BE=2CD;②BE=2CD成立,理由:∵△ABC和△ADE都是直角三角形,∴∠BAC=∠EAD=60°,∴∠CAD=∠BAE,又∵,,∴,∴△ACD∽△ABE,∴,又∵Rt△ABC中,=2,∴=2,即BE=2CD;(2)∵sin B=,∴∠ABC=∠BAC=∠DAE=45°,∵ED⊥AD,∴∠AED=∠BAC=45°,∴AD=DE,AC=BC,将△ADE绕点A旋转∠DEB=90°,分两种情况:①如图3所示,过A作AF⊥BE交BE的延长线于F,则∠F=90°,当∠DEB=90°时,∠ADE=∠DEF=90°,又∵AD=DE,∴四边形ADEF是正方形,∴AD=AF=EF=2,∵AC=10=BC,根据勾股定理得,AB=10,在Rt△ABF中,BF==6,∴BE=BF﹣EF=4,又∵△ABC和△ADE都是直角三角形,且∠BAC=∠EAD=45°,∴∠CAD=∠BAE,∵,,∴,∴△ACD∽△ABE,∴=,即=,∴CD=2;②如图4所示,过A作AF⊥BE于F,则∠AFE=∠AFB=90°,当∠DEB=90°时,∠DEB=∠ADE=90°,又∵AD=ED,∴四边形ADEF是正方形,∴AD=EF=AF=2,又∵AC=10=BC,∴AB=10,在Rt△ABF中,BF==6,∴BE=BF+EF=8,又∵△ACD∽△ABE,∴=,即=,∴CD=4,综上所述,线段CD的长为2或4.12.解:(1)等腰直角三角形,理由如下:∵AP∥BC,∴∠APC=∠BCP,∠APO=∠CBP,∵△OAP沿着AP折叠,∴∠APO=∠APC,OP=PC,∴∠PCB=∠PBC,∴PC=PB=OP=8,∴△BCP是等腰三角形,∵OA=OP=8,∴∠OP A=∠APC=45°,∴∠OPC=90°,∴△BCP是等腰直角三角形;(2)当t>0时,如图,∵△OAP沿着AP折叠,∴∠AOP=∠ACP=90°,OP=PC=t,∴∠ACP+∠BCP=180°,∴点A,点C,点B三点共线,∵点A(0,8),B(16,0),∴OA=8,OB=16,∴AB===8,∵tan∠ABO=,∴,∴t=4﹣4;当t<0时,如图,同理可求:t=﹣4﹣4;(3)∵△OAP沿着AP折叠,∴AC=AO=8,∠ACP=∠AOP=90°,∵BH⊥CP,∴∠ACP=∠BHC=90°,∵AH=BC,CH=CH,∴Rt△ACH≌Rt△BHC(HL)∴AC=BH,∴四边形AHBC是平行四边形,如图2,当0≤t≤16时,点H在PC上时,连接AB交CH于G,∵四边形AHBC是平行四边形,∴AG=BG=4,HG=CG,AC=BH=8,∴HG===4,在Rt△PHB中,PB2=BH2+PH2,∴(16﹣t)2=64+(t﹣8)2,∴t=8;如图3,当0≤t≤16时,点H在PC的延长线上时,∵四边形AHBC是平行四边形,∴AG=BG=4,HG=CG,AC=BH=8,∴HG===4,在Rt△PHB中,PB2=BH2+PH2,∴(16﹣t)2=64+(t+8)2,∴t=;如图4,当t<0时,同理可证:四边形ABHC是平行四边形,又∵AH=BC,∴四边形ABHC是矩形,∴AC=BH=8,AB=CH=8,在Rt△PHB中,PB2=BH2+PH2,∴(16﹣t)2=64+(t+8)2,∴t=16﹣8;当t>16时,如图5,∵四边形ABHC是矩形,∴AC=BH=8,AB=CH=8,CP=OP=t,在Rt△PHB中,PB2=BH2+PH2,∴(t﹣16)2=64+(t﹣8)2,∴t=16+8.综上所述:当t=8或或16﹣8或16+8时,存在AH=BC.13.(1)解:∵△BCF和△ACD都是等腰直角三角形,∴AC=CD,FC=BC=1,FB=,∵AD=BD,DE是△ABD的平分线,∴DE垂直平分AB,∴F A=FB=,∴AC=F A+FC=,∴CD=;(2)证明:如图2,过点C作CH⊥CE交ED于点H,∵△BCF和△ACD都是等腰直角三角形,∴AC=DC,FC=BC,∠ACB=∠DCF=90°;∴△ABC≌△DFC(SAS),∴∠BAC=∠CDF,∵∠ECH=90°,∴∠ACE+∠ACH=90°,∵∠ACD=90°,∴∠DCH+∠ACH=90°,∴∠ACE=∠DCH.在△ACE和△DCH中,,∴△ACE≌△DCH(ASA),∴AE=DH,CE=CH,∴EH=CE.∵DE=EH+DH=CE+AE;(3)解:如图3,连接OE,将OE绕点E顺时针旋转90°得到EQ,连接OQ,PQ,则OQ=OE.由(2)知,∠AED=∠ABC+∠CDF=∠ABC+∠BAC=90°,在Rt△AED中,点O是斜边AD的中点,∴OE=OD=AD=AC=,∴OQ=OE=,在△OED和△QEP中,,∴△OED≌△QEP(SAS),∴PQ=OD=.∵OP≤OQ+PQ=,当且仅当O、P、Q三点共线时,取“=”号,∴OP的最大值是.14.证明:(1)如图1,∵将△AEC以点C为旋转中心,逆时针旋转90°得到△BFC,∴△AEC≌△BFC,∴∠CAE=∠CBF,∵∠ACB=90°,∴∠CAE+∠EAB+∠CBA=90°,∴∠CBF+∠EAB+∠CBA=90°,∴∠APB=90°,∴AP⊥BF;(2)如图2,∵CE⊥AD,∴∠AEC=90°=∠CEP,∵将△AEC以点C为旋转中心,逆时针旋转90°得到△BFC,∴△AEC≌△BFC,∠ECF=90°,∴∠AEC=∠BFC=90°,CE=CF,∴四边形CEPF是正方形,∴EP=PF=CE=CF,∠EPF=90°,∵AD为BC边上的中线,∴CD=BD,又∵∠CDE=∠BDP,∠CED=∠BPD=90°,∴△CDE≌△BDP(AAS),∴CE=BP,∴EP=PF=BP,∴EP+FP=2BP;(3)结论仍然成立,理由如下:如图1,过点C作CN⊥AD于N,作CM⊥BF,交BF的延长线于M,∵将△AEC以点C为旋转中心,逆时针旋转90°得到△BFC,∴∠CAE=∠CBF,CE=CF,∵∠ACB=90°,∴∠CAE+∠EAB+∠CBA=90°,∴∠CBF+∠EAB+∠CBA=90°,∴∠APB=90°,又∵CN⊥AD,CM⊥BM,∴四边形CNPM是矩形,∵∠CAE=∠CBF,∠ANC=∠BMC=90°,AC=BC,∴△ACN≌△BCM(AAS),∴CM=CN,∴四边形CNPM是正方形,∴CN=CM=NP=MP,∵AD为BC边上的中线,∴CD=BD,又∵∠CDN=∠BDP,∠CND=∠BPD=90°,∴△CDN≌△BDP(AAS),∴CN=BP,∴CN=BP=NP=MP,∴EP+FP=EN+NP+FP=NP+MF+PF=NP+MP=2BP.15.证明:(1)如图1,连接OA,∵AB=AC,∠BAC=90°,OB=OC,∴AO⊥BC,OA=OB=OC,∠ABO=∠ACO=∠BAO=∠CAO=45°,∴∠MON=∠AOC=90°,∴∠AOM=∠CON,且AO=CO,∠BAO=∠ACO=45°,∴△AOM≌△CON(ASA)∴AM=CN;(2)证明:如图2,在BA上截取BG=AN,连接GO,AO,∵AB=AC,∠BAC=90°,OB=OC,∴AO⊥BC,OA=OB=OC,∠ABO=∠ACO=∠BAO=∠CAO=45°,∵BG=AN,∠ABO=∠NAO=45°,AO=BO,∴△BGO≌△AON(SAS),∴OG=ON,∠BOG=∠AON,∵∠MON=45°=∠AOM+∠AON,∴∠AOM+∠BOG=45°,∵∠AOB=90°,∴∠MOG=∠MON=45°,∵MO=MO,GO=NO,∴△GMO≌△NMO(SAS),∴GM=MN,∴BM=BG+GM=AN+MN;(3)MN=AN+BM,理由如下:如图3,过点O作OG⊥ON,连接AO,∵AB=AC,∠BAC=90°,OB=OC,∴AO⊥BC,OA=OB=OC,∠ABO=∠ACO=∠BAO=∠CAO=45°,∴∠GBO=∠NAO=135°,∵MO⊥GO,∴∠NOG=90°=∠AOB,∴∠BOG=∠AON,且AO=BO,∠NAO=∠GBO,∴△NAO≌△GBO(ASA),∴AN=GB,GO=ON,∵MO=MO,∠MON=∠GOM=45°,GO=NO,∴△MON≌△MOG(SAS),∴MN=MG,∵MG=MB+BG,∴MN=AN+BM.16.证明:(1)如图①中,∵MN⊥AB,∴∠PCA=∠PCB=90°.在△P AC和△PBC中,,∴△P AC≌△PBC(SAS),∴P A=PB.(2)如图②中,设直线l、m交于点O,连接AO、BO、CO.∵直线l是边AB的垂直平分线,又∵直线m是边BC的垂直平分线,∴OB=OC,∴OA=OC,∴点O在边AC的垂直平分线n上,∴直线l、m、n交于点O.(3)解:如图③中,连接BD,BE.∵BA=BC,∠ABC=120°,∴∠A=∠C=30°,∵边AB的垂直平分线交AC于点D,边BC的垂直平分线交AC于点E,∴DA=DB,EB=EC,∴∠A=∠DBA=30°,∠C=∠EBC=30°,∴∠BDE=∠A+∠DBA=60°,∠BED=∠C+∠EBC=60°,∴△BDE是等边三角形,∴AD=BD=DE=BE=EC,∵AC=15,∴DE=AC=5.故答案为5.17.解:(1)∵+|y﹣8|=0,又∵≥0,|y﹣8|≥0,∴x=2,y=8,∴A(2,8),∵AD⊥x轴,∴OD=2,AD=8,∵AD﹣OD=OE,∴E(﹣6,0).(2)如图1中,连接OG.由题意G(10,m).∵AD=DE=8,∠ADE=90°,∴∠AED=45°,∴∠OEF=∠OFE=45°,∴OE=OF=6,∴F(0,6),∴S=S△ODG+S△OFG﹣S△OFD=×2×m+×6×10﹣×2×6=m+24(0≤m≤8).(3)如图2中,设FG交AD于J,P(2,t),当点P在DJ上,点Q在AB上时,当S=26时,m=2,∴G(10,2),∴直线FG的解析式为y=﹣x+6,∴J(2,),由题意,•(﹣t)×10=2××2t×6,解得t=,∴P(2,),当点P在AJ上,点Q在BG上时,同法可得,•(t﹣)×10=2××(14﹣2t)×8,解得t=,∴P(2,).综上所述,满足条件的点P的坐标为(2,)或(2,).18.解:(1)如图1中,过点E作EH⊥BC于H.∵BD⊥CD,∴∠D=90°,∵∠ACB=90°,∴∠ACD+∠DCB=90°,∠DCB+∠DBC=90°,∴∠ACD=∠DBC,∴tan∠DBC=tan∠ACD=2,∴=2,∵AC=BC=6,∴BD=,CD=,∵EH⊥BC,∠EBH=45°,∴∠EHB=90°,∠EHB=∠HBE=45°,∴EH=BH,设EH=BH=m,则HC=2EH=2m,∴3m=6,∴m=2,∴EH=2,CH=4,∴EC===2,∴DE=CD﹣CE=﹣2=.(2)如图2中,过点A作AT⊥CE于T,在AG上取一点J,使得EJ=EG.∵EJ=EG,∴∠EJG=∠EGJ,∵∠CFG=EGJ,∴∠CFG=∠EJG,∴∠AFC=∠AJE,∵∠ATC=∠CDB=∠ACB=90°,∴∠ACT+∠DCB=90°,∠DCB+∠CBD=90°,∴∠ACT=∠CBD,∵AC=BC,∴△ATC≌△CDB(AAS),∴CT=BD,∵EC=2BD,∴CT=ET,∵AT⊥EC,∴AC=AE,∴∠ACT=∠AEC,∴∠ACF+∠FCD=∠EAJ+∠FDC,∵FC=FD,∴∠FCD=∠FDC,∴∠ACF=∠EAJ,∴△ACF≌△EAJ(AAS),∴AF=EJ=EG.(3)如图3中,取BC的中点T,连接DT,AT.∵AC=BC=6,∠ACT=90°,CT=TB=3,∴AT===3,∵CD⊥BD,∴∠CDB=90°,∴DT=BC=3,∴AD≥AT﹣DT,∴AD≥3﹣3,∴AD的最小值为3﹣3,∵△ADE是等腰直角三角形,AH⊥DE,∴DH=EH,∴AH=DE=AD,∴AH的最小值为﹣,此时,A,D,T共线,如图3﹣1中,过点D作DQ⊥AC于Q,过点E作EP⊥CA交CA 的延长线于P,过点H作HJ⊥AC于J.∵DQ∥CT,∴==,∴==,∴DQ=,AQ=,由△AQD≌△EPQ,可得PE=AQ=,∵EP∥HJ∥DQ,EH=HD,∴PJ=JQ,∴JH=(PE+DQ)=∴△ACH的面积=×6×=.19.解:(1)①如图1,∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°,∵点A,D,E在同一直线上,∴∠ADC=120°,∴∠BEC=120°,∴∠AEB=∠BEC﹣∠CED=60°,故答案为:60;②∵△ACD≌△BCE,∴AD=BE,故答案为:AD=BE;(2)∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS),∴BE=AD,∠ADC=∠BEC,∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°,∴∠AEB=∠BEC﹣∠CED=90°,∴AD2+AE2=AB2,∵AD=a,AE=b,AB=c,∴a2+b2=c2;(3)如图3,由(1)知△ACD≌△BCE,∴∠CAD=∠CBE,∵∠CAB=∠CBA=60°,∴∠OAB+∠OBA=120°,∴∠AOE=180°﹣120°=60°,如图4,同理求得∠AOB=60°,∴∠AOE=120°,∴∠AOE的度数是60°或120°.20.解:(1)如图3中,连接PB,延长BP交CQ的延长线于J,延长QC到R,设AC交BJ于点K.∵∠P AQ=∠BAC,∴∠CAQ=∠BAP,∵==cos30°=,∴△QAC∽△P AB,。

九年级数学下册常考【压轴题】类型+解题思路

九年级数学下册常考【压轴题】类型+解题思路

九年级数学下册常考【压轴题】类型+解题思路中考数学常考压轴题类型1、线段、角的计算与证明中考的解答题一般是分两到三部分的。

第一部分基本上都是一些简单题或者中档题,目的在于考察基础。

第二部分往往就是开始拉分的中难题了。

对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。

2、一元二次方程与函数在这一类问题当中,尤以涉及的动态几何问题最为艰难。

几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。

相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。

中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。

一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。

但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合。

3、多种函数交叉综合问题初中数学所涉及的函数就一次函数,反比例函数以及二次函数。

这类题目本身并不会太难,很少作为压轴题出现,一般都是作为一道中档次题目来考察考生对于一次函数以及反比例函数的掌握。

所以,在中考中面对这类问题,一定要做到避免失分。

4、列方程(组)解应用题在中考中,有一类题目说难不难,说不难又难,有的时候三两下就有了思路,有的时候苦思冥想很久也没有想法,这就是列方程或方程组解应用题。

方程,可以说是初中数学当中最重要的部分,所以也是中考中必考内容。

从近年来的中考来看,结合时事热点考的比较多,所以还需要考生有一些生活经验。

实际考试中,这类题目几乎要么得全分,要么一分不得,但是也就那么几种题型,所以考生只需多练多掌握各个题类,总结出一些定式,就可以从容应对了。

5、动态几何与函数问题整体说来,代几综合题大概有两个侧重,第一个是侧重几何方面,利用几何图形的性质结合代数知识来考察。

而另一个则是侧重代数方面,几何性质只是一个引入点,更多的考察了考生的计算功夫。

中考数学第15-16题(填空中档题2:相似、位似求长度与面积)考前预测

中考数学第15-16题(填空中档题2:相似、位似求长度与面积)考前预测

押中考数学第15-16题(填空中档题2:相似、位似求长度与面积)专题诠释:相似在中考里是每年必考的知识点。

在单独命题时,一般以考察线段长、周长和三角形面积为主,难度不大。

但相似可以与任何几何图形进行综合,综合性较强,难度较大。

在做题的时候,掌握题型的特征,准确计算是关键。

知识点一:根据相似求线段长2.(2022·辽宁鞍山·统考中考真题)如图,AB∥CD,AD,BC相交于点E,若AE:DE=1:2,3.(2022·四川宜宾·统考中考真题)如图,△ABC中,点E、F分别在边AB、AC上,∠1=∠2.若知识点二:相似与面积17.(2022·湖南怀化·统考中考真题)如图,△ABC中,点D、E分别是AB、AC的中点,若18.(2021·辽宁营口·统考中考真题)如图,DE是△ABC的中位线,F为DE中点,连接AF并〖考前预测〗2.(2023·陕西西安·高新一中校考模拟预测)如图,已知矩形ABCO与矩形ODEF是位似图形,3.(2023·四川成都·统考二模)如图,△ABC与△DEF位似,位似中心为点O.已知4.(2023·河南洛阳·统考一模)矩形ABCD中,AB=10,AD=4,点E是CD的动点,若5.(2023·北京延庆·统考一模)如图,在△ABC中,点D,E分别在边AB,AC上,且DE∥BC,若6.(2023·河北承德·校联考模拟预测)如图,在△ABP中,B、P两个顶点在x轴上,点A在x轴的上方,以点P为位似中心作△ABP的位似图形△CDP,其中点B、P、D在x轴上对应的数分别为−3、−1和3.(1)△ABP与△CDP的位似比为______;(2)若点A的纵坐标为a,则点C的纵坐标为______.7.(2023·山东济宁·统考一模)如图,在矩形ABCD中,AB=9,AD=12,点E在边CD上,且CE=4,点P是直线BC上的一个动点.若△APE是直角三角形,则CP的长为____________.8.(2023·重庆沙坪坝·重庆八中校考一模)在△ABC中,∠ABC=60°,AB=9,点D是AB 边上一点,BD=BC,连接CD,将△ADC沿CD翻折得到△A1DC,其中A1C与AB边交于点E,BE=4,连接A1B,则A1B的长为______.9.(2023·山东滨州·统考一模)如图,点P是△ABC的重心,过点P作DE∥AC交BC,AB于D,E,EF∥BC交AC于点F,若AC=8,BC=11,则四边形CDEF的周长为_____.10.(2023·上海金山·统考二模)如图,已知AD、BE是△ABC的中线,AD和BE交于点G,11.(2023·河北衡水·校联考模拟预测)如图,在矩形ABCD中,AB=4,BC=5,E点为BC边延12.(2023·湖北武汉·校联考模拟预测)如图,在△ABD中,∠A=90°,若BE=mAC,CD=13.(2023·山东淄博·统考一模)如图,点P在以MN为直径的半圆上运动(点P不与点M,14.(2023·浙江杭州·统考一模)如图,在锐角三角形ABC中,AD是BC边上的高线,CE是AB边上的中线.若CD=AE,∠BAD=2∠BCE,AC=a,则BC=________(用含a的代数式表示).15.(2023·河南开封·统考一模)如图,方形ABCD中,AB=8,点P为射线BC上任意一点(与点B、C不重合),连接AP,在AP的右侧作正方形APGH,连接AG,交射线CD于E,当ED长为2时,点BP的长为________.。

人教版初三数学下册中考复习课---几何中档题

人教版初三数学下册中考复习课---几何中档题

几何证明题(中档题)教学设计迳口中学:危艳芬一、复习目标:1、回顾三角形、四边形及圆的有关性质及定理,灵活运用这些知识来解决综合证明题。

2、规范学生的几何说理过程。

二、重点和难点:重点:能熟练运用三角形的全等及相似的判定定理与性质定理、等腰三角形的性质、平行四边形的判定定理及圆的切线判定定理等来解决综合证明题。

难点:培养学生的说理思维能力。

三、设计过程:【课前热身】:1、(2014昆明)已知:如图,点A、B、C、D在同一条直线上,AB=CD,AE∥CF,且AE=CF.环节一:与三角形、四边形有关的证明2、(2015青岛)已知:如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E。

(1)求证:△ABD≌△CAE;(2)连接DE,线段DE与AB之间有怎样的位置和数量关系?请证明你的结论。

环节二:综合运用:3、如图,已知在Rt△ABC中,∠C=90°,AD是∠BAC的角分线.(1)以AB上的一点O为圆心,AD为弦在图中作出⊙O.(不写作法,保留作图痕迹);(2)试判断直线BC与⊙O的位置关系,并证明你的结论;4、(2015安徽省改编)如图,矩形ABCD中,AB=8,BC=4.点E在边AB 上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形。

(1)求证:△FOC≌△EOA;(2)求AE的长。

环节三:拓展训练:5、如图,已知AB 是⊙O 的弦,半径OA =2,OA 和AB 的长度是关于x 的一元二次方程042=+-a x x 的两个实数根.(1)求弦AB 的长度;(2)计算AOB S ∆;(3)⊙O 上一动点P 从A 点出发,沿逆时针方向运动一周,当AOB POA S S ∆∆=时,求P 点所经过的弧长(不考虑点P 与点B 重合的情形).环节四:课堂小结:你对这节课还有什么疑惑?环节五:课后作业:1、如图,点B 在AE 上,点D 在AC 上,AB =AD.请你添加一个适当的条件,使△ABC ≌△ADE.(只能添加一个)(1)你添加的条件是_(2)添加条件后,请说明△ABC ≌△ADE 的理由.2、如图,在Rt △ABC 中,90BAC ∠=,AB =AC .(1)利用尺规,以AB 为直径作⊙O ,交BC 于点D ;(保留作图痕迹,不写作法)(2)在(1)所作的图形中,求证:2·AC CD CB =.3、已知△ABC 内接于⊙O ,过点A 作直线EF.(1)如图①所示,若AB 为⊙O 的直径,要使EF 成为⊙O 的切线,还需要添加的一个条件是(至少说出两种):_______________或者_______________________;(2)如图②所示,如果AB 是不过圆心O 的弦,且∠CAE =∠B ,那么EF 是⊙O 的切线吗?试证明你的判断.。

中考数学第21-22题(解答题中档题:锐角三角函数、反比例和一次函数综合)考前预测

中考数学第21-22题(解答题中档题:锐角三角函数、反比例和一次函数综合)考前预测

押中考数学第21-22题(解答题中档题:锐角三角函数、反比例和一次函数综合)专题诠释:实数、整式与三视图是中考必考题型。

在历年的中考中,主要以选择题的形式出现,内容较为简单,因此是中考数学中必须做对的题型。

考法上上主要以识记和理解的考察为主,区分不同的定义和运算规律,练出手感,保证全对!知识点一:锐角三角函数〖押题冲关〗1.(2023·山东济宁·统考二模)酒驾猛于虎,但很多人不以为是,为了加强人们对酒驾危害的认识,交警部门加大了对酒驾的检查力度,某市交警在2023年2月28日这天对本市各大主要交通路口进行车辆检查,如图,AC是该市解放路的一段,AE,BF,CD都是南北方向的街道,与解放路AC的交叉路口分别是A,B,C.已知出警点D位于点A的北偏东45∘方向、点B的北偏东30∘方向上,BD=2km,∠DBC=30∘.(1)求A、B的距离;(2)第一组交警负责路口A,求该组从出警点D到路口A的路程(行驶路线为D−C−B−A).(结果保留根号)2.(2023·湖北襄阳·统考模拟预测)小军与小明放学后看见楼前的小广场上有一架无人机正在定点拍摄小区全景,此时如图所示,小军在一楼B处测得无人机C的仰角∠CBE=60°,在楼顶A处的小明测得无人机C的仰角∠CAD=28°,他们所在的楼高约为120米,求此时无人机C离地面BE的高度.(参考数据:√3≈1.73,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)(1)求点B到点C之间的距离(结果保留根号);5.(2023·浙江绍兴·统考一模)某次科学实验中,小王将某个棱长为10cm正方体木块固定于水平木板OM上,OB=50cm,将木板OM绕一端点O旋转40°至OM′(即∠MOM′=40°)(如图为该操作的截面示意图).(1)求点C到C′竖直方向上升高度(即过点C,C′水平线之间的距离);(2)求点D到D′竖直方向上升高度(即过点D,D′水平线之间的距离).(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,(1)(2)题中结果精确到个位)6.(2023·河南新乡·统考二模)图1是一款摆臂遮阳篷的实物图,图2是其侧面示意图.如图2,点A,O为墙壁上的固定点,AO=1.5m,摆臂OB可绕点O旋转,旋转过程中遮阳篷AB可自由伸缩,篷面始终保持平整,当摆臂OB与墙壁垂直时,身高为1.65m的同学(MN=1.65m)站在遮阳篷下距离墙角1.2m(EN=1.2m)处,刚好不被阳光照射到,测得此时AB与摆臂OB的夹角∠ABO=45°,光线与水平地面EF的夹角∠BNF=71°,求AE的高度.(结果精确到0.1m.参考数据:sin71°≈0.95,cos71°≈0.33,tan71°≈2.90,√2≈1.41)7.(2023·四川成都·统考二模)如图是一座人行天桥的示意图,已知天桥的高度CD=6米,坡面BC的倾斜角∠CBD=45°,距B点8米处有一建筑物NM,为了方便行人推自行车过天桥,市政府决定降低坡面BC的坡度,把倾斜角由45°减至30°,即使得新坡面AC的倾斜角为∠CAD=30°.若新坡面底端A处与建筑物NM之间需要留下至少3米宽的人行道,那么该建筑物是否需要拆除?请说明理由.(结果精确到0.1米;参考数据:√2≈1.14,√3≈1.73)8.(2023·江苏宿迁·统考二模)如图,在坡角α为30°的斜坡上有一棵垂直于水平地面的大树AB,当太阳光线与水平线成45°角沿斜坡照下时,在斜坡上的树影BC长为18米,求大树AB的高.(结果精确到0.1米,√2≈1.414,√3≈1.732)9.(2023·四川成都·统考二模)如图,为了测量河对岸A,B两点间的距离,数学综合实践小组在河岸南侧选定观测点C,测得A,B均在C的东偏北60°方向上,沿正东方向行走60米至观测点D,测得B在D的西偏北30°方向上,A在D的西偏北69°方向上.求A,B两点间的距离是多少米(精确到个位)?(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,sin51°≈0.78,cos51°≈0.63,tan51°≈1.23,√3≈1.73)10.(2023·安徽滁州·统考二模)某学校数学活动小组决定利用所学的解直角三角形知识测量校园内一棵树AB的高度.如图,他们在地面上C处测得树顶A的仰角为30°,再往树的方向前进20m至D处,测得仰角为60°,点C,D,B在同一直线上,求树高AB.(身高忽略不计,结果保留根号)知识点二:反比例和一次函数综合模块二〖押题冲关〗(1)求一次函数的表达式:(1)求一次函数和反比例函数的解析式;(1)求m,n的值及反比例函数的解析式;(1)求直线和双曲线的解析式及点B的坐标;(1)求m的值;(1)求k的值;(2)求△ODE的面积.(x<0)上,点B在x轴上.将7.(2023·四川南充·统考二模)如图,点A(m,1)在双曲线y=kx线段AB平移到CD,点C仍在双曲线上,点D在y轴上,OB=2OD=2.(1)求m和k的值;(2)直线AC与x轴交于E,与y轴交于F.求证:OE=2OF.8.(2023·河南洛阳·东方二中校考二模)如图,在平面直角坐标系中,一次函数y=k1x+b的的图象的两个交点为A(−1,3)和B.图象与反比例函数y=k2x(1)求反比例函数的关系式;=2;(2)若一次函数y=k1x+b与x轴交于点C,且ABBC①求出k1与b的值;的解集为__________;②直接写出不等式k1x+b>k2x(3)若点F是直线OA上一点,F点的横坐标为m,连接AF,BF,△ABF的面积记为S,当S=2时,请直接写出m值__________.9.(2023·江苏苏州·校考一模)如图,在平面直角坐标系中,直线y1=k1x+b与反比例函的图象交于A、B两点,已知A(1,3m−4),B(m,1).数y2=k2x(1)求k1与k2的值;(2)直线DE在直线AB的下方且与AB平行,与x轴、y轴分别交于点D、E,点P是直线AB上的一动点,当△PDE的面积为1时,求直线DE的解析式.0.(2023·河南安阳·统考二模)如图,在平面直角坐标系中,一次函数y=kx+2(k≠0)的(x>0)的图象交于点A(a,3),与x轴交于点B(−4,0),与y轴交图象与反比例函数y=mx于点C.求:(1)k,m的值;(2)直线OP过原点,交反比例函数于点P,且OP∥AB,△PAC的面积.。

中考数学第23-24题(解答中档题:圆、二次函数的实际应用)考前预测

中考数学第23-24题(解答中档题:圆、二次函数的实际应用)考前预测

押中考数学第23-24题(解答中档题:圆、二次函数的实际应用)专题诠释:圆和二次函数的实际应用在了历年的中考中均有所考察,分值一般在20-24之间,分值较高且有一定的难度。

圆常常会结合勾股定理、全等、相似或锐角三角函数一起考察;二次函数的实际应用考察最多的是利润问题。

能根据题意进行合理的转化是做题的关键!知识点一:圆〖押题冲关〗1.(2023·四川成都·统考二模)如图,在Rt△ABC中,∠BAC=90°,BO平分∠ABC,交AC于点O.以点O为圆心,OA为半径作⊙O,交BO于点D,连接AD.(1)求证:BC为⊙O的切线;(2)若OA=3,OC=27,求AB的长;7(3)在(2)的条件下,求tan∠BAD的值.2.(2023·四川达州·统考一模)如图,△ABC为⊙O的内接三角形,P为BC延长线上一点,∠PAC=∠B,AD为⊙O的直径,过C作CG⊥AD交AD于E,交AB于F,交⊙O于G.(1)判断直线PA与⊙O的位置关系,并说明理由;(2)求证:AG2=AB⋅AF.3.(2023·浙江台州·统考一模)如图,△ABC内接于半圆O,已知AB是半圆O的直径.AB=10,AD平分∠BAC,分别交半圆O和BC于点D,E,过点D作DH⊥AB,垂足为点H,交BC于点F.(1)求证:EF=DF;⌢的长.(2)连接OD交BC于点G,若EG=FG,求BC4.(2023·安徽滁州·统考二模)如图,△ABC中,∠C=90°,BD平分∠ABC交AC于点D,BD的垂直平分线交AB于点O,以O为圆心,OB长为半径作⊙O.(1)求证:AC与⊙O相切于点D.(2)若BC=3,AC=4,求⊙O的半径.5.(2023·广东东莞·校考二模)如图,四边形ABCD内接于⊙O,AB为直径,BC=CD,过点C作CE⊥AB于点E,CH⊥AD交AD的延长线于点H,连接BD交CE于点G.(1)求证:CH是⊙O的切线:(2)若点D为AH的中点,求证:AD=BE;,CG=10,求BD的长.(3)若cos∠DBA=456.(2023·四川成都·统考二模)如图,D是以AB为直径的⊙O上一点,过点D的切线交AB的延长线于点E,过点B作BF⊥DE,垂足为点F,延长BF交AD的延长线于点C.(1)求证:AB=BC;(2)若⊙O的直径为5,sinA=3,求线段BF和BE的长.57.(2023·陕西西安·统考二模)如图,⊙O中两条互相垂直的弦AB,CD交于点E.(1)OM⊥CD,OM=6,⊙O的半径为10,求弦CD的长;(2)过点A作AN⊥BD交CD于点F,求证:CE=EF.8.(2023·北京房山·统考一模)如图,△ABC中,AB=AC,以BC为直径作⊙O,与边AC交于点D,过点D的⊙O的切线交BC的延长线于点E.(1)求证:∠BAC=2∠DBC;(2)若cos∠BAC=3,DE=4,求BE的长.59.(2023·安徽合肥·校考一模)如图,在Rt△ABC中,∠ACB=90°,以AC为弦作⊙O,交BC的延长线于点D,且DC=BC,∠CAB=∠BDE.(1)求证:DE为⊙O的切线;(2)若⊙O的半径为2,AB=BE,求劣弧AC的长.10.(2023·安徽阜阳·统考二模)如图,以△ABC的边AB为直径作半圆O交AC于点D,且OD∥BC,半圆O交BC于点E.(1)求证:∠C=∠CED.,AD=4,求半圆O的半径r.(2)若CE=83知识点二:二次函数的实际应用〖押题冲关〗(1)求此桥拱截面所在抛物线的表达式;4.(2023·四川成都·统考二模)2022年卡塔尔世界杯期间,某网点直接从工厂购进A,B两款拉伊卜吉祥物手办,A款的购进单价比B款贵20元,用400元购进A款手办的数量比用400元购进B款手办的数量少一件.A,B两款手办的销售单价分别是120元和95元.(注:利润=销售价-购进价)(1)求A,B两款手办的购进单价分别是多少元?(2)世界杯结束后,为了尽快减少库存,加快资金周转,网店决定对A款拉伊卜吉祥物手办进行调价销售,如果按照原价销售,平均每天可销售5件,经调查发现,每降价2元就可以多销售1件,试问将销售价定为每件多少元时,才能使A款手办平均每天的销售利润最大?5.(2023·安徽蚌埠·校考二模)如图,蚌埠花博园要建造一圆形喷水池,在水池中央垂直于水面安装一个柱子OA,O恰在水面中心,OA高3米,如图1,由柱子顶端处的喷头向外喷水,水流在各方面沿形状相同的抛物线落下.(1)如果要求设计成水流在离OA距离为1米处达到最高点,且与水面的距离是4米,那么水池的内部半径至少要多少米,才能使喷出的水不致落到池外;(利用图2所示的坐标系进行计算)(2)若水流喷出的抛物线形状与(1)相同,水池内部的半径为5米,要使水流不落到池外,此时水流达到的最高点与水面的距离应是多少米?6.(2023·河南三门峡·统考一模)如图,在某中学的一场篮球赛中,李明在距离篮圈中心5.5m (水平距离)处跳起投篮,球出手时离地面2.2m,当篮球运行的水平距离为3m时达到离地面的最大高度4m.已知篮球在空中的运行路线为一条抛物线,篮圈中心距地面3.05m.(1)建立如图所示的平面直角坐标系,求篮球运动路线所在抛物线的函数解析式;(2)场边看球的小丽认为,李明投出的此球不能命中篮圈中心.请通过计算说明小丽判断的正确性;(3)在球出手后,未达到最高点时,被防守队员拦截下来称为盖帽.但球到达最高点后,处于下落过程时,防守队员再出手拦截,属于犯规.在(1)的条件下,防守方球员张亮前来盖帽,已知张亮的最大摸球高度为3.2m,则他应该在李明前面多少米范围内跳起拦截才能盖帽成功?7.(2023·辽宁葫芦岛·统考一模)超市需购进某种商品,每件的进价为10元,该商品的销售单价不低于进价,且不高于20元,在销售过程中发现,该商品的日销售量y(件)与销售单价x(元)之间存在如图所示的一次函数关系:(1)求y与x之间的函数关系式,并直接写出自变量x的取值范围;(2)当该商品的销售单价为多少元时,销售这种商品的日销售利润最大?最大利润是多少?8.(2023·陕西西安·统考二模)2023兔年春节期间,全国各地举办焰火晚会,庆祝农历新年的到来.九年级学生王毅也在父母的陪同下前往指定区域燃放一种手持烟花,这种烟花每隔2s发射一枚花弹,每枚花弹的飞行路径视为同一条抛物线,飞行相同时间后发生爆炸,王毅燃放的手持烟花发射出的第一枚花弹的飞行高度h(单位:m)随飞行时间t(单位:s)变化的规律如下表:。

中考数学复习:刷题最好以基础题、中档题为主

中考数学复习:刷题最好以基础题、中档题为主

中考数学复习:刷题最好以基础题、中档题为主死记硬背是一种传统的教学方式,在我国有悠久的历史。

但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。

其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。

相反,它恰是提高学生语文水平的重要前提和基础。

这个工作可让学生分组负责收集整理,登在小黑板上,每周一换。

要求学生抽空抄录并且阅读成诵。

其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,可以分为人生、价值、理想、学习、成长、责任、友谊、爱心、探索、环保等多方面。

如此下去,除假期外,一年便可以积累40多则材料。

如果学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?“临近中考,数学复习应侧重规范严密答题方面的训练,而不应把复习重点放在能力提升和难点突破上。

”武汉市七一中学初三备课组组长张润忠表示,考前几天,学生应熟悉数学试题的结构,对基础题、中难题的分布要了然于心,对自己擅长和担心的试题也要心中有数,这样才能合理安排考试时间,对试题做出必要的取舍。

最后几天,学生不可避免地会刷题。

张润忠老师建议,数学刷题最好以基础题、中档题的训练为主,确保基础题、中档题不丢分、少丢分,确保计算的准确性和推理的严密性。

“考生应多做做以前考试中的错题、重点题,特别是老师强调过的好题”,边做边体会每一题常见考点及常用方法,尤其在考试不会做的时候,能按照老师讲过的方法去思考探究。

能力较好的同学可以多做做10、16、22、23、24中有代表性的题目,熟悉一些基本图形、基本结论、基本方法,同时对相关计算变形的技巧熟练掌握。

观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。

随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。

人教课标版九年级数学(下册)专题六《几何综合探究题》PPT课件

人教课标版九年级数学(下册)专题六《几何综合探究题》PPT课件
有的解题经验综合应用到新的问题情境下)
7、(2017·安徽)已知正方形ABCD,点M为边AB的中点.
(1)如图1,点G为线段CM上的一点,且∠AGB=90°,延长AG,BG分
别与边BC,CD交于点E,F. ① 证明:BE=CF; ② 求证:BE2=BC·CE. (2)如图2,在边BC上取一点E,满足BE2=BC·CE,连接AE交CM于
数学 专题六 几何综合探究题
几何综合探究题 是指以几何知识为主
或以几何变换为主的一类综合题,涉及知识主 要包括几何的定义、公理、定理以及几何变换 等内容.
解题策略:解决几何型综合题的关键是把 代数知识与几何图形的性质以及计算与证明有 机融合起来,进行分析、推理,从而达到解决 问题的目的.
几何综合探究题型连续5年作为安徽中考 压轴题.主要涉及利用三角形相似或全等的判定 及性质进行相关的探究与证明、三角形和四边 形的综合探究与证明(常涉及线段的数量和位置 关系、求线段长、特殊图形的判定等),这是安徽 中考对几何推理与证明能力考查的必然体现.把 观察、操作、证明融于一体,展示了数学探究的 过程和方法,体现了对数学活动经验的关注,也体 现了对培养学生发现和提出问题、分析和解决 问题能力的关注.预计2018年仍会考查与全等或 相似三角形有关的探究.(命题预测)
例题 、 如图示,已; 知CD是RtΔABC的斜 边AB上的高.
求证:(1)AC2 AD AB
变式一:变换结论(挖掘或推广结论)
1、如图示,已知CD是RtΔABC的斜边AB上 的高. 求证 :(2)CD2 AD BD
(3)BC2 BD BA
变式二:弱化条件 ; (减少条件,一般化条件,部分开放条件)
1.(08安徽中招20T,本题12分)如图四边形ABCD 和四边形ACED都是平行四边形,点R为DE的中点, BR分别交AC、CD于点P、Q。 (1)请写出图中各对相似三角形(相似比为1 除外); (2)求BP∶PQ∶QR
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何证明题(中档题)教学设计
迳口中学:危艳芬
一、复习目标:
1、回顾三角形、四边形及圆的有关性质及定理,灵活运用这些知识来解决综合证明题。

2、规范学生的几何说理过程。

二、重点和难点:
重点:能熟练运用三角形的全等及相似的判定定理与性质定理、等腰三角形的性质、平行四边形的判定定理及圆的切线判定定理等来解决综合证明题。

难点:培养学生的说理思维能力。

三、设计过程:
【课前热身】:
1、(2014昆明)已知:如图,点A、B、C、D在同一条直线上,AB=CD,AE∥CF,且AE=CF.
环节一:与三角形、四边形有关的证明
2、(2015青岛)已知:如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E。

(1)求证:△ABD≌△CAE;
(2)连接DE,线段DE与AB之间有怎样的位置和数量关系?请证明你的结论。

环节二:综合运用:
3、如图,已知在Rt△ABC中,∠C=90°,AD是∠BAC的角分线.
(1)以AB上的一点O为圆心,AD为弦在图中作出⊙O.(不写作法,保留作图痕迹);
(2)试判断直线BC与⊙O的位置关系,并证明你的结论;
4、(2015安徽省改编)如图,矩形ABCD中,AB=8,BC=4.点E在边AB 上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形。

(1)求证:△FOC≌△EOA;
(2)求AE的长。

环节三:拓展训练:
5、如图,已知AB 是⊙O 的弦,半径OA =2,OA 和
AB 的长度是关于x 的一元二次方程042=+-a x x 的两个实数根.
(1)求弦AB 的长度;
(2)计算AOB S ∆;
(3)⊙O 上一动点P 从A 点出发,沿逆时针方向运动一周,
当AOB POA S S ∆∆=时,求P 点所经过的弧长(不考虑点P 与点B 重合的情形).
环节四:课堂小结:你对这节课还有什么疑惑?
环节五:课后作业:
1、如图,点B 在AE 上,点D 在AC 上,AB =AD.请你添加一个适当的条件,使△ABC ≌△ADE.(只能添加一个)
(1)你添加的条件是_
(2)添加条件后,请说明△ABC ≌△ADE 的理由.
2、如图,在Rt △ABC 中,90BAC ∠=,AB =AC .
(1)利用尺规,以AB 为直径作⊙O ,交BC 于点D ;(保留作图痕迹,不写作法)
(2)在(1)所作的图形中,求证:2·AC CD CB =.
3、已知△ABC 内接于⊙O ,过点A 作直线EF.
(1)如图①所示,若AB 为⊙O 的直径,要使EF 成为⊙O 的切线,还需要添加的一个条件是(至少说出两种):_______________或者_______________________;
(2)如图②所示,如果AB 是不过圆心O 的弦,且∠CAE =∠B ,那么EF 是⊙O 的切线吗?试证明你的判断.。

相关文档
最新文档