湖南省长沙市铁路一中2017-2018学年八年级下学期期末考试数学试卷

合集下载

2017-2018学年湘教版八年级下册数学期末考试试卷及答案

2017-2018学年湘教版八年级下册数学期末考试试卷及答案

2017-2018学年第二学期八年级期末考试试卷数学题次一二三四五六总分合分人得分亲爱的同学:1、没有比脚再长的路,没有比人更高的山。

祝贺你完成八年级的学习,欢迎参加本次数学期末考试!你可以尽情地发挥,仔细、仔细、再仔细!祝你成功!2、本试卷共六道大题, 满分120分,考试时量120分钟。

一、选择题(本大题共10个小题, 每小题3分,满分30分. 每小题给出的四个选项中,只有一项是符合题设要求的,请把你认为符合题目要求的选项填在下表中相应的题号下) 1.下列几组数中,能作为直角三角形三边长度的是A. 2,3,4B. 4,5,6 C. 6,8,11 D. 5,12,13 2.在平面直角坐标系中,点(—1,2)在A .第一象限 B.第二象限 C.第三象限 D.第四象限3.点P (—2,3)关于y 轴的对称点的坐标是A 、(2,3 )B 、(-2,—3)C 、(—2,3)D 、(—3,2)4.下列汉字或字母中既是中心对称图形又是轴对称图形的是5.下列命题中,错误的是A .平行四边形的对角线互相平分B .菱形的对角线互相垂直平分C .矩形的对角线相等且互相垂直平分D .角平分线上的点到角两边的距离相等6.矩形的对角线长为20,两邻边之比为 3 : 4,则矩形的面积为A .56B. 192C. 20D. 以上答案都不对7.将直线y =kx -1向上平移2个单位长度,可得直线的解析式为A .y =kx +1B .y =kx -3C .y =kx +3D .y =kx -1 8.一次函数y =(k -3)x +2,若y 随x 的增大而增大,则k 的值可以是A .1 B .2 C .3 D .4 得分评卷人题号1 2 3 4 5 6 7 8 9 10答案。

2017—2018学年八年级数学下期末试题

2017—2018学年八年级数学下期末试题

2017 —2018 学年八年级数学下期末试题2017 ——2018 学年度第二学期期末教课质量检测八年级数学试题(满分120 分,时间:120 分钟)一、选择题: 本大题共8 个小题,每题 3 分,共24 分,在每题给出的四个选项A、B、c、D 中,只有一项为哪一项正确的,请把正确的选项填在答题卡的相应地点1. 在数轴上与原点的距离小于8 的点对应的x 知足A.x <8B.x >8c.x <-8 或x>8D.-8 <x<82. 将多项式﹣6a3b2﹣3a2b2+12a2b3 分解因式时,应提取的公因式是A .-3a2b2B.-3abc .-3a2bD.-3a3b33. 以下分式是最简分式的是A .B.c.D.4. 如图,在Rt △ABc中,∠c=90°,∠ABc=30°,AB=8,将△ABc沿cB 方向向右平移获得△DEF.若四边形ABED的面积为8,则平移距离为A .2B.4c.8D.165. 如下图,在△ABc 中,AB=Ac,AD 是中线,DE⊥A B,D F⊥Ac,垂足分别为E、F,则以下四个结论中:①AB 上任一点与Ac 上任一点到D的距离相等;②AD上任一点到AB、Ac 的距离相等;③∠BDE=∠cDF;④∠1=∠2. 正确的有A.1 个B.2 个c.3 个D.4 个6. 每千克元的糖果x 千克与每千克n 元的糖果y 千克混淆成杂拌糖,这样混淆后的杂拌糖果每千克的价钱为A. 元B. 元c. 元D.元7. 如图,□ABcD的对角线Ac,BD交于点o,已知AD=8,BD=12,Ac=6,则△oBc 的周长为A .13B.26c.20D.178. 如图,DE是△ABc的中位线,过点 c 作cF∥BD交DE的延伸线于点F,则以下结论正确的选项是A .EF=cFB.EF=DEc.cF<BDD.EF>DE二、填空题(本大题共 6 个小题,每题 3 分,共18 分,只需求把最后的结果填写在答题卡的相应地区内)9. 利用因式分解计算:2012-1992= ;10. 若x+y=1,xy=-7 ,则x2y+xy2= ;11. 已知x=2 时,分式的值为零,则k=;12. 公路全长为sk,骑自行车t 小时可抵达,为了提早半小时抵达,骑自行车每小时应多走;13. 一个多边形的内角和是外角和的 2 倍,则这个多边形的边数为;14. 如图,△AcE 是以□ABcD的对角线Ac 为边的等边三角形,点 c 与点E对于x 轴对称.若E点的坐标是(7,﹣3),则D点的坐标是.三、解答题(本大题共78 分, 解答要写出必需的文字说明、演算步骤)15. (6 分)分解因式(1)20a3-30a2 (2)25(x+y)2-9 (x-y )216. (6 分)计算:(1)(2)17. (6 分)A、B 两地相距200 千米,甲车从 A 地出发匀速开往B地,乙车同时从B地出发匀速开往A地,两车相遇时距A 地80 千米.已知乙车每小时比甲车多行驶30 千米,求甲、乙两车的速度.18. (7 分)已知:如图,在△ABc中,AB=Ac,点D 是Bc 的中点,作∠EAB=∠BAD,AE边交cB 的延伸线于点E,延伸AD到点F,使AF=AE,连结cF.求证:BE=cF.19.(8 分)“二广”高速在益阳境内的建设正在紧张地进行,现有大批的沙石需要运输.“益安”车队有载重量为8 吨、10 吨的卡车共12 辆,所有车辆运输一次能运输110 吨沙石.(1)求“益安”车队载重量为8 吨、10 吨的卡车各有多少辆?(2)跟着工程的进展,“益安”车队需要一次运输沙石165 吨以上,为了达成任务,准备新增购这两种卡车共 6 辆,车队有多少种购置方案,请你一一写出.20. (8 分)如图,在Rt△ABc 中,∠AcB=90°,点D, E 分别在AB,Ac 上,cE=Bc,连结cD,将线段cD 绕点c 按顺时针方向旋转90°后得cF,连结EF.(1) 增补达成图形;(2) 若E F∥cD,求证:∠BDc=90° .21.(8 分)下边是某同学对多项式(x2-4x+2)(x2-4x+6)+4进行因式分解的过程.解:设x2-4x=y ,原式=(y+2)(y+6)+4 (第一步)=y2+8y+16 (第二步)= (y+4)2(第三步)= (x2-4x+4 )2(第四步)(1)该同学第二步到第三步运用了因式分解的.A .提取公因式B.平方差公式c .两数和的完整平方公式D.两数差的完整平方公式(2)该同学因式分解的结果能否完全?.(填“完全”或“不完全”)若不完全,请直接写出因式分解的最后结果.( 3 )请你模仿以上方法尝试对多项式(x2-2x)(x2-2x+2)+1 进行因式分解.22. (8 分)如图,四边形ABcD中,对角线Ac,BD订交于点o,点E,F 分别在oA,oc 上(1)给出以下条件;①oB=oD,②∠1=∠2,③oE=oF,请你从中选用两个条件证明△BEo≌△DFo;(2)在(1)条件中你所选条件的前提下,增添AE=cF,求证:四边形ABcD是平行四边形.23. (10 分)如图,在□ABcD中,E是Bc 的中点,连结AE并延伸交Dc 的延伸线于点F.(1)求证:AB=cF;(2)连结DE,若AD=2AB,求证:D E⊥A F.24. (11 分)如图,在直角梯形ABcD中,AD∥Bc,∠B=90°,且AD=12c,AB=8c,Dc=10c,若动点P从A点出发,以每秒2c 的速度沿线段AD向点D运动;动点Q从c 点出发以每秒3c 的速度沿cB 向B 点运动,当P点抵达D点时,动点P、Q 同时停止运动,设点P、Q 同时出发,并运动了t 秒,回答以下问题:(1)Bc=c;(2)当t 为多少时,四边形PQcD成为平行四边形?(3)当t 为多少时,四边形PQcD为等腰梯形?(4)能否存在t ,使得△DQc是等腰三角形?若存在,请求出t 的值;若不存在,说明原因.2017 ——2018 学年度第二学期期末教课质量检测八年级数学试题参照答案一、选择题( 每题 3 分,共24 分)1 、D 2、A 3、c4、A 5、c6、B7、D8、B二、填空题( 每题 3 分,共18 分)9.1.-711.-612.-13.6( 六)14. (5,0)三、解答题( 共78 分 )15. ( 1 )解:20a3 ﹣30a2=10a2 (2a ﹣3)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分(2)解:25(x+y)2﹣9(x﹣y)2=[5 (x+y)+3(x﹣y)][5 (x+y)﹣3(x﹣y) ]= (8x+2y)(2x+8y);=4(4x+y)(x+4y) ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分16. (1)解:== ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分(2)====⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分17. 设甲车的速度是x 千米/ 时,乙车的速度为(x+30)千米/ 时,⋯⋯⋯⋯⋯ 1 分⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分解得,x=60,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分经检验,x=60 是原方程的解. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分则x+30=90,即甲车的速度是60 千米/ 时,乙车的速度是90 千米/ 时.⋯⋯⋯⋯⋯⋯⋯⋯ 6 分18. 证明:∵AB=Ac,点D是Bc 的中点,∴∠cAD= ∠BAD.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分又∵∠EAB=∠BAD,∴∠cAD= ∠EAB.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分在△AcF 和△ABE中,∴△AcF≌△ABE(SAS).∴BE=cF.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分19. 解:(1)设“益安”车队载重量为8 吨、10 吨的卡车分别有x 辆、y 辆,依据题意得:,解之得:.答:“益安”车队载重量为8 吨的卡车有 5 辆,10 吨的卡车有7 辆;⋯⋯⋯⋯⋯⋯⋯ 4 分(2)设载重量为8 吨的卡车增添了z 辆,依题意得:8(5+z)+10(7+6﹣z)>165,解之得:z <,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分∵z≥0 且为整数,∴z=0,1,2;∴6﹣z=6,5,4.∴车队共有 3 种购车方案:①载重量为8 吨的卡车购置 1 辆,10 吨的卡车购置 5 辆;②载重量为8 吨的卡车购置 2 辆,10 吨的卡车购置 4 辆;③载重量为8 吨的卡车不购置,10 吨的卡车购置 6 辆.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分20.(1) 解:补全图形,如图所示.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分(2) 证明:由旋转的性质得∠DcF=90°,Dc=Fc,∴∠DcE +∠EcF=90°. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分∵∠AcB=90°,∴∠DcE+∠BcD=90°,∴∠EcF=∠BcD∵E F∥Dc,∴∠EFc+∠DcF=180°,∴∠EFc=90°. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分在△BDc和△EFc 中,Dc =Fc,∠BcD=∠EcF,Bc=Ec,∴△BDc≌△EFc(SAS),∴∠BDc= ∠EFc=90°. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分21. 解:(1)该同学第二步到第三步运用了因式分解的两数和的完整平方公式;故选:c;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分(2)该同学因式分解的结果不完全,原式=(x2﹣4x+4)2=(x﹣2)4;故答案为:不彻底,(x ﹣ 2 )4⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(3)(x2﹣2x)(x2﹣2x+2)+1= (x2﹣2x)2+2(x2﹣2x)+1= (x2﹣2x+1)2= (x ﹣ 1 )4.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分22. 证明:(1)选用①②,∵在△BEo和△DFo中,∴△BEo ≌△DFo (ASA);⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(2)由(1)得:△BEo≌△DFo,∴Eo=Fo,Bo=Do,∵AE=cF,∴Ao=co,∴四边形ABcD 是平行四边形.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分23. 证明:(1)∵四边形ABcD是平行四边形,∴AB∥DF,∴∠ABE=∠FcE,∵E为Bc 中点,∴BE=cE,在△ABE与△FcE 中,,∴△ABE≌△FcE(ASA),∴AB=Fc;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分(2)∵AD=2AB,AB=Fc=cD,∴AD=DF,∵△ABE≌△FcE,∴AE=EF,∴DE ⊥A F.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分24. 解:依据题意得:PA=2t,cQ=3t ,则PD=AD-PA=12-2t.(1)如图,过D点作DE⊥Bc 于E,则四边形ABED为长方形,DE=AB=8c,AD=BE=12c,在直角△cDE中,∵∠cED=90°,Dc=10c,DE=8c,∴Ec==6c,∴Bc=BE+Ec=18c.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分(直接写出最后结果18c 即可)(2)∵AD∥Bc,即PD∥cQ,∴当PD=cQ时,四边形PQcD为平行四边形,即12-2t=3t ,解得t= 秒,故当t= 秒时四边形PQcD 为平行四边形;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(3)如图,过D点作DE⊥Bc 于E,则四边形ABED为长方形,DE=AB=8c,AD=BE=12,c当PQ=cD时,四边形PQcD为等腰梯形.过点P 作PF⊥Bc 于点F,过点D作DE⊥Bc 于点E,则四边形PDEF是长方形,EF=PD=12-2t,PF=DE.在Rt△PQF和Rt△cDE中,,∴Rt△PQF≌Rt△cDE(HL),∴QF=cE,∴Qc-PD=Qc-EF=QF+Ec=2c,E即3t- (12-2t )=12,解得:t= ,即当t= 时,四边形PQcD 为等腰梯形;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分(4)△DQc是等腰三角形时,分三种状况议论:①当Qc=Dc时,即3t=10 ,∴t= ;②当DQ=Dc时,∴t=4 ;③当QD=Qc时,3t ×∴t= .故存在t ,使得△DQc是等腰三角形,此时t 的值为秒或 4 秒或秒.⋯⋯⋯11 分③在Rt△D Q中,DQ2=D2+Q236t=100t=。

2017-2018学年度第二学期湘教版八年级期末数学试卷

2017-2018学年度第二学期湘教版八年级期末数学试卷

………○………装……………………订学校:_____姓名:_________级:___________考……装…………○………………○………线…………○………绝密★启用前 2017-2018学年度第二学期 湘教版八年级期末数学试卷 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.本卷23题,答卷时间120分,满分150分 A. B. C. D. 2.(本题3分)如图,△ABC 中,AC=BC ,∠C=90°,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于点E ,且AC=6cm ,则DE+BD 等于( ) A. 5cm B. 4cm C. 6cm D. 7cm 3.(本题3分)如图所示,AB ⊥BC ,CD ⊥BC ,垂足分别为B 、C ,AB =BC ,E 为BC 的中点,且AE ⊥BD 于F ,若CD =4cm ,则AB 的长度为( ) A. 4cm B. 8cm C. 9cm D. 10cm 4.(本题3分)平行四边形的一条边长是12cm ,那么它的两条对角线的长可能是( ) A. 8cm 和16cm B. 10cm 和16cm C. 8cm 和14cm D. 8cm 和12cm 5.(本题3分)如图,矩形纸片ABCD 中,AB=4,BC=6,将△ABC 沿AC 折叠,使点B 落在点E 处,CE 交AD 于点F ,则DF 的长等于( )………○…………订………○…………………○……※※※※线※※内※※题※※ …○…………○………A. 35B. 53C. 73D. 546.(本题3分)如图,在菱形ABCD 中,AC=8,BD=6,则△ABC 的周长是( )A. 14B. 16C. 18D. 207.(本题3分)如图所示,在△ABC 中,AB=12,BC=10,点O 为AC 的中点,则BO 的取值范围是( )A. 1<BO <11B. 2<BO <22C. 10<BO <12D. 5<BO <68.(本题3分)在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是( )A. 频率就是概率B. 频率与试验次数无关C. 概率是随机的,与频率无关D. 随着试验次数的增加,频率一般会越来越接近概率9.(本题3分)如图所示,若点E 的坐标为(-2,1),点F 的坐标为(1,-1),则点G 的坐标为( )A. (1,2)B. (2,2)C. (2,1)D. (1,1)10.(本题3分)根据下图所示程序计算函数值,若输入的x 的值为25,则输出的函数值为( )外…………○…装………○…………订…………○……学____姓名:_______班级:___________考号:○…………装……………订…………○………线…………○……………………装…………○… A. 32 B. 25 C. 425 D. 254 二、填空题(计32分) 11.(本题4分)在△ABC 中,∠C=90°,BC=16,∠BAC 的平分线交BC 于D ,且BD :DC=5:3,则D 到AB 的距离为_____________. 12.(本题4分)如图,OP 平分∠MON ,PA ⊥ON 于点A ,点Q 是射线OM 上的一个动点,若PA =2.则PQ 的最小值是___________. 13.(本题4分)如图,在□ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,AE=4,AF=6,AB+AD=20,则□ABCD 的面积为_____. 14.(本题4分)一个四边形的边长依次是a ,b ,c ,d ,且a 2+b 2+c 2+d 2=2ac +2bd ,则这个四边形是______,依据是________. 15.(本题4分)如图,一所学校的平面示意图中,如果图书馆的位置记作(3,2),实验楼的位置记作(1,﹣1),则校门的位置记作________. 16.(本题4分)小明从A 地出发行走到B 地,并从B 地返回到A 地,同时小张从B 地骑车匀速到达A 地后,发现忘带东西,立刻以原速返回取到东西后,再以原速赶往A 地,结果与小明同时到达A 地,如图为小明离A 地距离s (单位:km)与所用时间t (单位:h)之间关系,则小明与小张第2次相遇时离A 地_____km .…………○………○…………………○…………线……○……※※请※装※※订※※线※※※※题※※ …○…线………○……17.(本题4分)某市内有一条主干路段,为了使行车安全同时也能增加车流量,规定通过该路段的汽车时速不得低于40km/h ,也不得超过70km/h ,否则视为违规扣分.某天有1000辆汽车经过了该路段,经过雷达测速得到这些汽车行驶时速的频率分布直方图如图所示,则违规扣分的汽车大约为________辆.18.(本题4分)如图,在平面直角坐标系中,点A 是x 轴正半轴上的一个动点,点C 是y 轴正半轴上的点,BC ⊥AC 于点C .已知AC=8,BC=3.(1)线段AC 的中点到原点的距离是_____;(2)点B 到原点的最大距离是_____.三、解答题(计58分)ABCD ,DE 是∠ADC 的角平分线,交BC 于点E .(1)求证:CD=CE ;(2)若BE=CE ,∠B=80°,求∠DAE 的度数.…○…………………○……学校:_________:___________ ………○…………订…………○…………内 20.(本题8分)如图,点E ,F 分别在菱形ABCD 的边DC ,DA 上,且CE=AF . 求证:∠ABF=∠CBE .21.(本题8分)如图所示,E ,F 分别为平行四边形ABCD 中AD ,BC 的中点,G ,H 在BD 上,且 BG =DH ,求证四边形EGFH 是平行四边形.○…………订……………○※※订※※线※※内※※线………的中点. 若AB=23BC=3DE=12,求四边形DEFG 的周长.23.(本题8分)已知:如图,△ABC 中,D 是BC 边的中点,AE 平分∠BAC ,BE ⊥AE 于E 点,若AB =5,AC =7,求ED .24.(本题9分)某移动通信公司开设了两种通信业务,“全球通”:使用时首先缴50元月租费,然后每通话1分钟,付话费0.4元;“动感地带”:不缴月租费,每通话1分钟,付话费0.6元(本题的通话均指市内通话).若一个月通话x 分钟,两种方式的费用分别为y 1元和y 2元.(1)写出y 1,y 2与x 之间的关系式;(2)一个月内通话多少分钟,两种方式费用相同?(3)某人估计一个月内通话300分钟,应选择哪种方式更合算些?………○…………装…学校:___________姓名:……装…………○…………订………25.(本题9分)为了提高学生书写汉字的能力.增强保护汉字的意识,我区举办了“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表: 请结合图表完成下列各题: (1)求表中a 的值; (2)请把频数分布直方图补充完整; (3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?参考答案1.A【解析】根据中心对称的定义可知只有A选项符合,故选A.2.C【解析】试题解析:∵∠C=90°,AD平分∠CAB交BC于D,DE⊥AB,∴CD=DE,∴DE+BD=CD+BD=BC,∵AC=BC,∴DE+BD=AC=6cm.故选C.3.B【解析】∵AB⊥BC,CD⊥BC,∴∠ABC=∠ACD=90°,∴∠AEB+∠A=90°.∵AE⊥BD,∴∠BFE=90°,∴∠AEB+∠FBE=90°,∴∠A=∠FBE,又∵AB=BC,∴△ABE≌△BCD,∴BE=CD=4cm,AB=BC,∵E为BC的中点,∴AB=BC=2BE=8cm.故选B.点睛:本题考查了等角的余角相等,三角形全等的判定与性质.运用等角的余角相等,得出∠A=∠BFE,从而得到,△AB E≌△BCD是解答本题的关键.4.B【解析】试题解析:对于A,两条对角线的一半长分别为4cm,8cm,由于4+8=12,故不能构成三角形,故A不符合题意;对于B,两条对角线的一半长分别为5cm,8cm,由于5+8>12,故能构成三角形,故B 符合题意;对于C,两条对角线的一半长分别为4cm,7cm,由于4+7<12,故不能构成三角形,故C不符合题意;对于D,两条对角线的一半长分别为4cm,6cm,由于4+6<12,故不能构成三角形,故D不符合题意.故选B.点睛:三角形三边关系:三角形任意两边之和大于第三边.5.B【解析】试题解析:∵矩形ABCD沿对角线AC对折,使△ABC落在△ACE的位置,∴AE=AB,∠E=∠B=90°,又∵四边形ABCD为矩形,∴AB=CD,∴AE=DC,而∠AFE=∠DFC,∵在△AEF 与△CDF 中,∠AFE =∠CFD∠E =∠D AE =CD,∴△AEF ≌△CDF (AAS ),∴EF=DF ;∵四边形ABCD 为矩形,∴AD=BC=6,CD=AB=4,∵Rt △AEF ≌Rt △CDF ,∴FC=FA ,设FA=x ,则FC=x ,FD=6﹣x ,在Rt △CDF 中,CF 2=CD 2+DF 2,即x 2=42+(6﹣x )2,解得x=133,则FD=6﹣x=53.故选B .6.C【解析】试题解析:∵在菱形ABCD 中,AC=8,BD=6,∴AB=BC ,∠AOB=90°,AO=4,BO=3,∴BC=AB= 3+4=5,∴△ABC 的周长=AB+BC+AC=5+5+8=18.故选C .7.A【解析】如图延长BO 到D ,使OB=OD ,连接CD ,AD ,则四边形ABCD 是平行四边形, 在△ABD 中,AD=10,BA=12,所以2<BD <22,所以1<BO <11故选A .8.D【解析】因为大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率,所以D 选项说法正确,故选D.9.A【解析】根据点E ,F 的坐标分别确定出坐标轴及原点的位置并建立平面直角坐标系,即可得出点G 的坐标.解:由点E 坐标为(−2,1),点F 坐标为(1,−1)可知左数第四条竖线是y 轴,点E 与点F 中间的横线是x 轴,其交点是原点,则点G 的坐标为(1,2).故选A.点睛:本题主要考查点的坐标.根据已知条件正确建立平面直角坐标系是解题的关键.10.C【解析】试题分析:∵x=25,∴0≤x<2,把x=25代入y=x2得y=225⎛⎫⎪⎝⎭=425,故选C.点睛:本题主要考查了分段函数,解答本题的关键就是弄清楚题图给出的计算程序.11.6【解析】试题解析:如图,过点D作DE⊥AB于E,∵BC=4cm,BD:DC=5:3,∴CD=35+3×16=6,∵AD是∠BAC的平分线,∴DE=CD=6.故答案为:6.12.2【解析】解:作PH⊥OM于M,如图,∵OP平分∠MON,PA⊥ON,∴PH=PA=2,∴点P到OM的距离为2,∴Q点运动到H点时,PQ最小,即PQ的最小值为2.故答案为:2.13.48【解析】设BC=x,∵AB+AD=20, 所以BC+CD=20,∴CD=20-x,∵□ABCD的面积=BC•AE=CD•AF,∴4x=6(20-x),解得x=12,∴□ABCD的面积=BC•AE=12×4=48,故答案为:48.14.平行四边形两组对边分别相等的四边形是平行四边形【解析】解:a2+b2+c2+d2=2ac+2bd,(a2﹣2ac+c2)+(b2﹣2bd+d2)=0,(a﹣c)2+(b﹣d)2=0,∴a﹣c=0,b﹣d=0,∴a=c,b=d,∴四边形是平行四边形(两组对边分别相等的四边形是平行四边形).故答案为:平行四边形,两组对边分别相等的四边形是平行四边形.点睛:本题考查了配方法的应用.用到的知识点为:(a2﹣2ab+b2)=(a﹣b)2;两个非负数的和为0,这两个数均为0;两组对边分别相等的四边形是平行四边形.15.(﹣2,0)【解析】解:建立坐标系如图所示,由图象可知,校门的位置记作(﹣2,0).故答案为:(﹣2,0).点睛:本题考查坐标确定位置,解题的关键是坐标系的建立,学会根据条件建立坐标系.16.20【解析】解:小明的速度=253km/h,小张的速度=2536=252km/h,设小明与小张第2次相遇时经历时间为t,由题意得:253t+252t=25×3,解得:t=185,则此时小明离A地的距离=25﹣253×(185﹣3)=20km.故答案为:20.点睛:本题考查了函数的图象,解答本题的关键是仔细分析,得出两人第二次相遇在什么阶段,这样方便我们得出方程,有一定难度.17.160【解析】如图,低于40km/h的频率为0.05,超过70km/h的车辆的频率为0.11,又某天,有1000辆汽车经过了该路段,故违规扣分的车辆大约为1000×(0.05+0.11)=160辆,故答案为:160.【点睛】本题考查了用样本的频率分布估计总体分布、频率分布直方图等,解题时要注意直方图中纵轴的单位与横轴的单位.18. 4 9【解析】(1)因为∠AOC=90°,AC=8,所以线段AC的中点到原点的距离是: 12,AC=4,(2)取AC的中点E,连接BE,OE,OB,因为∠AOC=90°,AC=8,所以OE=CE=12,AC=4,因为BC⊥AC,BC=3,所以BE=5,若点O,E,B不在一条直线上,则OB<OE+BE=9,若点O,E,B在一条直线上,则OB=OE+BE=9,故答案为:4,9.19.(1)证明见解析;(2)∠DAE=50°.【解析】试题分析:(1)根据DE是∠ADC的角平分线得到∠1=∠2,再根据平行四边形的性质得到∠1=∠3,所以∠2=∠3,根据等角对等边即可得证;(2)先根据BE=CE结合CD=CE得到△ABE是等腰三角形,求出∠BAE的度数,再根据平行四边形邻角互补得到∠BAD=100°,所以∠DAE可求.(1)证明:如图,在平行四边形ABCD中,∵AD∥BC∴∠1=∠3又∵∠1=∠2,∴∠2=∠3,∴CD=CE;(2)解:∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,又∵CD=CE,BE=CE,∴AB=BE,∴∠BAE=∠BEA.∵∠B=80°,∴∠BAE=50°,∴∠DAE=180°﹣50°﹣80°=50°.点睛:本题主要考查平行四边形的性质,根据平行四边形的性质中对边平行,以及DE是∠ADC的平分线,证明△DEC是等腰三角形,以类似的方法也可以求出∠DAE的角度. 20.证明见解析.【解析】试题分析:根据菱形的性质可得AB=BC,∠A=∠C,再证明ΔABF≌CBE,根据全等三角形的性质可得结论.试题解析:∵四边形ABCD是菱形,∴AB=BC,∠A=∠C,∵在△ABF和△CBE中,AF=CE,∠A=∠CAB=CB∴△ABF≌△CBE(SAS),∴∠ABF=∠CBE.21.答案见解析【解析】试题分析:由四边形ABCD是平行四边形,得到AD=BC,AD∥BC,由AD∥BC,得到∠ADB=∠DBC,因为E、F分别为▱ABCD的边AD、BC的中点,得到DE=BF,由三角形全等证得EH=FG,∠EHD=∠FGB,得到EH∥FG,证出四边形FGEH是平行四边形.试题解析:证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ADB=∠DBC.∵E、F分别为▱ABCD的边AD、BC的中点,∴DE=BF.在△DEH与△BFG中,∵DE=BF,∠EDH=∠FBG,DH=BG,∴△DEH≌△BFG,∴EH=FG,∠EHD=∠FGB,∴∠EHG=∠FGH,∴EH∥FG,∴四边形FGEH是平行四边形.22.25【解析】试题分析:依据AB=23BC=3DE=12,即可求得DE、AB、BC的长,利用三角形的中位线定理即可求得GF和EF的长,根据直角三角形斜边上的中线等于斜边的一半,求得DG的长,则四边形的周长即可求解.试题解析:∵AB=23BC=3DE=12,∴BC=18,DE=4,∵AD⊥BC,G是AB的中点,∴DG=12AB=6,∵E,F,G分别是BC,AC,AB的中点,∴FG=12BC=9,EF=12AB=6,∴四边形DEFG的周长为4+6+9+6=25.【点睛】本题考查了三角形中位线定理,直角三角形斜边上的中线的性质等,解题的关键是结合图形灵活应用相关的定理与性质.23.ED=1.【解析】延长BE交AC于F,∵AE平分∠BAC,∴∠BAE=∠CAE,∵BE⊥AE,AE=AE,∴△ABE≌△AFE,∴AF=AB,BE=EF,∵AB=5,∴AF=5,∵AC=7,∴CF=AC-AF=7-5=2,∵D为BC中点,∴BD=CD,∴DE是△BCF的中位线,∴DE=12CF=1.【点睛】本题主要考查了全等三角形的判定与性质、三角形中位线定理,解题的关键是正确添加辅助线.24.解:(1)y1=50+0.4x,y2=0.6x (2)当每个月通话250分钟时,两种方式费用相同(3)使用“全球通”合算【解析】试题分析:(1)理解每种通信业务的付费方式,依据每分钟通话费用×通话时长便可确定每种方式的费用,进而写出y1、y2的关系式;对于(2),令y1=y2,解方程即可;对于(3),令x=300,分别求出y1、y2的值,再做比较即可.解:(1)由题知,y1=50+0.4x,y2=0.6x;(2)令y1=y2,则50+0.4x=0.6x,解之得x=250,所以通话250分钟两种方式费用相同;(3)令x=300,则y1=50+0.4×300=170;y2=0.6×300=180.所以一个月通话300分钟,选择全球通合算.25.(1)16;(2)见解析;(3)52%.【解析】试题分析:(1)用总数50减去其他各组的频数即可求得a的值;(2)由(1)的结果即可把频数分布直方图补充完整;(3)由百分比的意义即可求解.试题解析:(1)a=50﹣4﹣6﹣14﹣10=16;(2)如图所示:(3)本次测试的优秀率是:(16+10)÷50×100%=52%.。

2017---2018学年度第二学期湘教版八年级期末考试数学试卷

2017---2018学年度第二学期湘教版八年级期末考试数学试卷

绝密★启用前 2017---2018学年度第二学期湘教版八年级期末考试数学试卷 考试时间:100分钟;满分120分 一、单选题(计30分)1.(本题3分)如图,Rt △ABC 中,∠C=90°,AD 是∠BAC 的平分线,CD=3,AB=10,则△ABD 的面积等于( ) A. 30 B. 24 C. 15 D. 10 2.(本题3分)如图,OP 平分∠AOB ,PC ⊥OA 于C ,点D 是OB 上的动点,若PC=6cm 则PD 的长可以是( ). A. 3cm B. 4cm C. 5cm D. 6 cm 3.(本题3分)如图,四边形 ABCD 中,AD =BC ,E 、F 、G 分别是 AB 、CD 、AC 的中点,若∠DAC =20 º,∠ACB =90 º,则 ∠FEG =( ) A. B. C. D. 4.(本题3分)如图,在四边形ABCD 中,AB∥CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E ,F . (1)求证:△ABE≌△CDF; (2)若AC 与BD 交于点O ,求证:AC 与BD 互相平分.5.(本题3分)如图,将正方形OABC 放在平面3直角坐标系中,O 是原点,A 的坐标为(1,3),则点B 的坐标为( )A. (1-3,3+1)B. (-3,3+1)C. (-1,3+1)D. (-1,)6.(本题3分)如图,小手盖住的点的坐标可能为( ).A. B. C. D.7.(本题3分)点P 在第二象限内,点P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为( )A. (-4,3)B. (-3,-4)C. (3,-4)D. (-3,4)8.(本题3分)如图,在直角坐标系中,已知点A (﹣3,0)、B (0,4),对△OAB 连续作旋转变换,依次得到△1、△2、△3、△4…,则△2017的直角顶点的坐标为.( ).A. (4032,0)B. (4032,512) C. (8064,0) D. (8052, 512)9.(本题3分)一个密闭不透明的盒子里有若干个白球和黑球,在不允许将球倒出来的情况下,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中80次摸到黑球,估计摸到白球的概率为( )A. 0.4B. 0.2C. 0.8D. 0.610.(本题3分)依据国家实行的《国家学生体质健康标准》,对怀柔区初一学生身高进行抽样调查,以便总结怀柔区初一学生现存的身高问题,分析其影响因素,为学生的健康发展及学校体育教育改革提出合理项建议.已知怀柔区初一学生有男生840人,女生800人,他们的身高在150≤x <175范围内,随机抽取初一学生进行抽样调查.抽取的根据统计图表提供的信息,下列说法中①抽取男生的样本中,身高在155≤x <165之间的学生有18人; ②初一学生中女生的身高的中位数在B 组; ③抽取的样本中,抽取女生的样本容量是38; ④初一学生身高在160≤x <170之间的学生约有800人. 其中合理的是 A. ①② B. ①④ C. ②④ D. ③④ 二、填空题(计32分) 11.(本题4分)如图,已知ABC ∆的周长是32,OB,OC 分别平分ABC ∠和ACB ∠, OD BC ⊥于D,且6OD =, ABC ∆的面积是_________. 12.(本题4分)在▱ABCD 中,点O 是对角线AC 、BD 的交点,AC 垂直于BC ,且,,则______cm . 13.(本题4分)已知A(-2,1),B(-6,0),若白棋A 飞挂后,黑棋C 尖顶,黑棋C 的坐标为(______),____ ). 14.(本题4分)如图,在平面直角坐标系中,点A 的坐标为(2.5,1),连接OA 并延15.(本题4分)将直线向上平移2个单位长度,平移后直线的解析式为__________. 16.(本题4分)已知,平面直角坐标系中,O 为坐标原点,一次函数122y x =+的图像交x 轴于点A ,交y 轴于点B ,则⊿AOB 的面积=____________. 17.(本题4分)一个不透明的袋中装有除颜色外均相同的9个红球,3个白球,若干个绿球,每次摇匀后随机摸出一个球,记下颜色后再放回袋中,经过大量重复实验后,发现摸到绿球的概率稳定在0.2,则袋中有绿球______个.18.(本题4分)为了解各年龄段观众对某电视节目的收视率,小明调查了部分观众的收视情况,并分成A ,B ,C ,D ,E ,F 六组进行调查,其频率分布直方图如图所示,各长方形上方的数据表示该组的频率,若E 组的频数为48,那么被调查的观众总人数为____________.三、解答题(计58分)19.(本题8分)如图,在Rt △ABC 中,∠C=90°.作∠BAC 的平分线AP 交边BC 于点D. (保留作图痕迹,不写作法);若∠BAC=28°,求∠ADB 的度数.20.(本题8分)如图,△ABC 与△DEF 边BC 、EF 在同一直线上,AC 与DE 相交于点G ,且∠ABC=∠DE F =90°,AC =DF ,BE =CF. (1)求证:△ABC≌△DEF; (2)若AB =3,DF -EF =1,求EF 的长.21.(本题8分)21.(本题8分)已知:如图,在平行四边形ABCD 中,AE⊥BD,CF⊥BD,垂足分别为E ,F .求证:△ADE≌△CBF . 22.(本题8分)如图,▱ABCD 的对角线AC 、BD 交于点O ,E 、F 分别是AO 、CO 的中点,连接BE 、DE 、DF 、BF , (1)求证:四边形EBFD 是平行四边形. (2)求证:当AC =2BD 时,四边形EBFD 是矩形.23.(本题8分)如图,已知A (-2,3)、B (4,3)、C (-1,-3)(1)求点C 到x 轴的距离;(2)求△ABC 的面积;(3)点P 在y 轴上,当△ABP 的面积为6时,请直接写出点P 的坐标.24.(本题9分)文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本. (1)甲乙两种图书的售价分别为每本多少元? (2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)25.(本题9分)某市开展“弘扬中华传统文化”系列活动,为了解本次活动中竞赛项目“传统文化”笔试情况,随机抽查了部分参赛学生的成绩,整理并制作下列图表(尚未完整).请根据图表提供的信息,解答下列问题: (1)本次调查的样本容量为_______;在表中:m=______,n=_______; (2)补全频数分布直方图; (3)若小聪同学的比赛成绩恰好是所有抽查学生成绩的中位数,则小聪同学的成绩落在_______________________分数段内; (4)如果比赛成绩80分以上(含80分)为优秀,那么该竞赛项目的优秀率是多少?参考答案1.C【解析】分析:如下图,过点D作DE⊥AB于点E,由已知条件易得DE=DC=3,结合AB=10即可由三角形的面积计算公式求得△ABD的面积了.详解:如下图,过点D作DE⊥AB于点E,∵A D平分∠BAC,∠C=90°,∴DE=DC=3,又∵AB=10,∴S△ABD=AB·DE=.故选C.点睛:作出如图所示的辅助线,由“角平分线上的点到角两边的距离相等得到DE=DC=3”是正确解答本题的关键.2.D【解析】分析:过点P作PD⊥OB于D,根据角平分线上的点到角的两边距离相等可得PD=PC,从而求解.详解:如图,过点P作PD⊥OB于D,∵OP平分∠AOB,PC⊥OA,∴PD=PC=6cm,故选D.点睛:本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键,作出辅助线更形象直观.3.A【解析】分析:利用三角形的中位线定理可得EG、FG分别是△ABC和△ADC两个三角形的中位线,从而求出EG=FG,继而求得∠FGC和∠EGC的度数,再根据EG=FG,利用三角形内角和定理即可求出∠FEG的度数.详解:∵E、F、G分别是AB、CD、AC的中点,∴EG、FG分别是△ABC和△ADC两个三角形的中位线,∴EG∥BC,FG∥AD,且EG=FG=AD=,∴∠FGC=∠DAC=20°,∠EGC=180°-∠ACB=90°,∴∠EGF=∠FGC+∠EGC=110°,又∵EG=FG,∴∠FEG=(180°-∠EGF)=(180°-110°)=35°.故选A.点睛:本题主要考查了三角形中位线定理、等腰三角形的判定与性质、平行线的性质及三角形内角和定理等知识点的理解和掌握,此题涉及到的知识点较多,有一定难度,属于中档题.4.见解析【解析】分析:(1)用ASA判定两三角形全等即可证明.(2)只要证明四边形ABCD是平行四边形即可解决问题.详解:(1)∵BF=DE,∴BF-EF=DE-EF,即BE=DF,∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,∵AB=CD,∴Rt△ABE≌Rt△CDF(HL);(2)连接AC,如图:∵△ABE≌△CDF,∴∠ABE=∠CDF,∴AB∥CD,∵AB=CD,∴四边形ABCD是平行四边形,∴AC与BD互相平分.点睛:考查全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,学会添加常用辅助线,利用特殊四边形的性质解决问题.5.A【解析】分析:过点A作AF⊥x轴,过点C作CD⊥x轴,过点B作BE⊥CE,根据题意得出△AOF≌△COD≌△BCE,从而得出BE、CD和OD的长度,从而得出点B的坐标.详解:过点A作AF⊥x轴,过点C作CD⊥x轴,过点B作BE⊥CE,∵AO=CO=BC,∠F=∠D=∠E=90°,∠AOF=∠OCD=∠BCE,∴△AOF≌△COD≌△BCE,∴AF=OD=BE=,OF=CD=CE=1,∴点B的坐标为(1-,1+),故选A.点睛:本题考查了全等三角形的判定与性质,正方形的性质,坐标与图形性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.6.A【解析】分析:根据题意,小手盖住的点在第三象限,结合第三象限点的坐标特点,分析选项可得答案.详解:根据图示,小手盖住的点在第三象限,第三象限的点坐标特点是:横负纵负;分析选项可得只有A符合.故选:A.点睛:考查点的坐标特征,可以数形结合.7.D【解析】分析:点的纵坐标的绝对值表示点到x轴的距离,点的横坐标的绝对值表示点到y 轴的距离.本题根据这个即可得出答案.详解:根据题意可得:横坐标的绝对值为3,纵坐标的绝对值为4,∵点在第二象限,∴点P的坐标为(-3,4),故选D.点睛:考查点的坐标的相关知识,属于基础题型.用到的知识点为:点到x轴的距离为点的纵坐标的绝对值,点到y轴的距离点的横坐标的绝对值.8.C【解析】分析:观察不难发现,每3个三角形为一个循环组依次循环,用2017除以3,根据商是672,余1,可知三角形(2017)是第673个循环组的第一个三角形,直角顶点在x轴上,再根据一个循环组的距离为12,进行计算即可得解.详解:由图可知,每3个三角形为一个循环组依次循环,∵2017÷3=672……1,∴三角形(2017)是第673个循环组的第一个三角形,直角顶点的横坐标为:12×672=8064,∴三角形(2017)的直角顶点的坐标是(8064,0).故选:C.点睛:本题考查了坐标与图形变化-旋转,仔细观察图形,发现每3个三角形为一个循环组依次循环是解题的关键,也是本题的难点.9.C【解析】分析:共摸球400次,其中80次摸到黑球,那么有320次摸到白球;由此可知:摸到黑球与摸到白球的次数之比为80:320,由此可求摸到白球的概率.详解:由题意可的:=0.8.故选:C.点睛:本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.关键是根据白球和黑球的比得到相应的关系式.10.B【解析】分析:结合所给统计图表中的信息进行分析判断即可.详解:(1)由频数分布直方图中的信息可知,男生身高在的有8人,在的有10人,由此可得男生身高在的共有18人,故①中说法正确;(2)∵被抽查的女生中,身高属于A组的占比为10.5%,身高属于B组的占比为37.5%,∴被抽查的女生中,身高属于A、B两组的共占总数的48%,∴被抽查女生身高的中位数不在B组,故②中说法错误(3)由频数分布直方图中的信息可知,被抽查的男生总数为:4+8+10+12+8=42(人),∵被抽查的男生比女生多2人,∴被抽查的女生人数为:42-2=40(人),故③中说法错误;(4)由频数分布直方图中的信息可知,男生身高在这个范围内的共有22人,占被抽查男生总数的比为:,而由扇形统计图可知,女生身高在范围内的占被抽查女生总数的45%,又∵初一年级男生共有840人,女生共有800人,∴初一学生中身高在内的总数为:(人).故④中说法正确.综上所述:4个说法中,正确的是①④.故选B.点睛:读懂题意,清楚统计图表中各数据间的关系,是正确解答本题的关键.11.96【解析】分析:根据角平分线上的点到角的两边的距离相等可得点O 到AB 、AC 、BC 的距离都相等(即OE OD OF ==),从而可得到ABC 的面积等于周长的一半乘以6,代入求出即可.详解:如图,连接OA ,过O 作OE ⊥AB 于E ,OF ⊥AC 于F ,∵OB 、OC 分别平分∠ABC 和∠ACB ,∴OE =OF =OD =6,∵△ABC 的周长是32,OD ⊥BC 于D ,且OD =3, ∴()1112126,22ABC S AB OE BC OD AC OF AB BC AC =⨯⨯+⨯⨯+⨯⨯=⨯++⨯ 132696.2=⨯⨯= 故答案为:96.点睛:考查三角形面积的计算和角平分线的性质,关键是根据角平分线的性质得出OE OD OF ==.12.【解析】分析:根据平行四边形的性质得到,根据勾股定理求出AC ,得出OC ,再由勾股定理求出OB 即可. 详解:四边形ABCD 是平行四边形,,,,,,,; 故答案为:.点睛:本题考查了平行四边形的性质、勾股定理;熟练掌握平行四边形的性质,由勾股定理求出AC得出OC是解决问题的关键.13.-11【解析】根据,,建立平面直角坐标系如图所示:所以C(-1,1),故答案为:-1,1.【点睛】本题考查了坐标确定位置,利用A、B两点的坐标确定平面直角坐标系是解题关键.14.(5,2)【解析】分析:设解析式为y=kx,把(2.5,1)代入解析式,进而利用OA=AB解答即可.详解:过A作AD⊥x轴,过B作BE⊥x轴.设解析式为y=kx,把(2.5,1)代入解析式,可得:1=2.5k,解得:k=0.4,所以解析式为:y=0.4x,因为OA=AB,所以OD=DE=2.5,所以OE=5,BE=2AD=2,所以点B的坐标为:(5,2).故答案为:(5,2).点睛:本题考查了坐标与图形性质,关键是设解析式为y=kx,把(2.5,1)代入解析式解答.15.【解析】分析:直接根据“上加下减,左加右减”的平移规律求解即可.详解:将直线y=x先向上平移2个单位,所得直线的解析式为y=x+2.故答案为y=x+2.点睛:本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.16.4【解析】直线y=12x+1的图象与x 轴的交A 的坐标为(-4,0),与y 轴的交点B 的坐标为(0,2),所以△AOB 的面积为: 14242⨯⨯=. 17.3.【解析】解:设绿球的个数为x ,根据题意,得: 93x x++=0.2,解得:x =3,经检验x =3是原分式方程的解,即袋中有绿球3个,故答案为:3.18.200人【解析】【分析】先由各小组的频率和为1,求出E 组的频率,然后用E 组的频数除以E 组的频率即可得到总人数.【详解】∵E 组的频率为:1-0.04-0.08-0.16-0.36-0.12=0.24,又∵E 组的频数为48,∴被调查的观众总人数为:48÷0.24=200,故答案为:200.【点睛】本题考查了频率分布直方图,频率与频数,频率=频数÷总数,从直方图中正确获取信息是解题的关键.19.(1)见解析(2)104°【解析】分析:(1)按“角平分线”的尺规作法进行作图即可;(2)由已知条件易得∠CAD=∠BAD=14°,结合∠ADB=∠CAD+∠C 及∠C=90°即可得到∠ADB=104°.详解:(1)如下图所示,AD 为所求的角平分线:(2)∵∠BAC 的平分线AP ,∠BAC=28°,∴∠CAD=BAD=14° ,又∵∠C=90°,∠ADB=∠C+∠CAD ,∴ ∠ADB=90°+14°=104°.点睛:掌握“角平分线的尺规作法”和“三角形的一个外角等于与它不相邻的两个内角的和”是正确解答本题的关键.20.(1)见解析;(2)4.【解析】分析:(1)先由BE=CF可得BC=EF,再根据“HL”推出两三角形全等即可;(2)由全等三角形的性质得,然后根据勾股定理求解即可.详解:(1)∵BE=CF,∴BC=EF,在Rt△ABC和Rt△DEF中,∵AC=DF,BC=EF,∴△ABC≌△DEF(HL).(2)∵△ABC≌△DEF,∴,∵,.点睛:本题考查了全等三角形的判定与性质,勾股定理,掌握全等三角形的判定方法是解(1)的关键,运用勾股定理列方程是解(2)的关键.21.证明见解析.【解析】试题分析:根据已知条件易证∠ADE=∠CBF,AD=CB,由AAS证△ADE≌△CBF 即可.试题解析:∵四边形ABCD是平行四边形,∴AD=CB,AD∥BC,∴∠ADE=∠CBF,∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,在△ADE和△CBF中,{ADE CBF AED CFBAD CB∠=∠∠=∠=,∴△ADE≌△CBF(AAS).22.(1)证明见解析;(2)证明见解析【解析】分析:(1)由平行四边形的性质可求得OA=OC、OB=OD,再结合E、F为中点,可求得OE=OF,则可证得四边形EBFD为平行四边形;(2)由条件可证得BD=EF,则可证得四边形EBFD为矩形.详解:(1)证明:∵四边形ABCD为平行四边形,∴OA=OC,OB=OD,∵E、F分别是AO、CO的中点,∴OE=OF,∴四边形EBFD为平行四边形;(2)由(1)可知OE=OA,OF=OC,∴OE+OF=AC,即EF=AC,∴AC=2EF,∵AC=2BE,∴EF=BD,∵四边形EBFD为平行四边形,∴四边形EBFD是矩形.点睛:本题主要考查平行四边形的性质和判定及矩形的判定,掌握平行四边形的对角线互相平分、矩形的对角线相等是解题的关键.23.(1)点C到x轴的距离为3;(2)18;(3)P点的坐标为(0,5)或(0,1).【解析】分析:(1)点C的纵坐标的绝对值就是点C到x轴的距离解答;(2)根据三角形的面积公式列式进行计算即可求解;(3)设点P的坐标为(0,y),根据△ABP的面积为6,A(-2,3)、B(4,3),所以×6×|x−3|=6,即|x-3|=2,所以x=5或x=1,即可解答.详解:(1)∵C(-1,-3),∴|-3|=3,∴点C到x轴的距离为3;(2)∵A(-2,3)、B(4,3)、C(-1,-3)∴AB=4-(-2) =6,点C到边AB的距离为:3-(-3) =6,∴△ABC的面积为:6×6÷2=18.(3)设点P的坐标为(0,y),∵△ABP的面积为6,A(-2,3)、B(4,3),∴×6×|x−3|=6,∴|x-3|=2,∴x=5或x=1,∴P点的坐标为(0,5)或(0,1).点睛: 本题考查了坐标与图形,解决本题的关键是利用数形结合的思想.24.(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.【解析】分析:(1)乙种图书售价每本元,则甲种图书售价为每本元,根据“用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本”列出方程求解即可;(2)设甲种图书进货本,总利润元,根据题意列出不等式及一次函数,解不等式求出解集,从而确定方案,进而求出利润最大的方案.详解:(1)设乙种图书售价每本元,则甲种图书售价为每本元.由题意得:,解得:.经检验,是原方程的解.所以,甲种图书售价为每本元,答:甲种图书售价每本28元,乙种图书售价每本20元.(2)设甲种图书进货本,总利润元,则.又∵,解得:.∵随的增大而增大,∴当最大时最大,∴当本时最大,此时,乙种图书进货本数为(本).答:甲种图书进货533本,乙种图书进货667本时利润最大.点睛:本题考查了一次函数的应用,分式方程的应用,一元一次不等式的应用,理解题意找到题目蕴含的相等关系或不等关系是解应用题的关键.25.3001200.380≤x<90【解析】分析:(1)利用第一组的频数除以频率即可得到样本容量;90÷300即为70≤x<80组频率,可求出n的值;300×0.4即为80≤x<90组频数,m的值;(2)根据80≤x<90组频数即可补全直方图;(3)根据中位数定义,找到位于中间位置的两个数所在的组即可.(4)将比赛成绩80分以上的两组数的频率相加即可得到计该竞赛项目的优秀率.详解:(1)本次调查的样本容量为30÷0.1=300,(2)m=300×0.4=120,n=90÷300=0.3;(3)频数分布直方图如图:(4)如果比赛成绩80分以上(含80分)为优秀,则该竞赛项目的优秀率=.点睛:本题考查了频数(率)分布直方图,用样本估计总体,频数(率)分布表,中位数.。

2017-2018八年级数学下试题及答案

2017-2018八年级数学下试题及答案

八年级数学试题 第 1 页 (共 7 页)2017-2018学年度第二学期期末检测八年级数学试题(满分:150分,考试时间:120分钟)一、选择题:(本题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在答题卷对应方框内.1.式子3-x 在实数范围内有意义,则x 的取值范围是( ) A .3≥xB .3>xC .3≤xD .3≠x 2.下列根式中,不能与3合并的是( )A .34B .34 C .32D .12 3. 甲、乙、丙、丁四名同学在三次诊段考试中数学成绩的方差分别为2=1.2S 甲,39.02=乙S ,18.02=丙S ,2=3.5S 丁,则这四名同学发挥最稳定的是( ) A .甲 B .乙 C .丙 D .丁4. 若正比例函数kx y =的图像经过第二、四象限,则k 的值可以是( ) A .2B .2-C .2±D .20-或5.下列各组数不能作为直角三角形三边长的是( )A .3,4, 5B .3,4,5C .5,12,13D .1,2, 3 6.不能判定一个四边形是平行四边形的条件是( ) A .两组对边分别平行B .一组对边平行,另一组对边相等C .一组对边平行且相等D .两组对边分别相等 7.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O , ∠ACB =60°,则∠AOB 的大小为( ) A .30°B .60°C .120°D .150°8.已知菱形的周长为cm 20,两对角线的长度之比是4:3,那么两对角线的长分别为( ) A.cm cm 4,3 B.cm cm 8,6 C.cm cm 16,12 D.cm cm 32,24 9.关于一次函数22+-=x y ,下列结论正确的是( )A .函数图象不经过第一象限B .图象与x 轴的交点是)2,0(OAD CB)7(题图八年级数学试题 第 2 页 (共 7 页)C .y 随x 的增大而增大D .图象过点)4,1(- 10. 如图,直线)0(≠=k kx y 和直线)0(≠+=m n mx y 相交于 点)3,2(A ,则不等式n mx kx +≤的解集为( ) A .3x ≥B .3x ≤C .2x ≥D .2x ≤11.如图,用菱形纸片按规律依次拼成下列图案.由图知,第1个图案中有5个菱形纸片;第2个图案中有9个菱形纸片;第3个图形中有13个菱形纸片.按此规律,第6个图案中有()个菱形纸片.A .21B .23C .25D .2912. 若关于x 的一次函数3)1(--=x k y ,y 随x 的增大而减小,且关于x 的不等式组⎩⎨⎧<+≥+0752k x x 无解,则符合条件的所有整数k 的值之和是( ) A. 2- B. 1- C. 0 D. 1二、填空题:(本大题6个小题,每小题4分,共24分)请将正确答案填在答题卷对应横线上.13.计算:=-2)3( .14.将直线2+-=x y 向下平移3个单位长度后所得直线的解析式是 .15.某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占%30,期末卷面成绩占%70,小明的两项成绩(百分制)依次是90分,80分,则小明这学期的数学成绩是 _________分.16.一次函数42+-=x y 的图象与两坐标轴所围成的三角形面积是 . 17. 如图所示,DE 为ABC ∆的中位线,点F 在DE 上,且 90=∠AFB , 若8=AB ,14=BC ,则EF 的长为 .18. 如图, 在正方形ABCD 中,对角线AC 的长为cm 16,P 是BC 上 任意一点,AC PE ⊥,BD PF ⊥,则PF PE +的值为 .三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤.(17题图)nmx y +=xk y =)3,2(A )10(题图CD)18(题图八年级数学试题 第 3 页 (共 7 页)19.计算: 6223427⨯-+20.某教师为了对学生零花钱的使用进行教育指导,对全班50名学生每人一周内的零花钱数额 进行统计调查,并绘制了统计图,如图所示.(1)这50名学生每人一周内的零花钱数额的平均数是 ______元/人;众数是_____元;中位数是_______元; (2)据统计该校的1800人中,每周零花钱为15元的学生 约有多少人?四、解答题:(本大题5个小题,每小题10分,共50分)解答时每小题必须给出必要的演算过程或推理步骤.21. 如图,在ABCD 中,点E 、F 是对角线AC 上的两点,且DF BE //,求证:四边形BEDF 是平行四边形.22.如图,直线l 与x 轴正半轴交于点A ,与y 轴负半轴交于点B ,其中A 点坐标是)0,3(,且 13=AB .(1)求直线l 的解析式;(2)求O 到直线l 的距离.23.我区为推行节约用水,决定从2018年起1月起实行两级收费制,即每月用水量不超过12吨(含12吨)时,每吨按基本优惠价收费;每月超过12吨时,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费90元;2月份用水20吨,交水费6.73元. (1)求每吨水的基本优惠价和市场调节价分别是多少元?(2)设每月用水量为x 吨,应交水费为y 元,写出y 与x 之间的函数关系式.24.阅读理解:定义:有三个内角相等的四边形叫“和谐四边形”.(1)在“和谐四边形”ABCD 中,若135=∠B ,则A ∠=__________;)20(题图)21(题图D八年级数学试题 第 4 页 (共 7 页)(2)如图,折叠平行四边形纸片DEBF ,使顶点E ,F 分别落在边BE ,BF 上的点A ,C 处,折痕分别为DG ,DH .求证:四边形ABCD 是“和谐四边形”.25. 如图1,在矩形ABCD 中,过矩形ABCD 对角线AC 的中点O 作AC EF ⊥分别交AB 、DC 于E 、F 点. (1)求证:CFAE =; (2)如图2,若G 为AE 的中点,且 30=∠AOG ,求证:OGDC 3=.五、解答题:(本大题1个小题,共12分)解答时每小题必须给出必要的演算过程或推理步骤.26. 如图,在平面直角坐标系中,一次函数()0y m x n m =+≠的图象与x 轴交于点)0,3(-A ,与y 轴交于点B ,且与正比例函数x y 2=的图象交于点)6,3(C . (1)求一次函数y m x n=+的解析式; (2)点P 在x 轴上,当PCPB +最小时,求出点P 的坐标; (3)若点E 是直线AC 上一点,点F 是平面内一点,以O 、C 、E 、F 四点为顶点的四边形是矩形,请直接写出点F(25题图))24(题图八年级数学试题 第 5 页 (共 7 页)2017-2018学年度第二学期期末检测七年级数学参考答案一、选择题(本大题共12个小题,每小题4分,共48分)二、填空题(本大题共6个小题,每小题4分,共24分)13.假 14. 169 15. 0≥a 16 . 2∠ 17. )25,23(- 18. 5-三、解答题:(本大题共2个小题,每小题8分,共16分) 19.解:原式()()13223-+--+=………………………………………………4分13223-+--=……………………………………………………6分 23-=.………………………………………………………………8分20.解:原方程组化为6912642x y x y ⎧+=⎪⎨+=⎪⎩①②,由①-②得:510y =,……………………4分所以,2y =,代入方程321x y +=得3221x +⨯=, 解得1x =-, 故原方程组的解为12x y =-⎧⎨=⎩.………………………………8分四、解答题:(本大题共5个小题,每小题10分,共50分)21. 解:由4)2(3-≥-x x 得22≥x ,∴1≥x , ………………3分 由1312->+x x 得3312->+x x ,∴4<x ,………………6分 故原不等式组的解为41<≤x ,在数轴上表示为:……………8分八年级数学试题 第 6 页 (共 7 页)22. 解:(1)如图三角形ABC 为所求, ………(3分) (2)如图三角形,'''C B A 为所求………(6分))2,5(',)3,0('--C B ………(8分)(3) 三角形'''C B A 的面积是: 614212421=⨯⨯+⨯⨯……………(10分)23.(1)300%2060=÷(人).…………3分(2)%44 , %3…………7分(3)条形统计图补充正确.…………10分24.证明: E ∠=∠2 (已知)∴ AD ∥ BC( 内错角相等,两直线平行 ) ∴∠=∠3 DAC ( 两直线平行,内错角相等 ) ∵43∠=∠(已知)∴∠=∠4 DAC ( 等量代换 ) ∵21∠=∠(已知)∴CAF CAF ∠+∠=∠+∠21 即∠=∠BAF DAC∴∠=∠4 BAF (等量代换)∴ AB ∥ CD (同位角相等,两直线平行) (每空1分)25. 解:(1)设蔬菜有x 吨,水果有y 吨,根据题意得:⎩⎨⎧=-=+1735y x y x …………………………………………………(2分)解得:⎩⎨⎧==926y x ……………(4分)答:蔬菜有26吨,水果有9吨……………(5分)(2)设租用A 种货车a 辆,则租用B 种货车(8-a )辆,根据题意得:ABC'A 'B 'C八年级数学试题 第 7 页 (共 7 页)⎩⎨⎧≥-+≥-+9)8(226)8(24a a a a ……………………(7分)解得:75≤≤a …………………………(8分) ∵a 取整数 ∴a =5,6,7当a =5时,租车费用为:2000×5+1300×(8-5)=13900(元) 当a =6时,租车费用为:2000×6+1300×(8-6)=14600(元) 当a =7时,租车费用为:2000×7+1300×(8-7)=15300(元)∴租用A 种货车5辆,B 种货车3辆,可使运费最少,最少为13900元………(10分) 五、解答题:(本大题共1个小题,共12分)26.解:(1)A (-2,0) B (3,0)……………(4分) (2)∠PQD+∠OPQ+∠POB=360°…………………(5分) 证明:过点P 作PE ∥AB 由平移的性质可得AB ∥CD ∴AB∥PE ∥CD∴∠PQD+∠EPQ=180°,∠OPE+∠POB=180° ∴∠PQD+∠EPQ+∠OPE+∠POB=360°即∠PQD+∠OPQ+∠POB=360°……………(8分)(3)存在符合条件的M 点,坐标为(-7,0),(3,0)(0,-3),(0,7) (答对一点得1分)…………………………………………………(12分)2图。

2017-2018学年度八年级第二学期期末考试数学试卷

2017-2018学年度八年级第二学期期末考试数学试卷

2017-2018学年度八年级第二学期期末考试数学试卷2017-2018学年八年级第二学期期末测试数学试卷(考试时间100分钟,满分120分)2018.06一、选择题(每题3分,共18分)1.(3分)二次根式有意义的条件是x≥2.2.(3分)下列各组数中能作为直角三角形的三边长的是3,4,5.3.(3分)若一次函数 y=x+4 的图象上有两点 A(-1,y1)、B(1,y2),则下列说法正确的是 y1<y2.4.(3分)如图,四边形 ABCD 的对角线 AC 和 BD 交于点 O,则下列不能判断四边形 ABCD 是平行四边形的条件是∠ABD=∠ADB,∠BAO=∠DCO。

5.(3分)在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同。

其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的中位数。

6.(3分)在平面直角坐标系中,平行四边形 ABCD 的顶点 A,B,D 的坐标分别是(0,0),(5,0),(2,3),则顶点 C 的坐标是(7,3)。

二、填空题(每题3分,共24分)7.(3分)将直线 y=2x 向下平移2个单位,所得直线的函数表达式是 y=2x-2.8.(3分)直线y=kx+b(k>0)与x 轴的交点坐标为(2,0),则关于 x 的不等式 kx+b>0 的解集是 x>-b/k。

9.(3分)计算:(-2)²=4.10.(3分)如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点 C 与点 A 重合,折痕为 DE,则△ABE 的周长为6+2√13.11.(3分)如图,平行四边形ABCD 中,AD=5,AB=3,若 AE 平分∠BAD 交边 BC 于点 E,则线段 EC 的长度为 3/2.12.(3分)已知一组数据1,2,-1,x,1 的平均数是1,则这组数据的中位数为 1.13.(3分)一次函数 y=kx+3 的图象过点 A(1,4),则这个一次函数的解析式 y=kx+1.14.(3分)如图,菱形ABCD 周长为16,∠ADC=120°,E 是 AB 的中点,P 是对角线 AC 上的一个动点,则 PE+PB 的最小值是 8.2三、计算题15.计算:-8 + 3.5 = -4.516.如图,平行四边形ABCD中,AE=CE,请仅用无刻度的直尺完成下列作图:1)在图1中,作出∠DAE的角平分线;2)在图2中,作出∠AEC的角平分线.四、应用题17.已知一次函数y=kx-4,当x=2时,y=-3.1)求一次函数的解析式:由题意得,-3=k(2)-4,解得k=1,所以一次函数的解析式为y=x-4.2)将该函数的图象向上平移6个单位,求平移后的图象与x轴的交点的坐标。

2017-2018年第二学期八年级数学期末试卷(参考答案)

2017-2018年第二学期八年级数学期末试卷(参考答案)

∴ BC AC 2 AB 2 32 42 5 ……8 分
作 AH⊥BC
则 1 BC AH 1 AC AB
2
2
∴5AH=3×4
八年级数学 第 3 页(共 8 页)
∴AH= 12 ……9 分 5
∴ S菱形ADCF

DC AH

5 12 25
6
答:菱形 ADCF 的面积是 6.……10 分
∴点 D’在直线 y=x-3 上运动,当 OD’⊥直线 y=x-3 时,OD’最小,此时∆OBD’是等腰直
角三角形,……9 分
作 D’H⊥x 轴,垂足为 H,则 OH=HD’=HB= 3 ……10 分 2
∴4-m= 3 , m 5 ……11 分
2
2
∴D 点坐标( 5 , 1 )……12 分 22
∵四边形 ABCD 是正方形,
∴∠ABK=∠ABC=∠ADC=∠BAD=90°,AB=AD
在∆AKB 和∆AFD 中
BE
C
图2
AB AD ABK ADF KB DF
∴∆AKB≌∆AFD……1 分 ∴AK=AF,∠KAB=∠FAD ∵2∠EAF=∠ADC=90° ∴∠EAF=45° ∴∠BAK+∠BAE=∠DAF+∠BAE=45° 即∠KAE=∠FAE 在∆AKE 和∆AFE 中
说明:此题可用平行线等积变换,即△ABF 的面积与△ACF 的面积相等,或连接 DF 等。
五.解答题(本题共 3 小题,其中 24 题 11 分,25、26 题各 12 分,共 35 分)
24.(1)1,16;……2 分
(2)∵四边形 ABCD 是正方形
D
C
∴AB=AD,∠ADB=∠ABD=45°

湖南省长沙市八年级下学期数学期末考试试卷

湖南省长沙市八年级下学期数学期末考试试卷

湖南省长沙市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、细心选一选(本题有10小题,每小题3分,共30分) (共10题;共30分)1. (3分)函数y=的自变量x的取值范围是()A . x=1B . x≠1C . x≥1D . x≤12. (3分) (2016九上·衢江月考) 如果一个正多边形的一个内角是140°,那么这个正多边形的边数是()A . 10B . 9C . 8D . 73. (3分)已知二次根式以与是同类二次根式,则a的值可以是()A . 5B . 8C . 7D . 64. (3分)下列选项中,函数y= 对应的图象为()。

A .B .C .D .5. (3分)(2019·余杭模拟) 在一些“打分类”比赛当中,经常采用这样的办法来得到一名选手的最后成绩:将所有评委的打分组成一组数据,去掉一个最高分和一个最低分,得到一组新的数据,再计算平均分.假设评委不少于4人,则比较两组数据,一定不会发生变化的是()A . 平均数B . 中位数C . 众数D . 方差6. (3分)如图图形中完全是中心对称图形的一组是()A . ①②B . ③④C . ①③D . ②④7. (3分)用一个2倍的放大镜照一个ΔABC,下列命题中正确的是()A . ΔABC放大后角是原来的2倍B . ΔABC放大后周长是原来的2倍C . ΔABC放大后面积是原来的2倍D . 以上的命题都不对8. (3分)用配方法解方程x2+x-1=0,配方后所得方程是()A .(x-)2=B . (x-)2=C . (x+)2=D . (x+)2=9. (3分)如图,在ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=,则ΔCEF的周长等于A . 8B . 9.5C . 10D . 11.510. (3分)如图,ABCD是矩形纸片,翻折∠B,∠D,使AD,BC边与对角线AC重叠,且顶点B,D恰好落在同一点O上,折痕分别是CE,AF,则等于()A .B . 2C . 1.5D .二、精心填一填(本题有6小题,每小题3分,共18分) (共6题;共18分)11. (3分) (2016七下·岳池期中) 已知 =2.493, =7.882,则 =________.12. (3分) (2018九上·上杭期中) 已知m是关于x的方程的一个根,则=________.13. (3分)(2018·遂宁) 已知一组数据:12,10,8,15,6,8.则这组数据的中位数是________.14. (3分)在矩形ABCD中,AD=5,AB=4,点E,F在直线AD上,且四边形BCFE为菱形.若线段EF的中点为点M,则线段AM的长为________.15. (3分) (2015八下·金平期中) 如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF=________cm.16. (3分) (2020九上·南岗期末) 如图,矩形中,点,分别在,上,且,连接,,,且平分,,连接交于点,则线段的长为________.三、解答题(共4小题,满分27分) (共4题;共27分)17. (7.0分) (2018九上·扬州期中) 解下列方程:(1) (x-5)2=x-5(2) x2+12x+27=0(配方法).18. (6分)如图,O,H分别是锐角△AB C的外心和垂心,D是BC边上的中点.由H向∠A及其外角平分线作垂线,垂足分别是E,F.求证:D,E,F三点共线.19. (6分) (2017九上·西城期中) 如图,有一个圆形工具,请利用直尺和圆规,确定这个圆形工具的圆心.20. (8分) (2016九上·盐城期末) A,B,C三名大学生竞选系学生会主席,他们的笔试成绩和口试成绩(单位:分)分别用了两种方式进行了统计,如表和图1:竞选人A B C笔试859590口试8085(1)请将表和图1中的空缺部分补充完整.(2)竞选的最后一个程序是由本系的300名学生进行投票,三位候选人的得票情况如图2(没有弃权票,每名学生只能推荐一个),则B在扇形统计图中所占的圆心角是________度.(3)若每票计1分,系里将笔试、口试、得票三项测试得分按4:3:3的比例确定个人成绩,请计算三位候选人的最后成绩,并根据成绩判断谁能当选.四、耐心做一做(本题有3小题,共25分) (共3题;共25分)21. (8分)(2019·包河模拟) 某水果商将一种高档水果放在商场销售,该种水果成本价为10元,售价为40元,每天可销售20 .调查发现,销售单价每下降1元,每天的销售量将增加5 .(1)直接写出每天的销售量ykg与降价(元)之间的函数关系式;(2)降价多少元时,每天的销售额元最大,最大是多少元?(销售额=售价×数量)(3)每销售1 水果,需向商场缴纳柜台费元(),水果商计划租赁柜台20天,为了促销,决定开展“每天降价1元”活动,即从第1天开始,每天的销售单价比前一天下降1元(第1天的销售单价为39元),经测算发现,销售的前11天,每天的利润元随销售天数(为正整数)的增大而增大,试确定的取值范围.(利润=销售额-成本-柜台费)22. (7.0分) (2018九上·东台期中) 平面直角坐标系xOy中,过原点O及点A(0,4)、C(12,0)作矩形OABC,∠AOC的平分线交AB于点D.点P从点O出发,以每秒2 个单位长度的速度沿射线OD方向移动;同时点Q从点O出发,以每秒4个单位长度的速度沿x轴正方向移动.设移动时间为t秒.(1)当点P移动到点D时,求出此时t的值.(2)当t为何值时,△PQB为直角三角形.(3)已知过O、P、Q三点的抛物线解析式为y=﹣.问是否存在某一时刻t,将△P QB绕某点旋转180°后,三个对应顶点恰好都落在上述抛物线上?若存在,求出t的值;若不存在,请说明理由.23. (10.0分)(2017·长安模拟) 如图,在▱ABCD中,对角线AC,BD交于点O,E为AB中点,点F在CB的延长线上,且EF∥BD.(1)求证;四边形OBFE是平行四边形;(2)当线段AD和BD之间满足什么条件时,四边形OBFE是矩形?并说明理由.参考答案一、细心选一选(本题有10小题,每小题3分,共30分) (共10题;共30分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、精心填一填(本题有6小题,每小题3分,共18分) (共6题;共18分) 11-1、12-1、13-1、14-1、15-1、16-1、三、解答题(共4小题,满分27分) (共4题;共27分)17-1、17-2、18-1、19-1、20-1、20-2、20-3、四、耐心做一做(本题有3小题,共25分) (共3题;共25分) 21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

长铁一中2018年上学期期末考试八年级
数学科试题
命题人:
时量110分钟 满分 120分
一、选择题(每题3分,共36分)
1.二次函数y =2(x -3)2
-4的顶点为( )
A.(3,-4)
B.(-3,4)
C.(3,4)
D.(-3,-4) 2.若平行四边形中两个内角的度数比为 1:2,则其中较小的内角的度数为( ) A . 90°
B .60°
C .120°
D .45°
3.某中学足球队9名队员的年龄情况如下:
则该队队员年龄的众数和中位数分别是( ) A.15,15
B.15,16
C.15,17
D.16,15
4.直线y =-3x +2不经过的象限为( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
5.下列命题中的真命题是( )
A.有一组对边平行的四边形是平行四边形
B.有一个角是直角的四边形是矩形
C.对角线互相垂直平分的四边形是正方形
D.有一组邻边相等的平行四边形是菱形 6、解方程x 2
+4x+1=0时,经过配方得到( )
A. (x+2)2
=5 B. (x-2)2
=5 C.(x-2)2
=3
D.(x+2)2
=3
7.一元二次方程x 2
+x -2=0的根的情况是( )
A.有两个不相等的实数根
B.有两个相等的实数根
C.只有一个实数根
D.没有实数根
8.一次函数y =-x +6的图象上有两点A (-1,1y ),B (2,2y ),则1y 与2y 的大小关系是( ) A.1y =2y
B. 1y >2y
C.1y <2y
D.1y ≥2y
9、将二次函数y=x 2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( )
A.y=(x-1)2+2
B.y=(x+1)2+2
C. y=(x-1)2
-2 D. y=(x+1)2
-2
10、某商品原售价289元,经过连续两次降价后售价为256元, 设平均每次降价的百分率为x ,则下面所列方程中正确的是( )
A. 289(1-x)2
=256 B. 256(1-x)2
=289 C. 289(1-2x)=256 D. 256(1-2x)=289
11、如图,在矩形ABCD 中,有以下结论:
①△AOB 是等腰三角形;②ABO ADO S S △△=;③AC =BD ;④AC ⊥BD ;⑤当∠ABD =45°时,矩形ABCD 会变成正方形.正确结论的个数是( ) A.2
B.3
C.4
D.5
12、二次函数y=ax 2+bx+c 的图象如图所示,则下列关系式不正确的是( ) A. a<0
B. abc>0
C. a+b+c=0
D. b 2
-4ac>0
二、填空题(每题3分,共24分)
13、已知函数y =2x +m -1是正比例函数,则m =___________. 14、方程x 2
=x 的解是___________.
15、已知关于x 的方程x 2
-3x +m =0的一个根是1,则一个根为________. 16、甲、乙、丙、丁四人进行射击测试,每人测试10次,平均成绩均为9.2环,方差如下表所示:
则在这四个选手中,成绩最稳定的是 。

17、若一元二次方程ax 2
﹣bx ﹣2018=0有一根为x=﹣1,则a+b= .
18、如图,在菱形 ABCD 中, ∠ADC = 120︒ ,BD =8,则菱形 ABCD 的周长是 .
18题图 19题图
19、如图,在平面直角坐标系中,正方形 ABCD 的对称中心与原点重合,顶点 A 的坐标为(-1,1),顶点 B 在第一象限.若点 B 在直线 y = kx + 3 上,则 k 的值为_______.
20、已知函数⎪⎪⎩⎪
⎪⎨
⎧>-≤<+-≤<-+-≤--=)
1(1
)10(1)
01(1)
1(11x x x x x x x x y 的图象为“W ”型,直线y =kx - k +1与函数y 1的
图象有三个公共点,则k 的值是 。

三、解答题:(共66分) 21、解方程(8分):
(1) 022=+x x (2)0652
=+-x x
22、(1)(6分)已知一次函数y =kx +b 的图象经过M (0,2),N (1,3)两点.求k ,b 的值;
(2) (6分)假定甲、乙两人在一次赛跑中,路程S 与时间T 的关系在平面直角坐标系中所示,如图,请结合图形和数据回答问题:
(1)这是一次 米赛跑;
(2)甲、乙两人中先到达终点的是 ;
(3)乙在这次赛跑中的速度为 。

23、(6分)作为长沙市政府民生实事之一的公共自行车建设工作已基本完成,“摩拜单车”等租车服务进入市民的生活.某部门对今年5月份一周中的连续7天进行了公共自行车日租车量的统计,并绘制了如下条形图:(1) 求这7天日租车量的众数与中位数; (2) 求这7天日租车量的平均数,并用这个平均数估计5月份(31天)共租车多少万车次?
24、(6分)如图,□ABCD 的对角线AC 、BD 相交于点O ,过点D 作DE ∥AC ,且DE =2
1
AC ,连接CE 、OE 。

(1) 求证:四边形OCED 是平行四边形; (2) 若AD =DC =6,求OE 的长.
25、(8分)某商店以每件16元的价格购进一批商品,物价局限定每件商品的利润不得超过30%.
(1)根据物价局规定,此商品每件售价最高可定为多少元?
(2)若每件商品售价定为x 元,则每天可卖出(170-5x)件,商店预期每天要盈利280元,那么
每件商品的售价应定为多少元?
26、(8分)我市某工艺厂设计了一款成本为10元/件的工艺品投放市场进行试销.经过调
(1)把上表中x 、y 的各组对应值作为点的坐标,猜想y 与x 的函数关系,并求出函数关系式; (2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价﹣成本总价)
(3)相关物价部门规定,该工艺品销售单价最高不能超过35元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?
27、(8分)如图,在平面直角坐标系xOy 中,边长为2的正方形OABC 的顶点A 、C 分别在x
轴、y 轴的正半轴上,二次函数c bx x y ++-=23
2
的图象经过B 、C 两点.
(1)求该二次函数的解析式;
(2)结合函数的图象探索:当y >0时x 的取值范围.
28、(4分)已知y 是x 的函数,若其图象经过点P (t,2t ),则称点P 为函数图象上的“新时代”点,例如,y=x-1上存在“新时代”点P (-1,-2).
(1)直线 (解析式)上的每个点都是“新时代”点。

(2)若抛物线()4
522
-
+++=a x a x y 上有“新时代”点()
()2211,,y x B y x A ,,求2
221x x +的最小值。

(3)若函数()124
12
-+++-+=
k m x k n x y 的图象上存在唯一的一个“新时代”点,且当12≤≤-n 时,m 的最小值为k ,求k 的值。

答 案
一、选择题:(每题3分,共36分)
二、填空题:(每题3分,共18分)
13、 1 14、 x=0或x=1 15、 2
16、 丁 17、 2018 18、 32
19、 -2 20、 0和
2
1
三、解答题:
21.(1)0和-2 (2)2和3
22.(1)y=x+2 (2)100,甲,8m/s
23.(1)众数:8万车次,中位数:8万车次.(2)263.5万车次 24.(1)略(2)6
25.(1)20.8元(2)20元
26.由图可猜想y 与x 是一次函数关系, 设这个一次函数为(0)y kx b k =+≠,
∵这个一次函数的图象经过(20,500)、(30,400)这两点,
∴5002040030k b k b =+⎧∴⎨=+⎩,解得10700
k b =-⎧⎨=⎩,
∴函数关系式是10700y x =-+.
(2)设工艺厂试销该工艺品每天获得的利润是W 元,依题意得:
22(10)(10700)10800700010(40)+9000W x x x x x =--+=-+-=--, ∴当40x =时,W 有最大值9000.-
(3)对于函数210(40)+9000W x =--,当35x ≤时,W 的值随着x 值的增大而增大,
∴销售单价定为35元∕件时,工艺厂试销该工艺品每天获得的利润最大.
27. (1)234
322++-
=x x y (2)-1<x<3 28. (1)y=2x (2)23 (3)222
1
+或。

相关文档
最新文档