人教版高数选修2-3第一章11分类加法计数原理与分步乘法计数原理复习教案(教师版)

合集下载

分类加法计数原理与分步乘法计数原理-人教A版选修2-3教案

分类加法计数原理与分步乘法计数原理-人教A版选修2-3教案

分类加法计数原理与分步乘法计数原理-人教A版选修2-3教案教学目标1.了解分类加法计数原理与分步乘法计数原理的定义和特点。

2.学习应用分类加法计数原理与分步乘法计数原理,解决相关的计数问题。

教学内容一、分类加法计数原理1.定义:分类加法计数原理是把一个问题分成若干部分,先分别计数,然后将这些计数结果相加得到总数的方法。

2.应用实例:•在一个班级里,要选出3名男生和2名女生组成一支代表队。

共有8名男生和7名女生,问有多少种选法?•用4种不同的颜色涂一张旗子,每个小三角必须涂一种颜色,要求三角上的颜色不相同。

问涂法有多少种?二、分步乘法计数原理1.定义:分步乘法计数原理是将一个问题分成若干个部分,然后将不同部分的计数相乘得到总数的方法。

2.应用实例:•一个花坛里有4个种类的花,若每个种类的花至少有3朵且所有花的朵数总共是12朵,问每种花分别几朵?•用6个不同的字母组成一个含有4个字母的词,每个词不含重复的字母,问能组成多少个这样的词?如果这些词都要写出来,又该怎么做?教学重点与难点1.掌握分类加法计数原理和分步乘法计数原理的定义和应用。

2.通过应用实例,理解计数方法和思维过程。

教学方法与过程1.引入新知识,讲解分类加法计数原理和分步乘法计数原理的定义和特点。

2.通过应用实例,指导学生掌握计数方法和思维过程。

3.利用习题课或者课后作业,加强学生练习和巩固。

教学评估1.观察学生的课堂听讲情况和课后作业完成情况。

2.开展小组讨论或者个人练习,检查学生对分类加法计数原理和分步乘法计数原理的理解和应用。

3.开展试卷测试,评估学生计数能力的掌握程度。

教学参考文献1.人教A版高中数学选修2-3教材。

2.《高中数学学案集》。

分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案一、教学目标1. 让学生理解分类加法计数原理和分步乘法计数原理的概念。

2. 培养学生运用计数原理解决实际问题的能力。

3. 引导学生通过合作交流,提高思维能力和创新能力。

二、教学内容1. 分类加法计数原理:(1)了解分类加法计数原理的概念。

(2)学会运用分类加法计数原理解决问题。

2. 分步乘法计数原理:(1)了解分步乘法计数原理的概念。

(2)学会运用分步乘法计数原理解决问题。

三、教学重点与难点1. 教学重点:(1)分类加法计数原理的应用。

(2)分步乘法计数原理的应用。

2. 教学难点:(1)理解分类加法计数原理的含义。

(2)理解分步乘法计数原理的含义。

四、教学方法1. 采用问题驱动法,引导学生主动探究。

2. 运用实例分析,让学生直观理解计数原理。

3. 组织小组讨论,培养学生合作交流能力。

五、教学准备1. 课件、黑板、粉笔等教学工具。

2. 相关实例和练习题。

教案内容:一、分类加法计数原理1. 导入:通过生活中的实例,如“统计班级男生女生人数”,引出分类加法计数原理。

2. 讲解:解释分类加法计数原理的概念,即把总数分成几个部分,分别计算每个部分的数量,再相加得到总数。

3. 练习:让学生运用分类加法计数原理解决实际问题,如“统计学校三个年级的学生总数”。

二、分步乘法计数原理1. 导入:通过实例“做一批玩具,每组有5个,一共要做3组”,引出分步乘法计数原理。

2. 讲解:解释分步乘法计数原理的概念,即每步的数量相乘得到最终结果。

3. 练习:让学生运用分步乘法计数原理解决实际问题,如“做一批玩具,每组有5个,一共要做4组,需要多少个玩具?”教学过程:一、分类加法计数原理1. 引导学生思考生活中的计数问题,如统计人数、物品数量等。

2. 讲解分类加法计数原理的概念和步骤。

3. 让学生举例说明并计算。

二、分步乘法计数原理1. 引导学生思考生活中的计数问题,如制作玩具、做饭等。

2. 讲解分步乘法计数原理的概念和步骤。

人教版高中数学选修2-3第一章1.1计数原理分类加法计数原理和分步乘法计数原理教学设计

人教版高中数学选修2-3第一章1.1计数原理分类加法计数原理和分步乘法计数原理教学设计

《分类加法计数原理与分步乘法计数原理》教学设计三维目标:知识与技能:①理解分类加法计数原理与分步乘法计数原理;②会利用两个原理分析和解决一些简单的应用问题;过程与方法:培养学生的归纳概括能力;情感、态度与价值观:引导学生形成“主动思考”与“合作学习”等良好的学习方式教学重点:初步理解分类加法计数原理与分步乘法计数原理,并能根据具体的问题特征,选择分类加法原理或分步乘法原理解决一些简单的实际问题.教学难点:根据具体的问题特征,正确选择分类加法原理或分步乘法原理解决一些简单的实际问题.教学方法:启发引导式教学方法教学手段:多媒体辅助教学教学过程:(一)课题导入数一数1.甲、乙、丙三人站成一排,共有多少种不同的排法?请你列出各种排法.2.三只口袋装有大小相同的小球,一只装有5个白色小球,一只装有6个黑色小球,另一只装有7个红色小球,若从三只口袋中取两个不同颜色的小球,则共有多少种不同的取法?你能快速地算出答案来吗?【设计意图】通过第1题让学生复习必修3所用的列举法求方法数;第2题用列举法来解是不现实的,设置悬念,学习了本节课就能很快解决,从而导出课题:§1 分类加法计数原理和分步乘法计数原理(二)探究新知龚泽惠,吉安人,2013年以684的高分夺得江西省高考理科状元,顺利考取清华大学.(课件图片展示:该同学的照片及清华大学校园有关图片)问题1:开学了,龚泽惠要从吉安到北京,一天当中直达火车有3班,直达飞机有2班,那么她一天中乘坐这些交通工具从吉安到北京会有多少种不同走法? 问题2:去上北京途中,龚泽惠想先乘火车到南昌拜访一位亲戚,第二天再从南昌乘飞机去北京,假设乘火车从吉安到南昌,每天有火车3班,一天后乘飞机从南昌到北京,每天飞机有2班,那么她从吉安到北京有多少种不同的走法?【设计意图】通过全省理科状元的形象激发学生的学习热情,也为本课的问题设计提供了一条主线索。

问题1分类加法计数原理的例子,问题2分步乘法计数原理的例子,这两例通俗易懂,便于学生对比分析理解两个计数原理.求同存异★ 完成一件事有两类不同办法,第一类办法有m 种不同的方法,第二类办法有n 种不同的方法,那么完成这件事共有n m N +=种不同的方法。

人教版高中数学选修2-3分类加法计数原理和分步乘法计数原理讲义

人教版高中数学选修2-3分类加法计数原理和分步乘法计数原理讲义
考点 3 两个原理的综合应用 例 3 现有高一年级的四个班的学生 34 人,其中一、二、三、四班各 7 人、8 人、9 人、10 人,他们自愿组成数学课外小组. (1)选其中一人为负责人,有多少种不同的选法?
2
(2)每班选一名组长,有多少种不同的选法? (3)推选两人做中心发言,这两人需来自不同的班级,有多少种不同的选法? 反馈训练 3 在 7 名学生中,有 3 名会下象棋但不会下围棋,有 2 名会下围棋但不会下象棋, 另 2 名既会下象棋又会下围棋,现从这 7 人中选 2 人分别参加象棋比赛和围棋比赛,共有多 少种不同的选法?
附:某艺术小组有 9 人,每人至少会钢琴和小号中的一种乐器,其中 7 人会钢琴,3 人会小 号,从中选出会钢琴与会小号的各 1 人,有多少种不同的选法?
1.1 分类加法计数原理与分步乘法计数原理 第二课时
教学要求 理解两个计数原理,会用两个原理解决一些实际简单问题
教学重点 熟练应用两个计数原理
教学难点 能利用两个原理解决一些综合性问题
【牛刀小试】将正整数 n 表示成 k 个正整数的和(不计较各数的次序),称为将正整数 n 分
成 k 个部分的一个划分,一个划分中的各加数与另一个划分的各加数不全相同,则称为不同
的划分,将正整数 n 划分成 k 个部分的不同划分的个数记为 P(n,k),则 P(10,3)的值为
()
A.12 B.10
C.8
考点 2 分步乘法计数原理的应用
例 2 已知集合 M {3,2,1,0,1,2}, P(a, b)(a, b M ) 表示平面上的点,问: (1)点 P 可表示平面上多少个不同的点? (2)点 P 可表示平面上多少个第二象限内的点?
反馈训练 2 若乒乓球队的 10 名队员中有 3 名主力队员,派 5 名参加比赛,3 名主力队员要 安排在第一、三、五位置,其余 7 名队员选 2 名安排在第二、四位置,求不同的出场安排共 有多少种?

人教版高中数学 选修2-3 1.1分类计数原理与分步计数原理教案

人教版高中数学 选修2-3 1.1分类计数原理与分步计数原理教案
小结:做一件事,当有多类办法选择时,需要分类完成,要注意每一类之间相互独立;当有多程序时,需要分步完成,每一步之间要正确搭配。
例1是两个计数原理的简单应用,设置两小问的目的在于让学生严格区分两个原理的使用背景。
例2是引例中的问题,呼应课题,贴近生活,用数学解决现实问题,服务于社会生活。
例3是展现两个原理的综合应用,让学生综合运用两个原理分析和解决问题。促进学生运算素养的发展。力争使素材的趣味性闪耀光彩,吸引学生的学习兴奋点,力争使学生的学习热情搞到本节课高潮,让学生形成良好的情感体验。
论:应该分步骤选择,分3步才能完成。共有 种不同方法。
教师引导学生根据以上两个事实,归纳出分步计数原理。教师板书分步计数原理和关键词:分步,乘法,步步相连。
让学生充分讨论:两个原理的共同点是什么?不同点是什么?
通过现实生活中的两个简单计数问题的体验,明白和理解加法原理的产生背景,针对的分类计数问题,特别强调每类办法中的各种方法都能独立完成这件事情。即类类独立。




提出总结的要点:
(1)在什么时侯用分类计数原理?在什么时侯用分步计数原理?
(2)综合使用这两个原理时,应怎样把握分类与分步的先后顺序?
(3)在两个原理的学习中,体验到了哪些数学思想方法?
(4)在本节课的学习中,在数学情感方面有哪些体验?
总结:
(1)解决分类有关问题时用分类计数原理;解决分步有关问题时用分步计数原理。
课题
1.1分类计数原理与分步计数原理
课时
1
授课
时间
主备人:
教学
目标
知识与技能:掌握两个基本原理及其简单应用;在归纳原理的过程中,培养学生的数学抽象素养;在解答计数问题的过程中,培养学生的数学运算素养。

人教版高二数学选修2-3第一章计数原理《分类加法计数原理与分步乘法计数原理》

人教版高二数学选修2-3第一章计数原理《分类加法计数原理与分步乘法计数原理》

第一章计数原理§1.1 分类加法计数原理与分步乘法计数原理班级:高二()班学号:姓名:学习目标:1.理解分类加法计数原理与分步乘法计数原理;2.能根据具体问题的特征选择分类加法计数原理或分步乘法计数原理解决一些简单问题。

学习重点:分类加法计数原理与分步乘法计数原理学习难点:准确区分加法原理与乘法原理,并准确应用加法原理和乘法原理.学习过程:预习﹒交流﹒评价1、分类加法计数原理:做一件事,完成它有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法……在第n类办法中有m n种不同的办法。

那么完成这件事共有种不同的方法。

2、分步乘法计数原理:做一件事,完成它需要分成n个步骤,做第一个步骤有m1种不同的方法,做第二个步骤有m2种不同的方法……做第n个步骤有m n种不同的办法。

那么完成这件事共有种不同的方法。

新知﹒巩固﹒展示问题1.一个三层书架的上层放有5本不同的数学书,中层放有3本不同的语文书,下层放有2本不同的英语书:(1)从书架上任取一本书,有多少种不同的取法?(2)从书架上任取三本书,其中数学书、语文书、英语书各一本,有多少种不同的取法?问题2. 用0,1,2,3,4这五个数字可以组成多少个无重复数字的:(1)银行存折的四位密码?(2)四位数?(3)四位奇数?问题3. 记壹元硬币有国徽的一面叫做正面,有币值的一面叫做反面。

现依次抛出5枚一元硬币,按照抛出的顺序得到一个由5个“正”或“反”组成的序列,如“正,反,反,反,正”。

问:一共可以得到多少个不同的这样的序列?巩固练习:1、(1)一件工作可以用两种方法完成。

有5个人会用第一种方法完成,另有4个人会用第二种方法完成。

从这9个人中选出一个人来完成这件工作,不同的选法共有种;(2)一个科技小组中有3名女同学,5名男同学。

从中任选一名同学参加学科竞赛,共有不同的选派方法种;若从中任选一名女同学和一名男同学参加学科竞赛,共有不同的选派方法种。

人教版数学选修2-3第一章《计数原理》教案

人教版数学选修2-3第一章《计数原理》教案

XX中学课时教学设计模板XX中学课时教学设计模板XX中学课时教学设计模板一、复习知识点:1、分类计数原理:(1)加法原理:如果完成一件工作有k种途径,由第1种途径有n1种方法可以完成,由第2种途径有n2种方法可以完成,……由第k种途径有n k种方法可以完成。

那么,完成这件工作共有n1+n2+……+n k种不同的方法。

2,乘法原理:如果完成一件工作可分为K个步骤,完成第1步有n1种不同的方法,完成第2步有n2种不同的方法,……,完成第K步有n K种不同的方法。

那么,完成这件工作共有n1×n2×……×n k种不同方法二、典型例题1、.用5种不同颜色给图中的A、B、C、D四个区域涂色, 规定一个区域只涂一种颜色, 相邻区域必须涂不同的颜色, 不同的涂色方案有种。

2、将一个四棱锥的每个顶点染上一种颜色,并使同一条棱上的两端异色,若只有5种颜色可用,则不同的染色方法共有多少种?3、用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为_______.4、用0,1,2,3,4五个数字(1)可以排出多少个三位数字的电话号码?(2)可以排成多少个三位数?(3)可以排成多少个能被2整除的无重复数字的三位数?5、用0,1,2,3,4,5可以组成无重复数字的比2000大的四位奇数______个。

XX中学课时教学设计模板求以按依次填个空位来考虑,排列数公式:=()说明:(1)公式特征:第一个因数是,后面每一个因数比它前面一个 少1,最后一个因数是,共有个因数;(2)全排列:当时即个不同元素全部取出的一个排列全排列数:(叫做n 的阶乘)4.例子:例1.计算:(1); (2); (3). 解:(1) ==3360 ; (2) ==720 ; (3)==360例2.(1)若,则 , .(2)若则用排列数符号表示 . 解:(1) 17 , 14 . (2)若则= .例3.(1)从这五个数字中,任取2个数字组成分数,不同值的分数共有多少个?(2)5人站成一排照相,共有多少种不同的站法?(3)某年全国足球甲级(A 组)联赛共有14队参加,每队都要与其余各队在主客场分别比赛1次,共进行多少场比赛?解:(1); (2); (3)课堂练习:P20 练习 第1题mn A m (1)(2)(1)m n A n n n n m =---+(1)(2)(1)m n A n n n n m =---+!()!n n m -,,m n N m n *∈≤n 1n m -+m n m =n (1)(2)21!nn A n n n n =--⋅=316A 66A 46A 316A 161514⨯⨯66A 6!46A 6543⨯⨯⨯17161554m n A =⨯⨯⨯⨯⨯n =m =,n N ∈(55)(56)(68)(69)n n n n ----n =m =,n N ∈(55)(56)(68)(69)n n n n ----1569n A -2,3,5,7,11255420A =⨯=5554321120A =⨯⨯⨯⨯=2141413182A =⨯=XX 中学课时教学设计模板解排列问题问题时,当问题分成互斥各类时,当问题考虑先后次序时,根据乘法原理,可用位置法;当问题的反面简单明了时,可通过求差排除采用间接法求解;问题可以用“捆绑法”;“分离”2)(n m -+(1)(2)21!n n n n =-⋅=等.解排列问题和组合问题,一定要防止“重复”与“遗漏”.互斥分类——分类法先后有序——位置法反面明了——排除法相邻排列——捆绑法分离排列——插空法例1求不同的排法种数:(1)6男2女排成一排,2女相邻;(2)6男2女排成一排,2女不能相邻;(3)4男4女排成一排,同性者相邻;(4)4男4女排成一排,同性者不能相邻.例2在3000与8000之间,数字不重复的奇数有多少个?分析符合条件的奇数有两类.一类是以1、9为尾数的,共有P21种选法,首数可从3、4、5、6、7中任取一个,有P51种选法,中间两位数从其余的8个数字中选取2个有P82种选法,根据乘法原理知共有P21P51P82个;一类是以3、5、7为尾数的共有P31P41P82个.解符合条件的奇数共有P21P51P82+P31P41P82=1232个.答在3000与8000之间,数字不重复的奇数有1232个.例3 某小组6个人排队照相留念.(1)若分成两排照相,前排2人,后排4人,有多少种不同的排法?(2)若分成两排照相,前排2人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种排法?(3)若排成一排照相,甲、乙两人必须在一起,有多少种不同的排法?(4)若排成一排照相,其中甲必在乙的右边,有多少种不同的排法?(5)若排成一排照相,其中有3名男生3名女生,且男生不能相邻有多少种排法?(6)若排成一排照相,且甲不站排头乙不站排尾,有多少种不同的排法?分析:(1)分两排照相实际上与排成一排照相一样,只不过把第3~6个位子看成是第二排而已,所以实际上是6个元素的全排列问题.(2)先确定甲的排法,有P21种;再确定乙的排法,有P41种;最后确定其他人的排法,有P44种.因为这是分步问题,所以用乘法原理,有P21·P41·P44种不同排法.(3)采用“捆绑法”,即先把甲、乙两人看成一个人,这样有P55种不同排法.然后甲、乙两人之间再排队,有P22种排法.因为是分步问题,应当用乘法原理,所以有P55·P22种排法.(4)甲在乙的右边与甲在乙的左边的排法各占一半,有P66种排法.(5)采用“插空法”,把3个女生的位子拉开,在两端和她们之间放进4张椅子,如____女____女____女____,再把3个男生放到这4个位子上,就保证任何两个男生都不会相邻了.这样男生有P43种排法,女生有P33种排法.因为是分步问题,应当用乘法原理,所以共有P43·P33种排法.(6)符合条件的排法可分两类:一类是乙站排头,其余5人任意排有P55种排法;一类是乙不站排头;由于甲不能站排头,所以排头只有从除甲、乙以外的4人中任选1人有P41种排法,排尾从除乙以外的4人中选一人有P41种排法,中间4个位置无限制有P44种排法,因为是分步问题,应用乘法原理,所以共有P41P41P44种排法.XX 中学课时教学设计模板一、复习引入:1.排列数公式及其推导:()2、解排列问题问题时,当问题分成互斥各类时,根据加法原理,可用分类法;当问题考虑先后次序时,根据乘法原理,可用位置法;这两种方法又称作直接法.当问题的反面简单明了时,可通过求差排除采用间接法求解;另外,排列中“相邻”问题可以用“捆绑法”;“分离”问题可能用“插空法”等.二、典型例题1.满足不等式>12的n 的最小值为 ( ) A .7 B . 8C .9D .10【解析】选D .由排列数公式得:>12,即(n -5)(n -6)>12, 整理得n 2-11n +18>0, 所以n <2(舍去)或n >9. 又因为n ∈N *,所以n min =10. 2.若=89,则n =______.【解析】原方程左边==(n -5)(n -6)-1.(1)(2)(1)m n A n n n n m =---+,,m n N m n *∈≤所以原方程可化为(n-5)(n-6)-1=89,即n2-11n-60=0,解得n=15或n=-4(舍去).15>7满足题意.3.解关于x的不等式:>6.【解析】原不等式可变形为>,即(11-x)(10-x)>6,(x-8)(x-13)>0,所以x>13或x<8,又所以2<x≤9且x∈N*,所以2<x<8且x∈N*,所以原不等式的解集为.4.求证:+m+m(m-1)=(n,m∈N*,n≥m>2).【证明】因为左边=+m+m(m-1)======右边,所以等式成立.习题1.2 B组第2、3题XX 中学课时教学设计模板组合的概念:一般地,从个不同元素中取出个不同元素中取出个元素的一个组合说明:⑴不同元素;⑵“只取不排”——无序性;⑶相同组合:元素相同2)(n m -+(1)(2)21!n n n n =-⋅=n m(2);2)(1)!n m m -+710C2)(1)!n m m -+,m N ∈*且XX 中学课时教学设计模板.2)(1)!n m m -+mn n C -=XX 中学课时教学设计模板.=+2)(1)!n m m -+mn n C -=m C.2)(1)!n m m -+,N m ∈*且mn n C -=XX 中学课时教学设计模板a+b )相乘,每个(a+b )在相乘时,有两种选择,(r n r rn nn n C a b C b n N -++++∈叫二项式系数表示,即通项0,1,)n 1+1)1n r rn n n C C x x =+++++23344111)()()C x x x++(r n r rn nn n C a b C b n N -++++∈XX 中学课时教学设计模板9)的展开式常数项; (r n r r n nn n C a b C b n N -++++∈(r n r r n nn n C a b C b n N -++++∈XX 中学课时教学设计模板.二项展开式的通项公式:二项式系数表(杨辉三角)展开式的二项式系数,当依次取…时,二项式系数表,表)增减性与最大值.的增减情况由二项式系数逐渐增大.的,且在中间取得最大值;(r n r r n n n n C a b C b n N -++++∈1r n r rr n T C a b -+=n 1,2,32)(1)!n k k -+n,的展开式中,奇数项的二项式系数的和等于偶数项的二项,,,的展开式中,奇数项的二项式系数的和等于偶数项的二项式系说明:由性质(3)及例1知.,求:;); (.时,,展开式右边为,,∴ ,r r n n C x x ++++12rnn n n n C C C C ++++++(nr n r r n nn n a b C a b C b n N -++++∈23(1)n nn n n C C C +-++-13)()n n C C +-++13n n C C +=++021312n n n n n C C C C -++=++=7277(12)x a a x a x a x -=++++7a ++1357a a a a +++7||a ++1x =7(122)1-=-127a a a ++++27a a +++1=-1=127a a a +++=-0127a a a ++++1=-234567a a a a a a +-+-+-77)13a +=--(1+x)+(1+x)2+…+(1+x)+3x+2)5的展开式中,求本节课学习了二项式系数的性质 7||a ++=61)(a a +-。

最新人教版高中数学选修2-3《分类加法计数原理与分步乘法计数原理》教学设计

最新人教版高中数学选修2-3《分类加法计数原理与分步乘法计数原理》教学设计

教学设计1.1分类加法计数原理和分步乘法计数原理整体设计教材分析两个原理的主要内容都是计算在完成一件事情中所有不同方法种数的问题,其区别在于:运用加法原理的前提条件是做一件事有n类方案,选择任何一类方案中的任何一种方法都可以独立完成此事,也就是说,完成这件事的各种方法是相互独立的;运用乘法原理的前提条件是做一件事有n个步骤,只有依次完成所有的步骤后才能完成这件事,也就是说,完成这件事的各个步骤是相互依存的.两个原理本身是容易理解的,但学生又缺乏一定的认知基础,而这两个原理是我们学习排列、组合的基础,它的方法和思想贯穿于整章的教学内容中,故学生对两个原理的掌握程度决定后面两个单元的学习效果.所以在教学中要通过实例导入,引导学生利用实例分析两个原理的区别,明确使用的前提条件.课时分配4课时第一课时教学目标知识与技能1.归纳得出分类加法计数原理与分步乘法计数原理.2.初步学会区分“分类”和“分步”,能够用两个计数原理解决简单的计数问题.过程与方法通过对简单实例的分析概括,总结出分类加法计数原理和分步乘法计数原理.情感、态度与价值观引导学生形成“自主学习”与“合作学习”等良好的学习方式,培养学生的抽象概括能力.重点难点教学重点:分类加法计数原理与分步乘法计数原理.教学难点:分类加法计数原理与分步乘法计数原理的准确理解.教学过程引入新课提出问题1:某家庭欲在五一期间从甲地去乙地进行自助旅游,一天中有火车3班,有汽车2班,那么这个家庭一天中乘坐这些交通工具从甲地到乙地有多少种不同的走法?提出问题2:后来听说丙地也是旅游胜地,于是改变行程,先从甲地到乙地,再从乙地到丙地,已知乙地到丙地一天中有飞机2班,轮船2班,问一天中乘坐这些交通工具从甲地到丙地共有多少种不同的走法?活动设计:请学生举手回答.活动成果:问题1如图1,从甲地到乙地共有两类不同的走法,其中坐火车有3种走法,坐汽车有2种走法,所以从甲地到乙地共有5种不同的走法.图1问题2如图2,先从甲地到乙地,再从乙地到丙地,有5类不同的方案.图2若从甲地到乙地乘火车1,从乙地到丙地有飞机2班,轮船2班共4种不同的走法;同样,若从甲地到乙地乘火车2、3和汽车1、2,从乙地到丙地均有飞机2班,轮船2班共4种不同的走法,所以从甲地经乙地到丙地共有4+4+4+4+4=4×5=20种不同的走法.设计意图:从两个具体的例子入手,引出这一章要研究的问题:计数问题.为引出分类加法计数原理和分步乘法计数原理做准备.1.分类加法计数原理探索新知提出问题1:由上述问题1,你能归纳猜想出一般结论吗?活动设计:先独立思考,后小组交流,学生总结,教师补充.活动成果:分类加法计数原理:完成一件事,有两类不同的方案,在第1类方案中有m 种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法.设计意图:培养学生的抽象概括能力,得到分类加法计数原理.理解新知提出问题1:在填写高考志愿表时,一名高中毕业生了解到A、B两所大学各有一些自己感兴趣的强项专业,具体情况如下:如果这名同学只能选一个专业,那么他共有多少种选择呢?活动设计:请学生举手回答.活动成果:由于这名同学在A、B两所大学中只能选择一所,而且只能选择一个专业,又由于两所大学没有共同的强项专业,因此符合分类加法计数原理的条件.解:这名同学可以选择A、B两所大学中的一所.在A大学中有5种专业选择方法,在B大学中有4种专业选择方法.又由于两所大学没有共同的强项专业,因此根据分类加法计数原理,这名同学可能的专业选择种数为5+4=9.设计意图:强调解决计数问题时,应特别注意使用计数原理的条件.提出问题2:若还有C大学,其中强项专业为:新闻学、金融学、人力资源学.那么,这名同学可能的专业选择共有多少种?活动设计:学生举手发言.活动成果:解:这名同学可以选择A、B、C三所大学中的一所.在A大学中有5种专业选择方法,在B大学中有4种专业选择方法,在C大学中有3种专业选择方法.又由于三所大学没有共同的强项专业,因此根据分类加法计数原理,这名同学可能的专业选择种数为5+4+3=12.设计意图:加深对分类加法计数原理的理解,明确使用的条件.提出问题3:如果完成一件事有三类不同方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,在第3类方案中有m3种不同的方法,那么完成这件事共有多少种不同的方法?活动设计:学生举手发言.活动成果:共有m1+m2+m3种不同的方法.设计意图:将分类加法计数原理推广到三类的情况,为进一步推广奠定基础.提出问题4:如果完成一件事情有n类不同方案,在每一类中都有若干种不同方法,那么应当如何计数呢?活动设计:学生举手发言,学生补充,教师总结.活动成果:完成一件事,有n类不同的方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,…,在第n类方案中有m n种不同的方法,那么完成这件事共有N=m1+m2+…+m n种不同的方法.设计意图:推广分类加法计数原理,加深对分类加法计数原理的理解.2.分步乘法计数原理探索新知提出问题1:用前6个大写英文字母和1~9九个阿拉伯数字,以A1,A2,…,B1,B2,…的方式给教室里的座位编号,总共能编出多少个不同的号码?活动设计:请学生举手回答.活动成果:用列举法可以列出所有可能的号码:我们还可以这样来思考:由于前6个英文字母中的任意一个都能与9个数字中的任何一个组成一个号码,而且它们各不相同,因此共有6×9=54个不同的号码.设计意图:进一步应用分类加法计数原理,为引出分步乘法计数原理做准备.提出问题2:由上述问题,你能归纳猜想出一般结论吗?活动成果:分步乘法计数原理:完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.设计意图:培养学生的抽象概括能力,得到分步乘法计数原理.理解新知提出问题1:设某班有男生30名,女生24名.现要从中选出男、女生各一名代表班级参加比赛,共有多少种不同的选择?活动设计:学生分析思路.活动成果:思路分析:选出一组参赛代表,可以分两个步骤:第1步是选男生,第2步是选女生.解:第1步,从30名男生中选出1人,有30种不同选择;第2步,从24名女生中选出1人,有24种不同选择.根据分步乘法计数原理,共有30×24=720种不同的选法.设计意图:在用原理做题时,要从完成一件事的角度去分析,完成这件事是分成几个不同的步骤还是几个不同的类别.提出问题2:学校要为同学们订做新校服,有三个服装厂,每个服装厂均提供了五种款式,每种款式均有六种颜色可供选择,那么学校有多少种不同的订做校服的选择?活动设计:学生举手回答.活动成果:可以把订做校服这件事分成三个步骤来完成.第一步,选择服装厂,有3种选择;第二步,选择款式,有5种选择;第三步,选择颜色,有6种选择.根据分步乘法计数原理,共有3×5×6=90种不同的选择.设计意图:将分步乘法计数原理推广到分三步的情况,为进一步推广奠定基础.提出问题3:由上述问题,你能得到更一般的结论吗?活动设计:学生举手发言,学生补充,教师总结.活动成果:完成一件事,需要n个不同的步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×…×m n种不同的方法.设计意图:推广分步乘法计数原理,加深学生对分步乘法计数原理的理解.提出问题4:比较分类加法计数原理和分步乘法计数原理,你能找出它们的区别与联系吗?活动成果:1.相同点:都是回答有关完成一件事的不同方法种数的问题.2.不同点:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事,是独立完成;而分步乘法计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,只完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事,是合作完成.设计意图:引导学生对两个计数原理作比较,加深对原理使用条件的理解.运用新知例书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书.(1)从书架上任取1本书,有多少种不同的取法?(2)从书架的第1、2、3层各取1本书,有多少种不同的取法?(3)从书架上任取两本不同学科的书,有多少种不同的取法?思路分析:(1)要完成的事是“取一本书”,由于不论取书架的哪一层的哪一本书都可以完成这件事,因此是分类问题,应用分类计数原理.(2)要完成的事是“从书架的第1、2、3层中各取一本书”,由于取一层中的一本书都只完成了这件事的一部分,只有在第1、2、3层中都取一本书后,才能完成这件事,因此是分步问题,应用分步计数原理.(3)要完成的事是“取2本不同学科的书”,先要考虑的是取哪两个学科的书,如取计算机和文艺书各1本,再要考虑取1本计算机书或取1本文艺书都只完成了这件事的一部分,应用分步计数原理,上述每一种选法都完成后,这件事才能完成,因此这些选法的种数之间还应运用分类计数原理.解:(1)从书架上任取1本书,有3类方法:第1类方法是从第1层取1本计算机书,有4种方法;第2类方法是从第2层取1本文艺书,有3种方法;第3类方法是从第3层取1本体育书,有2种方法.根据分类加法计数原理,不同取法的种数是N=m1+m2+m3=4+3+2=9.(2)从书架的第1,2,3层各取1本书,可以分成3个步骤完成:第1步从第1层取1本计算机书,有4种方法;第2步从第2层取1本文艺书,有3种方法;第3步从第3层取1本体育书,有2种方法.根据分步乘法计数原理,不同取法的种数是N=m1×m2×m3=4×3×2=24.(3)N=4×3+4×2+3×2=26.【巩固练习】要从甲、乙、丙3幅不同的画中选出2幅,分别挂在左、右两边墙上的指定位置,问共有多少种不同的挂法?解:从3幅画中选出2幅分别挂在左、右两边墙上,可以分两个步骤完成:第1步,从3幅画中选1幅挂在左边墙上,有3种选法;第2步,从剩下的2幅画中选1幅挂在右边墙上,有2种选法.根据分步乘法计数原理,不同挂法的种数是N=3×2=6.6种挂法可以表示如下:【变练演编】为了确保电子信箱的安全,在注册时,通常要设置电子信箱密码.在某网站设置的信箱中,(1)密码为4位,每位均为0到9这10个数字中的一个数字,这样的密码共有多少个?(2)密码为4位,每位是0到9这10个数字中的一个,或是从A到Z这26个英文字母中的一个.这样的密码共有多少个?解:(1)设置电子密码可以分成四个步骤:第一步,确定第一位密码,有10种不同的方法;第二步,确定第二位密码,有10种不同的方法;第三步,确定第三位密码,有10种不同的方法;第四步,确定第四位密码,有10种不同的方法.根据分步乘法计数原理,不同的密码共有10×10×10×10=10 000个.(2)设置电子密码可以分成四个步骤:第一步,确定第一位密码,有两类不同的方案.第一类方案选数字有10种不同的方法,第二类方案选字母,有26种不同的选择,共有10+26=36种不同的选法;第二步,确定第二位密码,有两类不同的方案.第一类方案选数字有10种不同的方法,第二类方案选字母,有26种不同的选择,共有10+26=36种不同的选法;第三步,确定第三位密码,有两类不同的方案.第一类方案选数字有10种不同的方法,第二类方案选字母,有26种不同的选择,共有10+26=36种不同的选法;第四步,确定第四位密码,有两类不同的方案.第一类方案选数字有10种不同的方法,第二类方案选字母,有26种不同的选择,共有10+26=36种不同的选法.根据分步乘法计数原理,不同的密码共有36×36×36×36=364个.设计意图:进一步加深对分类加法计数原理和分步乘法计数原理的理解,初步接触分类加法计数原理和分步乘法计数原理的综合运用.【达标检测】1.填空:(1)一件工作可以用2种方法完成,有5人只会用第1种方法完成,另有4人只会用第2种方法完成,从中选出1人来完成这件工作,不同选法的种数是________.(2)从A村去B村的道路有3条,从B村去C村的道路有2条,从A村经B村去C村,不同的路线有________条.2.十字路口来往的车辆,如果不允许回头,共有________种行车路线.3.某地的部分电话号码是0543316××××,后面的每个数字来自0~9这10个数,问可以产生多少个不同的电话号码?答案:1.(1)9(2)6 2.12 3.10 000课堂小结1.知识收获:分类加法计数原理和分步乘法计数原理,以及它们的区别与联系.分类加法计数原理和分步乘法计数原理,回答的都是有关做一件事的不同方法的种数问题.区别在于:分类加法计数原理针对的是“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事,分步乘法计数原理针对的是“分步”问题,各个步骤中的方法互相依存,只有各个步骤都完成才算做完这件事.2.方法收获:分类讨论、化归思想.3.思维收获:抽象概括问题的能力.补充练习【基础练习】1.(1)在图Ⅰ的电路中,只合上一只开关以接通电路,有多少种不同的方法?(2)在图Ⅱ的电路中,合上两只开关以接通电路,有多少种不同的方法?2.现有高一年级的学生3名,高二年级的学生5名,高三年级的学生4名.(1)从中任选1人参加接待外宾的活动,有多少种不同的选法?(2)从3个年级的学生中各选1人参加接待外宾的活动,有多少种不同的选法?答案:1.(1)5(2)6 2.(1)12(2)60【拓展练习】已知a∈{3,4,6},b∈{1,2,7,8},r∈{8,9},则方程(x-a)2+(y-b)2=r2可表示不同的圆的个数有多少?解答:要确定圆的方程可以分成三个步骤:第一步,确定a的值,有3种不同的选择;第二步,确定b的值,有4种不同的选择;第三步,确定半径r的值,有2种不同的选择.根据分步乘法计数原理得,共可表示圆的个数为3×4×2=24.设计说明本节课是计数原理的起始课,是全章内容的理论依据和知识基础.重点介绍分类加法计数原理和分步乘法计数原理,理解两个原理的区别与联系,并会初步应用两个原理解决计数问题.本节课的设计主要是实例分析、问题驱动、归纳总结、类比思考、启发引导、自主探索等教学方式.主要特点是引导学生把两个原理总结出来,并总结出两个原理的区别与联系.实例分析总结、类比分析是本节课设计的主要特点.本节课突出教师的主导作用和学生的主体地位,在教师所提问题的引导下,学生自主完成探究新知和理解新知的过程,在运用新知时进行变练演编,加深学生对知识的理解和问题转化的能力.备课资料例1某学校食堂备有5种素菜、3种荤菜、2种汤.现要配成一荤一素一汤的套餐.问可以配制出多少种不同的品种?分析:1.完成的这件事是什么?2.如何完成这件事?(配一个荤菜、配一个素菜、配一个汤)3.它们属于分类还是分步?(是否独立完成)4.运用哪个计数原理?5.进行计算.解:属于分步:第一步,配一个荤菜,有3种选择;第二步,配一个素菜,有5种选择;第三步,配一个汤,有2种选择.共有N=3×5×2=30种不同的品种.例2有一个书架共有2层,上层放有5本不同的数学书,下层放有4本不同的语文书.(1)从书架上任取一本书,有多少种不同的取法?(2)从书架上任取一本数学书和一本语文书,有多少种不同的取法?(1)分析:1.完成的这件事是什么?2.如何完成这件事?3.它们属于分类还是分步?(是否独立完成)4.运用哪个计数原理?5.进行计算.解:属于分类:第一类,从上层取一本书,有5种选择;第二类,从下层取一本书,有4种选择.共有N=5+4=9种.(2)分析:1.完成的这件事是什么?2.如何完成这件事?3.它们属于分类还是分步?(是否独立完成)4.运用哪个计数原理?5.进行计算.解:属于分步:第一步,从上层取一本书,有5种选择;第二步,从下层取一本书,有4种选择.共有N=5×4=20种.(设计者:徐西文)第二课时教学目标知识与技能分类加法计数原理和分步乘法计数原理的应用.过程与方法通过对简单实例的分析概括,总结分类加法计数原理和分步乘法计数原理的应用的方法.情感、态度与价值观引导学生形成“自主学习”与“合作学习”等良好的学习方式,培养学生的抽象概括能力和分类讨论能力.重点难点教学重点:分类加法计数原理和分步乘法计数原理的应用.教学难点:分类加法计数原理和分步乘法计数原理的应用.教学过程复习回顾提出问题1:某人有4条不同颜色的领带和6件不同款式的衬衣,问可以有多少种不同的搭配方法?提出问题2:有一个班共有46名学生,其中男生有21名.(1)现要选派一名学生代表本班参加学校的学代会,则有多少种不同的选派方法?(2)若要选派男、女学生各一名代表本班参加学校的学代会,则有多少种不同的选派方法?活动设计:请同学分析思路和解法依据,并由另外的同学补充.活动成果:1.要完成领带和衬衣的搭配可以分两个步骤:第一步,选择一条领带,有4种不同的选择;第二步,选择一件衬衣,有6种不同的选择.根据分步乘法计数原理,共有4×6=24种不同的搭配方法.2.(1)要选派一名学生代表本班参加学校的学代会有两类不同的选法:第一类,选男生,有21种不同的选择;第二类,选女生,有25种不同的选择.根据分类加法计数原理,共有21+25=46种不同的选择.(2)要选派男、女学生各一名代表本班参加学校的学代会,可以分成两个步骤:第一步,选男生,共有21种不同的选择;第二步,选女生,共有25种不同的选择.根据分步乘法计数原理,共有21×25=525种不同的选法.设计意图:通过以上两个简单的问题,引导学生回顾分类加法计数原理和分步乘法计数原理.提出问题3:上一节课我们学习了分类加法计数原理和分步乘法计数原理,并将两个原理进行了推广,请同学们回忆我们推广的两个原理的内容,并回忆两个原理的区别与联系.活动设计:教师提问,学生回答,请不同的同学补充.活动成果:1.分类加法计数原理:完成一件事,有n类不同的方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,…,在第n类方案中有m n种不同的方法,那么完成这件事共有N=m1+m2+…+m n种不同的方法.2.分步乘法计数原理:完成一件事,需要n个不同的步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×…×m n种不同的方法.3.分类加法计数原理和分步乘法计数原理的区别与联系:(1)相同点:都是回答有关完成一件事的不同方法种数的问题.(2)不同点:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事,是独立完成;而分步乘法计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,只完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事,是合作完成.设计意图:检查学生对两个原理的掌握情况,为本节课的学习提供知识基础和方法提示.典型示例例1给程序模块命名,需要用3个字符,其中首字符要求用字母A~G或U~Z,后两个要求用数字1~9,问最多可以给多少个程序命名?思路分析:要给一个程序模块命名,可以分三个步骤:第一步,选首字符;第二步,选中间字符;第三步,选最后一个字符.而首字符又可以分为两类.解:第一步,先计算首字符的选法.由分类加法计数原理,首字符共有7+6=13种不同的选法.第二步,中间字符和末位字符各有9种不同的选法.根据分步乘法计数原理,最多可以有13×9×9=1 053种不同的选法,即最多可以给1 053个程序命名.例2核糖核酸(RNA)分子是在生物细胞中发现的化学成分.一个RNA分子是一个有着数百个甚至数千个位置的长链,长链中每一个位置上都由一种称为碱基的化学成分所占据.总共有4个不同的碱基,分别用A,C,G,U表示.在一个RNA分子中,各种碱基能够以任意次序出现,所以在任意一个位置上的碱基与其他位置上的碱基无关.假设有一类RNA分子由100个碱基组成,那么能有多少种不同的RNA分子?思路分析:用100个位置表示由100个碱基组成的长链,每个位置都可以从A、C、G、U中任选一个来占据.第1位第2位第3位第100位↑↑↑↑4种4种4种4种解:100个碱基组成的长链共有100个位置,如上图所示.从左到右依次在每个位置中,从A、C、G、U中任选一个来填入,每个位置有4种填充方法.根据分步计数原理,长度为100的所有可能的RNA分子种数为.例3电子元件很容易实现电路的通与断、电位的高与低等两种状态,而这也是最容易控制的两种状态.因此计算机内部就采用了每一位只有0或1两种数字的记数法,即二进制.为了使计算机能够识别字符,需要对字符进行编码,每个字符可以用一个或多个字节来表示,其中字节是计算机中数据存储的最小计量单位,每个字节由8个二进制位构成.问:(1)一个字节(8位)最多可以表示多少个不同的字符?(2)计算机汉字国标码(GB码)包含了6 763个汉字,一个汉字为一个字符,要对这些汉字进行编码,每个汉字至少要用多少个字节表示?思路分析:由于每个字节有8个二进制位,每一位上的值都有0,1两种选择,而且不同的顺序代表不同的字符,因此可以用分步乘法计数原理求解本题.解:(1)用下图来表示一个字节.第1位第2位第3位第8位↑↑↑↑2种2种2种2种一个字节共有8位,每位上有2种选择.根据分步乘法计数原理,一个字节最多可以表示2×2×2×2×2×2×2×2=28=256个不同的字符.(2)由(1)知,用一个字节所能表示的字符不够6 763个,我们就考虑用2个字节能够表。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分类加法计数原理与分步乘法计数原理____________________________________________________________________________________________________________________________________________________________________1.掌握分类计数原理,分布计数原理的概念.2.掌握分类计数原理与分布计数原理的区别.3.能解决分类计数原理与分步计数原理的综合题.1.分类计数原理与分步计数原理(1)分类计数原理:完成一件事,有n类方式,在第1类方式中有m1种不同的方法,在第2类方式中有m2种不同的方法,…,在第n类方式中有m n种不同的方法,那么完成这件事共有N=m1+m2 +…+m n种不同的方法注意:○1分类计数原理又称为加法原理;○2弄清楚完成“一件事”的含义,即知道做“一件事”或完成一个“事件”在题目中具体所指的内容;○3解决“分类”问题,用分类计数原理,即完成事件通过途径A,就不必再通过途径B,可以单独完成;○4每个题中,标准不同,分类也不同,分类的基本要求是:每一种方法必属于某一类(不漏),任意不同类的两种方法是不同的方法(不重).(2)分步计数原理: 完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×…×m n种不同的方法.注意:○1分步计数原理又称为乘法原理;○2弄清楚完成“一件事”的含义,即知道完成一个“事件”在每个题中需要经过哪几个步骤;○3解决“分步”问题,用分步计数原理,需要分成若干个步骤,每个步骤都完成了,才算完成一个事件,注意各步骤间的连续性;○4每个题中,标准不同,分步也不同,分步的基本要求:一是完成一件事,必须且只需连续做完几步,既不漏步也不重步;二是每个步骤之间的方法是无关的,不能相互替代.2.分类计数原理和分步计数原理的区别辨别运用分类计数原理还是分步计数原理的关键是“分类”还是“分步”,也就是说“分类”时,各类办法中的每一种方法都是独立的,都能直接完成这件事,而“分步”时,各步中的方法是相关的,缺一不可,当且仅当做完个步骤时,才能完成这件事。

类型一分类计数原理例1:王刚同学衣服上左、右各有一个口袋,左边口袋装有30张英语单词卡片,右边口袋装有20张英语单词卡片,这些英语单词卡片都互不相同,问从口袋里任取一张英语单词卡片,有多少种不同的取法?[解析]从口袋中任取一张英语单词卡片的方法分两类,第一英:从左边口袋取一张英语单词卡片,有30种不同的取法;第二类:从右边口袋取一张英语单词卡片,有20种不同的取法,上述任何一种取法都能独立完成取一张英语单词卡片的事件,应用分类计数原理,所以从口袋里任取一张英语单词卡片有30+20=50种不同取法.练习1:用10元、5元和1元来支付20元钱的书款,不同的支付方法有()种A.3B.5C.9D.12[答案] C[解析]只用一种币值有2张10元,4张5元,20张1元,共3种;用两种币值的有1张10元,2张5元;1张10元,10张1元;3张5元,5张1元;2张5元,10张1元;1张5元,15张1元,共5种;用三种币值的有1张10元,1张5元,5张1元,共1种.由分类计数原理得,共有3+5+1=9种.练习2:把10个苹果分成三堆,要求每堆至少有1个,至多有5个,则不同的分法共有( )A .4种B .5种C .6种D .7种[答案]A[解析]按每堆苹果的数目可分为4类,即1,4,5;2,3,5;3,3,4;2,4,4,且每类中只有一种分法.类型二分步计数原理例2:要从甲、乙、丙3名工人中选出2名分别上日班和晚班,有多少种不同的选法?[解析]从3名工人中选1名上日班和1名上晚班,可以看成是经过先选1名上日班,再选1名上晚班这两个步骤完成.先选1名上日班,共有3种选法;上日班的工人选定后,上晚班的工人有2种选法,根据分步计数原理,所求的不同的选法数是:N =3×2=6.练习1:有四名同学同时参加了学校的100 m , 800 m , 1 500 m 三项跑步比赛,则获得冠军(无并列名次)的可能性有()A .43种B .34种C .12种D .24种[答案] A[解析]第一步,100 m 冠军有4种可能;第二步,800 m 冠军也有4种可能;第三步,1 500 m 冠军有4种可能,根据分步计数原理,共有4×4×4=43种可能.练习2:将5封信投入3个邮筒中,不同的投法有()种A .53B .35C .15D .5[答案] B[解析]第1封信有3种投法,第2封信也有3种投法……第5封信同样有3种投法,完成5封信投入3个邮筒这件事,按分步计数原理共有3×3×3×3×3=35种方法.类型三分类计数原理与分步计数原理的区别例3:设有5幅不同的国画,2幅不同的油画,7幅不同的水彩画,问:(1)从中取一幅画布直房间,有多少种不同的选法?(2)从这些国画、油画、水彩画中各选一幅布置房间,有多少种不同的选法?[解析](1)分三类:第一类从国画中选一幅,共5种;第二类从油画中选一幅,共有2种;第三类从水彩画中,选一幅,共有7种,由分类加法计数原理,共有5+2+7=14种不同的选法.(2)分三步:第一步从国画中选一幅共5种;第二步从油面中选一幅共有2种;第三步从水彩画中选一幅共:7种,由分步乘法计数原理,共有5×2×7=70种不同的选法.练习1:已知集合{1,2,3},{4,5,6,7}.M N =-=--若从两个集合中各取一个元素作为点的坐标,则在直角坐标系的第一、第二象限不同点的个数为()A .18B .16C .14D .10[答案] C[解析]取法可分为两类.(1)以集合M 中的元素为横坐标,N 中的元素为纵坐标,从集合M 中取一个元素的方法有3种,要使点在第一、第二象限内,则从N 集合中只能取5,6两个元素中的一个,共有2种取法,根据分步计数原理有3×2=6个点.(2)以集合N 中的元素为横坐标,M 中的元素为纵坐标,从集合N 中任取一个元素的方法有4种,要使点在第一、第二象限内,则从M 中只能取1,3两个元素中的一个,共有2种取法,根据分步计数原理有4×2=8个点,综上,利用分类计数原理,共有6+8=14个点.类型四两个原理的综合应用例4:有10本不同的数学书,9本不同的语文书,8本不同的英语书,从中任取两本不同英的书,共有________种不同的取法.[答案]242[解析]任取两本不同类的书,有三类:一、取数学、语文各一本,二、取语文、英语各一本,三、取数学、英语各一本.然后求出每类取法,利用分类加法计数原理即可得解.取两本书中,一本数学、一本语文,根据分步乘法计数原理有10×9=90种不同取法;取两本书中,一本语文、一本英语,有9×8 = 72种不同取法;取两本书中,一本数学、一本英语,有10×8=80种不同取法.综合以上三类,利用分类加法计数原理,共有90+72+80=242种不同取法.练习1:有不同的中文书9本,不同的英文书6本,不同的法文书5本,从其中取出不是同一国文字的书2本,则不同的取法有()种.A.40B.56C.124D.129[答案]D[解析]取出的书为中文、英文的有9×6=54种;取出的书为中文、法文的有9×5=45种;取出的书为英文、法文的有6×5=30种.共有54+45+30=129种.1.从A地到B地每天有直达班车4班,从A地到C地,每天有5个班车,从C地到B地,每天有3个班车,则从A地到B地,每天共有()种不同乘车方法.A.12B.60C.19D.17[答案]C[解析]从A地到B地共分两类方法,第一类:直达班车4班;第二类,转车从A到C再到B,共有5×3=15种乘车方法,根据分类加法计数原理,共有4+15=19种不同的乘车方法.2.将6个苹果投入4个袋子里,不同的投法共有()A.64种B.46种C.4种D.24种[答案]B[解析]每个苹果有4种不同的投法,所以共有46种不同的投法3.从0,1,2,…,9这10个数字中,任取两个不同数字作为平面直角坐标系中点的坐标,能够确定不在x轴上的点的个数是()A.100个B.90个C.81个D.72个[答案]C[解析]要使得点不在x轴上,则纵坐标不能为0,故纵坐标上的数字只能有9种选择,纵坐标选好后,横坐标不能与之相同,故也有9种情况,故共可确定9×9=81个符合题意的点.4.书架上原来并排放者5本不同的书,现在要插入3本不同的书,那么不同的插法有()A.336种B.120种C.24种D.18种[答案]A[解析]我们可以一本一本的插入,先插第一本,可在原来的5本书形成的6个空中插入,共有6种插入的方法;然后再插第二本,这时书架上有6本书形成7个空,有7种插入方法;再插最后一本,有8种插法,所以共有6×7×8=336种不同的插法.5.某校会议室有四个进入门,若从一个门进,另一个门出,不同的走法有________种.[答案]12[解析]根据分步计数原理,共有4×3=12种不同的走法.6.由三个数码组成的号码锁,每个号码可取0,1,2……9中任意一个数字,不同的开锁号码设计共有________个.[答案]1000[解析]由每个号码可取0到9中任意一个数字,有10种取法,根据分步计数原理,共有10×10×10=1000个不同的开锁号码._________________________________________________________________________________ _________________________________________________________________________________基础巩固1.把10个苹果分成三堆,要求每堆至少有1个,至多有5个,则不同的分法共有)A .4种B .5种C .6种D .7种[答案] A2.一个包内有7本不同的故事书,另一个包内有5本不同的教科书,从两个包内任取一本的取法有()A .7种B .5种C .12种D .35种[答案] C[解析](1)从有7本不同故事书的包内任取一本书的取法有7种;(2)从有5本不同教科书的包内任取一本书的取法有5种.综上,共有12种取法.3.从甲地到乙地每天有火车10班,汽车15班,飞机3班,轮船2班,一天内乘不同班次的运输工具由甲地到乙地,不同的走法有()A .10种B .20种C .30种D .40种[答案]C[解析]由于每班火车、汽车、飞机、轮船都能完成从甲地到乙地这件事,因此这是一个分类问题,应采用分类计数原理,有10+15+3+2=30种,即一天内乘不同班次的运输工具由甲地到乙地共有30种不同的走法.4.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目,如果将这两个节目插入原节目单中,那么不同的插法数为()A .42B .30C .20D .12[答案]A[解析]原定的5个节目共有6个空位,将其中1个新节目插入有6种插法,然后6个节目形成7个空位,将另一新节目插入,由分步计数原理共有7×6=42种方法.5.4名学生报名参加地理探宝、人与自然、航模课外兴趣小组,每人选报一种,则不同报名种数有()A .34B .43C .12D .4[答案]A6.已知集合{1,2,3},{4,5,6,7}.M N =-=--若从两个集合中各取一个元素作为点的坐标,则在直角坐标系的第一、第二象限不同点的个数为()A .18B .16C .14D .10[答案] C[解析] 取法可分为两类.(1)以集合M 中的元素为横坐标,N 中的元素为纵坐标,从集合M 中取一个元素的方法有3种,要使点在第一、第二象限内,则从N 集合中只能取5,6两个元素中的一个,共有2种取法,根据分步计数原理有3×2=6个点.(2)以集合N中的元素为横坐标,M中的元素为纵坐标,从集合N中任取一个元素的方法有4种,要使点在第一、第二象限内,则从M中只能取1,3两个元素中的一个,共有2种取法,根据分步计数原理有4×2=8个点,综上,利用分类计数原理,共有6+8=14个点.7.有不同的中文书9本,不同的英文书6本,不同的法文书5本,从其中取出不是同一国文字的书2本,则不同的取法有()种.A.40B.56C.124D.129[答案]D[解析]取出的书为中文、英文的有9×6=54种;取出的书为中文、法文的有9×5=45种;取出的书为英文、法文的有6×5=30种.共有54+45+30=129种.8.用1,2,…,9九个数字,可组成的四位数共有______个,可组成的七位数共有______个.[答案]组成四位数:个位数有9种选法,十位数有9种选法,百位数也有9种选法,千位数同样有9种选法,根据分步计数原理,四位数共有9×9×9×9=94个.同理,七位数共有97个.故第一个空填94,第二个空填97.能力提升1.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种[答案]C2.卷航空母舰“辽宁舰”在某次舰载机起降飞行训练中,有5架歼-15飞机准备着舰,如果甲、乙两机必须相邻着舰,而甲、丁两机不能相邻着舰,那么不同的着舰方法有( ) A.12种B.16种C.24种D.36种[答案]D3.满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为()A.14B.13C.12D.9[答案]B4.用a代表红球,b代表蓝球,c代表黑球.由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)(1+b)的展开式1+a+b+ab表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球、而“ab”则表示把红球和蓝球都取出来.依此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是()A.(1+a+a2+a3+a4+a5)(1+b5)(1+c)5B.(1+a5)(1+b+b2+b3+b4+b5)(1+c)5C.(1+a)5(1+b+b2+b3+b4+b5)(1+c5)D.(1+a5)(1+b)5(1+c+c2+c3+c4+c5)[答案]A5.集合P ={x,1},Q ={y,1,2},其中x ,y ∈{1,2,3,…,9},且P ⊆Q .把满足上述条件的一对有序整数对(x ,y )作为一个点的坐标,则这样的点的个数是()A .9B .14C .15D .21【答案】B6.某体育彩票规定:从01至36共36个号中抽出7个号为一注,每注2元,某人想从01至10中选3个连续的号,从11至20中选2个连续的号,从21至30中选1个号,从31至36中选1个号组成一注,则这个人把这种特殊要求的号买全,至少要()A .3360元B .6720元C .4320元D .8640元[答案] D7.集合A 、B 的并集A U B ={a ,b ,c },当A ≠B 时(A ,B )与(B ,A )视为不同的对,则这样的(A 、B )对的个数有多少?[答案]因为A U B ={a ,b ,c },所以对于元素a 而言,有a A ∈但,a B a B ∉∈但a ∉,A a A B ∈I 三种情况,同样b 和c 也有三种情况,由分步乘法计数原理可知,这样的集合对的个数共有3×3×3=27个.8.已知在区间(400,800]上,问:(1)有多少个能被5整除且数字允许重复的整数?(2)有多少个能被5整除且数字不重复的整数?[答案](1)分三步:第一步,排个位有2种方法;第二步,排百位有4种方法;第三步,排十位有10种方法,又考虑到800符合题意,故共有2×4×10+1=81个能被5整除,且数字允许重复的整数.(2)分两类:第一类,当个位数字为0时,百位数字是4,5,6,7中的一个,十位是其余8个数字中的一个,此类共有4×8=32个;第二类,当个位数字是5时,百位是4,6,7中的一个,十位是其余8个中的一个,此类共有3×8=24个.故共有32+24=56个能被5整除且数字不允许重复的整数.。

相关文档
最新文档