11分类加法计数原理与步乘法计数(3)

合集下载

1.1分类加法计数原理与分步乘法计数原理课件人教新课标

1.1分类加法计数原理与分步乘法计数原理课件人教新课标

√A.9 B.2
C.20
D.6
(2)从A村去B村的道路有3条,从B村去C 村的道路有2条,从A村经B村去C村,不同的 路线有 ( )条.
A.3 B.4
C.5
√D.6
3.解答题
(1)由数字l,2,3,4,5可以组成多少个允 许重复数字的三位数.
解:
由于此三位数的数字允许重复,分三步: 百、十、个位数各有5种取法, 所以可以组成
如果完成一件事有n种不同方案,在每一 类中都有若干种不同方法,那么如何计数呢?
2、分步乘法计数原理
用前6个大写英文字母和1~9九个阿拉伯 数字,以A1,A2,…,B1,B2,…的方式 给教室里的座位编号,总共能变出多少个不 同的号码?
解答
由题意画图如下:
字母 A
数字
1 2 3 4 5 6 7 8 9
A.48个
分析:
B.36个
C.24个
D.18个
先分类,再分步,据题意,当个位数是2时, 万位数是3,4,5,其他随便,共有 3×3×2×1=18种;当个位数是4时,万位数是2, 3,5,其他随便,共有3×3×2×1=18种
所以共有36种.
课堂练习
1.填空
(1)从甲地到乙地有2种走法,从乙地到丙地有4 种走法,从甲地不经过乙地到丙地有3种走法,则 从甲地到丙地的不同的走法共有 __1_1___种.
高考链接
1(202X年福建卷7)某班级要从4名男生、2名 女生中选派4人参加某次社区服务,如果要求至少 有1名女生,那么不同的选派方案种数___A__ .
A. 14 B. 24
C. 28
D. 48
先分类,再分 步!
2. (202X年四川文科第9题)用数字1,2,3, 4,5可以组成没有重复数字,并且比20000大的 五位偶数共有______.B

分类加法与分步乘法计数原理-PPT

分类加法与分步乘法计数原理-PPT
(1)4+3+2=9(种)
(2)4×3×2=24(种)
20
典例讲评
例4 要从甲、乙、丙3幅不同的画 中选出2幅,分别挂在左、右两边墙上 的指定位置,求共有多少种不同的挂 法?
3×2=6(种)
21
课堂小结
1.分类加法计数原理和分步乘法计数
原理,都是解决完成一件事的方法数的
计数问题,其不同之处在于,前者是针
例2 某班有男生30名,女生24名, 现要从中选出男、女生各一名代表班 级参加朗诵比赛,求共有多少种不同 的选派方法?
30×24=720(种)
19
例3 书架有三层,其中第一层放有4本 不同的计算机书,第二层放有3本不同的 文艺书,第三层放有2本不同的体育书. (1)从书架上任取1本书,有多少种不 同的取法? (2)从书架的第一,二,三层各取1本 书,有多少种不同的取法?
33
开始
子模块1 18条执行路径
子模块2 45条执行路径
A
子模块3 28条执行路径
子模块4 38条执行路径
子模块5 43条执行路径
7371条
结束
178次
34
例5 随着人们生活水平的提高,某 城市家庭汽车拥有量迅速增长,汽车牌 照号码需要扩容.交通管理部门出台了一 种汽车牌照组成方法,每一个汽车牌照 都必须有3个不重复的英文字母和3个不 重复的阿拉伯数字,并且3个字母必须合 成一组出现,3个数字也必须合成一组出 现.那么这种办法共能给多少辆汽车上牌 照?
3种
N=5×4×3=60(种)
40
5. 用5种不同颜色给图中A,B,C,D四 个区域涂色,每个区域只涂一种颜色, 相邻区域的颜色不同,求共有多少种不 同的涂色方法?
54
A C3

第一节 分类加法计数原理与分步乘法计数原理 课件(共40张PPT)

第一节 分类加法计数原理与分步乘法计数原理 课件(共40张PPT)
数为A45=120. 故符合题意的四位数一共有960+120=1 080(个). 答案:1 080
角度 涂色、种植问题 [例3] (1)如图,图案共分9个区域,有6 种不同颜色的涂料可供涂色,每个区域只能 涂1种颜色的涂料,其中2和9同色,3和6同 色,4和7同色,5和8同色,且相邻区域的颜色不相同, 则不同的涂色方法有( ) A.360种 B.720种 C.780种 D.840种
1.如图,小明从街道的E处出发,先到F处与小红 会合,再一起到位于G处的老年公寓参加志愿者活动, 则小明到老年公寓可以选择的最短路径条数为( )
A.24 B.18
C.12
D.9
解析:从E点到F点的最短路径有6条,从F点到G点 的最短路径有3条,所以从E点到G点的最短路径有6×3= 18(条),故选B.
4.从0,1,2,3,4,5这六个数字中,任取两个不 同数字相加,其和为偶数的不同取法的种数是______.
解析:从0,1,2,3,4,5六个数字中,任取两数 和为偶数可分为两类,①取出的两数都是偶数,共有3种 方法;②取出的两数都是奇数,共有3种方法,故由分类 加法计数原理得共有N=3+3=6(种).
考点1 分类加法计数原理
1.如图,某货场有两堆集装箱,一
堆2个,一堆3个,现需要全部装运,每
次只能取其中一堆最上面的一个集装箱,则在装运的过
程中不同取法的种数是( )
A.6
B.10
C.12
D.24
解析:将题图中左边的集装箱从上往下分别记为
1,2,3,右边的集装箱从上往下分别记为4,5.分两种
情况讨论:若先取1,则有12345,12453,12435,
答案:D
3.现安排一份5天的工作值班表,每天有一个人值

11分类加法计数原理与分步乘法计数原理.doc

11分类加法计数原理与分步乘法计数原理.doc

人教A版选修2—3 精讲细练1.1分类加法计数原理与分步乘法计数原理、知识精讲.计数原理.计数原理选取对于两个计数原理的综合应用问题,一般是先分类再分步,分类时要设计好标准, 设计好分类方案,防止重复和遗漏;分步时要注意步与步之间的连续性,同时应合理设计步骤顺序,使各步互不干扰.二、典例细练【题型一】:分类加法计数原理的简单应用例题1:书架上层放有13本不同的数学书,中层放有14本不同的语文书,下层放有15本不同的化学书,某人从中取出一本书,有多少种不同的取法?【解析】要完成“取一本书”这件事有三类不同的取法:第1类,从上层取一本数学书有13种不同的方法;第2类,从中层取一本语文书有14种不同的方法;第3类,从下层取一本化学书有15种不同的方法.其中任何一种取法都能独立完成取一本书这件事,故从中取一本书的方法种数为13+14+15=42.【点评】分类的原则:标准一致,不重复,不遗漏.变式训练:某校高三共有三个班,其各班人数如下表:(1)从三个班中选一名学生会主席,有多少种不同的选法?(2)从1班、2班男生中或从3班女生中选一名学生任学生会生活部部长,有多少种不同的选法?【解析】:(1)从三个班中任选一名学生,可分三类:第1类,从1班任选一名学生,有50种不同选法;第2类,从2班任选一名学生,有60种不同选法;第3类,从3班任选一名学生,有55种不同选法.由分类加法计数原理知,不同的选法共有N = 50+60+55=165(种)(2)由题设知共有三类:第1类,从1班男生中任选一名学生,有30种不同选法;第2类,从2班男生中任选一名学生,有30种不同选法;第3类,从3班女生中任选一名学生,有20种不同选法;由分类加法计数原理知,不同的选法共有N = 30+30+20=80(种).【题型二】:分步乘法计数原理的简单应用例题2:已知集合M= {-3,-2,-1,0,1,2},P(a,b)(a,b e M)表示平面上的点,问:⑴点、P可表示平面上多少个不同的点?(2)点P可表示平面上多少个第二象限内的点?【解析】:⑴确定平面上的点P(a,b),可分两步完成:第一步确定a的值,有6种不同方法;第二步确定b的值,也有6种不同方法.根据分步乘法计数原理,得到平面上点P的个数为6x6二36・ (2)确定平面上第二象限内的点P,可分两步完成:第一步确定d的值,由于GV O,所以有3种不同方法;第二步确定方的值,由于b>0,所以有2种不同方法.由分步乘法计数原理,得到平面上第二象限内的点P的个数为3x2=6.【点评】利用分步乘法计数原理解决问题应注意:(1)要按事件发生的过程合理分步,即分步是有先后顺序的;⑵各步中的方法互相依存,缺一不可,只有各个步骤都完成才算完成这件事.变式训练1: (2011年高考课标全国卷)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )C.|D-4【解析】:选A.甲、乙两位同学参加3个小组的所有可能性有3x3=9(种),其中甲、乙两人参加同一个小组的情况有3(种).故甲、乙两位同学参加同一个兴趣3 1小组的概率P=§=亍变式训练2:现有6名同学去听同时进行的5个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是( )A. 56B. 65MM 驾4X3X2D. 6x5x4x3x2【解析】:每位同学都有5种选择,则6名同学共有5°种不同的选法,故选A.【题型三】:两个计数原理的综合使用例题3:现有高一学生50人,高二学生42人,高三学生30人,组成冬令营.(1)若从中选一人作总负责人,共有多少种不同的选法?(2)若每年级各选一名负责人,共有多少种不同的选法?(3)若从中推选两人作为中心发言人,要求这两人要来自不同的年级,则有多少种选法?【解析】(1)从高一选一人作总负责人有50种选法;从高二选一人作总负责人有42种选法;从高三选一人作总负责人有30种选法.由分类加法计数原理,可知共有50+42+30=122种选法.(2)从高一选一名负责人有50种选法;从高二选一名负责人有42种选法;从高三选一人作负责人有30种选法.由分步乘法计数原理,可知共有50X42X30= 63 000种选法. (3)①高一和高二各选一人作中心发言人,有50X42=2 100种选法;②高二和高三各选一人作中心发言人,有42X30=1 260种选法;③高一和高三各选一人作中心发言人,有50X30=1 500种选法.故共有2 100+1 260+1 500=4 860 种选法.【点评】用两个计数原理解决具体问题时,首先要分清是“分类”还是'吩步”,其次要清楚“分类''或“分步"的具体标准,在“分类”时要做到“不重不漏”,在“分步” 时要正确设计“分步''的程序,注意步与步之间的连续性.变式训练:7名同学中,有5名会下象棋,有4名会下围棋•现从这7人中选2 人分别参加象棋和围棋比赛,共有多少种不同的选法?【解析】:\ 3 /依题意,既会象棋又会围棋的“多面手''有5+4-7 = 2人.方法一:第一类,先从会下象棋但不会下围棋的3人中选1人,再从会下围棋的4人中选1人,共有3x4= 12(种)选法.第二类,先从既会下象棋又会下圉棋的2人中选1人,再从会下围棋的剩余3人中选1人下围棋,有2x3 = 6(种)选法,由分类加法计数原理得N =12+6=18(种). 方法二:第一类,“多面手''不参加,从只会下象棋的3人中选1人,从只会下围棋的2人中选1人,共有3x2 = 6(种)选法.第二类,“多面手"中有一人参加象棋有2种选法,再从只会下围棋的2人中选1 人,共有2x2=4(种)选法.第三类,“多面手'冲有一人参加围棋有2种选法,再从只会下象棋的3人中选1 人,共有2x3 = 6(种)选法.第四类,“多面手''都参加,有2种选法,故N=6+4+6+2=18(种).【题型四】:经典问题(1)例题4(1):如图是某校的校园设施平面图,现用不同的颜色作为各区域的底色,为了便于区分,要求相邻区域不能使用同一种颜色.若有5种不同的颜色可选,则有种不同的着色方案.【解析】:操场可从5种颜色中任选1种着色;餐厅可从剩下的4种颜色中任选1种着色;宿舍区和操场、餐厅颜色都不能相同,故可从其余的3种颜色中任选1种着色;教学区和宿舍区、餐厅的颜色都不能相同,故可从其余的3种颜色中任选1种着色.根据分步乘法计数原理,共有5x4x3x3=180种着色方案.例题4 (2)用5种不同的颜色给图中的四个区域涂色,每个区域涂一种颜色,若要求相邻(有公共边)的区域不同色,那么共有多少种不同的涂色方法?【解析】:第一类:1号区域与4号区域同色,此时可分三步来完成,第一步,先涂1 号区域和4号区域,有5种涂法,第二步,再涂2号区域,只要不与1号区域和4号区域同色即可,因此有4种涂法;第三步,涂3号区域,只要不与1号区域和4号区域同色即可,因此也有4种涂法,由分步乘法计数原理知,有5x4x4=80种涂法;第二类:1 号区域与4号区域不同色,此时可分四步来完成,第一步,先涂1号区域,有5种涂法, 第二步,再涂4号区域,只要不与1号区域同色即可,因此有4种涂法;第三步,涂2 号区域,只要不与1号区域和4号区域同色即可,因此有3种涂法;第四步,涂3号区域,只要不与1号区域和4号区域同色即可,因此也有3种涂法.由分步乘法计数原理知,有5x4x3x3=180种涂法.依据分类加法计数原理知,不同的涂色方法种数为80+180=260.【点评】反思:涂色问题一般是综合利用两个计数原理求解,但也有几种常用方法:⑴按区域的不同,以区域为主分步计数,用分步乘法计数原理分析;⑵以颜色为主分类讨论,适用于“区域、点、线段"等问题,用分类加法计数原理分析;⑶将空间问题平面化,转化成平面区域的涂色问题.变式训练1:用5种不同颜色给图中的A、B、C、D四个区域涂色,规定一个区域只涂一种颜色,相邻的区域颜色不同,问有多少种不同的涂色方案?【解析】解法一:A可从5种颜色中任选1种着色;B可从剩下的4种颜色中任选1种着色;C和A、B颜色都不能相同,故可从其余的3种颜色中任选1种着色;D和B、C的颜色都不能相同,故可从其余的3种颜色中任选1种着色.根据分步乘法计数原理,共有5x4x3x3=480种着色方案解法二:先分为两类:第一类,当D与A不同色,则可分为四步完成.第一步涂A有5种方法,第二步涂B有4种方法,第三步涂C有3种方法,第四步涂D有2种涂法,由分步乘法计数原理,共有5X4X3X2=120种方法.第二类,当D与A同色,分三步完成,第一步涂A和D有5种方法,第二步涂B有4种方法,第三步涂C有3种方法,由分步乘法计数原理共有5X4X3 = 60(种),所以共有120+60=180种不同的方案.变式训练2:用红、黄、绿、黑四种不同的颜色涂入图中的五个区域内,要求相邻的两个区域的颜色都不相同,则有多少种不同的涂色方法?【解析】:给各区域标记号A、B、C、D、E,则A区域有4种不同的涂色方法,B区域有3种,C区域有2种,D区域有2种,但E区域的涂色依赖于B与D 涂色的颜色,如果B 与D颜色相同有2种,如果不相同,则只有一种.因此应先分类后分步.第一类,B、D涂同色时,有4X3X2X1X2=48种,第二类,当B、D不同色时,有4X3X2X1X1=24种,故共有48+24=72种不同的涂色方法.变式训练3:如图,一环形花坛被分成A,B,C,D四个区域,现有4种不同的花可供选种,要A.96B.84C.60D.48求在每个区域里种1种花,且相邻的2个区域种不同的花,则不同种法的种数【解析】方法一:先种A地有4种,再种〃地有3种,若C地与A地种相同的花,则C 地有1种,D地有3种;若C地与人地种不同花,则C地有2种,D 地有2种,即不同种法总数为W=4X3X(1X3+2X2) = 84种.方法二:若种4种花有4X3X2X1=24种;若种3种花,则A和C或B和D相同,有2X4X3X2=48种;若种2种花,则A和C相同且B和D相同,有4X3=12 种.共有2=24+48+12=84 种.变式训练4:将1,2,3填入3x3的方格中,要求每行、每列都没有重复数字,如图是一种填A. 6种B. 12 种C. 24 种D. 48 种法,则不同的填写方法共有( )【解析】:假设第一行为1,2,3,则第二行第一列可为2或3,此时,其他剩余的空格都只有一种填法,又第一行有3x2x1 =6种填法.故不同填写方法共有6x2=12 种.变式训练5:如图,用6种不同的作物把图中A、B、C、D四块区域分开,若相邻区域不能种植同一种作物,则不同的种法共有( )A. 400 种C. 480 种【解析】:从A 开始,有6种方法,B 有5种,C 有4种,D. A 种相同作物1 种,D. A 不同作物3种,・・・不同种法有6X5X4X (l+3)=480种.故选C.变式训练6:有4种不同的作物可供选择种植在如图所示的4块试验田中,每块 种植一种作物,相邻的试验田(有公共边)不能种植同一种作物,共有多少种不同 的种植方法? AB CD【解析】方法一:第一步,种植A 试验田有4种方法;第二步,种植〃试验田有3种方法;第三步,若C 试验田种植的作物与B 试验田相同,则D 试验田有3种方法,此 时有1X3 = 3种种植方法.若C 试验田种植的作物与B 试验田不同,则C 试验田有2种种植方法,D 也有 2种种植方法,共有2X2=4种种植方法.由分类加法计数原理知,有3+4=7 种方法.第四步,由分步乘法计数原理有2=4X3X7 = 84种不同的种植方法.方法二:(1)若A 、D 种植同种作物,则4、D 有4种不同的种法,B 有3种种植 方法,C 也有3种种植方法,由分步乘法计数原理,共有4X3X3 = 36种种植方 法.(2)若A 、£>种植不同作物,则A 有4种种植方法,D 有3种种植方法,B 有2种 种植方法,C 有2种种植方法,由分步乘法计数原理,共有4X3X2X2=48种 种植方法. 综上所述,由分类加法计数原理,共有7V=36+48 = 84种种植方法. B. 460 种 D. 496 种【题型五】:经典问题(2) ——组数问题例题5:用0,123,4这五个数字可以组成多少个无重复数字的(1)四位密码?⑵四位数?(3)四位奇数?【解析】(1)完成“组成无重复数字的四位密码”这件事,可以分为四步:第一步,选取左边第一个位置上的数字,有5种选取方法;第二步,选取左边第二个位置上的数字,有4种选取方法;第三步,选取左边第三个位置上的数字,有3 种选取方法;第四步,选取左边第四个位置上的数字,有2种选取方法.由分步乘法计数原理,可以组成不同的四位密码共有N = 5X4X3X2=120个.(2)完成“组成无重复数字的四位数”这件事,可以分四步:第一步,从1,2,3,4 这4个数字中选一个数字作千位数字,共4种不同的选取方法,第二步从1,2,3,4 中剩余的三个数字和0共4个数字选一个数字作百位数字,有4种不同的选取方法;第三步,从剩余的三个数字中选取一个数字作十位数字,有3种不同的选取方法;第四步,从剩余的两个数字中选取一个数字作个位数字,有2种不同的选取方法•由分步乘法计数原理,可以组成不同的四位数共有N=4X4X3X2 = 96 个.(3)完成“组成无重复数字的四位奇数”这件事,可以分四步:第一步定个位,只能从1、3中任取一个有两种方法,第二步定首位,扌巴1、2、3、4中除去用过的一个还有3个可任取一个有3种方法,第三步,第四步把剩下的包括0在内的还有3个数字先排百位3种方法,再排十位有2种方法.由分步乘法计数原理共有2X3X3X2 = 36个.变式训练1:从集合{0,123,4,5,6}中任取两个互不相等的数a, b组成复数a+bi, 其中虚数有( )A. 30 个B. 42 个C. 36 个D. 35 个【解析】:选C.第一步取b的数,有6种方法,第二步取a的数,也有6种方法, 根据乘法计数原理,共有6x6=36种方法.变式训练2:用1,2,3三个数字组成一个四位数,规定这三个数必须全部使用,且同一数字不能相邻出现,这样的四位数有()A. 36 个B. 18 个C. 9个D. 6个【解析】:选B.分3步完成,1,2,3这三个数中必有某一个数字被使用2次.第1步,确定哪一个数字被使用2次,有3种方法;第2步,把这2个相同的数字排在四位数不相邻的两个位置上有3种方法;第3步,将余下的2个数字排在四位数余下的两个位置上,有2种方法. 故有3x3x2=18个不同的四位数.变式训练3:从123,4,7,9六个数中,任取两个数作对数的底数和真数,则所有不同的对数的值的个数为 ____________________ ・【解析】:⑴当取1时,1只能为真数,此时对数的值为0.⑵不取1时,分两步:①取底数,5 种;②取真数,4 种.其中log23 = log49, log32 = log94, log24=log39, log42 = log93, A7V= 14-5x4-4= 17.变式训练4:用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为()A. 324B. 328C. 360D. 648【解析】:分两类,第一类,0在末位时,百位有9种排法,十位有8种排法,故共有9x8 = 72(个). 第二类,0不在末位,也不能在首位,此时末位只能排2,4,6,8中的一个,共4种排法,百位有8种排法,十位有8种排法,共有4x8x8 = 256(个).综上共有72+256 = 328(个).。

【课件】分类加法计数原理与分步乘法计数原理(人教A版2019选择性必修第三册)

【课件】分类加法计数原理与分步乘法计数原理(人教A版2019选择性必修第三册)
[解析]当把“小于”改为“大于”时,设个位数字为,十位数字为,且.当时,,有1个;当时,,,有2个;当时,,,,有3个;;当时,,,,,,,,,有8个,所以这样的两位数共有(个).把“小于”改为“不大于”时,因为所有两位数共有90个,而个位数字大于十位数字的两位数有36个,所以个位数字不大于十位数字的两位数有.
(2)在所有的两位数中,个位数字小于十位数字的两位数共有多少个?
[解析](1)设购买笔支,笔记本本,则得将的取值分为三类:①当时,,因为为整数,所以可取,,,,共有4种方案.②当时,,因为为整数,所以可取,,共有2种方案.③当时,,因为为整数,所以只能取2,只有1种方案.由分类加法计数原理得不同的购买方案有(种).
情境设置
新知生成
分步乘法计数原理完成一件事需要经过个步骤,缺一不可,做第一步有种方法,做第二步有种方法,,做第步有种方法.那么,完成这件事共有种方法.
新知运用
例2已知集合,表示平面上的点,问:
(1)可表示平面上多少个不同的点?
(2)可表示平面上多少个第二象限的点?
(3)可表示多少个不在直线上的点?
方法总结 利用两个计数原理解题时的三个注意点:
(1)当题目无从下手时,可考虑要完成的这件事是什么,即怎样做才算完成这件事,然后给出完成这件事的一种或几种方法,从这几种方法中归纳出解题方法;类时标准要明确,做到不重不漏,有时要恰当画出示意图或树形图,使问题的分析更直观、清楚,便于探索规律;混合型问题一般是先分类再分步.
自主预习·悟新知
合作探究·提素养
随堂检测·精评价
1.计数问题是我们从小就经常遇到的,通过列举一个一个的数是计数的基本方法,但当问题中的数量很大时,列举的方法效率不高,能否设计巧妙的“计数法”来提高效率呢?是什么计数法?

高中数学 1.1分类加法计数原理与分步乘法计数原理课件(3) 新人教A版必修3

高中数学 1.1分类加法计数原理与分步乘法计数原理课件(3) 新人教A版必修3

例2.随着人们生活水平的提高,某城市家庭汽车拥有量 迅速增长,汽车牌照号码需要扩容。交通管理部门出台了 一种汽车牌照组成办法,每一个汽车牌照必须有3个不重 复的英文字母和3个不重复的阿拉伯数字,并且3个字母必 须合成一组出现,3个数字也必须合成一组出现。那么这 种办法共能给多少辆汽车上牌照? 解:将汽车牌照分为2类, 一类的字母的组合在左,另一类字母的组合在右 第1位
(3)课本12页
作业
例1.计算机编程人员在编写好程序以后需要对程序进行测试。 程序员需要知道到底有多少条执行路径(即程序从开始到结束 的路线),以便知道需要提供多少个测试数据,一般地,一个 程序模块由许多子模块组成,如图。它是一个具有许多执行路 径的程序模块。问:这个程序模块有多少条执行路径? 另外,为了减少测试 时间,程序员需要设 法减少测试次数。你 能帮助程序员设计一 个测试方法,以减少 测试次数吗?
26
第2位 第3位
25 24
第4位
10
第5位
9
第6位
8
根据分步计数原理,字母组合在左的牌照共有 26×25×24×10×9×8 = 11 232 000(个)
同理,字母组合在右的牌照也有11 232 000个
所以,共能给11232 000+11 232 000=22 464 000 辆汽车上牌照。
例3.同室四人各写一张贺年卡,先集中起来, 然后每人从中拿一张别人送出的贺年卡,则 四张贺年卡不同的分配方式有( B ) (A)6种 (B)9种 (C)11种 (D)23种 练习: (1)在所有的三位数中,又且只有两个数字相同 243 个。 的3位数共有________ (2)某赛季足球比赛的计分规则是:胜一场得3分, 平一场得1分,负一场得0分,一球队打完15场, 积33分,若不考虑顺序,球队胜、负、平的情 形有( A ) (A)3种 (B)4种 (C)5种 (D)6种

1.1分类加法计数原理与分步计数乘法原理(3)

1.1分类加法计数原理与分步计数乘法原理(3)

13( N=1+6+5+1=13(种)
普通高中课程数学选修2-3] 1.1计数原理 普通高中课程数学选修 计数原理 8 [普通高中课程数学选修
由数字0 例6 由数字0,1,2,3,4,5可 以组成多少个无重复数字的三位数? 以组成多少个无重复数字的三位数? 百位 十位 个位 5种 5种 4种
100( N=5×5×4=100(种)
普通高中课程数学选修2-3] 1.1计数原理 普通高中课程数学选修 计数原理 19 [普通高中课程数学选修
引申: 引申
1、将数字1,2,3,4,填入标号为 、将数字 填入标号为1,2,3,4的四个 填入标号为 的四个 方格里,每格填一个数字 每格填一个数字,则每个格子的标 方格里 每格填一个数字 则每个格子的标 号与所填的数字均不同的填法有_____种 号与所填的数字均不同的填法有 种
C D A
涂S 点 涂A 点 涂D 点 B 涂B 、C 点
5 4 3 7
420( N=5×4×3×7=420(种)
普通高中课程数学选修2-3] 1.1计数原理 普通高中课程数学选修 计数原理 12 [普通高中课程数学选修
例10 从-3,-2,-1,0,1,2, 3中任取三个不同的数作为抛物线 2+bx+ (a≠0)的系数,如果抛物 y=ax x+c( ≠0)的系数 y= x x+ ≠0)的系数, 线过原点,且顶点在第一象限,问 线过原点,且顶点在第一象限, 这样的抛物线共有多少条? 这样的抛物线共有多少条? c取值 c=1 取值 1种 a取值 a<0 取值 3种 3种 b取值 b>0 取值 N=3×3×1=9(种)
பைடு நூலகம்
普通高中课程数学选修2-3] 1.1计数原理 普通高中课程数学选修 计数原理 17 [普通高中课程数学选修

分类加法计数原理与分步乘法计数原理

分类加法计数原理与分步乘法计数原理

自然数2520有多少个约数? 有多少个约数? 例3.自然数 自然数 有多少个约数 解:2520=23×32×5×7 = × 分四步完成: 分四步完成: 第一步: 第一步:取20,21,22,23,24有4种; 种 第二步: 第二步:取30,31,32有3种; 种 第三步:取50,51有2种; 第三步: 种 第四步: 第四步:取70,71有2种。 种 由分步计数原理,共有4× × × = 种 由分步计数原理,共有 ×3×2×2=48种 练习: 张 元币 元币, 张 角币 角币, 张 分币 分币, 张 分币 分币, 练习:5张1元币,4张1角币,1张5分币,2张2分币,可组成 多少种不同的币值?( 张不取, ?(1张不取 角不计在内) 多少种不同的币值?( 张不取,即0元0分0角不计在内) 元 分 角不计在内 元:0,1,2,3,4,5 , , , , , 角:0,1,2,3,4 , , , , 分:0,2,4,5,7,9 , , , , , 6×5×6-1=179 × × - =
பைடு நூலகம்
(染色问题) 染色问题)
1.如图 要给地图 、B、C、D四个区域分别涂上 种 如图,要给地图 四个区域分别涂上3种 如图 要给地图A、 、 、 四个区域分别涂上 不同颜色中的某一种,允许同一种颜色使用多次 允许同一种颜色使用多次,但相 不同颜色中的某一种 允许同一种颜色使用多次 但相 邻区域必须涂不同的颜色,不同的涂色方案有多少种 不同的涂色方案有多少种? 邻区域必须涂不同的颜色 不同的涂色方案有多少种?
深化理解 4. 何时用分类计数原理、分步计数原理呢 何时用分类计数原理、分步计数原理呢? 完成一件事情有n类方法 答:完成一件事情有 类方法 若每一类方法中的任 完成一件事情有 类方法,若每一类方法中的任 何一种方法均能将这件事情从头至尾完成,则计算完 何一种方法均能将这件事情从头至尾完成 则计算完 成这件事情的方法总数用分类计数原理. 成这件事情的方法总数用分类计数原理 完成一件事情有n个步骤 若每一步的任何一种 完成一件事情有 个步骤,若每一步的任何一种 个步骤 方法只能完成这件事的一部分,并且必须且只需完成 方法只能完成这件事的一部分 并且必须且只需完成 互相独立的这n步后 才能完成这件事,则计算完成这 步后,才能完成这件事 互相独立的这 步后 才能完成这件事 则计算完成这 件事的方法总数用分步计数原理. 件事的方法总数用分步计数原理
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
100个4
例 7 电子元件很 容 易实现电路 的通与断、电位 的高与低等两种状态 ,而这也是最容易控制的 两种 状态.因此计算机内部就采用 了每一位只有 0或 1两 种数字的记数法 ,即二进制 .为了使计算机能够识别 字符,需要对字符进行编码 , 每个字符可以用一个或 多个字节来表示, 其中字节是计算机中数 据存储的 最小计量单位 , 每个字节由 8个二进制位构成 .问 : 1一个字节8位 最多可以表示多少个不 同的字符? 2计算机汉字国标码 GB码包含了6763个汉字,一 个汉字为一个字符 , 要对这些汉字进行编码 , 每个汉 字至少要用多少个字节 表示?
开始
子模块1 18条执行路径
子模块2 45条执行路径
A
子模块3 28条执行路径
子模块4 38条执行路径
子模块5 43条执行路径
结束
分析 整个模块的任意一条执 行路径都分两步完 成 : 第1步是从开始执行到 A点;第2 步是从 A 点执行 1 步可由子模块 1或子模块2或子模块3来 到结束. 而第
完成 ; 第2步可由子模块 4或子模块5来完成 .因此, 分析
一条指令在整个模块的 执行路径需要用到两个 计数 原理.
解 由分类加法计数原理 ,子模块1或子模块2或 子模块3的子路径共有18 45 28 91(条);
又由分步乘法计数原理 ,整个模块的执行路径共 有 91 81 7371(条).
8
2由 1知 ,用一个字节所能表示的 不同
字符不够6763个, 我们就考虑用 2 个字节 能够表示多少个字符 .前一个字节有256 种不同的表示方法 , 后一个字节也有 256 种表示方法 .
根据分步乘法计数原理 ,2个字节可以表 示 256 256 65 536 个不同字符 , 这已 经大于汉字国标码包含 的汉字个数6763. 所以要表示这些汉字 , 每个汉字至少要用 2个字节表示 .
不同的方法,做第2 步有m2种不同的方法……做第n
步 有 mn 种 不 同 的 方 法 , 那 么 完 成 这 件 事 共 有
N=m1×m2×m3×…×mn种不同的方法.
分类计数原理与分步计数原理有什么不同?
分类计数原理与分步计数原理都是涉及完成一件事的不同 方法的种数的问题,它们的区别在于:分类计数原理与“分类”
例 8 计算机编程人员在编写 好程序以后需 要对程序进行测试.程序员需要知道到底有 多少条执行路 径 (即程序从开始到结束的 路 线),以便知道需要提供多少 个测试数据 .一般 的, 一个程序模块由许多子 模块组成 .如图 1 .1 4,它是一个具有许多执行 路径的程序模块 . 问 : 这个程序模块有多少条 执行路径 ? 另外,为了减少测试时间 , 程序员需要设法减 少测试次数你能帮助程 序员设计一个测试方 法,以减少测试次数吗 ?
分析 由于每个字节有 8个二进制位 , 每一位上的 值都有 0,1两种选择,而且不同的顺序代表不 同的 字符,因此可以用分步乘法计 数原理求解本题 . 解 用图 1.1 3来表示一个字节
第1位 第2位 第3位

第8位
2种2种2种2种图1.1 3
一个字节有8 位, 每位上有2种选择.根据分步乘 法计数原理 , 一个字节最多可以表示 2 2 2 2 2 2 2 2 2 256 个不同的字符 ;
U A C G A G C A U U A
分析 用下面的图来表示由 100 个碱基组成的长链 , 这时我们有 100个位置, 每个位置都可以从 A, C, G,U中 任选一个来占据 .
4 1.6 10 60 , 这是一个 非常大的 数.有兴趣 的同学可 以自己查 阅一下R NA 的有关 资料.
1.1 分类加法计数原理与 分步乘法计数原理 (三)
分类加法计数原理
完成一件事 ,有n类办法,在第1类办法中有 m1种不同的方法,在第2 类办法中有m2种不同的 方法……在第n类办法中有mn种不同的方法,那 么完成这件事共有 :N=m1+m2+…+mn 种不同的 方法.
分步乘法计数原理:
完成一件事,需要分成n个步骤,做第1步有m1种
子模块4或子模块5的子路径共有38 43 81 (条);
100
第1位
第2位
第3位

第100位
4种
4种
4种
4种
解 100个碱基组成的长链共有 100个位置, 如上图所示.从左到右依次在每个位 置中 ,从 A, C, G,U中任选一个填入 , 每个位置有 4种填 根据分步乘法计数原理 ,长度为 充方法. 100的所有可能的不同 RNA 分子数目有
4 4 4 4100 个.
有关,各种方法相互独立,用其中任何一种方法都可以完成这
件事;分步计数原理与“分步”有关,各个步骤相互依存,只 有各个步骤都完成了,这件事才算完成.
例5 给程序模块命名 ,需要用 3个字符, 其中首字符 要求用字母A ~ G或U ~ Z, 后两个要求用数字 1 ~ 9. 问最多可以给多少个程 序命名? 分析 要给一个程序模块命名 ,可以分三个步骤: 第1 步, 选首字符 ;第2步, 选中间字符 ;第 3 步选最后一个字 符.而首字符又可以分为两 类. 解 先计算首字符的选法 .由分类加法计数原理 , 首字符共有7 6 13 种选法. 再计算可能的不同程序 名称.由分步乘法计数原 理,最多可以有13 9 9 1053 个不同的名称 ,即最多可以给 1053个程序命名 .
你还能给出不同的解法 吗?
例 6 核糖核酸RNA 分子是在生物细胞中发 现 的化学成分 .一个RNA 分子是一个有着数百个 甚 至数千个位置的长链 , 长链中每一个位置上都 由 一种称为碱基的化学成 分所占据 .总共有 4 种不 同的碱基, 分别用 A, C, G,U表示.在一个RNA 分子 中, 各种碱基能够以任意次 序出现, 所以在任意一 个位置上的碱基与其他 位置上的碱基无关 .假设 有一类RNA 分子由100 个碱基组成 , 那么能有多 少种不同的RNA 分子?
相关文档
最新文档