冀教版数学九年级上册专训 平均数、中位数、众数实际应用的四种类型
冀教版九年级数学上册《数据分析》阶段归类专训 平均数、中位数和众数实际应用的四种类型

93
89
90
乙 94
92
94
86
丙 92
91
90
88
(1)甲、乙、丙三位同学成绩的中位数分别为_9_0_分__、__9_3_分__、__9_0_._5_分__;
阶段归类专训 (2)如果数与代数、图形与几何、统计与概率、综合与实践的成绩
按 3∶3∶2∶2 计算,分别计算甲、乙、丙三位同学的数学综 合素质测试成绩,从成绩看,应推荐谁参加更高级别的比赛?
阶段归类专训 2.(中考·内蒙古呼伦贝尔)某市招聘教师,对应聘者分别进行教
学能力、科研能力、组织能力三项测试,其中甲、乙两人的 成绩(单位:分)如下表:
人员 教学能力 科研能力 组织能力
甲
86
93
73
乙
81
95
79
阶段归类专训 (1)根据实际需要,将教学能力、科研能力、组织能力三项测试得
分按 5∶3∶2 的比确定最后成绩,若按此成绩在甲、乙两人 中录用一人,谁将被录用?
解:中位数为12+2 12=12(个),众数为 11 个, 当定额为 13 个时,有 8 人达标,6 人获奖,不利于提高大多数 工人的积极性;
阶段归类专训
当定额为 12 个时,有 12 人达标,8 人获奖,不利于提高大多数 工人的积极性; 当定额为 11 个时,有 18 人达标,12 人获奖,有利于提高大多 数工人的积极性. 故定额为 11 个时,有利于提高大多数工人的积极性.
阶段归类专训
解:甲能,乙不一定能.理由:由频数分布直方图可知,85 分 及以上的共有 7 人, 因此甲能被录用,乙不一定能被录用.
阶段归类专训
3.(2018·河北唐山古冶区期中)甲、乙、丙三位同学参加数学综 合素质测试,各项成绩如下(单位:分):
初中数学平均数、中位数、众数实际应用四种类型

平均数、中位数、众数实际应用四种类型名师点金:利用统计量中“三数”的实际意义解决实际生活中的一些问题时,关键要理解“三数”的特征,然后根据题目中的已知条件或统计图表中的相关信息,通过计算相关数据解答.平均数的应用a.平均数在商业营销中的决策作用1.一种什锦糖果是由甲、乙、丙三种不同价格的糖果混合而成的,已知甲种糖果的价格为9元/kg,乙种糖果的价格为10元/kg,丙种糖果的价格为12元/kg.(1)若甲、乙、丙三种糖果质量按2∶5∶3的比例混合,则混合后得到的什锦糖果的价格定为每千克多少元才能保证获得的利润不变?(2)若甲、乙、丙三种糖果质量按6∶3∶1的比例混合,则混合后得到的什锦糖果的价格定为每千克多少元才能保证获得的利润不变?b.平均数在人员招聘中的决策作用2.【中考·呼伦贝尔)某市招聘教师,对应聘者分别进行教学能力、科研能力、组织能力三项测试,其中甲、乙两人的成绩如下表:(单位:分)(1)根据实际需要,将教学能力、科研能力、组织能力三项测试得分按5∶3∶2的比确定最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?(2)按照(1)中的成绩计算方法,将每位应聘者的最后成绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数值,不包含右端数值),并决定由高分到低分录用8人.甲、乙两人能否被录用?请说明理由.(第2题)c.平均数在用样本估计总体中的作用3.某中学为调查本校学生平均每天完成作业所用时间的情况,随机调查了50名同学,如图是根据调查所得数据绘制的统计图的一部分.请根据以上信息,解答下列问题:(1)将统计图补充完整;(2)若该校共有1 800名学生,根据以上调查结果估计该校全体学生平均每天完成作业所用总时间.(第3题)4.老王家的鱼塘中放养某种鱼1 500条,若干年后,准备打捞出售,为了估计鱼塘中这种鱼的总质量,现从鱼塘中捕捞三次,得到数据如下表:(1)鱼塘中这种鱼平均每条约重多少千克(结果精确到0.1)?(2)若这种鱼放养的成活率是82%,则鱼塘中这种鱼约有多少千克?(3)如果把这种鱼全部卖掉,价格为每千克6.2元,那么这种鱼的总收入为多少元?若投资成本为14 000元,则这种鱼的纯收入是多少元?平均数和中位数的应用5.甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图和统计表:(1)在图①中,“7分”所在扇形的圆心角等于______.(2)请你将如图②所示的统计图补充完整.(3)经计算,乙校学生成绩的平均数是8.3分,中位数是8分,请写出甲校学生成绩的平均数、中位数,并从平均数和中位数的角度分析哪所学校的成绩较好;(4)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?甲校成绩统计表(第5题)中位数和众数的应用6.某厂为了解工人在单位时间内加工同一种零件的技能水平,随机抽取了50名工人加工的零件进行检测,统计出他们各自加工的合格品数是1~8这8个整数,现提供统计图的部分信息(如图所示),请解答下列问题:(第6题)(1)根据统计图,求这50名工人加工出的合格品数的中位数;(2)写出这50名工人加工出的合格品数的众数的可能取值;(3)厂方认定,工人在单位时间内加工出的合格品数不低于3时为技能合格,否则,将接受技能再培训,已知该厂有同类工人400名,请估计该厂将接受技能再培训的人数.平均数、中位数、众数的综合应用7.甲、乙、丙三个家电厂家在广告中都声称,他们的某品牌节能灯在正确使用的情况下,使用寿命都不低于8年.后来质量检测部门对他们的产品进行抽查,抽查的各8个产品使用寿命的统计结果如下(单位:年):甲厂:6,6,6,8,8,9,9,12乙厂:6,7,7,7,9,10,10,12丙厂:6,8,8,8,9,9,10,10(1)把以上三组数据的平均数、众数、中位数填入下表.(2)估计这三个厂家的推销广告分别利用了哪一种统计量.(3)如果你是顾客,应该选哪个厂家的节能灯?为什么?答案1.解:(1)9×2+10×5+12×32+5+3=10.4(元).答:混合后得到的什锦糖果的价格定为每千克10.4元才能保证获得的利润不变. (2)9×6+10×3+12×16+3+1=9.6(元).答:混合后得到的什锦糖果的价格定为每千克9.6元才能保证获得的利润不变. 2.解:(1)甲的成绩为86×5+93×3+73×25+3+2=85.5(分),乙的成绩为81×5+95×3+79×25+3+2=84.8(分),所以甲将被录用.(2)甲能,乙不一定能.理由:由频数分布直方图可知,85分及以上的共有7人,因此甲能被录用,乙不一定能被录用.3.解:(1)50-6-12-16-8=8,补全统计图如图所示.(第3题)(2)由统计图可得x -=6×1+12×2+16×3+8×4+8×550=3(h ),估计该校全体学生平均每天完成作业所用总时间为3×1 800=5 400(h ).点拨:本题综合考查平均数的应用、用样本估计总体以及由统计图获取信息的能力.4.解:(1)2.8×15+3×20+2.5×1015+20+10≈2.8(kg ).答:鱼塘中这种鱼平均每条约重2.8 kg . (2)1 500×82%×2.8=3 444(kg ). 答:鱼塘中这种鱼约有3 444 kg .(3)总收入为6.2×3 444=21 352.8(元),纯收入为21 352.8-14 000=7 352.8(元). 答:这种鱼的总收入为21 352.8元,纯收入为7 352.8元.5.解:(1)144° (2)4÷72°360°=20,20-8-4-5=3,补全统计图如图所示.(第5题)(3)由(2)知乙校的参赛人数为20.因为两校参赛人数相等,所以甲校的参赛人数也为20,所以甲校得9分的有1人,则甲校学生成绩的平均数为(7×11+8×0+9×1+10×8)×120=8.3(分),中位数为7分.由于两所学校学生成绩的平均数一样,因此从中位数的角度进行分析.因为乙校学生成绩的中位数为8分,大于甲校学生成绩的中位数,所以乙校的成绩较好.(4)甲校的前8名学生成绩都是10分,而乙校的前8名学生中只有5名的成绩是10分,所以应选甲校.6.解:(1)因为把合格品数从小到大排列,第25个和第26个数据都为4,所以中位数为4.(2)众数的取值为4或5或6.(3)这50名工人中,单位时间内加工的合格品数低于3的人数为2+6=8,故估计该厂将接受技能再培训的人数为400×850=64.7.解:(1)甲厂:8,6,8;乙厂:8.5,7,8;丙厂:8.5,8,8.5.(2)甲厂利用了平均数或中位数;乙厂利用了平均数或中位数;丙厂利用了平均数或众数或中位数.(3)选丙厂的节能灯.因为无论从哪种统计量来看,与其他两个厂家相比,丙厂水平都比较高或持平.。
2024年冀教版九年级上册教学第二十三章 数据分析中位数和众数

第1课时中位数和众数的认识课时目标1.理解中位数、众数的概念和意义,会求一组数据的中位数和众数.2.会利用平均数、中位数、众数作为数据的代表值,对数据进行分析,选择恰当的数据代表值描述一组数据的特征,进而做出自己的判断,并在具体问题情境中加以应用.3.培养学生互相交流的能力,增强学生的数学应用意识.学习重点中位数、众数的概念和意义,会求一组数据的中位数和众数.学习难点选择恰当的数据代表值描述数据的特征.课时活动设计回顾引入在前边的学习中,我们知道平均数可作为一组数据的代表值,但是有的时候,用平均数作为一组数据的代表值也会存在局限性,这个时候我们就需要引入新的数据作为一组数据的代表值,这就是本节课我们要学习的中位数和众数.设计意图:开门点题,让学生知道本节课的学习重点.探究新知探究一小琴的英语听力成绩一直很好,在六次测试中,前五次的得分(满分30分)分别为:28分,25分,27分,28分,30分.第六次测试时,因耳机出现故障只得了6分.如何评价小琴英语听力的实际水平呢?(1)用6个分数的平均数评价小琴英语听力的实际水平合理吗?(2)如果不合理,那么应该用哪个数作为评价结果呢?学生分组讨论:先独立思考,再组内交流.在学生充分讨论的基础上,学生展示,师生共同归纳.分析:一组数据中,任何一个数的变动都会引起平均数的变动.当数据中有异常值(与其他数据的大小差异很大的数)时,平均数就不是一个好的代表值了.解:(1)由于数据中出现了异常值,此时,平均数不能很好地反映听力的实际水平.(2)方法不唯一.如方法一:去掉一个最高分30分,去掉一个最低分6分,得到一组新的数据:28分,25分,27分,28分,取这组数据的平均数(28+25+27+28)÷4=27(分)作为评价结果,比较合理.方法二:如果将这6个数有小到大排列为6,25,27,28,28,30,去(27+28)÷2=27.5(分)作为评价结果,也比较合理.总结概念一般地,将n个数据按大小顺序排序,如果n为奇数,那么把处于中间位置的数据叫做这组数据的中位数;如果n为偶数,那么把处于中间位置的两个数据的平均数叫做这组数据的中位数.(x3+x4).如图所示,图1中5个数据的中位数为x3,图2中6个数据的中位数为12图1图2归纳:求中位数的一般步骤:(1)排序;(2)判断数据个数;(3)按定义求解.设计意图:通过实际问题,使学生认识到当数据中存在极端异常值或者数据的波动较大的时候,平均数的代表性就会变差,给学生独立思考和交流的时间,让学生发表各自的观点,体会中位数出现的必要性,从而引起中位数的概念.探究二某班用无记名投票的方式选班长,5名候选人分别编为1号,2号,3号,4号,5号.投票结果如下表:思考1:在这个问题中,(1)我们会关注这组数据的平均数吗?(2)我们会关注这组数据的中位数吗?(3)我们最关注的应该是什么?学生分组讨论:先独立思考,再组内交流.在学生充分讨论的基础上,学生展示,师生共同归纳.解:(1)不会.(2)不会.(3)出现次数最多的那个数据.总结概念一般地,把一组数据中出现次数最多的那个数据叫做众数.思考2(可自主思考,也可小组之间探讨、交流):(1)一组数据中众数一定只有一个吗?(2)一组数据中一定会有众数吗?(3)若一组数据中有众数,众数一定是该组数据中的数吗?解:(1)不一定.(2)不一定.(3)不一定.归纳:一组数据的众数可能不止一个,也可能没有众数; 众数是一组数据中出现次数最多的数据而不是数据出现的次数.设计意图:通过解决具体问题,揭示众数出现的必要性,总结出众数的概念;通过思考,让学生能够体会到,一组数据中,众数可能不止一个,也可能没有众数,同时众数可能是数值、数字、文字和字母等,一定注意众数是研究的原始数据(或者原始对象).典例精讲例统计全班45名学生每天上学路上所用的时间.如果时间取最接近5的倍数的整数,那么整理后的数据如下表:求所用时间的平均数、中位数和众数.解:45个数据的平均数为:x=1×(5×2+10×6+15×14+20×12+25×8+30×3)=18(min).45将这45个数据由小到大排列,第23个数据是20 min,所以中位数是20 min.所用时间出现最多的是15 min,所以众数是15 min.设计意图:通过例题,学生能够熟悉求平均数、中位数和众数的方法,并进行比较.巩固训练1.学校团委组织“阳光助残”捐款活动,九年一班学生捐款情况如下表:则学生捐款金额的中位数是(D)A.13人B.12人C.10元D. 20元2.11名同学参加数学竞赛初赛,他们的得分互不相同,按从高分录到低分的原则,取前6名同学参加复赛,现在小明同学已经知道自己的分数,如果他想知道自己能否进入复赛,那么还需知道所有参赛学生成绩的(B)A.平均数B.中位数C.众数D.方差3.某校女子排球队12名队员的年龄分布如下表所示:则该校女子排球队12名队员年龄的众数、中位数分别是(C)A.13岁,14岁B.14岁,15岁C.15岁,15岁D.15岁,14岁4.某中学由6名师生组成一个排球队,他们的年龄(单位:岁)如下:151617171740(1)这组数据的平均数为20.33岁,中位数为17岁,众数为17岁.(2)用哪个值作为他们年龄的代表值较好?解:用中位数或众数作为年龄的代表值比平均数好.5.(1)数据3,5,3,5,3,6,5,7中,众数是3和5.(2)数据3,4,6,5,7,8,9,2中,存在众数吗?为什么?解:该组数据中每个数据各出现一次,所以这组数据没有众数.设计意图:通过练习,巩固求平均数、中位数和众数的方法.课堂8分钟.1.教材第15页习题A组第1,2题,习题B组第2题.2.七彩作业.第1课时中位数和众数一、定义:中位数:一般地,将n个数据按大小顺序排列,如果n为奇数,那么把处于中间位置的数据叫做这组数据的中位数;如果n为偶数,那么把处于中间位置的两个数据的平均数叫做这组数据的中位数.(x3+x4)如图所示,图1中5个数据的中位数为x3,图2中6个数据的中位数为12图1图2众数:一般地,把一组数据中出现次数最多的那个数据叫做众数.二、中位数求解的一般步骤:(1)排序;(2)判断数据个数;(3)按定义求解.例:教学反思第2课时“三数”的综合应用课时目标1.进一步体会平均数、中位数和众数都可以反映一组数据的集中趋势.2.会利用平均数、中位数和众数作为数据的代表值,对数据进行分析,选择恰当的数据代表值对数据作出自己的判断,并在具体问题情境中加以应用.3.培养学生互相交流的能力,增强学生的数学应用意识.学习重点平均数、中位数、众数的概念和意义,会求一组数据的平均数、中位数和众数.学习难点选择恰当的数据代表值描述数据的特征. 课时活动设计情境引入前面我们学习了三个重要的统计量:平均数、中位数和众数,一起来思考下列问题:有6户家庭的年收入(单位:万元)分别为:4,5,5,6,7,50.你认为这6户家庭的年收入水平大概是多少?学生讨论,交流. 解:(1)用平均数估计:x —=4+5+5+6+7+506≈12.83(万元);(2)用中位数估计:中位数=5+62=5.5(万元);(3)用众数估计:众数=5万元.教师:用哪一个统计量来反映6户家庭的年收入水平呢?这就是这节课要学习的内容.设计意图:开门点题,引出本节课所学——选择合适的数据代表值描述数据的特征.探究新知某公司销售部统计了14名销售人员6月份销售某商品的数量,结果如下表:(1)求销量的平均数、中位数和众数. 学生分组讨论:先独立思考,再组内交流.在学生充分讨论的基础上,学生展示,师生共同归纳. 解:(1)平均数:(1500+1360+500×5+460×4+400×3)14=840014=600(件).由表可知,一共有14名销售人员,排第7和第8的分别销售500件和460件,=480(件).所以中位数为500+4602由表格看出销售500件的人数最多,所以众数为500件.(2)公司在制订销售人员月销量定额时,有以下三种观点:观点一:平均数是数据的代表值,应该用平均数作为销量定额;观点二:只有两人的销量超过平均数,应该用中位数作为销量定额;观点三:众数出现的次数最多,应该用众数作为销量定额;你认为哪种观点比较合理些?解:在这个具体的问题中,由于有两个异常大的数据会使得平均数偏大,若用平均数600件作为定额,根据过去的销售情况,则只有两个人能够完成定额,显然不合适,用中位数480件或者众数500件作为定额比较合理,约有半数员工能够完成定额.因此,观点二、三比较合理.归纳:对于大多数实际问题,如果数据分布比较正常(没有异常数据),平均数是一个较好的代表值.例如,在考虑农作物产量时,知道平均产量就可以知道总产量;对某企业员工的工资情况调查,知道平均工资就知道工资总额.但平均数易受异常值的情况,当数据中有异常值时,平均数的代表性变差.当我们描述“中间位置”或“中等水平”时,可以选择中位数,中位数受异常值的影响较小.设计意图:通过实际问题,让学生计算平均数、中位数和众数,以巩固学生对平均数、中位数和众数的计算方法,并结合问题的实际背景和数据特点展开讨论,能够选择合适的数据代表值描述数据特征;教师总结,加深学生选择合适的数据代表值去描述数据特征的合理性.典例精讲例某企业50名职工的月工资分为5个档次,分布情况如下表:(1)求月工资的平均数和中位数.(2)企业经理关心哪个数?普通职工关心哪个数?解:(1)月工资的平均数为:1×(2 500×6+3 000×12+3 500×18+4 000×10+4 500×4)=3 440(元).5050个数由小到大排列,最中间的两个数均为3 500,所以中位数为3 500.(2)企业经理关心平均工资,知道平均工资就知道了工资总额.普通职工关心中位数,知道了中位数,就知道自己工资水平大概的位置.设计意图:通过例题的教学,让学生在不同的背景、不同的角度下,体会平均数和中位数的意义和作用.巩固训练1.九年级一班和二班每班选8名同学进行投篮比赛,每名同学投篮10次,对每名同学投中的次数进行统计,甲说:“一班同学投中次数为6个的最多”,乙说:“二班同学投中次数大约每个同学3个.”上面两名同学的议论分别反映出的统计量是(A)A.众数和平均数B.众数和中位数C.中位数和平均数D.中位数和众数2.在奥运会男子50 m步枪射击决赛中,某著名选手10次射击的成绩(单位:环)为:9.410.49.310.49.510.19.99.410.00其中第10次射击意外地射向别人的靶子,痛失金牌.(1)分别求这组数据的平均数和中位数.(2)平均数、中位数哪个更能反映这名选手的真实射击水平?解:(1)这组数据的平均数为1×(9.4+10.4+9.3+10.4+9.5+10.1+9.9+9.4+10.0+0)=8.84(环),1010次射击成绩重新排列为0,9.3,9.4,9.4,9.5,9.9,10.0,10.1,10.4,10.4,=9.7(环).所以这组数据的中位数为9.5+9.92(2)中位数更能反映这名选手的真实射击水平.设计意图:通过练习,学生能够选择合适的数据代表值去描述数据的特征.课堂小结思考:用平均数、中位数和众数描述一组数据的“集中趋势”,各有哪些优缺点呢?总结:平均数计算要用到所有的数据,任何一个数据的变动都会相应引起平均数的变动,它能够充分利用所有的数据信息,但它受极端值的影响较大.众数是当一组数据中某一数据重复出现较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,缺点是当众数有多个且众数的频数相对较小时可靠性小,局限性大.数仅与数据的排列位置有关,不易受极端值影响,中位数可能出现在所给数据中,也可能不在所给的数据中.当一组数据中的个别数据变动较大时,可用中位数描述其趋势,中位数的计算很少.设计意图:通过思考,鼓励学生能够列举出更多的实际例子,并结合不同问题的背景、目的和任务说明平均数、中位数和众数的优缺点.课堂8分钟.1.教材第17页练习,习题A组第2题,习题B组第2题.2.七彩作业.第2课时“三数”的综合应用例:平均数、中位数和众数的优缺点:教学反思。
冀教版九年级数学上册知识点

23章 数据分析23.1平均数和加权平均数1、一般地,我们把n 个数n x x x ,...,,21的和与n 的比,叫做这n 个数的算术平均数,简称平均数,记作-x ,读作“x 拔”,即)....(11n x x nx ++=-2、已知n 个数n x x x ,...,,21,若n w w w ,...,,21为一组正数,则把nnn w w w w x w x w x ......212211+++++叫做n 个数n x x x ,...,,21的加权平均数,n w w w ,...,,21分别叫做这n 个数的权重,简称权。
23.2中位数和众数1、一般地,将n 个数据按大小顺序排列,如果n 为奇数,那么把处于中间位置的数据叫做这组数据的中位数;如果n 为偶数,那么把处于中间位置的两个数据的平均数叫做这组数据的中位数。
2、一般地,把一组数据中出现次数最多的那个数据叫做众数。
一组数据的众数可能不止一个,也可能没有众数。
23.3方差 设n个数据n x x x ,...,,21的平均数为-x ,各个数据与平均数偏差的平方分别是22221)(,...,)(,)(------x x x x x x n 。
偏差平方的平均数叫做这组数据的方差,用2s 表示,即⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-++-+-=---222212)(...)()(1x x x x x x n s n当数据分布比较分散时,方差较大;当数据分布比较集中时,方差较小。
因此,方差的大小反映了数据波动(或离散程度)的大小。
23.4用样本估计总体由于抽样的任意性,即使是相同的样本容量,不同样本的平均数一般也不同;当样本容量较小时,差异可能还较大。
但是当样本容量增大时,样本的平均数的波动变小,逐渐趋于稳定,且与总体的平均数比较接近。
因此,在实际中经常用样本的平均数估计总体的平均数。
同样的道理,我们也用样本的方差估计总体的方差。
24章 一元二次方程 24.1一元二次方程1、只含有一个未知数,并且未知数的最高次数为2的整式方程,叫做一元二次方程。
冀教版数学九年级上册23.2《中位数和众数》教学设计

冀教版数学九年级上册23.2《中位数和众数》教学设计一. 教材分析冀教版数学九年级上册23.2《中位数和众数》是本册教材中的重要内容,主要让学生了解中位数和众数的概念,掌握求一组数据的中位数和众数的方法,并能够运用中位数和众数解决实际问题。
本节课的内容对于学生来说比较抽象,需要通过具体的数据和实例来帮助学生理解和掌握。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于平均数、方差等统计量有一定的了解。
但是,对于中位数和众数的概念以及求法还比较陌生。
此外,学生对于实际问题的解决能力还有待提高。
因此,在教学过程中,需要通过具体的数据和实例来引导学生理解和掌握中位数和众数的概念和求法,并通过练习题来提高学生解决实际问题的能力。
三. 教学目标1.知识与技能:让学生了解中位数和众数的概念,掌握求一组数据的中位数和众数的方法。
2.过程与方法:通过具体的数据和实例,引导学生探究中位数和众数的求法,培养学生的动手操作能力和解决问题的能力。
3.情感态度与价值观:让学生体验数学与生活的联系,提高学生学习数学的兴趣。
四. 教学重难点1.重点:中位数和众数的概念,求一组数据的中位数和众数的方法。
2.难点:理解中位数和众数在实际问题中的应用。
五. 教学方法1.情境教学法:通过具体的数据和实例,引导学生理解和掌握中位数和众数的概念和求法。
2.问题驱动法:通过设置问题,引导学生探究中位数和众数的求法,培养学生的解决问题能力。
3.练习法:通过布置练习题,巩固学生对中位数和众数的理解和掌握。
六. 教学准备1.教具准备:电脑、投影仪、黑板、粉笔。
2.教学素材:中位数和众数的PPT、数据和实例。
七. 教学过程1.导入(5分钟)通过一个具体的数据实例,引导学生思考:如何找出这组数据的中位数和众数?激发学生的兴趣和思考。
2.呈现(10分钟)讲解中位数和众数的概念,通过具体的例子来说明中位数和众数的求法。
让学生分组讨论,总结中位数和众数的求法。
新冀教版九年级上册初中数学 课时2 用平均数、中位数和众数合理决策 教案

第二十三章数据分析23.2 中位数和众数第2课时用平均数、中位数和众数合理决策【知识与技能】理解中位数和众数的含义,能够准确确定出一组数据的中位数和众数。
【过程与方法】通过对实际问题的探究,理解中位数和众数,感知其代表数据的意义【情感态度与价值观】以积极情感态度投入到探究问题的过程中,学会从不同的角度去分析和处理问题,并体会数学与现实的联系。
理解中位数和众数两个概念及它们的简单应用区分中位数、众数、平均数三者的特点,能初步根据具体的情境选择合适的统计量,分析数据,做出决策。
多媒体课件.(课件展示问题)某公司销售部统计了14名销售人员6月份销售某商品的数量,结果如下表:6月份销量/件15001360500460400人数/名11543(1)分别求销量数据的平均数、中位数和众数;(2)根据计算的统计量,销售定额定为多少比较合适?说明理由.【解】(1)中位数为众数为500件。
例2 某中学初三(1)班篮球队有10名队员,在一次投篮训练中,这10名队员各投篮50次的进球情况如下表:进球数/个4232262019181514人数11112121针对这次训练,请解答下列问题:(1)求这10名队员进球数的平均数、中位数和众数;(2)求这支球队整体投篮命中率;(3)若队员小华的投篮命中率为40%,请你分析一下小华在这支球队中的投篮水平.【解】(1)平均数中位数19 众数15和19(2)投篮命中率(3))虽然小华的命中率为40%,低于整体投篮命中率44%,但小华投50个球进了20个,大于中位数19个,事实上全队有6人低于这个水平,所以小华在这支队伍中的投篮水平为中等偏上。
三、运用新知,深化理解1.某校为了丰富校园文化,举行了初中生书法大赛,决赛设置了6个获奖名额,共有11名选手进入决赛,选手决赛得分均不相同.若知道某位选手的决赛得分,要判断她能否获奖,只需知道这11名选手得分的()A.中位数B.平均数C.众数D.加权平均数2.为了解某公司员工的年工资情况,小王随机调查了10位员工,其年工资(单位:万元)如下:3,3,3,4,5,5,6,6,8,20.下列统计量中,能合理反映该公司员工年工资水平的是()A.加权平均数B.众数C.中位数D.平均数3.一段时间内,鞋店为了解某品牌女鞋的销售情况,对各种尺码鞋的销量进行了统计分析,在“平均数”“中位数”“众数”等统计量中,店主最关注的统计量是4.某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下销售件数1800510250210150120人数113532(1)这15位营销人员该月销售件数的中位数、众数分别是多少?(2)计算这15位营销人员该月销售件数的平均数。
冀教版初三数学上册中位数与众数知识点

冀教版初三数学上册中位数与众数知识点知识点一、平均数、中位数、众数的概念1.平均数平均数是指在一组数据中所有数据之和再除以数据的个数。
2.中位数中位数是指将统计总体当中的各个变量值按大小顺序排列起来,形成一个数列,处于变量数列中间位置的变量值就称为中位数。
3.众数众数是一组数据中出现次数最多的数值,叫众数,有时众数在一组数中有好几个。
二、平均数、中位数、众数的区别1.平均数的大小与一组数据里的每个数均有关系,其中任何数据的变动都会相应引起平均数的变动。
2.总数着眼于对各数据出现频率的考察,其大小只与这组数据的部分数据有关,当一组数据中有不少数据多次重复出现时,其众数往往是我们关心的一种统计量。
3.中位数仅与数据的排列有关,一般来说,部分数据的变动对中位数没有影响,当一组数据中个别数据变动较大时,可用中位数来描述其中集中的趋势。
三、平均数、中位数、众数的联系众数、中位数及平均数都是描述一组数据的集中趋势的量,其中以平均数最为重要,其应用也最为广泛。
课后练习1、判断题:(1)给定一组数据,那么描述这组数据的平均数一定只有一个.( )(2)给定一组数据,那么描述这组数据的中位数一定只有一个.( )(3)给定一组数据,那么描述这组数据的众数一定只有一个.( )(4)给定一组数据,那么描述这组数据的平均数一定位于最大值与最小值之间.( )(5)给定一组数据,那么描述这组数据的中位数一定位于最大值与最小值的正中间.( )(6)给定一组数据,如果找不到众数,那么众数一定就是0.( )2、根据所给数据,求出平均数、中位数和众数,并填入下表.(精确到0.1)数据平均数中位数众数20,20,21,24,27,30,320,2,3,4,5,5,10-2,0,3,3,3,8―6,―4,―2,2,4,6中位数与众数知识点的全部内容就是这些,更多的精彩内容请点击初三数学知识点栏目了解详情,预祝大家在新学期可以更好的学习。
众数,中位数,平均数的特点和应用场合

众数,中位数,平均数的特点和应用场合
问题:众数,中位数,平均数的特点和应用场合
回答:众数、中位数和平均数具有以下特点和应用场合:
1.众数:
(1)特点:是一组数据中出现次数最多的那个数值。
(2)应用场合:常用于需要了解数据中最普遍、最常见的情况,例如在市场
调查中了解哪种产品最受消费者欢迎,在统计某种现象最典型的表现等。
2.中位数:
(1)特点:按顺序排列的一组数据中居于中间位置的数,如果数据有奇数个,
则正中间的数字为中位数;如果数据有偶数个,则中间两个数的平均数为中位数。
它不受极端值的影响较大。
(2)应用场合:在一些数据分布偏态较大,存在极端值时,中位数能更好地
反映数据的集中趋势,如收入分配的研究等。
3.平均数:
(1)特点:反映一组数据的平均水平,容易受极端值影响。
(2)应用场合:应用广泛,比如计算平均成绩、平均产量、平均工资等,能
总体上反映数据的一般水平,但对极端值较敏感。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专训平均数、中位数、众数实际应用的四种类型名师点金:利用统计量中“三数”的实际意义解决实际生活中的一些问题时,关键要理解“三数”的特征,然后根据题目中的已知条件或统计图表中的相关信息,通过计算相关数据解答.
平均数的应用
a.平均数在商业营销中的决策作用
1.一种什锦糖果是由甲、乙、丙三种不同价格的糖果混合而成的,已知甲种糖果的单价为9元/kg,乙种糖果的单价为10元/kg,丙种糖果的单价为12元/kg.
(1)若甲、乙、丙三种糖果数量按253的比例混合,则混合后得到的什锦糖果的单价定为每千克多少元才能保证获得的利润不变?
(2)若甲、乙、丙三种糖果数量按631的比例混合,则混合后得到的什锦糖果的单价定为每千克多少元才能保证获得的利润不变?
b.平均数在人员招聘中的决策作用
2.【中考·呼伦贝尔】某市招聘教师,对应聘者分别进行教学能力、科研能力、组织能力三项测试,其中甲、乙两人的成绩如下表:(单位:分)
项目
教学能力科研能力组织能力人员
甲86 93 73
乙81 95 79
(1)根据实际需要,将教学能力、科研能力、组织能力三项测试得分按532的比确定最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?
(2)按照(1)中的成绩计算方法,将每位应聘者的最后成绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数值,不包含右端数值),并决定由高分到低分录用8人.甲、乙两人能否被录用?请说明理由.【导学号:83182007】
[第2(2)题]
c.平均数在样本估计总体中的作用
3.某中学为调查本校学生平均每天完成作业所用时间的情况,随机调查了50名同学,如图是根据调查所得数据绘制的统计图的一部分.
请根据以上信息,解答下列问题:
(1)将统计图补充完整;
(2)若该校共有1 800名学生,根据以上调查结果估计该校全体学生平均每天完成作业所用总时间.
(第3题)
平均数和中位数的应用4.甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图和统计表:
(1)在图①中,“7分”所在扇形的圆心角等于________________________________________________________________________;
(2)请你将如图②所示的统计图补充完整;
(3)经计算,乙校学生成绩的平均数是8.3分,中位数是8分,请写出甲校学生成绩的平均数、中位数,并从平均数和中位数的角度分析哪个学校的成绩较好;
(4)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?
甲校成绩统计表
乙校成绩扇形统计图乙校成绩条形统计图
(第4题)
中位数和众数的应用5.某厂为了解工人在单位时间内加工同一种零件的技能水平,随机抽取了50名工人加工的零件进行检测,统计出他们各自加工的合格品数是1~8这8个整数,现提供统计图的部分信息(如图所示),请解答下列问题:
(第5题)
(1)根据统计图,求这50名工人加工出的合格品数的中位数;
(2)写出这50名工人加工出的合格品数的众数的可能取值;
(3)厂方认定,工人在单位时间内加工出的合格品数不低于3时为技能合格,否则,将接受技能再培训,已知该厂有同类工人400名,请估计该厂将接受技能再培训的人数.【导学号:83182008】
平均数、中位数、众数的综合应用6.某公司10名销售员去年完成的销售额情况如下表:
(1)求销售额的平均数、众数、中位数.
(2)今年公司为了调动员工的积极性,提高年销售额,准备采取超额有奖的措施.请根据(1)的结果,通过比较,合理确定今年每名销售员统一的销售额标准是多少万元.【导学号:83182009】
答案
1.解:(1)9×2+10×5+12×3
2+5+3
=10.4(元).
答:混合后得到的什锦糖果的单价定为每千克10.4元才能保证获得的利润不变. (2)9×6+10×3+12×16+3+1
=9.6(元).
答:混合后得到的什锦糖果的单价定为每千克9.6元才能保证获得的利润不变. 2.解:(1)甲的成绩:
86×5+93×3+73×2
5+3+2
=85.5(分),
乙的成绩:81×5+95×3+79×2
5+3+2=84.8(分),
所以甲将被录用.
(2)甲能,乙不一定能.理由:由频数分布直方图可知,85分及以上的共有7人,因此甲能被录用,乙不一定能被录用.
3.解:(1)补全统计图如图所示:
(第3题)
(2)由统计图可得x -
=
6×1+12×2+16×3+8×4+8×5
50=3(h ),估计该校全体学生平均每天完成作业所用总
时间为3×1 800=5 400(h ).
4.解:(1)144° (2)补全统计图如图所示.
(第4题)
(3)由(2)知乙校的参赛人数为20人.因为两校参赛人数相等,所以甲校的参赛人数也为20人,所以甲校得9分的有1人,则甲校学生成绩的平均数为(7×11+8×0+9×1+10×8)×1
20
=8.3(分),中位数为7分.
由于两个学校学生成绩的平均数一样,因此从中位数的角度进行分析.
因为乙校学生成绩的中位数为8分,大于甲校学生成绩的中位数,所以乙校的成绩较好. (4)甲校的前8名学生成绩都是10分,而乙校的前8名学生中只有5人的成绩是10分,所以应选甲校.
5.解:(1)因为把合格品数从小到大排列,第25个和第26个数据都为4,所以中位数为4个.
(2)众数的取值为4个或5个或6个.
(3)这50名工人中,单位时间内加工的合格品数低于3的人数为2+6=8(人),故估计该厂将接受技能再培训的人数为400×8
50
=64(人).
6.解:(1)x =1
10×(3+4×3+5×2+6+7+8+10)=5.6(万元),即平均数为5.6万
元.众数为4万元,中位数为5万元.
(2)若以平均数5.6万元作为销售额标准,则大多数人很难或不可能超额完成,会挫伤员工的积极性;若以众数4万元为销售额标准,则多数人不必努力就可以超额完成,不利于提高年销售额;若以中位数5万元为销售额标准,则多数人能完成或超额完成,少数人经过努力
也能完成,故以5万元为销售额标准较合理.
初中数学试卷。